Fuvest 2004

Exercice 1

Une matrice à coefficients réels A est dite orthogonale si A $^tA = I$, où I désigne la matrice Identité et tA désigne la matrice transposée de A.

Si $A=\begin{pmatrix} \frac{1}{2} & x \\ y & z \end{pmatrix}$ est orthogonal, alors x^2+y^2 est égal à :

- 1) $\frac{1}{4}$
- **2)** $\frac{\sqrt{3}}{4}$
- **3)** $\frac{1}{2}$
- **4)** $\frac{\sqrt{3}}{2}$
- **5)** $\frac{3}{2}$

Fuvest 2000

Exercice 1

Si A est une matrice 2×2 inversible telle que $A^2=A$, alors, le déterminant de A vaut :

- **1)** 0
- **2)** 1
- **3)** 2
- **4)** 3
- **5)** 4

D. LE FUR 2/3

Fuvest 1999

Exercice 1

Soit les matrices $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B=\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

On sait que AB = BA.

On peut alors affirmer que :

- **1)** *A* est inversible.
- **2)** det(A) = 0
- **3)** b = 0
- **4)** c = 0
- **5)** a = d = 1