

asn.1

Language and tools ensuring consistency in data for space systems

Maxime Perrotin ESA/ESTEC TEC-SWE

ASN.1

- International, widely used standard (ISO and ITU-T)
- Simple text notation for precise and complete data type description
- But with an added value: **the physical encoding rules** (compact binary encoding, endianness-neutral, but also XML encoding, legacy encoding specifications).
- Separate the encoding rules from the types specification

A very simple yet powerful syntax

```
Dataview DEFINITIONS ::= BEGIN
-- From simple types
Thruster-index ::= INTEGER (1 .. 10) -- Allowed: 1 to 10
Identifier ::= ENUMERATED { cpdu1, cpdu2 }
-- To complex data structures
TC ::= SEQUENCE {
    header PUS-header,
    payload Userdata,
    crc OPTIONAL
Userdata ::= CHOICE {
  tc-6-1 MemoryLoad,
  tc-6-2 ...
END
```

ASN.1 to ensure consistency

How does it work?

ASN.1 philosophy

Length (bits)	Values	Comment
3	,000,	For the first version.
1	'0' — File Directive	
	'1' — File Data	
1	'0' — toward file receiver	Used to perform PDU forwarding.
	'1' — toward file sender	
1	'0' — acknowledged	
	'1' — unacknowledged	
1	'0' — CRC not present	
	'1' — CRC present	
1	set to '0'	
16		In octets.
1	set to '0'	
3		Number of octets in entity ID less one;
		i.e., '0' means that entity ID is one
		octet. Applies to all entity IDs in the PDU header.
1	cet to '0'	r Do ricada.
3	361 10 0	Number of octets in sequence number
3		less one; i.e., '0' means that sequence
		number is one octet.
variable		Uniquely identifies the entity that
		originated the transaction.
variable		Uniquely identifies the transaction,
		among all transactions originated by
uariable		this entity.
variable		Uniquely identifies the entity that is the final destination of the transaction's
		metadata and file data.
	3 1 1 1 1 1 1 1 1 1 1 1 3 2 2 2 2 2 2 2	1

These fields are not application semantics! They concern the binary encoding rules of the PDUs and should not be mixed with the protocol useful information.

ASN.1 philosophy

- Keep only application-semantic data
- Tools will generate encoders and decoders to add the other fields

```
Packet-ty ::= SEQUENCE {
       version
                                    Version-ty,
       direction
                                    Direction-ty,
       transmission-mode
                                    Transmission-mode-ty,
       crc-flag
                                    CRC-flag-tv,
       source-entity-id
                                    Entity-id-ty,
       transaction-sequence-number Transaction-sequence-number-ty,
       destination-entity-id
                                    Entity-id-ty,
       data
                                    Datafield-tv
Version-ty ::= INTEGER (0..7)
Direction-ty ::= ENUMERATED { toward-file-receiver, toward-file-sender
```

Our ASN.1 compiler

- Developped and maintained by Neuropublic for ESA
- Free software
- Features:
 - Generates safe and optimized C and Spark/Ada code (fast, low memory footprint)
 - Automatically generates test cases for a given grammar
 - Generates ICDs documents in HTML format
 - Supports customized (legacy) encodings (e.g. PUS format)
 - API and tools to interface ASN.1 with SDL, Simulink, SCADE,
 VHDL, SQL, and Python

Legacy encodings

- ACN allows to specify legacy encodings
- It can be used to describe the binary format of PUS packets, leaving the interesting part only (payload data) in the ASN.1 side.

```
MySeq ::= SEQUENCE {
    alpha INTEGER,
    gamma REAL OPTIONAL
}
```

```
MySeq[] {
   alpha [],
   beta BOOLEAN [],
   gamma [present-when beta, encoding IEEE754-1985-64]
}
```

Apply it to the PUS (1)

```
-- Telecommand application data
-- List of all available TCs categorized by their respective pus(-sub)types
-- Definition of actual payload data is done in respective Types below
-- In the ACN-file this type is used to automatically assign the pustype and subtype fields
-- in encoding and determine the packet type from pustype and subtype in decoding
-- Types defined as T-NULL have no actual payload data besides the fields
-- for pustype and subtype.
T-tc-applicationData ::= CHOICE
                             TC-UPDATE-HK-PERIOD,
  tc-3-27-update-hk-period
 tc-6-2-load-memory
                             TC-LOAD-MEMORY,
  tc-6-5-dump-memory
                             TC-DUMP-MEMORY,
  tc-6-9-check-memory
                             TC-CHECK-MEMORY.
  tc-6-129-transfer-image
                             TC-TRANSFER-IMAGE,
                                                  -- T-NULL is for TCs which don't have any applicationData
  tc-210-3-reset-dpu
                             T-NULL,
  tc-210-4-enable-watchdog
                                                           -- but only service type and subtype. Still they have to
                             T-NULL,
 tc-210-5-disable-watchdog T-NULL,
                                                  -- Appear in the list of valid commands, T-NULL ensures that 0 bits will be encoded
 tc-210-6-boot-iasw
                             TC-BOOT-IASW,
  tc-197-2-report-boot
                             T-NULL
```

Apply it to the PUS (2)

```
-- Table which maps the pusType and subtype to the corresponding
-- packet payload data
T-tc-applicationData<T-uint8:pusType, T-uint8:pusSubType> []
   tc-3-27-update-hk-period
                            [present-when pusType== 3 pusSubType== 27 ]
   tc-6-2-load-memory
                            [present-when pusType== 6 pusSubType== 2 ]
   tc-6-5-dump-memory
                             [present-when pusType== 6 pusSubType== 5
   tc-6-9-check-memory
                             [present-when pusType== 6 pusSubType== 9
   tc-6-129-transfer-image
                            [present-when pusType== 6 pusSubType==129
   tc-210-3-reset-dpu
                             [present-when pusType==210 pusSubType== 3
                             [present-when pusType==210 pusSubType== 4
   tc-210-4-enable-watchdog
   tc-210-5-disable-watchdog [present-when pus
                            present-when pus T-tc-application Data (CHOICE) ASN. 1 ACN
   tc-210-6-boot-iasw
   tc-197-2-report-boot
                            [present-when pus ______
```

Telecommand application data

List of all available TCs categorized by their respective pus(-sub)types Definition of actual payload data is done in respective Types below In the ACN-file this type is used to automatically assign the pustype and subtype fields in encoding and determine the packet type from pustype and subtype in decoding Types defined as T-NULL have no actual payload data besides the fields for pustype and subtype.

1		<u>T-uint8</u>					
2		<u>T-uint8</u>					
Ио	Field	Comment	Present	Туре	Constraint	Min Length (bits)	Max Length (bits)
1	tc-3-27-update-hk-period		pusType=3 AND pusSubType=27	TC-UPDATE-HK- PERIOD	N.A.	32	32
2	tc-6-2-load-memory		pusType=6 AND pusSubType=2	TC-LOAD- MEMORY	N.A.	112	8080
3	tc-6-5-dump-memory		pusType=6 AND pusSubType=5	TC-DUMP- MEMORY	N.A.	80	80
4	tc-6-9-check-memory		pusType=6 AND pusSubType=9	TC-CHECK- MEMORY	N.A.	72	72
5	tc-6-129-transfer-image		pusType=6 AND pusSubType=129	TC-TRANSFER- IMAGE	N.A.	80	80
6	tc-210-3-reset-dpu		pusType=210 AND pusSubType=3	T-NULL	N.A.	0	0
7	tc-210-4-enable-watchdog		pusType=210 AND pusSubType=4	T-NULL	N.A.	0	0
8	tc-210-5-disable- watchdog		pusType=210 AND pusSubType=5	T-NULL	N.A.	0	0
9	tc-210-6-boot-iasw		pusType=210 AND pusSubType=6	TC-BOOT-IASW	N.A.	80	80
10	tc-197-2-report-boot		pusType=197 AND pusSubType=2	<u>T-NULL</u>	N.A.	0	0

what is this?

And use the code

```
typedef struct {
    enum {
        T tc applicationData NONE,
        tc 3 27 update hk period PRESENT,
        tc 6 2 load memory PRESENT,
        tc 6 5 dump memory PRESENT,
        to 6 9 check memory PRESENT,
        tc 6 129 transfer image PRESENT,
        tc 210 3 reset dpu PRESENT,
        to 210 4 enable watchdog PRESENT,
        tc 210 5 disable watchdog PRESENT,
        tc 210 6 boot iasw PRESENT,
        tc 197 2 report boot PRESENT
    } kind:
    union {
        TC_UPDATE_HK_PERIOD_tc_3_27_update_hk_period;
        TC LOAD MEMORY to 6 2 load memory;
        TC_DUMP_MEMORY_tc_6_5_dump_memory;
        TC CHECK MEMORY to 6 9 check memory;
        TC_TRANSFER_IMAGE tc_6_129_transfer_image;
        T NULL to 210 3 reset dpu;
        T NULL to 210 4 enable watchdog;
        T NULL to 210 5 disable watchdog;
        TC BOOT IASW to 210 6 boot iasw;
        T NULL tc 197 2 report boot;
 T to applicationData;
<u>#define T tc applicationData_REQUIRED_BYTES_FOR_ENCODING</u>
                                                                1007
#define T to applicationData REQUIRED BITS FOR ENCODING
                                                                8049
#define T tc applicationData REQUIRED BYTES FOR ACN ENCODING
                                                                1010
#define T to applicationData REQUIRED BITS FOR ACN ENCODING
                                                                8080
#define T to applicationData REQUIRED BYTES FOR XER ENCODING
                                                                2272
void T tc applicationData Initialize(T tc applicationData* pVal);
flag T_tc_applicationData_IsConstraintValid(const T_tc_applicationData* val, int* pErrCode);
flag T_tc_applicationData_ACN_Encode(const T_tc_applicationData* val, BitStream* pBitStrm, int* pErrCode, flag bCheckConstraints);
flag T to applicationData ACN Decode(T to applicationData* pVal, BitStream* pBitStrm, int* pErrCode, T uint8 pusType, T uint8 pusSubType);
#ifndef ERR T to applicationData unknown choice index
#define ERR T to applicationData unknown choice index
                                                                 1037 /**/
#endif
```

SDL and ASN.1

SDL, MSC and ASN.1

MSC and ASN.1

ASN.1 to SQL / Working with databases

TASTE relies on ASN.1 to ensure consistency of data at each level of the process: Engineering, processing, testing, documentation, communication, data storage and retrieval.

ASN.1 to SQL magic

- Use the same ASN.1 model to create SQL schemas → keep consistency (one SQL table per ASN.1 data type is created by the toolchain, automatically)
- Use case: telecommand/telemetry storage
 - Describe TM/TC data format in ASN.1 and ACN
 - Use C/Ada binary encoder/decoders in flight code
 - Use ICD generator to document format at binary level
 - Pick TC/Store TM in the SQL database for post-processing field format is correct by construction
- Very flexible: using SQLAlchemy to be compatible with Oracle, SQLite, PostgreSQL...
- Python interface

A simple API

```
MyInt ::= INTEGER (0...20)
```

```
# Can work with any DB. Here is an example with PostgreSQL
engine = create_engine(
    'postgresql+psycopg2://taste:tastedb@localhost/test', echo=False)

# Create data using the ASN.1 Python API
a = MyInt()
a.Set(5)

# Add the value to the SQL table called MyInt
aa1 = MyInt_SQL(a)
aid1 = aa1.save(session)
```

A simple API – Retrieve data

```
# Data is retrieved using SQL queries, or SQLAlchemy API
# Retrieve ALL records in the MyInt table
all_values = self.session.query(MyInt_SQL)

for record in all_values:
    # The magic : data is transparently converted back to ASN.1
    print record.asn1.Get()
```

Query data with the full power of databases. It will be converted automatically to ASN.1 structures.

Use case:

Query all TC with type=XX and subtype=YY (1 line of code)
Select the ones you are interested in
Encode them with ASN.1/ACN to a PUS packet (1 line of code)
Send them to the satellite (1 line of code)

Check the results

- Demo of the complete features in /home/assert/tool-src/DMT/tests-sqlalchemy
- Run make (password for the db is tastedb)
- Run pgadmin3

