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ADVERTISEMENT.

TaE first three parts of this treatise, comprising Plane Trigono-
metry, Navigation and Surveying, and Spherical Trigonometry, have
been revised for the present edition, under the direction of the
author. Some sections have been rewritten, and some additions
have been made, but in all essential respects the book remains un-
altered. The original numbering of the formulas has been preserved ;
and in the few cases in which the numbering of the sections has
been changed, that of the former editions has been speedily restored.

In the Spherical Astronomy, the notation of the chapter on Eclipses
has been conformed to that used in the American Ephemeris and
Nautical Almanac.

The tables of the Navigator referred to in the first three parts
of the work may be found, with a very few exceptions of slight im-
portance, in Bowditch’s Useful Tables, a convenient selection from
the Navigator, published by Messrs. E. and G. W. Blunt, New
York. The only necessary tables, indeed, in this portion of the
book, are those of logarithms of numbers, of logarithmic sines &c.,
of meridional parts, and of the correction for the middle latitude.

1861, March.
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GEOGRAPHICAL POSITIONS

OF PLACES MENTIONED IN THIS WORK.

Authorities : the U. S. Coast Survey Reports, the American
Ephemeris, the Connaissance des Temps, and Bowditch’s Navi-
gator.

(Observatory) . . 38 b4
Yankee Straits, New South Shetln.nd . . | 62 80

Places. Latitudes, Logfi:e':ld:fcg.om
Albany e e e 42° 89/ N, | 178° 46/ W.
Athens (Parthenon) . . . . | 87 68 N. 28 44 E.
Barcelona (Cathedral) o« . o e 41 28 N 2 10 E.
Boston (* Light) . . . . . |42 20 N 70 63 W.
¢ (State House) . . . 42 21 N 71 03 W.
Botany Bay (Cape Banks) . . . .18 02 8. |151 138 E.
Canton . . . . . 28 08 N. (1183 17 E.
Charleston (nght) . . . |82 42 N 79 52 W.
Disappointment I., N. Pacific Ocean . . 27 16 N. | 140 51 E.
Dlsn.ppomtmentls 8. Pacific Ocean . . |14 10 8. | 141 18 W.
Gibraltar . . . . 86 07 N. b 21 W,
Good Hope, Cape of (Pomt) . . . . |8 228 18 29 E.
Georgetown, Bermudas . . . . 82 2 N 64 383 W.
Greenwich (Observatory) . . . . |61 29 N, 0 00
Halifax (Dockyard) . . . . . 44 40 N 68 85 W.
Horn, Cape, (Point) . . . . .| 66 69 B 67 16 W.
Java Head . . . . e . . 6 48 8. [ 106 13 E.
Land’s End . . . . . . 160 04 N 5 42 W,
Lima (8. J. de DIOB) . . P . 12 03 8 77 08 W.
Liverpool (Observatory) . . . . .| 58 26 N, 8 00 W.
London (8t. Paul’s) . N . . 51 81 N 0 06 W.
Melbourne, Australia . . . . . {87 48 8. | 144 59 E.
Moscow (Observatory) . . . . 66 46 N. | 87 84 E.
Nantucket (Gr. Point Light) . . . |41 28 N 70 02 W.
Newfoundland (8. Pt. Great Bank) . . 42 66 N 50 00 W.
New Orleans (City Hall). . . . . 129 68 N 90 07 W.
New York (Battery) . . . 40 42 N 74 01 W.
LO (‘Navesmk nght) . . . 140 24 N 78 659 W.
Paris (Observatory) . . . . 48 50 N 2 20 E.
Portland (Light) . . . . . . |48 87 N 70 12 W.
St. Helena (Observatory) . . . . 16 56 8. b 43 W.
St. Roque, Cape . . . . +| b 28 B 8 17 W.
8t. Thomas, Cape . . . . 22 03 8, 41 00 W.
St. Vincent, Cape, (Convent) . . . {87 038 N 9 00 W.
San Francisco (Pt. Boneta Light) . . 37 49 N. (122 381 W,
Santa Cruz, C. Verde Islands . . . |17 02 N 26 15 W,
Smeerenburg Harbor, Spitzbergen . . 79 44 N 11 11 E.
Stockholm (Observatory) « « « .89 21 N.| 18 038 E.
Verde, Cape . o e 14 43 N 17 381 W.
Washmgton (‘Ca.pltol) o e e . |88 53 N 77 00 W,
N. Ww.
8 w.

* Used in the examples in Navigation.

N. B. A few other places are referred to, in the Astronomy; but their geo-
graphioal positions are given, where they occur.
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PLANE TRIGONOMETRY.

CHAPTER 1I.
GENERAL PRINCIPLES OF PLANE TRIGONOMETRY.

1. Trigonometry is the science which treats of angles and
triangles. :

2. Plane Trigonometry treats of plane angles and plane:

triangles. [B., p. 36.%]
8. The sides and angles of a triangle are called its parts.

A triangle is said to be known, when all its parts are known.

To solve a triangle is to calculate the values of its unknown
parts.

It has been proved in Geometry that, when three of the six parts

of a triangle are given, the triangle can be constructed, provided

one at least of the given parts is a side. In these cases, then, the
unknown parts of thé triangle can be determined geometrically,
and it may readily be inferred that they can also be determined
algebraically ; that is, that it is possible to find equations which
express the relation of the unknown parts to the known, and by
which the unknown parts can be computed numerically.

But a great difficulty is met with on the very threshold of the
attempt to apply the calculus to triangles. It arises from the cir-
cumstance that two kinds of quantities are to be introduced into
the same formulas, — sides and angles. These quantities are not only
of an entirely different species, but the law of their relative increase
and decrease is so complicated that they cannot be determined from
each other by any of the common operations of Algebra.

* References between the brackets, preceded by the letter B., refer to the
pages in the stereotype edition of Bowditch’s Navigator.
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4. To diminish the difficulty of solving triangles as much as
possible, every method has been taken to compare triangles
with each other, and the solution of all triangles has been
reduced to that of a Limited Series of Right Triangles.

a. It is easily seen that the solution of all triangles is reducible ‘to
that of right triangles. For every oblique triangle is either the
sum or the difference of two right triangles; and the sides and
angles of the oblique triangle are the same with those of the right
triangles, or may be obtained from them by addition or by subtrac-
tion. Thus the triangle ABC is the sum (fig. 2), or the difference
(fig. 8), of the two right triangles ABP and BPC. In both fig-
ures the sides AB, BC, and the angle A belong at once to the
oblique and the right triangles, and so does the angle BCA (fig.
2), or its supplement (fig. 3); while the angle ABC is the sum
(fig. 2), or the difference (fig. 8), of ABP and PB('; and the side
AC is the sum (fig. 2), or the difference (fig. 3), of AP and -PC. '

b. It follows from the well known propositions of Geometry con-
cerning the similarity of right triangles [B., pp. 8, 12] that any
assumed value of one of the acute angles of a right triangle deter-
mines the value of the other acute angle and the values of the
various ratios between its sides, and that any assumed value of one
of these ratios determines the values of the other ratios and of the
acute angles. 'If, then, in the triangle ABC (fig. 4), right angled at
C, we denote‘the hypothenuse by k& and the legs opposite to the angles
A and B by a and b respectively, and if we arrange in one column
of a table all the possible values of the angle 4, from 0° to 90°, and

then calculate and arrange in other columns the corresponding

values of the six ratios J» ;l, gv ;’ =1 and —v and of the angle B,

wa shall have a series of right triangles, in which every possible
case of the right triangle will be represented, and by reference to
which, provided a sufficient number of parts are given, it can be
solved. Suppose, for instance, that the angle 4 and the adjacent
leg b are given. We are to look through the series of calculated
triangles till we find one which has the angle A equal to the given
angle; and this triangle is similar to that which we seek to solve.
Then, to find the leg a, we have only to multiply the value which

we have found of the ratio by 5, and to find the hypothenuse, we
have only to multiply -b'f by b, and the value of the angle B is given
directly in the table.
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Moreover, since one of the acute angles of every right triangle is
included between 0° and 45°, it is evident that the last half of the
above series is essentially a repetition of the first half, and is there-
" fore unnecessary.

¢. But as there is an infinite variety of values which an angle
may assume, between any given limits, a perfect series of right
triangles could never be constructed or calculated. Fortunately,
such a series is not required; and it is sufficient for all practical
purposes to calculate a series in which the successive angles differ
only by a minute, or at least, by a second. Intermediate triangles
can be obtained, when needed, by that simple principle of interpo-
lation which is made use of to obtain the intermediate logarithms
from those given in the tables.

5. Plane Trigonometry then embraces the methods of calcu-
lating the series, or table, above described, and of applying it to
the solution of all kinds of plane triangles, together with such
investigations as naturally grow out of the general theory of the
science, though they may not be directly connected with the
solution of triangles.

1-
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CHAPTER II.

SINES, TANGENTS, AND SECANTS.

6. The six ratios between the three sides of the right triangle,
which ratios, as it has been seen, are fully determined by the
value of either of the acute angles, are called the trigonometric
Junctions of either acute angle ; or, sometimes, the trigonome-
tric_ratios.

7. Each trigonometric function has its distinctive name.

The Sine of an angle is the quotient obtained by dividing
the leg opposite it in a right triangle by the hypothenuse.

Thus, if we denote (fig. 4) the legs BC and AC by the letters a
and b, and the hypothenuse AB by the letter 4, we have

. . b

sm.A:%, sin. B = i (1)

The Tangent of an angle is the quotient obtained by divid-
ing the leg opposite it in a rig}}t triangle by the adjacent leg.

Thus, (fig. 4),

: a b
tang. 4 = B tang. B == (2)
The Secant of an angle is the quotient obtained by dividing
the hypothenuse by the leg adjacent to the angle.
Thus, (fig. 4),
h

h
sec, A = 5 sec. B= 7 3)

The Cosine, Cotangent, and Cosecant of an angle are re-
spectively the sine, tangent, and secant of its complement.

8. Corollary. Since the two acute angles of a right triangle
are complements of each other, the sine, tangent, and secant of

the one must be the cosine, cotangent, and cosecant of the
other.
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\ \
Thus, (fig. 4),

sinn. A=cos. B=
cos. A—=sin. B=
tang. A = cotan. B—=
: (4)

cotan. 4 — tang. B =

- sec. A =— cosec. B —

cosec. A —sec. B—

Q> gqgnﬁlv VR §-l°'>|§

9. Corollary. It is evident that the sine and cosine of every
angle are less than unity, that the secant and cosecant of every
angle are greater than unity, and that the tangent and cotangent
may have any value, the tangent being greater than unity
when the cotangent is less, and less when the cotangent is
greater.

10. Corollary. By inspecting the preceding equations (4),
we perceive that the sine and cosecant of an angle are reci-
procals of each other; as are also the cosine and secant, and
also the tangent and cotangent.

So that .

cosec. A4 X sin. A:gx%:i—::l

sec. A X cos. A::;—x%:;i:l (5)
tang. A X cotan.A:Z—X :—zg%_ 1

whence

cosec. A = sinl. 2 °F sin, 4 = coTelc.—A

sec. A= co:. 3 OF cos. A= ﬁecl. y (6)
cotan. 4 = tanl. y il tang. 4 = cotaln. y
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!
As soon, then, as the sine, cosine, and tangent of an angle are

known, their reciprocals, the cosecant, secant, and cotangent, may
easily be obtained.

11. Problem. To find the tangent of an angle when its sine
and cosine are known.

Solution. The quotient of sin. A divided by cos. 4 is, by equa-
tions (4),

sinnd_a b ah_a
cos. A"k kbR B .
But by (4),
tang. A:;,
hence
sin. 4
tang.A_m. (7)

12. Corollary. Since the cotangent is the reciprocal of the
tangent, we have
cos. 4

cotan. 4 = A (8)

13. Problem. To find the cosine of an angle when its sine
8 known.

Solution. We have, by the Pythagorean proposition, in the right
triangle ABC (fig. 4),
a4 5 = k3~
But by (4),

a -{-b’ h?
;,n+),2 B R T

or (sin. 4)24- (cos. 4)2=1; 9)

(sin. 4)2 4 (cos. 4)2 = 1, |

that is, the sum of the squares of the sine and cosine of any angle
18 equal to unity.
Hence (cos. 4)2 =1 — (sin. 4)3,
cos. A=/ 1—(sin. 4)% (10)
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14. Corollary. Since
W —a? =8,
we have by (4), .

B e k—a? 1

2 __ e " _ T 7

(sec.,A) (tan. 4)2 = B RT TR == 1,
or (sec. A)3— (tang. 4)2=1; ) (11)
whence (sec. A)? =1+ (tang. A)2

15. Corollary. Since
B—32= g2,
we have by (4),
RO¥ R—h

(cosec. 4)? — (cotan. 4)2 = B m= g =0b

or (cosec. A)2 — (cotan. 4)2=1; (12)

whence (cosec. A)?=1 (cotan. 4},

16. Scholium. The whole difficulty of calculating the tri-
gonometric tables of sines and cosines, tangents and cotangents,
secants and cosecants is, by the preceding propositions, reduced
to that of calculating the sines alone. This agrees with the
statement of § 4 b, that any one ratio determines the others.

17. ExAMPLES.

1. Given the sine of the angle A, equal to 0.4568, calculate its
cosine, tangent, cotangent, secant, and cosecant.

Solution. By equation (10)

cos. A =4a/1 — (sin. 4)2 =4/ (14 sin. 4) (1 — sin. 4).

t 14-sin. A=1.4568 0.16340
1 —sin. 4 =X0.5432 9.73496
(cos. 4)? 2/9.89836 -
cos. A — 0.8896 9.94918
By (7) and (8), ;
tang. 4 —sin. 4 cotan, 4 = o A

cos. A’ . sin. 4
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sin. A = 0.4568 9.65973 (ar. co.) 10.34027
cos. A= 0.8896 (ar.co.) 10.05082 9.94918
- 9.71055 (ar. co.) 10.28945
tang. A = 0.5135 cotan. 4 =1.9474.
By (6),
. 1 1
sec. A = Py cosec. 4 = |

log. sec. A —=—1log. cos. A = 0.05082,
sec. 4 =1,1241,
log. cosec. A = — log. sin. 4 = 0.34027,
cosec. A =2.1891.

2. Given sin. 4 = 0.1111; find the cosine, tangent, cotangent,
secant, and cosecant of 4. '
Ans. cos. A= 0.9938
tang. 4 =0.1118
cotan., A — 8.9452
sec. A =—1.0062
cosec. A =9.0010

3. Given sin. A = 0.9891; find the cosine, tangent, cotangent,
secant, and cosecant of A.

Ans. cos. A=0.1472 /
tang. A =64173 7/’
cotan. 4 — 0.1489 7/

Vé b
sec. A =6.794} ,‘f/f v

cosec. A =1.0110

18. Theorem. The sine of an angle is equal to the perpen-
dicular let fall from one extremity of the arc which measures it,
in the otrcle whose radius is unity, upon the radius passing
through the other extremity.

* The cosine 8 equal to 8o much of the radius drawn perpen-
dicular to the sine as i8 included between the sine and the
centre.

Proof. Let ACB (fig. 5) be the angle, and let the radius of the
circle ABA’A be the unit of length. Let fall on the radius CA
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the perpendicular BP, and we have by §7, in the right triangle
BPC,

_ PB_PB _

Bln.ACB_-éE——l—-_PB
CP CP

cos. ACB = B=T1°~ CP.

19. Theorem. In the circle of which the radius is unity, the
‘ secant i8 equal to the length of the radius which is drawn through
one extremity of the arc which measures the angle and produced
till it meets the tangent drawn through the other extremity.
The trigonometric tangent is equal to so much of the tan-
gent drawn through ome extremity of the arc as t8 intercepted
between the two radiv which terminate the arc.

Proof. If CB (fig. 5) is produced to meet the tangent AT at T,
we have, by (2) and (3), in the right triangle ACT,

CT_ CT

sec. ACB:EZ—T=CT
AT AT

2 == ———=AT.

tang. ACB A= 1 T.

20. Corollary. 1If, in fig. 5, a radius CA” be drawn per-
pendicular to CA, the angle A”CB will be the complement of
ACB. Hence, if a tangent AT be drawn to meet the pro-
duced radius C'T, the lengths A”T” and CT" will be equal
respectively to the tangent and the secant of A”CB; that is,
to the cotangent and the cosecant of ACB.

21. Scholium. On account of their relation to the unit-
circle, the trigonometric functions are often called circular
Junctions ; and most writers upon trigonometry have defined
the sine, cosine, &c., as lines drawn in the manner described
in §§18-20, but without limiting the radius of the circle to
unity. [B., p. 6.]

If any radius is taken at pleasure, the values of the sine, &ec., of
any given angle are not fixed, but vary with the value of the radius ;
whereas, if the unit of length is always taken as radius, though any
line may be made the unit, so that the actual lengths of the lines
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which represent the sine, &c., may vary, yet the numerical values of
these lines remain the same, being their fixed ratios to the radius,
which is always the unit. Hence, if R represents the value of the
radius adopted in the common system, we have

din., cos., &c., in the common system — R X sin., cos., &c.,

in this system.

22. Corollary. If the angle is very small, as C (fig. 6), the arc
AB will be sensibly a straight line, perpendicular to the two radii,
CA and CB, drawn to its extremities, and will sensibly coincide
with the sine and tangent; while the cosine will sensibly coincide
with the radius CA, and the secant with the radius CB.

Hence, the sine and tangent of a very gmall angle are nearly
equal to the arc which measures the angle in the circle of which
the radius is unity ; and its cosine and secant are mearly equal
to unity.

238. Problem. To find the sine of a very small angle.

Solution. Let the angle C (fig. 6) be the given angle, and sup-
pose it to be exactly one minute. The arc AB must in this case be
todog of the semicircumference of which unity or CA is radius.
But the value of the semicircumference of which unity is radius has
been found in Geometry to be 3.1415926. Therefore, by § 22,

3.1415926

sin. '!= AB = —os00 — 0.000290888. (13)

In the same way we might find the sine of any other small angle,
or we might, in preference, find it by the following proposition.
L 4

24. Theorem. The sines of very small angles are proportional
to the angles themselves.

Proof. Let there be the two small angles, ACB and ACB'
(fig. 7). Draw the arc ABB’ with the centre C and the radius unity.
‘Then, as angles are proportional to the arcs which measure them,

ACB: ACB'=AB: AB.
Buat, by‘ §22,
sin. ACB = AB, sin, ACB'= AB,
whence

ACB: ACB' —=sin. ACB : sin. ACB'.
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Scholium. §§ 22 —24 are only approximately true of any angle;
but the smaller the angle, the less is the error of these propositions.
It is found that, for angles less than two degrees, the values of the
sine found by this method are accurate in the first five places of
decimals. Consequently, in calculating the sines of angles to five
places of decimals, this method may be applied to angles less than
two degrees ; the investigation of the sines of larger angles requires
the introduction of some new formulas. If more than five places are
desired, the more accurate formulas must be introduced at an earlier
point.

25. Corollary. It follows from the preceding theorem that if x.
is a very small angle,

sin. £ = r sin. 1/, ' (14)
provided that x in the second member @enotes the number of minutes
in the angle. But if z is expressed in seconds, we have

sin. z —=.z 8in. 1”7 (15)
and if z represents the angle by denoting the length of the arc which
measures it in the circle of which the radius is unity,

sin.x=ux; ‘ (16)
and either of these different notations may be used at pleasure.

26, Exampres. > )
1. Find the sine of 12’ 13", knowing that
sin. 1/ = 0.0002909.

Solution. By (14),
1/: 12/ 13” = sin. 1': sin. 12/ 18",
or
60" : 733" = 0.0002909 : sin. 12/ 18",
Hence

733 % 0.0002909
60

2. Find the sine of 7/ 15", knowing that
sin. 1" = 0.0002909.
Ans, siln. 7! 15" = 0.00211.
8. Find the sine of 1° 2/ 32", knowing that
sin, 1/ =0.0002909.
Ans. sin. 1° 2/ 32 = 0.01819.

sin, 12/ 13" —= — 0.00355. Ans.
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27. Problem. Given the sine.of any angle, to find the sine
of another angle which exceeds it by a very small quantity.

Solution. Let the given gngle be ACB (fig. 8), which we will
denote by the letter f; and let the angle whose sine is required be
ACB', exceeding the former by the angle BCB', which is supposed
to be so small that the arc BB’ may be considered as a straight line,
as in § 22, and which we will denote by the letter m ; so that

M= ACB, m= BCH,
M+4m= ACBHB.

From the vertex C as a centre, with the radius unity, describe the
arc ABB'. From the points B and B, let fall BP and B'P’ per-
pendicular to AC.

We have, by §18, o
sin. M= PB, cos. M= CP,

sin. ACB' = sin. (M 4 m) = P'B'.
Draw BR perpendicular to B/’P'; and
P'B'=PB+ RB/,

or
sin (M 4 m) = sin. M 4 RB.
The right triangles BCP and BB'R, having their sides perpen-
dicular each to each, are similar, and give the proportion
CB: BB =CP: RB.
But, by §22,
BB’ = sin. m.

Hence
1:8in.m—cus. M: RB';

and RB' = sin. m . cos. M,
which gives, by substitution,
sin. (M 4 m) = sin. M 4 sin. m . cos. M [¢Y))
If mis 1/, (17) becomes, by (13),
sin. (M4 1’) = sin. M - sin. 1. cos. M,
= sin. M+ 0.00029 cos. M. (18)
We may, by this formula, find the sine of 2’ from that of 1,

thence that of 3/, then of 4/, of 5/, &c., to the sine of an angle of
any number of degrees and minutes.
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28. Corollary. We can, in a similar way, deduce the value of
cos. (M + m).
For, by §18,
cos. (M+m) = CP'= CP—PP
. —=cos. M— RB.
But the similar triangles BB'R and BCP give the proportion
CB: BB'=PB: RB,

or
1: sin. m —=sin. M : RB.
Hence
RB —sin, m . sin. M,
whence

cos. (M 4 m) = cos. M —sin. m . sin. M ; (19)
and, if we make m — 1/, this equation becomes
‘cos. (M 4 1') = cos. M — sin. 1/ . sin. M,
= cos. M —0.00029 sin. M. (20)

~29. ExampLEs.
1. Given the sine of 23° 28’ equal to 0.39822, to find the sine of
23° 29/, : .
Solution. We find the cosine of 23° 28’ by (10) to be
cos. 23° 28’ = 0.91729.
Hence, by (18), making M — 23° 28’
sin. 23° 29/ — sin. 23° 28’ 4 0.00029 cos. 23° 28/,
= 0.39822 - 0.00026,
= 0.39848.
Ans. sin. 23° 29/ — 0.39848.
2. Given the sine and cosine of 46° 58/ as follows,
sin. 46° 58’ — 0.73096, cos. 46° 58’ — 0.68242,
find the sine and cosine of 46° 59'. '
Ans. sin. 46° 59’ = 0.73116,
cos. 46° 59/ — 0.68221.

8. Given the sine and cosine of 11° 10’ as follows,
sin. 11° 10/ =0.19366, cos. 11° 10’ = 0.98107,
find the sine and cosine of 11° 11/, ’ ’

Ans. sin. 11° 11/ = 0.19395.
cos. 11° 11/ = 0.98101.
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80. By the formulas here given, a complete table of sines,
cosines, &c., may be calculated. Such tables have been actually
calculated, but generally by methods more convenient in prac-
tice than that explained in this chapter. Table XXIV of the
Navigator is a table of sines and cosines calculated to five
places of decimals ; ‘and Table XXVII gives the five-place
logarithms of all the trigonometric functions.

The trigonometric functions themselves are called natural, as in
Table XXIV, to distinguish them from their logarithms, which are
more often used, and which are sometimes called the artificial
sines, &c.

Table XXIV is constructed on the system of §21, the radius
being
* 105 = 100,000 ;

8o that this table is reduced to the present system by dividing each
number by this radius; that is, by putting the decimal point five
places back, or prefixing it to each number asit is given in the table.

The radius of Table XXVII is
101 = 10,000,000,000 ;

so that this table is reduced to the present system by subtracting
from each number the logarithm of this radius, which is 10; that
is, by subtracting 10 from each characteristic.

These values of the radius are taken in order to avoid printing
the decimal point in the first case, and to avoid negative characteris-
tics in the second case.

The method of using these two tables is fully explained in pp.
83— 85 (given at the end of the Useful Tables) and pp. 391, 392 of
the Navigator. It is supposed to be understood in the remainder
of this book.

If we disregard the ¢ Hour” columns in Table XXVII, with
which at present we have nothing to do, and the insertion of angles
greater than 90°, which will be explained in a future chapter, this
table corresponds precisely to the series of right triangles described
in § 4, the two opposite angles being always complements of each
other, and the six principal columns giving the values of the six
trigonometric ratios, each of which, as in § 8, bears complementary
relations to the two angles,
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CHAPTER IIL
RIGHT TRIANGLES.

81. The general formulas which are obtained for the solu-
tion of triangles should in each case, as far as possible, express
the unknown parts in terms only of those which are given at the
outset ; but it is occasionaly better, for practical reasons, in the
working of a numerical example, to compute certain of the
unknown parts first, and then use these in finding the others.

Two classes of problems in the solution of right triangles
may be distinguished ; — the first class including those in which
an acute angle and a side are given ; the second, those in which
‘two sides are given.

In problems of the first class, the general method of finding
either unknown side is to see what trigonometric function of the
known angle is represented by the ratio of the side sought to the
given side, find its value in the table, and multiply it by the given
side. The unknown angle is the complement of the known
angle.

In problems of the second class, the general method of find-
ing either acute angle is to see what function of this angle 1is
represented by the ratio of the given sides, find the value of this
ratio, and look out the corresponding value of the angle in the
table. The unknown side may be found by the Pythagorean
Proposition.

82. Problem. To solve a right triangle, when the hypothe-
nuse and one of the angles are known. [B., p. 88.]

Solution. Given (fig. 4) the hypothenuse & and the angle 4, to
solve the triangle.

First. To find the other acute angle B, subtract the given angle
from 90°,
2
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Secondly. To find the opposite sidc; a, we have, by (1),

v sin, A = ;,
‘which, multiplied by &, gives ‘ .
) a="hsin, 4; (21)
or, by logarithms,
log. a = log. h 4 log. sin. 4.
Thirdly. To find the side# we have, by (4),

cos, 4 = ;,
which, multiplied by &, gives .

b=hcos. A; (22)
or, by logarithms, ¢
log. & = log. k +-log. cos. 4.

33. Problem. To solv;z a right triangle, when a leg and the
opposite angle are known. [B., p. 89.]

Solution. Given (fig. 4) the leg.a and the opposite angle A4, to
solve the triangle.

First. The angle B is the complement of 4.
Secondly. To find the hypothenuse &, we have, by (4),

cosec. A = l' ,
a

which, multiplied by a, gives, by (6),

a
h=acosec. 4 = rwi (?3)

or, by logarithms,
log. h =log. a4 log. cosec. 4 = log. a - (ar. co.) log. sin. 4.
Thirdly. To find the other leg b, we have, by (4), '

cotan, A — é,
a

b=acotan. 4; (24)
log. b =log. a -}-log. cotan A.

34. Problem. To solve a right triangle, when a leé and the
adjacent angle are known. [B., p. 39.] . [

Solution. Given (fig. 4) the leg a and the angle B, to solve the
triangle. .

First. The angle 4 is the complement of B.
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Secondly. 'We have for & and b, from (4) and (6),

a
h—=—asec. B= m, (25)

b=a tang. B; (26)
or, by logarithms, .
log. & = log. a + log. sec. B,
log. b = log. a 4 log. tang. B.

85. Problem. To solve a right triangle, when the hypothe-
nuse and a leg are known. [B., p. 40.]

Solution. Given (fig. 4) the hypothenuse A and the leg a, to solve
the triangle. :

First. The angles A and B are obtained from equation (4),

sin. 4 = cos. B= ‘;‘; (27)
or, by logarithms,
log. sin. A = log. cos. B = log. a4 (ar. co.) log. A.

Secondly. 'The leg b is deduced from the Pythagorean property

of the right triangle, which gives

ad 4 B2 =12, (28)
B¥B=B—a*=((h+4a)(h—a),
b=w (B—a)=a[(h+a) (h—a)]; (29)

log. b=} log. (A®—a?) = } [log. (h 4 a) +-log. (h —a)].

86. Problem. To solve a right triangle, when the two legs are
known. [B., p. 40.]

®Solution. Given (fig. 4) the legs a and b, to solve the triangle.
First. 'The angles are obtained from (4),

tang. A = cotan. B=7 B (30)

log. tang. A = log. cotan. B = log. a +- (ar. co.) log. &.
Secondly. To find the hypothenuse, we have, by (28),
h=a/ (a2 4 82). (81)

Thirdly. A practically better way of finding the hypothenuse
. is to make use of (23) or (25),

h = a cosec. A — a sec. B; (82)
log. & = log. a 4 log. cosec. A = log. a -} log. sec. B.
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37. ExaMPLES.
1. Given the hypothenuse of a right triangle equal to 49.58, ahd

one of the acute angles equal to 54° 44/ ; to solve the triangle.

Solution. The other angle =— 90° — 54° 44/ — 35° 16’. Then
making & = 49.58, and 4 = 54° 44/; we have, by (21) and (22),

= 49.58 1.69531 ) 1.69531
A = 54° 44/ - %gin. 9.91194 cos. 9.76146
— -
a = 40.481 '1.60725; b= 28.627 1.45677
Ans. The other angle — 35° 16/;
40.481
The legs = { 28.627

2. Given the bhyptb)thenuse of a right triangle equal to 54.571, and
one of the legs equal to 23.479; to solve the triangle.

Solution. Making kb = 54.571, a—28.479; we have, by (27),

a—23.479 1.37068
h = 54.571 (ar. co.) 8.26304
— ° / M
il BT
By (29),

h+ a=178.050 1.89237

h—a=231.092 1.49265
8 2 [B.38502 ’

b—=49.262 1.69251

Ans. The other leg — 49.262

25° 29/

The angles = g 64° 31/

3. Given the two legs of a right triangle equal to 44.375, and
22.165 ; to solve the triangle,

* To avoid negative characteristics, the logarithms are retained as in the
tables, according to the usual practice with the logarithms of decimals, as in
B., p. 29.
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Solution. Making a = 44.375, b = 22.165; we have

a = 44.375 1.64714 1.64714
b= 22.165 (ar. co.) 8.65433

} 10.30147;

A = 63° 27/ 28" tang.

cosec.
B — 2604 32’ 82/ cotan. c. ; 10-04837

h = 49.603 1.69551
Ans. The hypothenuse — 49.603

63° 27/ 28"

The angles = { 26° 327 32n

4. Given the hypothenuse of a right triangle equal to 37.364, and
one of the acute angles equal to 12° 30/; to solve the triangle.

Ans. The other angle = 77° 30/

8.087
The legs = { 36.478

5. Given one of the legs of a right triangle equal to 14.548, and
the opposite angle equal to 54° 24'; to solve the triangle.
Ans. The hypothenuse — 17.892
The other leg  =10.415
The other angle — 35° 36’

6. Given one of the legs of a right triangle e&ual to 11.111, and
the adjacent angle equal to 11° 11/; to solve the triangle.
: Ans. The hypothenuse — 11.326
The other leg = 2.197
The other angle =—178° 49’

7. Given the hypothenuse of a right triangle equal to 100, and
one of the legs equal to 1; to solve the triangle.

Ans. The other leg = 99.995

' 0° 34’ 23"

The angles — { 89° 95/ 37/
8. Given the two legs of a right triangle equal to 8.148, and
10.864 ; to solve the triangle.
: Ans. The hypothenuse = 13.58

36° 52/ 11"
The angles = { 53° 71 497



22 PLANE TRIGONOMETRY. [cH. 1V,

CHAPTER 1V.
GENERAL FORMULAS.

38. Certain general problems, concerning the mutual rela-
tions of the trigonometric functions of angles which have simple
relations to each other, are perpetually recurring in the applica-
tions of trigonometry ; and as some of them arise in the solution
of oblique triangles, it is convenient to bring them together and
investigate them at this point.

89. Problem. To find the sine of an angle equal to the sum
of two other angles, in terms of the trigonometric functions of the
two latter angles ; or, more briefly,

To find the sine of the sum of two angles.

Solution. Let the two angles be CAB and B'AC (fig. 9), repre-
sented by the letters M and N. At any point C in the line AC,
erect the perpendicular BB'. From B let fall on AB’ the perpen-
dicular BP. Then represent the several lines as follows,

a®CB, o =B'C, b=AC
h=AB, k="AB, 2=PB
M= CAB, N=PBAC. ‘
Then, by (4),

/

. . a . a
sin. CAB —=sin. M = e sin. N—= W
b b
cos. M:IT’ _cos. K:,p N
. . _PB =
sin, BAB =sin. (M4 N) = 1B=

Now the triangles BPB’ and B'AC, being right-angled, and
having the angle B’ common, are equiangular and similar.
Whence we derive the proportion
AB': BBB=AC: PB,
or
h:ata=b:r;
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whence

>
ab+4a'b 5
I=—, . .
h .
and . a o
: . z _ab+4ab T !
sin. (M 4 N)=’7= :;., !

The second member of this equation may be separated into factors,
as follows, "

. ab ba
sin. (M+N)=h—h’+_h_h’—
ad b a
=R tThw
whence, by substitution, we obtain
sin. (M+ N)=sin. M cos. N - cos. M sin. IV. (88)

40. Problem. To find the sine of the difference of two angles.

Solution. Let the two angles be CAB and CAB’ (fig. 10), repre-
sented by M and IN. At any point C in the line AC erect the
perpendicular CB’B. From B let fall on AB’ the perpendicular
BP. Then, applying to fig. 10 the notation of § 39, we have

. . PB z -
sin. B'AB = sin. (M— N) = a8 =7

The triangles B’AC and BB'P are similar, because they are right-
angled and the angles at B’ are vertical and equal.

‘Whence
AB : BB=AC: PB,
or
W:a—a=b:z;
whence
ab — a'd °
&= —p
and
— 7
sin. (M—N) = = L2=0¢
__abd ba
YA Y
_adb ba
TRRT R

N
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and by substitution, '
sin. (M — N) =sin. M cos. N— cos. M sin. V. (34)

41, Problem. To find the cosine of the sum of two angles.

Solution. Making use of fig. 9, with the notation of §39 and
also the following,
y=AP,z=PB';
we have ,
AP gy
cos. (M4 N) = 4B =i
But
y—=AB' — PB' = k' —2.
The similar triangles BPB' and B’AC give the proportion
AB : BB=B'C: PB,

or
M:ada =a:z;
whence
_aa +a?
PET
and
aad 4 a?
y:h’—z:h’—-——’j———
__hr—a?—ad
_*’l,——--

But, from the right triangle AB'C,
h?2—a?=(AB')?— (B CR2 = (402 = ¥;

whence
B2 —aa
y= W
and .
y __B—aad
cos. MM =F=—3—
2 ga
YN Y
v _bbd ada \
= il. e l_l . h—' ’
whence, by substitution,
cos. (M4 N)=rcos. M cos. N— sin. M sin. IV. (35)
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42. Problem. To find the cosine of the difference of two
angles.

Solution. Msking use of fig. 10, with the notation of the preced-
ing section, we have

AP gy
.BAB—=cos.  H—N) ===
cos. B'A cos. ( ) TB= 3
But y=AB' 4+ BP="h' 4=z

The similar triangles BB'P and B'AC give the proportion
' AB:BB=CB':BP,

or K:ia—a=ada:12;
aa' —a?
whence 1=
I — q?
and y:h’-{-z.—_k'-{-a_ih—,-a—
K2 —a?4aa
—_— ————7",——‘.
But h?2— a2 = B3,
b2 !
Hence y=$i,
y B+4aa
and cos. (M——N):-/;= A
b aad
T RE T RN
b5 a a
=i Thw
or, by substitution,
cos. (M — IN) = cos. M cus. N sin, M sin. V. (36)

43. Corollary. The.similarity, in all but the signs, of the for-
mulas (33) and (34) is such that they may both be written in the
same form, as follows,

sin. (M 2= N) = sin. M cos. IV = cos. M sin. NV, (37)
8
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in which the upper signs correspond with each other, and also the
lower ones.

In the same way, by the comparison of (35) and (36), we are led
to the form .
cos. (M 4= N)= cos. M cos. N =F sin. M sin. NN, (38)

in which the upper signs correspond with each other, and also the
lower ones.

44. Corollary. The sum of the equations (83) and (34) is

sin. (M 4 N) +4 sin. (M — N) = 2 sin. M cos. NV. (89)
Their difference is

sin. (M4 N) — sin, (M—N) =2 cos. M sin. N. (40)
45, Corollary. The sum of (35) and (36) is
cos. (M 4 N) -+ cos. (M — N)=2 cos. M cos. N. (41)

Their difference is

cos, (M — N) — cos. (M4 N)= 2 sin. M sin. V. (42) "

Formulas (39 —42), like (37) and (38), may obviously be applied
to any values of the angles M and IN; and they are often found
useful in trigonometric investigations.

46. Corollary. If, in (89 - 42), we make
M+ N=A,and M— N=B;
that is,
M=}(4+B), N=3(4—B);
they become, as follows,
sin. A 4 sin. B =2 sin. } (4 4 B) cos. %(A—B) (48)
sin. 4—sin. B =2 cos. } (4 + B) sin. } (4 — B) (44)
cos. A 4 cos. B=2 cos.} (A4 B) cos. 4 (4— B) (45)
cos. B—cos. A =2 sin. § (4 4 B) sin. } (A — B); (46)

and, in (43-46), A and B represent any two angles, because it is
always possible to find two angles, M and N, of which the sum is
equal to A4 and the difference to B.

47. Corollary. The quotient obtained by dividing (48) by (44)
is '
sin. A4-sin. B sin. § (A4 B) cos. 3 (A— B)

sin. A —sin. B ™ cos. 3 (44 B) sin. § (4 — By’
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Reducing the second member by means of equations (6), (7), (8),
We general formula: —

sin, A 4-sin. B
sin. A —sin. B

__tang. 3 (44 B) _ cotan. } (A— B)
" tang. 3 (A— B) ™ cotan. } (4 4+ B)’

= tang. § (4 + B) cotan. § (4— B)

(47)

48. Corollary. Dividing (46) by (45), and reducing, we have
the general formula: —

cos. B—cos. 4
cos. B+ cos. 4

__ tang. 3 (A4 B) _ tang. 3 (4— B) (48)
" cotan. } (A— B) ~ cotan. } (A4 B)’

= tang. } (4 4 B) tang. } (A— B)

49, Corollary. If, inv(33) and (35), we suppose M and IV equal
to each other and represent their common value by A, we obtain, for
the sine and cosine of the doubdle of any angle,

sin. 2 A = sin. A cos. A 4 sin. A cos. A =2 sin. A cos. A (49)
cos. 2 A =cos. A cos. A —sin. A4 sin. 4
= (cos. 4)®— (sin. 4)2. (50)

§0. Corollary. Comparing equation (50) with the following
‘equation, which is the same as (9),

1 = (cos. A)3 4 (sin. 4)3,

we obtain, by addition and by subtraction,
1+4cos. 2 A =2 (cos. 4)? (51)
1—cos. 2 A =2 (sin. 4)2 (52)

51. Corollary. Making 2 A= Cand 4 =} C, in (49-52), we
obtain

sin. C =2 sin. § Ccos. 3 C (58)
cos. C = (cos. § C)2 —(sin. § C)? (54)
1+4-cos. C=2 (cos. § C)? (55)
1 —cos. C=2 (sin. § C)?; (56)
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and the equations (55) and (56) give, for the sine, cosine, and tan-
gent of the half of any angle,

cos. 3 C= o/ [} (1 4 cos. C)] (57)
sin. § C=a/[% (1 — cos. C)] (58)
tang. § C= ci:;—g_g = (—_:;z: g . (59)

62, Problem. To find the tangent and ¢otangent of the sum
and of the difference of two angles.

Solution. First. To find the tangent of the sum of two angles,
which we will suppose to be M and IV, we have, from (7),

sin, (M -+ V)
tang. (M4 N)= a)s.((lld——l-*—lv_))' .
Substituting (33) and (85), :

__sin. M cos. N+ cos. M sin. NV
v tang. (M +N) = cos. M cos. N —sin. M sin. N °

Divide every term of both numerator and denominator of the second
member by cos. M cos. IV; ,

sin. M cos. N + cos. Msin. IV
cos. M cos. N ' cos. M cos. N
tang. (M + N) = cos. M cos. N sin. M sin. N

cos. M cos. N cos. Mcos. N

sin. M  sin. N

cos. M +cos N
sm M gin. I\’
~cos. M cos. N

which, reduced by means of (7), becomes

tanv M+ tang. N
—tang. M tang. V' (60)

tang (M4 N)=
Secondly. To find the tangent of the difference of M and N,
Since by (7)

in. (M—
tang. (M — N) :‘s:%s.(w_—_ll%’
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a bare inspection of (37) and (38) shows that we have only to
change the signs which connect the terms in the value of tang. (M

- N) to obtain that of tang. (M — N). This change, being made
in (60), produces

tang. M — tang. N (61)
1+ tang. M tang. N’

Thirdly. As the cotangent is merely the reciprocal of the tan-
gent, we have, by inverting the fractions, from (60) and (61),
1— tang. Mtang. N

tang. (M— IN) =

cotan. (M+N) = tang. M - tang. N’ (62)
__ 14 tang. M tang. N
cotan. (M —N) = tang. M — tang. N (63)

63. Corollar;y. Make M=N=A, in (60) and (62). They
give, for the double of any angle,

__ 2tang. A
tang. 2 A = T— (tang. 47 (64)
__ 1—((tang. 4)2
cotan. 2 4 = “Stang. 4 (65)

"BOSTON -
WMASS
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CHAPTER V.

VALUES OF THE SINES, COSINES, TANGENTS, COTANGENTS,
SECANTS, AND COSECANTS OF CERTAIN ANGLES.

54. The definitions of sine, cosine, &c. given in §7 can be
applied directly to acute angles only ; but the general formulas
which have been deduced from the definitions can be used to
find values of these functions for obtuse angles, and, indeed, for
angles of any magnitude. .

We shall, therefore, by a natural enlargement of our previous
conceptions, henceforth regard the sine, &c., as functions which
belong to every angle, always having such values as to satisfy
the general formulas which have been established.

An angle may be regarded as the measure of the rotation of a line
which turns in a plane about one of its own points. When the line
has made more than half a revolution, the angle of rotation is greater
than 180°; when it has made more than a whole revolution, the
angle is greater than 360°; and we thus arrive at Yhe conception of
angles of all magnitudes, up to infinity. We may even conceive of
negative angles ; for if the line, after having made a certain rotation,
turn back towards its first position, the angle is diminished, and it
is, therefore, proper to consider this backward rotation as negative;
so that if rotation in one direction is positive, rotation in the opposite
direction is negative, and the angle which measures it is negative,
and this angle may be of any magnitude.

55. Problem. To find the sine, ec. of 0° and of 90°.

Solution. Since 0° and 90° are complements of each other, the
sine of the one is the cosine of the other. It is evident, moreover,
that § 22 is applicable strictly, and not merely approximately, to an
angle of 0°. Hence ) -

sin. 0° = cos. 90° = 0. © (66)
cos. 0° = sin. §0° = 1. (67)
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By (6) and (7), we have

sin. 0° 0

tang. 0° = cotan. 90° = o 0 =1 0 (68)
1 1

cotan. 0° = tang. 90° = fang.0° =5= Ho* (69)
1 1

sec. 0° = cosec. 90° = e P11 1 (70)
1 1

cosec. 0° = sec. 90° = S0 =0= +w. (71)

56. Problem. To find the sine, ge. of 180°.

" Solution. Make A = 90°in (49).and (50); they become, by
means of (66) and (67),

sin. 180° = 2 sin. 90° cos. 90° =2 X 1 X 0 =10 (72)
cos. 150° = (cos. 90°)2—(sin. 90°2 =0—1=—1. (73)
Hence, by (6) and (7),
o__8in.180° 0
tang. 180° = s 180° = —1 = (74)
cos. 180° —1 -
cotan. 180° = e T Rl + o (75)
1 ' 1
© — o= T ——
sec. 180 = s 1800 =T = 1 (786)
. 1 1
cosec. 180 =s—im)—o=6=:1:oo. ()

57. Problem. To find the sine, 4-c. of 270°.
Solution. Make M —=180° and N = 90° in (33) and (35). Tl;ey
become, by means of (66, 67, 72, 73),
v sin. 270° = sin. 180° cos. 90° -} cos. 180° sin. 90° =—1 (78)
cos. 270° = cos. 180° ¢os. 90° — sin, 180° sin, 90° = 0. (79)
. Hence, by (6) and (7),
' sin, 270° —1

tang. 270° = —— — —
g cos. 270° 0

=4 o (80)

* If the denominator of L is reduced to zero, the fraction itself becomes in-
a

. . 1 1 1
ﬁ'nte; ﬂnds«n°°+0=—~0,we hilveo——“--»—oz—‘-w orl_ =:0= —_—

¥ 0
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o__C08.270° 0 —o 81
cotan. 270° = g — —1 = @1
1 1
sec. 270° —= T i e + o (82)
1 1
e — = = 1. 83
cosec. 270° — oin. 270° — (83)

58. Problem. To find the sine, &c. of 360°.

Solution. Make A = 180° in (49) and (50); and they become
by (72, 73, 66, 67)

sin. 360° — 0 = sin. 0°

€0s. 360° = 1 = cos. 0°.

(84)

Hence all the trigonometric functions of 360° are the same as
those of 0°.
59. Problem. o find the sine, &c. of 45°.

Solution. Make C = 90° in (57) and (58). They become, b
means of (66), .

cos. 45° = A/ (1 4 cos. 90°)] =A/3 (86)
sin. 45° =a/[} (1 — cos. 90°)] =a/4 = cos. 45°.  (87)
Hence, by (6) and (7), )

sin. 45°
ta.ng. 45° = m—d— =1 (88)
1
cotan. 45° = m =1= tang. 45° (89)
sec. 45°= —— _—_1 _ /9 (90)
o TV Sk
1 1
L — J— —_— — ]
cosec, 45° = 0. 45 = N3 =4a/2 =sec. 45°.  (91)

60. Problem. T find the sine, &e. of 30° and 60°.

Solution. Make A =230°in (49). It becomes‘,‘ from the consid- .

eration that 30° and 60° are complements of each other,
sin. 60° = cos, 30° =2 sin. 80° cos. 30°.
Dividing by cos. 30°, we have
¥ = 2 sin. 30°,

(85).
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ll .

—e

or sin. 80° ==cos. 60° = }; (92) -
whence, from (6), (7), and (10),
cos. 30°=sin. 60° =A/(1—})=3%4/3 (93)
o__ o__ % _ 1 _
tang. 30° = cotan. 69 =373 _75-_4\/,_} (94)
cotan.30° = tang. 60° = 715- =A3=38A1% (95)
sec. 30° = cosec. 60° = 1}—13 = -}5—3 =2A/3 (96)
cosec. 30° — sec. 60° = %: 2. (97)

61. Problem. To find the sine, 4-c. of the supplement of an
angle. ' .

Solution. Make M = 180° in (34) and (36). They become, by
means of (72) and (73),
sin. (180° — IV) = sin. 180° cos. IV — cos. 180° sin. N = sin. IV (98)
cos. (180° — V)= cos. 180° cos. N -}- sin. 180°sin. N= — cos.V, (99)
whence, by (6) and (7),

tang. (180°— IN)= —%:;)sNN — —tang. N (100)

cotan. (180° — N) = g N — cotan. IV (101)

sec. (180°—N) = c(:s = —sec. N - (102)
1

cosec. (180° — N) = TN = cosec N; (103)

that is, the sine and cosecant of the supplement of an angle are
the same with those of the angle itself ; and the cosine, tangent,
cotangent, and secant of the supplement are the negatives of those
of the angle.

62. Corollary. Since every obtuse angle is the supplement
of an acute angle, it follows, from the preceding proposition,
that the sine and cosecant of an obtuse angle are positive, while
118 cosine, tangent, cotangent, and secant are negative.
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In the application of logarithmic calculation to negative numbers,
the absolute values of these numbers are used (that is, their values
taken without regard to their signs), and the effect of the signs on
the result is considered separately. B., Table XXVII is extended,
on this principle, to angles between 90° and 180°; and each line
of the table corresponds to two angles, supplements of each other,
which are given as having the same log. sin., &c. 'When the logarithm
of the cos., tang., cotan., or sec. of an obtuse angle is taken, the
letter n may be written after the log., to show that it corresponds to
a negative number. On the other hand, when we have to find an
angle by this table, from its log. cos., log. tang., log. cotan., or log.
cosec., we should take the acute value of the angle or the obtuse
value, according as the function is known to be positive or negative ;
but when only the log. sin. or log. cosec. ts given, either value of the
angle may be taken, if the function is positive, and neither value, if
the function is megative. When both the values are admissible,
the geometrical conditions of the problem which may be under con-
sideration will either enable us to discriminate between these values
or else show that the problem admits of two solutions.

63. Corollary. The preceding corollary may also be obtained,
and the relation between the two angles which are found on the
same side of the page, in B., Table XXVII, may be illustrated, by
making M =90° in (33) and (35). For ‘we have, by (66) and
(67,

gin. (96° 4+ N)=  cos. IV (104)
cos. (90° 4+ N) = — sin. IV; . (105)
whence, by (6) and (7),
tang. (90° 4 IN) — — cotan. N (106)
cotan. (90° 4- N) = — tang. N (107)
sec. (90° 4 N) = — cosec. N (108)
cosec. (90° 4+ N)= sec. NN; (109)

that is, the sine and cosecant of an angle which exceeds 90° are
equal to the cosine and secant of its excess above 90°, while its
cosine, tangent, cotangent, and secant are equal to the negatives
of the sine, cotangent, tangent, and cosecant of this excess.

64. Problem. To find the sine, &c. of a negative angle.
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Solution. Make M —0° in (34) and (86). They become, by
means of (66) and (67),

sin,. (—N)=—sin. N (110)
cos. (—N)=cos. N; (111)
whence, by (6) and (7),
tang. (— N)= —tang. N C(112)
cotan. ( — NN) = — cotan. N (113)
sec. (—N)= sec. N (114)
cosec. (— IN) = — cosec. IV; (115)

so that the cosine and secant of the megative of an angle are the
same with those of the angle itself ; and the sine, tangent, cotan-
gent, and cosecant of the negative of the angle are the negatives
of those of the angle.

65. Problem. To find the sine, §c. of an angle which exceeds
180°.

Solution. Make M — 180° in (33) and (35). They become, by
means of (72) and (73),

sin. (180° 4 V) = — sin. IV (116)
cos. (180° 4 N) = — cos. IV; (117)
. whence, by (6) and (7), ‘
tang. (180°4-N)—=. tang. N (118)
cotan. (180°4 N) = cotan. N (119)
sec. (180°4 N)—=—sec. N (120)
cosec. (180° 4 IN) == — cosec. IV; (121)

that is, the tangent and cotangent of an angle which exceeds
180° are equal to those of its excess above 180°; and the sine
cosine, secant, and cosecant of this angle are the negatives of
those of its excess.

66. Corollary. If the excess of the angle above 180° is less
than 90°, the angle is contained between 180° and 270°; so
that the tangent and cotangent of an angle which "exceeds 180°
and is less than 270° are positive; while its sine, cosine, secant,
and cosecant are negative.
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If the excess of the angle above 180° is greater than 90° and
less than 180°, the angle is contained between 270° and 860° ;
so that, by §§ 65 and 62, the cosine and secant of an angle which
exceeds 270° and 18 less than 860° are positive ; while its sine,
tangent, cotangent, and cosecant are negative.

By the help of §65, B., Table XXVII can be used to find the
sine, &c. of an angle which exceeds 180°.

67. Corollary. The results of the preceding ¢.:orollary may also
be obtained from (84) and (36). For by making M = 360°, we
have, by § 58,

' sin. (360°— N)=—sin, N=sin. (—N) (122)

cos. (360°—N)= cos. N=cos. (— N); (123)
whence, by (6) and (7),

tang. (860° — IN) = — tang. N =tang. (— NV) (124)

,cotan, (360° — IN) — — cotan. NV = cotan. ( — V) 4 (125)

sec. (360°—N)— sec. N=sec. (—N) (126)

cosec. (360° — IN) = — cosec. IV = cosec. (— N) ; (127)

that is, the cosine and secant of an angle are the same with those
of the remainder after subtracting the angle from 360° while its
sine, tangent, cotangent, and cosecant are the negatives of those
of this remainder.

68. Problem. To find the sine, &c. of ‘an angle which exceeds
360°.
Solution. Make M — 360° in (33) and (35). They become, by
means of (84) and (85),
sin. (360° 4 N) = sin. N " (128)
cos. (860° - IV) = cos. IV ;! (129)

that is, all the trigonometric functions of an angle which exceeds
860° are equal to those of its excess above 360°.

\ .

69. Theorem. The sine, tangent, and secant of an acute angle
increase with the increase of the angle ; the cosine, cotangent, and
cosecant decrease.

Proof. 1. 1t appears from (17) that sin. (M -+ m) exceeds sin. M
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by sin. m cos. M, which is a positive quantity when M is acute,
If, therefore, an acute angle is increased by a very small amount, its
sine is increased.

II. It appears from (19) that cos. .M exceeds cos. (M + m) by sin.
m sin. M, which is a positive quantity ; and, therefore, the cosine of
the acute angle decreases with the increase of the angle.

III. The tangent of an angle is, by (7), the quotient of its sine
divided by its cosine. It is, therefore, a fraction whose numerator
increages with the increase of the angle, while its denominator de-
creases. [Either of these changes in the terms of the fraction would
increase its value; and, therefore, the tangent of an acute angle in-
creases with the increase of the angle.

IV. The cosecant, secant, and cotangent of an angle are, by (6),
the respectivé reciprocals of the sive, cosine, and tangent. But the
reciprocal of a quantity increases with the decrease of the quantity,
and the reverse. It follows, then, from the preceding demonstra-
tions, that its secant increases with the increase of the acute angle,
while its cosecant and cotangent decrease.

70. Theorem. The absolute values (that is, the values taken
without regard to their signs) of the sine, tangent, and secant of
an obtuse angle decrease with the increase of the angle; while
those of the cosine, cotangent, and cosecant increase.

Proof. The supplement of an obtuse angle is an acute angle of
which the sine, &c. are, in absolute value, by §61, the same as
those of the obtuse angle. But this acute angle decreases with the
increase of the obtuse angle, and at the same time its sine, tangent,
and secant decrease, while its cosine, cotangent, and cosecant in-
crease.

T1. Scholium. The trigonometric functions of any angle can
be represented geometrically, by lines drawn according to the
conditions prescribed in §§18-20; provided we adopt the
principle, which has been already applied to angular magni-
tude, of using the opposite signs, plus and minus, to denote
opposite directions.

Thus if ABCD (figs. 64, 65, 66, and 67) is a circle, described with
the radius unity, the trigonometric functions of the angle AOE can
be represented as follows ;, — '

4
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sin. AOE = PE = OR, tang. AOE= AT, sec. AOE= OT,
cos. AOE = RE = OP, cotan. AOE — BS, cose¢. AOE = OS.

To prove this, it is only necessary to show that these equations
can always be made to conform with the results deduced above from

. the general formulas, if we assume those directions as positive which
* will make the functions of an acute angle positive.

Let it be agreed to measure the angle AOE from the line OA,
calling the circular direction ABCD positive, and the circular

direction ADCB negative ; to call upward direction positive, for the . -

sine and tangent, and downward, negative; direction towards the
right positive, for the cosine and cotangent, and that towards the
left negative ; the direction of the radius OE positive, for the secant
and cosecant, and the opposite direction negative.

Then, first, the trigonometric functions are represented, in the
figures, with the true signs. All the functions of the acute angle

" (fig. 64) are made positive ; if the angle is obtuse (fig. 65), the sin.

(PE) and cosec. (OS) are made positive, while the cos. (RE), tang.
(AT), cotan. (BS), and sec. (OT) are made negative, as in § 62;
and, in like manner, § 66 is sustained, for angles in the third and
fourth quadrants (figs. 66, 67).

Secondly, the true absolute values are given in the figures. Thus,
the functions of the obtuse angle AOE (fig. 65) are, by the figure,
the same, absolutely, as those of its supplement EOC, as in § 61.
For, in absolute value,

sin. EOC = RE, tang. EOC=CQ = AT, sec. EOC= 0Q = OT,
cos. EOC = RE, cotan. EOC = BS, cosec. EOC = OS.

- 8o it may be shown that figs. 66 and 67 give the same results as § 65.

'Again. the functions are the same, in the figures, whether we re-
gard AOB as measured by the arc AB or by a whole circumference
plus that arc; which agrees with § 68. And they are the same,
whether we measure AOB in the direction ABCD or in the direc-
tion ADCB ; which agrees with § 67.

Moreover, as the angle increases, its functions increase or decrease,
in the figures, conformably to §§ 69 and 70. '

Lastly, the results of §§55-58 are easily obtained from the
figures. The geometrical interpretation of 4= o may be illustrated
in the case of tang. 90° ; — the radius OB, being then parallel to
the tangent drawn at A, may be conceived to intersect it, if pro-
duced, at an infinite distance from A, either above or below.
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CHAPTER VI.
OBLIQUE TRIANGLES.

. T2. Theorem. The sides of a triangle are directly propor-
tional to the sines of the opposite angles. [B., p. 18.]
Proof. In the triangle ABC (figs. 2 and 3) denote the sides op-

posite the angles A, B, C, respectlvely, by the letters @, b, c. We
are to prove that

sin. A : sin. B:sin. C=a:b:c. (130)

From the vertex B, let fall on the opposite side the perpendicular
BP; and let

p— PB$
The right triangle BAP gives, by (1),
PB _p.
sin, A =45 =3¢}
or p =csin, A. (131)
Also, the right triangle BCP gives .
. _PB__p.
sin. C = 'C—-B —_ -

for if C is acute (as in fig. 2), this follows directly from (1); and if
C is obtuse (as in fig. 3), it has, by § 61, the same sine as its supple-
ment PCB. Hence we bave
p=asin. C. - (132)
Comparing (131) and (132), we have
¢ sin. A = a sin. C,
which may be converted into the following proportion,
gin. A :sin. C=a:ec.
In the same way, it may be proved that
sin. 4 : sin. B—=a: b;
and these two proportions may be written in one, as follows: —
sin. A : a=sin. B: b =3sin. C: c;
or as in (130).
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78. Problems To solve a triangle, when one of s sides and
“ two of its angles are known. [B., p. 41.]

Solution. First. The third angle may be found by subtracting
the sum of the two given angles from 180°. '

Secondly. To find either of the other sides, we have only to make
use of a proportion, derived from §72. As the sine of the angle
opposite the given side is to the sine of the angle opposite the re-
_quired side, so is the given side to the required side. Thus, if a
(fig. 1) were the given and & the required side, we should have the
proportion :

sin. 4 : sin. B—a: b;
whence by (6)
a sin. B
= -——— = asin. . A 133
4 —asin B cosec. 4 (133)

74. Exampres.
1. Given one side of a triangle equal to 22.791, and the adjacent
angles equal to 32° 41’ and 47° 54’ ; to solve the triangle.
Solution. Making

a=22.791, B = 82° 41/, C = 47° 54'
we have
A = 180° —(82° 41/ 4 47° 54') = 99° 25/,
Then, by (133),

A = 99° 25' cosec. 10.00589 10.00589
B = 82° 41’ sin. ©9.73289 C =47° 54’ sin. 9.87039
a=22.791 ' 1.35776 1.35776
b= 12.475 *1.09604; c=17.141  *1.23404
Ans.” The other angle = 99° 25’
12.475

The other sides — 17.141

2. Given one side of a triangle equal to 327.06, the opposite angle

* 20 is subtr:cted from each of these characteristics, because the two sines
and the cosecant are taken from the table without the diminution which is re-
quired by § 80.
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equal to 8° 8/, and one of the adjacent angles equel to 154° 22';
to solve the triangle.

Ans. The other angle == 17° 35’

. 1010.4
The other sides — { 705.5

75. Problem. To solve a triangle, when two of its sides and
an angle opposite one of the given sides are known. [B., p. 42.]

Solution. First. The angle opposite the other given side is found
by the proportion of § 72. As the side opposite the given angle is
to the other given side, so is the sine of the given angle to the sine
of the required angle. Thus, if (fig. 1) a and 6 are the given sides
and A the given angle, the angle B is found by the proportion.

a:b—nzsin. A:sin. B;

whence
bsin. 4

]

sin. B = . (134)
Secondly. The third angle is found by subtracting the sum of the
two known angles from 180°.

Thirdly. The third side is found by the proportion. As the sine
of the given angle is to the sine of the angle opposite the required
side, so is the side opposite the given angle to the required side.
That is, in the present case,

gin. A:sin. C=a: c;
whence
a sin, C

=4 = esin C cosec. A.: (135)

76. Scholium. Since the angle B is found by means of its sine,
and since the value of sin. B obtained from (134) is necessarily
positive, we must, by § 62, have recourse to the geometrical condi-
tions of the problem in order to determine which of the two supple-
mentary angles given in the tables for the same sine ought to be
taken as the value of B. The triangle is constructed geometrically
from the given data as follows : — Draw an angle 4 (fig. 68) equal
to the given angle, on one of its legs lay off AC equal to the adja-
. cent side b, and from C as a centre, with a radius equal to a, describe

an arc cutting the other leg of the angle A at B; draw AB, and ©

4%
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ABC is the triangle required. Itis evident that if 4 is acute and if
the radius a is less than & and greater than the perpendicular PC,
the arc will cut AP in two points, B’ and B”, giving the two triangles
AB'C and AB'C; and, since B'CB" is isosceles, it is further evident
that the two values of B, CB"A and CB'A, are supplements of each
other. The two values of B found by (134) corresPond, therefore,
to two solutions of the problem; but in some cases, one of these
solutions is impossible, and, in some cases, both are impossible.

77. Scholium. If the given value of A is obtuse, the obtuse value
of B and the corresponding solution of the problem must be rejected,
because a triangle can have only one obtuse angle. In this case, the
point B” (fig. 69) falls on the wrong side of A, so that the triangle
AB'"C does not contain the given angle,

If A is obtuse, and & = b or a <C b, neither solution is possible, for
the obtuse angle of a triangle must be opposite the greatest side. In
these cases, the geometrical construction also fails (fig. 69). If,
however, a >> b, that solution is always possible in which B is acute.

78. Scholium. If A is acute, and a =25 or a >> b, the obtuse
value of B cannot be taken, because the obtuse angle must be oppo-
site the greatest side; and this is also evident (fig. 70) from the
geometrical construction. But, in these cases, that solution is always
possible in which B is acate.

If a is so much less than b as to be equal to the perpendicular
P(0, which is, by (1), equal to b sin. 4, the points B’ and B" coin-
cide, and there is only one solution, the right triangle APC.

If a < b sin. A, the circle will not cut AP at all, and neither
solution of the problem is possible.

79. Scholium. The above results may be also obtained from the
trigonometric solution of the problem. For we must have 4 4 B <C
180°, since A 4+ B4 C=180°. Now, if a >> b, (134) gives

sin. B <sin. 4;
so that, by § 69, if A is acute, denoting the acute value of B by B’

"and the obtuse by B’, we have

B < A, B> 180°— 4;
but, if 4 is obtuse, by § 70,
B> A, B < 180°—4;
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and, in either case,
A+ B < 180°, A4 B> 180°;
and B’ must be rejected.
It may be shown in like manner that if a =25, and if 4 is acute,
B must be rejected, but if A is obtuse, both B’ and B” must be

rejected ; also that if @ <C b, both values of B are admissible when
A is acute, and inadmissible when A is obtuse.

If a = b sin. A, we have by (67),
bsin. 4 __

a

sin. B = 1,

B' = B'"=190°;
and if a < b 8in. 4,
sin B> 1,
which is impossible for any real value of B.

80. ExAMPLES.

1. Given two sides of a triangle equal to 77.245 and 92.841, and
the angle opposite the first side equal to 55° 28/ 12”; to solve the
triangle.

Solution. Making

b=92.841, a=T7.245, A —55°28'12",
we have, by (134),

a=77.245 (ar. co.) 8.11213
b = 92.341 1.96540
A = 55° 28’ 12/ sin. 9.91584
B =280°1 or — 99° 59/ sin. 9.99337

4+ B —=135° 29/ 12" or — 155° 27/ 12
) C= 44° 30’ 48" or— 24° 32' 48"
Then, by (135),

a—"77.2456 1.88787 . 1.88787

C = 44° 30’ 48’ sgin. 9.84576 or — 24° 32’ 48" sin. 9.61850

A= 55 28’ 12/ cosec. 10.08416 10.08416

¢ —=—165.734 1.81779 or — 38.952 1.69053
Ans. The third side — 65.734 or = 38.952

80° 1/ __ [ 99° 59/

b = =1
The other angles { 44° 307 48" °F 24° 32/ 48"

A
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2. Given two sides of a triangle equal to 77.245 and 92.841, and
the angle opposite the second side equal to 55° 28/ 12/ ; to solve the
triangle.

Ans. The third side = 110.7
' 43° 33’ 44"

The other ajngles = { 80° 58/ 4/

8. Given two sides of a triangle equal to 40 and 50, and the angle

opposite the first side equal to 45°; to solve the triangle.
Ans. The third side . = 54.061 or= 16.65

62° T/ 117° 53’
72° 58 17 7

4. Given two sides of a triangle equal to 77.245 and 92.341, and
the angle opposite the second side equal to 124° 31’ 48”; to solve
the triangle.

Ans. The third side — 28.129

43° 33’ 44"
11° 54’ 28"

The other angles — { or = g

The other angles — z

5. Given two sides of a triangle equal to 77.245 and 92.341, and
the angle opposite the first side equal to 124° 31’ 48’/ ; to solve the
triangle. '

Ans. The question is impossible.

6. Given two sides: of a triangle equal to 75.486 and 92.341, and
the angle opposite the first side equal to 55° 28/ 12”; to solve the
triangle.

Ans. The question is impossible.

81. Theorem. The sum of any two sides of a triangle is to
their difference as the tangent of half the sum of the opposite
angles is to the tangent of half their difference. [B., p. 18.]

Proof. We have (fig. 1)

a: b=zsin. 4:sin. B;
whence, by the theory of proportions,
a+4b:a—b=sin. 4 +4sin. B: sin. A —sin. B,
which, expressed fractionally, is
a+b _sin. A4sin. B

a—b " sin. A — sin, B’
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But the general formula (47) gives, for any two angles A and B,

sin. 4 4-sin. B__ tang. § (A4 B)
sin. A—sin. B~ tang. 4 (A— B)’

whence
atb _tang. 3 (A+ B).
a—b tang. 3 (A— B)’ (136)

a+4b:a—>b=tang. § (A} B): tang. }(A—B).

or

82. Problem. 'To solve a_triangle, when two of its sides and
the included angle are given. [B., p. 43.]

Solution. Let the two sides @ and b (fig. 1) be given, and the
included angle C; to solve the triangle. o -

First. To find the two unknown angles. Subtract the given
angle C from 180°, and the remainder is the sum of 4 and B, for the
sum of the three angles of a triangle is 180°; that is,

A4 B=180°—C,
and 3 (44 B)=90° —} C = complement of } C.
The difference of A and B is then found by (136)
ad-b: a—b._tang % (A4 B) : tang. } (4 — B).

But we have
tang. § (4 4 B) =cotan. } C;

whence

tang. 3 (A — B) = cotan.g C; (137)

+btang 14+ B="2

in which the acute value given in the tables must be taken for %
(A — B), being made positive when a >> b, so that tang. 4 (A — B)
comes out positive, and, by (112), negative when a < b, so that
tang. 3 (4 — B) comes out negative. '

The angle A is then found by adding } (4 — B) to § (4 4 B),
and the angle B by subtracting § (4 — B) from (4 + B).

Secondly. The third side is found by the proportion
sin. A :8in. C=a:c;

a sin, C

sin. A4

whence c=
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83. ExAMPLES.

1. Given two sides of a triangle equal to 99.341 and 1.234, and
their included angle equal to 169° 58'; to solve the triangle.

Solution. Making @ —99.341, b=—1.234, C=—169°58';
we have } (44 B) =90°—} C=5° 1’; and, by (137),

a4 b=100.575 (ar. co.) 7.99751
a— b= 98.107 1.99170
3(A4+B)y=5°1 tang. 8.94340
3 (A—B)=4°53 39" . tang. 8.93261
A =9° 54/ 39"
B=0° 21"
a = 99.341 1.99712
C—=169° 58/ sin. 9.24110\_
A —=9° 54/ 89" cosec. 10.76519
¢ =100.56 2.00241
Ans. The third side = 100.56
9° 54/ 39"
. ‘The other angles = { 0° 79

2. Given two sides of a triangle equal to 10.121 and 15.421, and
the included angle equal to 41° 2/; to solve the triangle.

Ans. The other side = 10.236
40° 28/ 28"

The other angles — { 98° 29’ 82"

Ke::‘:) 84. Theorem. - Either side of a triangle 18 to the sum of the
\@ other two as their difference 18 to the difference of the segments of
the first side made by a perpendicular from the opposite vertex,
if the perpendicular fall within the triangle, or to the sum of the
distances from the extremities of the base to the foot of the perpen~
dicular, if it fall without the triangle. [B.; p. 14.]
Proof. Let AC (figs. 12 and 13) be the side of the triangle ABC
on which the perpendicular is dropped, and BP the perpendicular.

From B as a centre, with a radius equal to BC, the shorter of the
other two sides, describe the circumference CC'E’'E. Produce AB
to E' and AC to C', if necessary.
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Then, since AC and AB are secants, they are inversely propor-
tional to their parts without the circle ; that is, in both figures,

AC: AE'= AE: AC. o
But
AE = AB+ BE'= AB+ BC Du Lats
AE—=AB—BE = AB— BC, -
and
(fig. 12) AC' = AP — PC' = AP — PC
(fig. 18) AC' = AP 4 PC' = AP 4 PC;
whence

(fg. 12) AC: AB+ BC=AB— BC: AP— PC
(fg. 13) AC: AB+ BC=AB— BC: AP+ PC.

85. Problem To solve a triangle, when its three sides are
given. [B., p. 43.] h .
Solution. Suppose a perpendicular BP (ﬁg 2 orjg) dropped on
the ‘side b from the opposite vertex. ¢
First find the value of the fourth term z of fhe proportmn,
bieta=c—a:a;
and we have, by figs. 2 and 3 and § 84,
b= AP 4 PC,
2= AP PC;
in which the upper signs correspond to the case (fig. 2) of the per-
pendicular falling within the triangle, and the lower signs to the
case (fig. 3) of its falling without. If 2z <, we have the former
case ; if  >> b, the latter. In either case, by finding the half sum of
b and z, we have AP; and by finding the half difference of 4 and =,
we have PC.
Then, in triangles ABP and B CP we have

b—l—z
cos. A =T— ;
PC b—a:
and (fig. 2) cos. C = = =T’
PC. b—=z

, by (99), (f =— =——= .
or, by (99), (fig. 8) cos. C - cos. PCB p o

The third angle B is found by subtracting the sum of A and C
from 180°.

/
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86, Corollary. The above proportion gives
(c+a)(c—a)_—a
g= =

’
whlch added to b, gives, by § 85,

pa— ] 2 a2
24P=bfo=bt IZEBRETT

b
Hence,
5 42— a2
4P = 2b
_ AP B 4c2—a?

cos. 4 = — = R Y I (188)

and, by reduction and transposition,
@@=+ c2—2bccos. 4; (139)

that is, the square of either side of a triangle is equal to the sum of
the squares of the other two sides diminished by twice their product
multiplied by the cosine of the included angle.

87. Corollary. The above proposition, when applied to the right
triangle, becomes the Pythagorean proposition. For,if A4 is the
right angle and a the hypothenuse, cos. 4 = 0, by (66), and (139)
becomes

a® = b} ¢%;
but if ¢ is the hypothenuse, cos.' 4 = cé by (4), and (139) becomes
=04 c2—22=c2— 12

88. Corollary. Add unity to both sides of (138), and we have

1+cos A=14 +09—09_b9+2b;;tcn_a2

Gty o
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\

. Since the numerator of (140) is the difference of two squares, it
may be separated into two factors, and we have

(b4 c+a)(db+c—a)
14cos. A= _ 5he .
Now, representing half the sum of the three sides uf a triangle
by s, we have .
2s=a+b-{-c, (141)

and
2s—2a=2(s—a)=a+4bt+c—2a=b4c—a. (142)

- If we substitute these values in the above equation, it becomes ’

1+cos.A=4s(2$;a) =28(Z:a)' (143)
But, by (55),
' 14 cos. 4 =2 (cos. § 4)%
Hence »
2 (cos. § A)2 = 2s (; ;—J—l)—
or (cos. 3 A)2= f—('ib_;—a)— (144)
cos.g,A=,,/(‘_(ib‘c'—")>. (145)

Since A may represent either of the angles, provided a represents
the opposite side, we have similar equations for the angles B and C;

that is,
' + cos.&B:V(#—) (146)
cos. 3C=w (____.s (sa_b- ) ) H (147)

and (145 -147), which correspond to B., p. 14, prop. LXI, may be
used to calculate the angles of a triangle when the three sides are
known ; each half angle being taken less than 90°, so that the whole
angle may be less than 180°.

89. Corollary. Subtract both sides of (138) from unity, and we
have )
B4 2—a2 2 —12+2bc—c?
2bc 2b¢
_a®— (b— c)?

D © (148)

l1—cos. A=1—
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’

Since the numerator of (148) is the difference of two squares, it
may be separated into two factors, as follows,

1—cos. 4= (a—b-.{-c;b(:ﬁ-b—c) .

]'Sut, from (141),
25—2b=2(s—b0=a+b4c—2b=a—b4c (149)
28—2c=2(s—c)=at+db+c—2c=a4b—c. (150)

If we substitute these values in the above equation, it becomes
4(s—D) (s—c) _2(s—1d) (s—¢)

1—cos. A= 2 be be — (151)
But, by (56),
1—cos. 4 =2 (sin. } 4)%

Hence, by reduction,

sin. g,sz((:““_")Ef—“ﬁ)). (152)
In the same way, we have

sin. 3 B=a/ (("___"lc("’——")) (153)

sin. §c=~/((’;‘_‘)7’(”;_"”)); (154)

and these formulas give a third method of solving a triangle, when
the three sides are known.

90. Corollary. The quotients of (152, 153, and 154) divided by
(145, 146, and 147), are by (7)

tang. 3 A = a/ (____<—’(’) (e ;")) - (155)
tang. 3 B= a/ ((s—’I gs?_fsb;‘ ) (156)
tang.t}CZ'\/(gs—ng)_(_s—c)-—D); (157)

which furnish a _fourth method of solution, when the sides are given.
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91. The product of (148) by 151) is
45(s—a) (s—0) (s—c)

1 —(cos. 4)3= _ 12 &
But, by (9),
1 — (cos. A4)2 = (sin. 4)3.
Hence
(sin. A= 43(s—a) b(: ;—b) (s— c)’
or :
sin.A=2 V[s(s—a) b(sc—b) (S—C)J. (158)

Similar formulas may be given for sin. B and sin. (; and we thus
have a fifth method of solution, when the sides are given.

92. Scholium. The problem is impossible, if the given value of
either side exceed the sum of the other two. '

93. ExaAMPLES.
1. Given the three sides of a triangle equal to 12.348,.18.561, and
14.091 ; to solve the triangle.

~ Solution. First Method.
Make (fig. 2 or 8) a = 12.348, b= 13.561, ¢ = 14.091.

Then, by § 85,
b =18.561 (ar. co.) 8.86771

¢+ a=26.439 1.42224
c—a= 1.743 0.24130
z = 3.3982 0.53125 Since we find z < b,
‘ : - — the case is that of fig. 2.
3 (d+2)=AP=8.4796 ©0.92838
3 (b—z)=PC=5.0814 0.70598
¢ = 14.091 (ar. co.) 8.85106
a—=12.348 (ar. co.) 8.90840

A=153°0 cos. 9.77944

C = 65° 42/ cos, 9.61438
B=180°— (44 0C)
= 180°—118° 42/ —61° 18'.
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Second Method.
By (145, 146, and 147),

a=—12.348 (ar. co.) 8.90840 (ar. co.) 8.90840
b =13.561 (ar. co.) 8.86771 (ar. co.) 8.86771

¢ = 14.091 (ar. co.) 8.85106 (ar. co.) 8.85106
$ =20.000 1.30103 1.30103 1.30103

3-a—"1.652 0.88377

8-b—=6.429 . 0.80882
8~-¢=5.909 0.77151
2] 19.90357 2. 19.86931 2| 19.84865
| I ) —
cos. 9.95179 9.93466 9.92433

3+ A=26°30, 3 B=230°39, }C=32°5V
A=153° ¢, B=61°18, C=65° 42'.

' (53° O
Ans, The angles = { 61° 18’
65° 42", 7
The third, fourth, and fifth methods, furnished by (152 -154),
(155 -157), and (158), might also be applied.

2. Given the three sides of a triangle equal to 17.856, 13.849,
and 11.111; to solve the triangle,
93° 19’ 16"
Ans. The angles = { 48° 16/ 24"
38° 24/ 20",
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CHAPTER VII.

LOGARITHMIC AND TRIGONOMETRIC SERIES.

94. Problem. To develop the expression

149’

53

(159)

in which x 18 finite, and i 18 any infinitesimal, into a series

arranged according to powers of x.

Solution. Since the binomial theorem is applicable to the de-

velopment of all powers, it gives at once

a+a=145+7(F-1).5

#(51) (=)t e

Butg is infinite and gives, therefore,

:f—l =f, f—'2:fa &c.
(2 (] (2

which, substituted in (160), give

= 22 23 =
At =14t ottt

95. Corollary. When z =1, (162) becomes
1

1
(14 3y =1+1+1%2+1._;,§+1.2.3.4+&°

which we may denote by e.
b*

(160)

(161)

(162)

(163)
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This quantity e is one of frequent occurremce in analysis,
and 18 celebrated on account of its having been adopted by
Napier as the base of his system of logarithms, which were
called by him Ayperbolic logarithms, but are known as the Na-
perian logarithms.

The value of ¢ is easily computed, from the consideration
that it is the sum of the series (163) of which the first term is
unity and each succeeding term is obtained by dividing the pre-
ceding term by the number of the place of this preceding term.

Thus 1)1.000000

2)1.000000
3) .500000
4) .166667
5) .041667
6) .008333
7) .001389

8) .000198
9) .000025
.000008 .

1
(149 = e = 2.71828; (164)

which gives the value of e to five places. The sixth place is neg-
lected, in the sum of the decimals, as being uncertain.

-
96. Corollary. The zth power of e is by (164 and (162)

1 z
- \° 3 z? z3
°‘=<(1+1)'> =1+ =14e+ 5+ 755+ & (165)
97. Corollary. The ith power of (164) is

é=141 (166)




§99.] LOGARITHMIC SERIES. 55

98, Corollary. The logarithm of (166) is
log. (1 4 %) =1 log. e, (167)

in which, since 4 represents any infinitesimal, we may substitute — ¢,
and thus we have

log. (1 —1t) = —ilog. e. (168)
99. Problem. To develop log. (1 — x) into a series of terms
arranged according to the powers of x.
Solution. Let the series be denoted as follows,
log. (1—2)=A+ A,z 4+ 4,2+ &c. . . 4 A, 2" + &e’; (169)
in which the coefficients do not involve z, and the number below the
coefficient denotes the power of z to which it belongs.
First. To find the value of 4 ; let
z2—=0, )
which, by the principles of logarithms, reduces (169) to
log. 1=A4=0, (170)
and this term may, therefore, be dropped in the second member of
(169).
Secondly. To find the value of 4,; let
z—=1.
Then, in the second member of (169), each term is infinitely smaller

than the preceding term and may be neglected in comparison with
it, because

t:1=2:t=8: 2= &c.;

and the whole second member may be reduced toits first term, 4, 4;
so that, by (168),

log. 1 —i)=A4,i=—ilog. e (171)
A, =—log. e, (172)
Thirdly. To find the value of any coefficient, 4,; let 7, lr', r,
r', . . . r»=! be the n roots of the equation
_ @*=10ora"—1=0, (173)
and by the theory of equations, we have for all values of z
r—1=(—r) (z—r) (z—r") &. (174)
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Moreover the product of the negatives of the roots of an equation is
equal to the constant term, which is, in this case,— 1; that is,

—1l=(—r)(—7r) (—r") &c. (175)
The quotient of (174) by (175) is

—rz—r z—7r
"

=(1—;) (1-%) (1—-%’) &. (176)

the logarithm of which is

log. (1 —a") = log. (1——)-{-108 (1—:.1/) :

1—2a"=—

+log. (1——)+&c (177)

But by substituting z* for z, in (169), and the values of A and 4,
found above, we have

log. (1 — #*) = —log. € z* 4 4; 2™ 4 &e. '(178)

and any term of the second member of (177), as the first, is by
(169)

z T "
log.{1——= ) =——log.e— e veee —. 179
og (1 r) log cr+&c +A"r" (179)
Since 7 is a root of the equation (173), that is, since
r=l1, (180)

the term of (179) multiplied by z” becomes A, z", which is indepen-
dent of the particular root r, #/, &c., and, therefore, the same for
each term of the second member of (177). The sum of all the
terms of the second member of (177) which are multiplied by z* is
equal to either of them multiplied by their number, which is n; that
is, it is

n A, 2", ' (181)
Hence this term must be equa.l to the term of (178) which is multi-
plied by #*; or

n A, =—1log. ea" (182)
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A_=—}l-log. e; (183)
that is,
A;=—13%log. e, Ay — — } log. e, &c.;
and the resulting value of (169) is
log. (1—z)=1log. e (—z—3}22 —f 3 —} 2t —&ec.) (184)

100. Corollary. By reversing the sign of z in (184), we have
log. (14-z)=log.e (t—}23 4423 —} at 4} 25— &e.) (185)

101. Corollary. The remainder of (185) diminished by (184) is

log.ii:=2log.e(x+;};z3+-g-x5++z7+&c.) (186)

102. Corollary. Since
, ‘ a +z=a (1 + 2)
we have, by (185),

log. (a4 2) = log. a + log. (1+§)

'

z
a

=log.a+l°g-3( %2-:—:""&':—:—*:;'*_&0-) (187)

103. Corollary. Equations (184), (185), and (187) may be used
in calculating logarithmic tables. But, for this purpose, log. ¢ must
first be obtained ; that is, by the definition of logarithms, we must
solve the equation

10° — e = 2.71828,
which gives
log. e = z = 0.43429. (188)

104. ExAMPLES.
1. Find the logarithm of 1.1.

Solution. By making, in (185),

z=0.1
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we have
' % 2 =10.005000
3 23=0.000333
3} 24 =0.000025

1 25=0.000002
z—3}a4 a3 —} ot 4 1 25 = 0.09536

log. (1 4-2) = (0.09536) (log. ¢) = 0.09536 X 0.43429 = 0.04139

2. Find the logarithm of 625, knowing that
' log. 624 = 2.79518.
Solution. In this case we have, in (187),

1

T
a—624,1_1,;—m'

and 2 is 80 small that its square and higher powers may be neglected

in (187), whence

' log. 625 = log. 624 4 l‘:g—;e
=2.79518 4 0"232‘129 = 2.79518 4 0.00070
=2.79588.
8. Find the logarithm of .9. Ans. —0.04576 or 1.95424.
4. Find the logarithm of 1.01. Ans.  0.00432.

5. Find the logarithm of 1.095.  Ans. 0.03941.
6. Find the logarithm of 1.003. Ans.  0.00130.
7. Find the logarithm of 463, knowing that

log. 462 = 2.66464. ’
Ans. 2.66558.
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8. Find the logarithm of 1291, knowing that

log. 1290 = 8.11059.
Ans. 8.11093.

9. Find the logarithm of 123.6, knowing that

log. 123 = 2.08991
Ans. 2.09202.

105. Problem. To express sines and cosines by means of
ezponential functions.

Solution. The first member of the equation
cos2z4sin2z—=1 (189)

may be written cos.? x — (— sin.2 z); that is, the difference of the
two squares cos.? z and (— sin.? z), of which the roots are cos. z
and sin. z . o/ — 1. This first member is, therefore, the product of
the sum and difference of these two roots, or (189) may be written

(cos. x| sin. ;.V— 1) (cos. z—sin. 2. 4/ — 1) = 1.

The logarithm of this equation is
log. (cos. z -} sin. £ .o/ — 1) 4 log. (cos. z—sin. 2.4/ —1) =0
or
log. (cos. z - sin. z.4/— 1) = —log. (cos. z —sin. 2. o/— 1). (190)
Denote either member of (190) by y, so that

log. (cos. z 4 sin. z .4/ — 1) =y, }

log. (cos. z —sin. z . 4/ — 1) = —y, (191)

or
cos.z - sin.z.4/ — 1 = 10%, cos. z — sin. x. 4/ — 1 = 1077, (192)
The sum of the last two equations s

. 2 cos. & =10*4- 107, (193)

A
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Hence, by (55 and 56),
cos.23z =% (1+cos.z) =% (24 2cos.z) = } (10" 424 10)
—sindtz =4 (cos.z—1)=}(2cos.2—2) = } (10— 2 4- 107%),
of which the square roots are )
cos. 3 z =} (10¥ 4 107¥)
sin. 3 2.4/ —1 =3 (10¥ —107¥),
and the sum of these two equations is

cos. 3 z4sin. §z.4/ —1=10¥, (194)

The comparison of (194) with the first equation of (192) shows that
z may be changed into § z, provided thaty is changed into 4 y. The
same changes may, therefore, also be made in (194), or } = may be
changed into its half, that is, into } @, provided % y is changed into
} y; which gives

cos. } z4sin. f .4/ — 1 =10%, (195)

A repetition of this change gives R

cos. § 4 sin. § 2.4/ —1 = 10, " (196)

By continuing this process, z may be divided by any power of 2,
however great, provided y is divided by the same power. Let,
then,

m=2" (197)
and we have
X . x R4
cos.—"—‘--}-sm.;.\/—l:l()"'; ~(198)
the logarithm of which is
xr . z Y :
log. . — = =1 )=,
og (cos - + sin - N 1) - (199)

But if, in (197), n is made infinite, m will also be infinite, and =z
m
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will be an infinitesimal, of which the cosine is unity and the eine is

equal to its arc in the circle of which radius is unity ; that is, (199)
becomes, if the angle is expressed as in (16),

1og.(1+—:; V—l):%. (200)

But, again, since -:T is an infinitesimal, (200) becomes by means of

(167),

log.c.—;—‘;\/——lz%,ory:z/\/—-l.log.e, i(201)

which substituted in (191) gives
log. (cos.z+sin.z.4/ —1) = z o/ — 1. log. e = log. e"v~"'

log.(cos. z — sin. z o A/—1) = — 2z A/— 1. log. e =log. e*v=1(202)

or

cos. 4 sin. z .4/ — 1 =¢*v~!

cos. z—sin. 2. A/ —1=¢"*v~! (209)
106. Corollary. Half the sum of (20.3) is
cos. z =3 (e=v~' 4 e D, (204)
and half their difference, multiplied by o/ — 1, is
gin, 2= — } (eV'—e v s/ — 1. (205)

107. Problem. To dévelop cos. x and sin. X in terms
arranged according to powers of x.

Solution. Since we have
(zA/—1)2=—2%(a0/—1)° = —288/—1, (28/ — 1)4=2?, &c. (206)
the substitution of 24/ — 1 for z in (165) gives

ev-i=1tay—1.— & EV =1

1.27 123
A Ba —1 '
d + Tes7 tigzsas — &~ (207)

6
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which gives, by reversing the sign of z,

—_— 22 Ba/—1
T/l =1 — —_—1,—— —_—
€ l—ed/—1l.— 5 + 33

4 4/ —1
+ 1.2.3.4  1.2.3.4.5

Half the sum of (207) and (208) is, by (204),

&e. (208)

2 z4 ab
cos.z=1—1o+ 054 " T23456 T (209
Half their diﬁ‘erenée, multiplied by 4/ — 1, is, by (205),
‘. . 13 1‘5
sxn.x_m—i-—2.—3+m—&c. (210)

which are the series required. But it must not be forgotten that, in
the second member of these equations, x is expressed in terms of the
radius as unity, as in (16).

108. Corollary. Equations (209) and (210) can be used for cal-
culating tables of sines and cosines.
109. ExAMPLES.

1. Find the sine and cosine of 13° 25/,

Solution. In this case, since 13° 25’ — 805/, z, or the arc of 13°
25/ in the circle of which radius is unity, is 805 times the arc of 1/;
that is, by (13), .

z =805 sin. 1/’ =805 X 0.000290888 — 0.234165

a2 28
2= 0.027416, . 123 — 0.002140
8
1234= 0.000125, 12345 = 0.000006
Hence cos. z = 0.97271 sin. £ = 0.23203

2. Find the sine and cosine of 6° 10,
Ans. sin. 6° 10/ = 0.10742
cos. 6° 10 = 0.99421
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NAVIGATION AND SURVEYING.

CHAPTER 1.
PLANE SAILING.

1. The figure of the earth is considered, in Navijgation, to
be that of a perfect sphere, from which, in fact, it differs but
slightly ; and very small portions of its surface are regarded as
plane. [B., p. 46.] ‘

The earth performs a daily revolution around one of its
diameters, which is called the earth’s azis. [B., p. 48]

The extremities of this axis on the surface of the earth are
the terrestrial poles ; one being the north pole, and the other the
south pole. [B., p. 48.] '

2. The section of the earth or the circumference of the sec-
tion made by a plane which passes through the earth’s centre
and is perpendicular to its axis is the terrestrial equator.
[B., p. 48.]

Parallels of latitude are the circumferences of small circles
the planes of which are parallel to the equator.

8. Meridians are the circumferences of great circlesl which
pass from one pole to the other. [B., p. 48.]

The first meridian is one arbitrarily assumed, to which all
others are referred. In most countries, that has been taken as
the first meridian which passes through the capital of the
country.

4. The latitude of a place is its angular distance from the

equator, the vertex of the angle being at the centre of the
6*
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earth ; or it is the arc which is comprehended between the place
and the equator, on the meridian passing through the place.
[B., p. 48]

If D (fig. 18) is the centre of the earth, C one of the poles,
A'B’ a portion of the equator, and B'C a portion of a meridian, the
latitude of the place B is the angle B'DB or the arc B'B.

Latitude is commonly expressed in degrees, &c. and is reckoned
north and south of the equator from 0° to 90°; one direction being
sometimes regarded "as positive, and the other as negative. Thus,
the latitude of Melbourne (Australia) is 37° 48’ 8., or — 37° 48' N.

5. The difference of latitude of two places is the angular
distance between the parallels of latitude in which they are
respectively situated, the vertex of the angle being at the centre
of the earth ; or it is the arc which is comprehended between
the parallels of latitude, on any meridian. [B., p. 52.]

The difference of latitude of two places is equal to the dif-
JSerence of their latitudes, if they are on the same side of the
equator, and to the sum of their latitudes, if they are on opposite
sides of the equator. [B., p. 50.]

Difference of latitude is often regarded as a length and expressed
in terms of the nautical mile, which is equal to a minute of arc
measured on the circumference of a great circle. Thus, the diff. of
lat. of San Francisco and Melbourne is 37° 49/ 4 87° 48' = 37° 49’
— (—37° 48") = 75° 37" = 4537 miles.

8. The longitude of a place is the angle made by the plane
of the meridian which passes through the place with the plane
of the first meridian ; or it is the arc of the equator compre-
hended between these two meridians. [B., p. 48.]

If A'C (fig. 18) is a part of the first meridian, the l(;ngitude of B
is the anglo A’DB’ or the arc A'B'. . .

Jongitudo is reckoned east and west of the first meridian from 0°
to 180°, or only towards the west from 0° to 360°. Thus, the lon-
gitude of Melbourne from Greenwich is 144° 59’ E or — 144° 59' W
or (360° — 144° 59') W = 215° 1 W,
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7. The difference of longitude of two places is the angle con-
tained between the planes of their meridians ; or it is the arc of
the equator comprehended between their meridians.

The difference of longitude of two places is equal to the dif-
Serence of their longitudes, if they are on the same . side of the
Jirst meridian,-and to the sum of their longitudes, if they are
on oppostte sides of the first meridian, unless their sum be greater
than 180°, in which case the sum must be subtracted from 360°
to give the difference of longitude. [B., p. 5.0]

Thus, the diff. of long. of Melbourne and San Francisco is 360° —
(122° 31/ 4 144° 59’) =215°1/—122° 31’/ =92° 30’ —= 5550 miles.

8. A rhumb line, or rhumb, is a line drawn on the surface of
the earth so as to cross every meridian at the same angle. Any
two places can be connected by a rhumb line, and the length
of the rhumb line is called the nautical distance between them.
[B., p- 52.]

The parallels of latitude and the equator are rhumb lines running
at right angles with the meridians, and any meridian’ is a rhumb line
running north and south. In general, however, the rhumb line is
not an arc of a circle, but, when indefinitely produced, it winds
round and round the earth, somewhat after the manner of the thread
of a screw, being always convex to the equator. Any very small
part of it is, sensibly, a straight line.

The shortest distance between two placesis that which is measured
on the arc of a great circle. Ships are, therefore, sometimes navi- -
gated on great circles, but more commonly on rhumb lines, because
the increase of distance is, in most cases, small, while there are
several practical advantages in favor of rhumb sailing. In this
treatise, thumb sailing alone is considered, and the word distance is
always used to denote the nautical distance.

9. The course of a ship at any time is the angle which her
path at that time makes with the meridian she is crossing. The
bearing of two places from each other is the angle at which the
rhumb line connecting them crosses the meridians. [B., p. 52.]

When a ship sails on a rhumb, her course is everywhere the same
and equal to the bearing of the place reached from the place left.
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10. The departure of two places from each other is the actual _
amount of easting or westing made by a ship in sailing on a
rhumb from one place to the other. If the places are so near
each other that their meridians may be considered as parallel,
the departure is obviously the distance of either place from the
meridian of the other. But if the distance is great, let it be
divided into very small portions, and the departure of the places
is the sum of the departures corresponding to all these portions;
and, since the portions may be made as small as we please, this
method of finding the departure can be carried to an unlimited
degree of accuracy. [B., pp. 62, 66.]

Thus, to find the departure of the places A.and B (fig. 71); draw
the rhumb line AB, divide it into small portions at the points a, b,
¢, &c., draw the meridians PA, PB, Pa, Pb, Pc, &c., and the
parallels of latitude AA’, BB/, am, bn, cp, &c., 80 that ma is the
departure of 4 and a, n b that of a and b, &c. ; then

dep. of A and B:ma+nbl+pc+&c.

The departure of 4 'and B must be distinguished from the meridional
distances AA’and BB/, and also from the diff. long., which, when
expressed in miles, is the meridional distance L L’ measured on the
equator.

11. For the purpose.of expressing the course, navigators
are in the habit of dividing the quadrant into eight equal parts
called points, and of subdividing the points into halves and

. quarters. A point, therefore, is equal to one eighth of 90°, or

"t0.11° 15, Names are given to the directions determined by
the different points, as in fig. 14, which represents the face of
the card of the Mariner’s Compass. [B., p. 52.]

The Mariner's Compass consists of this card, attached to a
magnetic needle, which has the property of constantly point-
ing toward the north, and thereby shows the ship’s course.
[B., p. 62.]

Other ways of expressing the course are easily understood. Thus,
N. 30° E. means 30° from N. towards E.

B., p. 53 contains a table of the degrees and minutes which cor-
respond to every quarter-point of the compass; and B., Table XXV
gives the log. sine, &c., for every quarter-point.
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12. Plane Sailing embraces those problems of Navigation
which involve only the Nautical Distance, the Course, or Bear-
ing, the Difference of Latitude, and the Departure. It is a
method of calculating any two of these quantities, when the
other two are known. [B., p. 52.]

13. Problem. To find the difference of latitude and the de-
parture when the course and the distance are known. [B., p. 64.]

Solution. First. Take the case where the distance is 8o small that
the curvature of the earth’s surface may be neglected: — Let AB
(fig. 15) be the distance. Draw through A the meridian AC, and
let fall on it the perpendicular BC. The angle A is the course, AC
is the difference of latitude, and CB is the departure. Then, as in
Pl Trig. § 82,

. diff. lat. = dist. X cos. course, (211)
departure — dist. X sin. course. (212)

Secondly. 'When the distance is great, as AB (fig. 71):—
Divide it into small portions, as in §10. Then AB’, the difference
of latitude of A and B, is evidently equal to the sum of the partial
differences of latitude which correspond to the distances 4 a, &ec.
Hence, and by § 10,

diff. lat. = Am-4an+bp -4 &e.
departure=ma 4 n b 4 pc 4 &e.
But, since A B is a rhumb, each of the angles m Aa, nabd, p b.c, &ec.
is equal to the given course. Hence the right triangles A ma, an 3,
bp ¢, &e. give '
Am = A a X cos. course, ma = A a X sin. course;
an— ab X cos. course, nb=abd X sin. course;
bp =25 c X cos. course, p ¢ = b ¢ X sin. course; &c. &c.
Adding each of these sets of equations, we have
diff. lat. —= Am 4an4bp+ &e.
= (A a+ ab+4 bc+ &e.) X cos. course,
departure = m a - nb 4 p ¢+ &e.
B =(Ada+4ab+4bc—+ &c.) X sin. course.

ut .
Aa+ab+ be+ &ec. = AB = distance.
Hence

diff. lat. = dist. X cos. course,

departure — dist. X sin. course ;
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precisely the same with (211) and (212) ; so that the diff. lat., dep.,
dist., and course have, in all cases, the same relative magnitude as if
they formed the right triangle of fig. 15.

Hence all the problems of Plane Sailing may be solved by this
right triangle. [B., p. 52.]

Tables of difference of latitude and departure, such as B., Tables
I and II., may be calculated by (211) and (212).

14. Problem. Tbo find the distance and the difference of lati-
tude, when the course and the departure are known. [B., p. 55.]

Solution. There are given (fig. 15) the angle A and the side CB.
Hence, as in P1. Trig. § 33,

distance — departure X cosec. course, (213)
diff. lat. — departure X cotan. course. (214)

15. Problem. To find the distance and the departure when the
course and the difference of latitude are known. [B., p. 55.]

Solution. There are given (fig. 15) the angle A and the side AC.
Then, as in Pl. Trig. § 34, -
distance = diff. lat. X sec. course, (215)

departure — diff. lat. X tang. course. (216)

16. Problem. To find the course and the difference of lati-
tude, when the distance and the departure are known. [B., p. 57.]

Solution. There are given (fig. 15) the hypothenuse AB and the
side CB. Then, as in Pl Trig. § 35,

sin. course = de.p artulﬁ, (217)
distance
diff. lat. = &/ [(dist.)2— (departure)?]. (218)

17. Problem. To find the course and the departure when the: -

distance and the difference of latitude are known. [B., p. 56.]

Solution. There are given (fig. 15) the hypothenuse AB and the
leg AC. Then, as in Pl. Trig.'§ 35, '
diff. lat.
“distance ’
departure = o/ [(dist.)? — (diff. lat.)?]. (220)

cos. course =— (219)
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18. Problem. To find the course and the distance when the
departure and the difference of latitude ave known. [B., p. 57.]

Solution. There are given (fig. 15) the legs AC and BC. Then,
as in Pl. Trig. § 36,

tan __ departure
| g- course = ——mr, (221)
dist. = diff. lat. X sec. course. (222)

19. ExAMPLES.

1. A ship sails from latitude 3°'45’ 8., upon a course N. by E., a
distance of 2345 miles; to find the latitude at which she arrives and
the departure which she makes.

Ans. Latitude — 34° 34'N.
Departure — 457 miles.

2. A ship sails from latitude 62° 19’ N., upon a course W.N. W..,

" till she makes a departure of 1000 miles; tofind the latitude at which

she arrives and the distance sailed.
Ans. Latitude — 69° 13’ N.

Distance — 1082 miles.

3. The bearing of Paris from Athens is N. 54° 56’ W, ; find the
distance and departure of these two places from each other.

Ans. Distance = 1135 miles.
Departure = 929 miles.
4. A ship sails, from latitude 72° 8’ 8., a distance of 2000 miles,

upon a course between the north and the west, and makes a departure
of 1000 miles ; find the latitude at which she arrives and the course.

Ans. Latitude ==43° 11’/ 8,
Course = N. 30°W.
5. The distance from New Orleans to Portland is 1256 miles;

find the bearing and departure.
Ans. Bearing = N. 49° 18’ E.

Departure — 952 miles.

6. The departure of Boston from Canton is 8786 miles ; find the

bearing and distance. : :
Ans. Bearing = N. 82° 81’ E.

Distance — 8862 miles.

-
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CHAPTER 1II.
TRAVERSE SAILING. ‘

20. A traverse is an irregular track made by a ship which
sails on several different courses in succession.

The object of Traverse Sailing is to reduce a traverse to a
single course ; that is, to find the single track which is equivalent
to the combination of several successive tracks ; when the whole
distance sailed is so small that the curvature of the earth’s sur-
face may be neglected. This is called working the traverse.
[B., p. 69.]

21. Problem. To reduce several successive tracks of a ship to
one, when the curvature of the earth’s surface may be neglected.
[B., p- 59.]

Solution. Suppose the ship to start from the point 4 (fig. 17),
and to sail first from A to B, then from B to C, then from C to E,
and lastly from E to F'; to find the bearing and distance of F from
* A. Call the differences of latitude corresponding to the 1st, 2d, 3d,
and 4th tracks, the 1st, 2d, 3d, and 4th differences of latitude ; and
call the corresponding departurés the 1st, 2d, 3d, and 4th departures.
The whole northing or southing made by the ship on her successive
courses is evidently equal to the difference of latitude of the place of
arrival and that of starting ; and, if we neglect the earth’s curvature
and constder the meridians as parallel, the whole easting or westing
made is equal to that which would have been made on a direct
course ; that is, to the departure of the places; or, in the case of
fig. 17,

diff. lat. of 4 and F = 1st diff. lat. — 2d diff. lat.

~+ 3d diff. lat. — 4th diff. lat.
dep. of A and F — 1st dep. — 2d dep. — 3d dep. - 4th dep.

Hence, the difference of latitude of the place of arrival and the
place of starting is found by taking the difference between the sum
of the northings made on the northerly courses and the sum of the
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southings made on the southerly courses; and their departure is
Sound by taking the difference between the sum of the eastings
made on the easterly courses and the sum of the westings made
on the westerly courses. When the difference of latitude and the
departure are known, the direct course and the nautical distance
can be found by § 18.

22. The calculations of traverse sailing are usually put into
a tabular form, as in the following example. In the first column
of the table are the numbers of the tracks ; ; in the second and
third columns are the courses and distances; in the fourth and
Jifth columns are the differences of latitude, the column headed
N. correspending to the northerly courses; and that headed
S. to the southerly courses; in the sizth and seventh columns
are the departures, the column headed E. corresponding to
the easterly courses, and that headed W. to the westerly
courses. [B., p. 59.]

23. ExAMPLES.

1. A ship sails on several successive tracks, in the order and with
the courses and distances of the first three columns of the following
table ; find the bearing and distance of the place the ship is in from
that which she left.

No Course\. Dist. N. S. E. W.
1| N.N.E | 80 | 277 11.5
2 N. W. 80 56.6 56.6
3 ‘West. 60 60.0
4 |S.E.byS.| 55 45.7 | 30.6
15 North 43 43.0
6 S. by W. 152 149.1 29.7
Sum of columns, 127.3 194.8 42.1 146.3

127.3 42.1

— e

Diff. lat. = 67.5 S. dep. = 104.2 W,
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Dep. = 104.2 2.01787
Diff. lat. = 67.5 (ar. co.) 8.17070 1.82930

Bearing = 57° 4’ tang. 0.18857 sec. 0.26467

Dist, = 124.2 « 2,09397
Ans. Bearing — 8. 57°4' W,

Distance — 124.2 miles.

2. A ship sails on the following successive tracks, N. E. 12 miles,
E. 1 8. 10 miles, 8. E. by.S. 14 miles, 8. 31° W. 7 miles, E. N. E.
25 miles. ' .

Required the bearing and distance of the place reached from the
place left. A

: Ans. Bearing — East .
Distance — 45.8 miles.

8 A ship sails on the following successive tracks, South 10 miles,
W. S. W. 25 miles, S. W. 80 miles, and West 20 miles ; she is bound
to a port which is at a distance of 100 miles from the place of start-
ing and bears W. by S.

Required the bearing and distance of the port to which the ship
is bound from the place at which she has arrived.
Ans. Bearing — N. 57° 47" W,
Distance = 40 miles.
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CHAPTER IIIL

PARALLEL SAILING.

24. Parallel Sailing considers only the case where the
ship sails exactly east or west and therefore remains con-
stantly on the same parallel of latitude. Its object is to find
the change in longitude corresponding to the ship’s track ; and,
in general, tq investigate the relation of the Difference of Lon-
gitude of two places on the same parallel to their Departure.
[B., p. 63.]

25. Problem. 'To find the difference of longitude in parallel
sailing. [B., p. 65.]
)

Solution. Let AB (fig. 185 be the distance sailed by the ship on
the parallel of latitude AB. As the course is exactly east or west,
the distance sailed must, by § 10, be itself equal to the departure
made.

The latitude of the parallel is A’DA, or A'’A. The angle AEB
= A'DB’, or the arc A'B', is, by § 7, the difference of longitude.
Denote the radius of the earth DA’— DB'—= DA by R, and the
radius of the parallel EA = EB by r; also the circumference of the
earth by C, and that of the parallel by e.

Since AB and A’'B’ correspond to the equal angles AEB and
A'DB’, they must be similar arcs and give the proportion,

AB: A'B'=¢: C,
or dep. : diff. long. =¢: C,
But, as circumferences are proportional to theit radii,
c:C=r:R
Hence, leaving out the comﬁlon ratio, |

dep. : diff. long.=17r: R.
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Putting the product of the extremes equal to that of the means,
r X diff.long. = R X departure.
But, in the triangle ADE, since
EAD = A'DA = latitude,
we have, from (22),
r = R X cos. lat.,

which, substituted in the above equation, gives, if the result is di-
vided by R,

diff. long. X cos. lat. = departure (or distance). (2238)
Hence, by (6),

dep. (or dist.)

diff. long. = cos. lat.

= dep. (or dist.) X sec. lat.  (224)

26. Problem. To find the distance between two places which are
upon the same parallel of latitude.

Solution. This problem is solved at once by (223).

27. The Table, p. 64, of the Navigator, which ¢ shows for every
degree of latitude how many miles distant two meridians are whose
difference of longitude is one degree,” is readily calculated by this
formula.

28. Corollary. It appears from {223) and (224) that if a
right triangle (fig. 18) is constructed of which the hypothenuse
is the difference of longitude and one of the acute angles the
latitude, the leg adjacent to this angle is the departure. All
the cases of parallel sailing may, then, be reduced to the solution
of this triangle.

29. ExAMPLES.

1. A ship sails from Boston 1000 miles exactly east; find the
longitude in which she arrives.

Ans. Longitude sought = 48° 20’ W,
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2. Find the distance of Barcelona (Spain) from Nantucket (Mas-
sachusetts).
Ans. Distance = 3250 miles.
3. Find the distance between two meridians whose difference of
longitude is one degree, in the latitude of 45°. ‘
. Ans. Distance — 42.43 miles.

4. Find the difference of longitude which corresponds to a de-
parture of one league, or three sea miles, in the latitude of 72°.

Ans. Diff. long. =9 42",

7e
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CHAPTER 1IV.
MIDDLE LATITUDE SAILING.

80. Middle Latitude Sailing is an approximate method of
solving those problems of rhumb sailing which involve the con-
sideration of the Difference of Longitude. It is properly
applicable to cases in which the difference of latitude is small,
and consists in calculating the difference of longitude from the
departure or the departure from the difference of longitude by
the formulas of Parallel Sailing, on the hypothesis that the de-
parture is equal to the distance between the extreme meridians
measured at the Middle Latitude ; that is, at the latitude of the
. middle point of the rhumb. [B., p. 66.]

If A and B (fig. 71) are situated on the same side of the equator,
A being in the higher latitude, their departure is less than the
meridional distance BB’ and greater than the meridional distance
AA', since each of the partial departures, as ma, is less than the
corresponding arc of BB’ and greater than the corresponding arc of
AA'. Hence, the departure of A and B must be equal to the
meridional distance measured on some intermediate parallel, DD’;
so that the departure and difference of longitude of A and B are the
same as those of D) and J’. Since the meridional distance regularly
increases, as we go from AA’ to BB/, it is natural to take the middle
parallel as an approximation to the position of DD'; and it is evident
that if the difference of latitude is small, little error can result from
this assumption, especially if the places are near the equator, where
the meridians converge but slightly.

It is evident that '

mid. lat. of two places = } sum of their lats.

= either lat. 4= } diff. lat.  (225)

81. Corollary. By combining the triangle (fig. 15) of Plane
Sailing with that (fig. 18) of Parallel Sailing, and making the
latitude in the latter equal to the middle latitude, we obtain a
triangle (fig. 19) by which all the cases of Middle Latitude
Sailing can be solved.
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82. Problem. To find the difference of latitude, the departure,
and the difference of longitude, when the course and the distance
are known, and the latitude of one extremity of the ship’s track.
[B., p. T1.] .

Solution. The triangle (fig. 19) gives at once, as in Plane Sailing

diff. lat. — dist. X cos. course
dep. — dist. X sin. course.
The middle latitude may then be found by (225); and we have,
as in (224),
dep.

Wnﬁ.—ht- = dep. X sec. mid. ht. (226)

diff. long. =

or, by substituting the value of the departure,
diff. long. = dist. X sin. course X sec. mid. lat. (227)

33. Problem. 1o find the bearing and the distance of two
given places from each other. [B., p. 68.]

Solution. The places being given, their latitudes and longitudes
are supposed to be known, so that the diff. lat., mid. lat., and diff.
long. are easily found. Then we have (fig. 19), by the principles of
the solution of right triangles,

departure — diff. long. X cos. mid. lat. (228)
. . departure

tﬂ.ﬂg. bearmg -— m (229)

dist. = diff. lat. X sec. bearing. (230)

84. Problem. To find the course, the distance, and the dif-
ference of longitude, when both latitudes and the departure are
given. [B., p. 70.] ‘

Solution. The difference of longitude is found by (226), the
course by (229), and the distance by (230).

85. Problem. To find the departure, the distance, and the
difference of longitude, when both latitudes and the course are
gwen. [B., p. 72.]

Solution. The departure is found by the formula

departure = diff. lat. X tang. course; (231}
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_ the distance by (230) ; and the difference of longitude may be found
by (226), or by substituting (231) in (226), as follows,

dxﬂ' long. = diff. lat. X tang. course X sec. mid. lat. (232)

86. Problem. To ﬁml the course, the departure, and the dif-

Serence of longitude, when both latitudes and the distance are
gwen. [B., p. 73.]

Solution. The course is found by the formula

diff. lat.
cos. course = -——m- 3 (283)
the departure by (212) or by the formula
departure — o/ [(dist.)2 — (diff. lat.)?] ; (234)

and the difference of longitude by (226) or (227).

87. Problem. To find the difference of latitude, the distance,
and the difference of longitude, when one latitude, the course, and
the departure are given. [B., p. T4.]

Solution. The difference of latitude is found by the formula

diff. lat. = dep. X cotan. course ; (285)
the distance by the formula
dist. — dep. X cosec. course ; (236)

the mid. lat. by (225); and the difference of longitude by (226).

_ 88. Problem. To find the course, the difference of latitude,
and the difference of longitude, when one latitude, the distance,
and the departure are given. [B., p. 75.]
Solution. The course is found by the formula
dep.

sin. course = Tt (237)
the difference of latitude by (211) or by the formula _
diff. lat. — 4/ [(dist.)? — (dep.)?]; (238)

and the difference of longitude by (226).

89. Scholium. If two places are in opposite latitudes, the middle
latitude may evidently differ considerably from the latitude of DD';
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though it may still be used with little error. But it is better to divide
the rhumb at the equator and use the middle latitude of each part
separately, in connexion with the departure and the difference of
longitude which correspond to that part; or we may, by an obvious
extension of the principle of middle latitude sailing, take for the ap-
proximate latitude of DIV a latitude which is intermediate in amount
between these two partial middle latitudes and differs less from the
middle latitude which corresponds to the greater part of the rhumb,
in proportion as that part is the greater. Thus, if the latitudes are 1
and 7/, taken without regard to their signs as north and south, the
middle latitades of the two parts of the rhumb are 3 Land 3 ¥; the
lengths of these parts of the rhumb and the corresponding depart-
ures are proportional to / and /; and l,, the approximate latitude of
DI, is found by the proportion

Lh—3):GI1=n=1:1,
LS L
l"'2(1+1/)‘

The approximate latitude of DD’ for all cases is bxpressed by the
formula

which gives

Ry 12

2(=F2)’
in which the upper signs or the lower are to be used according as
the places are on the same side of the equator or on opposite sides,
and  and ' denote the latitudes, taken independently of their signs ;
for if the places are on the same side of the equator the formula
becomes

ll.——-

B—
“‘20 —&a+m

40. ExAMPLES.

Note. The calculations of Middle Latitude Sailing are rendered
accurate by applying to the middle latitude a correction, which may
be found in the table of B., p. 76 (given in the Useful Tables® after
‘p. 329). The method of computing this correction will be explained
in the next chapter. The corrected mid. lat. is the true lat. of DD¥
(fig. 71) and is always a little greater than the actual mid. lat.

1. A ship sailed from Halifax (Nova Scotia) a distance of 2515
miles, upon a course S. 79° 30’ E.; find the place at which she ar-
rived.
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Solution. By § 32,

dist. = 2515 3.40054 3.40054
course — 79° 30/ cos. 9.26063 sin. 9.99267
diff. lat. =458’ — 7° 38’ S. 2.66117
lat. left == 44° 40’ N. m. lat. = 40° 51/
lat. in =37 2' N. cor. — 7

cor. mid. lat. =— 40° 58’ sec. 10.12200

diff. long. = 3275’ = 54° 35' E. 3.51521
long. left =63°35'W.
long. in = 9° 0'W.

Ans. The place arrived at is lat. 37° 2/ N., long. 9° 0/ W.;
which is one mile south of Cape St. Vincent, in Portugal.

2. Find the bearing and distance of Canton from Washington.

Solution. Byﬁ 33,
lat. of Washington — 38° 53' N. long.= 77° O'W.
lat. of Canton =23° 8'N. long. =113° 17" E.

diff. lat. = 945'= 15° 45, sum of longs. —190° 17’

mid.lat. = ° 81° O/ diff. long. =169° 43'=1018%'
cor. . = 31/

cor.mid. lat. = 31° 31’ cos. 9.93069

diff. long. = 10188/ 4.00788

diff. lat. = 945 ar. co. 7.02457 2.97548
bearing = 8. 83° 47/ W. tang. 10.96314 sec. 10.96570
dist. = 8732 miles. 3.94113

3. A ship sails from New York a distance of 6504 miles, upon
a course S. E. 1 8.; find the place at which she arrives.

Ans. 15% miles to the west of Georgetown, in Bermuda.

4. Find the bearing and distance of Portland (Maine) from New

Orleans.
Ans. The bearing. = N. 49° 18’ E.

The distance — 1256 miles.
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5. A ship from the Cape of Good Hope sails northwesterly, that
is, between north and west, until her latitude is 22° 38’ S., and her
departure 3115 miles; find her course, distance sailed, longitude,
and distance from Cape St. Thomas (Brazil).

Ans. Course = N. 76°39'W.
Distance = 3201 miles.
Longitude = 40° 36’ W.
Distance to the Cape St. Thomas = 22 miles.

6. A ship sails from Boston upon a course E. by N. until she
arrives in latitude 45° 20’ N.; find the distance sailed, the longitude
reached, and the distance and bearing from Liverpool.

Ans. Distance sailed = 928 miles.
Longitude = 49° 59' W.
Distance from Liverpool = 1893 miles.
Bearing from Liverpool = 8. 75° 9' W.

7. A ship sails southwesterly from Gibraltar a distance of 1500
miles, when she is in latitude 14° 43’ N.; find her course, the lon-
gitude she is in, and her distance from Cape Verde.

Ans. Course =—3S8.31° 8 W,
Longitude = 19° 47' W.
Dist. from Cape Verde = 132 miles.

8. A ship sails from Nantucket upon a course 8. 62° 11’ E., until
she has made a departure of 2274 miles ; find the distance sailed and
the place arrived at.

.Ans. Distance = 2571 miles,

The place arrived at is 261 miles north of Santa Cruz (Cape Verde
Islands). .

9. A ship sails southwesterly from Land’s End (England) a dis-
tance of 3466 miles, when her departure is 3306 miles; find the
« r:e and the place arrived at.

Ans. The course — 8. 72° 30’ W.
The place arrived at is Charleston (South Carolina).
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CHAPTER V.
- MERCATOR’S SAILING.

41. Mercator’s Sailing is an accurate method of solving
those problems of rhumb sailing which involve the Difference
of Longitude. [B., p. 78.]

42. Problem. T find the difference of longitude, when both
latitudes and the course are known.

Solution. Let A and B (fig. 71) be the places. Suppose the
rhumb A B divided into very small portions A4 a, a b, b ¢, &c., which
are such that the difference of longitude is the same for each of
them. Let :
"D = the required difference of longitude of B and 4,

d = the small difference of longitude which corresponds to either of
‘ the small portions of the rhumb,
L = the given latitude of B,
L’ = the given latitude of 4,

! = the latitude of.any one of the points of division, as ¢,

U = the latitude of 4, the next point towards 4,

= the given course,
n = the number of portions into which B4 is divided.

Now, since we suppose the rhumb to be divided into as many
parts as we please, we may suppose each of the parts to be so small
that the formulas of middle latitude sailing can be applied to it with-
out error ; 8o that we have for any one of them, as ¢ b, by (232),

d=(I'—1) X tang. C X sec. } (V' 4 1), (239)
or, by dividing by 2 tang. C, we have, by (6),
3 d cotan. C= % ! (240)
But } (!'—1) is a very small arc; so that, if it is expressed in
minutes, we have, by (14),
3 (' —1)sin. I =sin. } (! —1); (241)
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which, substituted in (240) multiplied by sin. 1/, gives

. .
3 dsin. 1/ cotan, C = —:‘T‘:—gg,— +-?)‘ . (242)
Let now o . )
m =} d sin. 1/ cotan. Cz—%—%:_—%; (243)
and (243) may be written in the usual form of a proportion
) sin. § (V' —10):cos. § (U 0)=m:1; (244)
whence, by the theory of proportions,
cos. § (' 1) 4sin. F (V=1 _14m (245)

cos. (V- )—sin. § (' —0) " 1—m
But if in (47), in which 4 and B may have any values, we take
A=90°—3 (4D, B=34@—0, (246)
A+B=90°—1, A—B=90"—1, (247)
and (47) becomes

cos. § (V 4-1) 4 sin. § ('—1) _ cotan. (45°—3 1) (248)
cos. 3 (! 41)—sin. § (! — 1) cotan. (45°—3 )’

and, if we put

we have

M= :_'t———: (249)

(245) and (248) give :
cotan, (45° — } )
cotan. (45°— 3 1)

Now, since the course C is everywhere the same, and since d is
assumed to be the same for each portion of the thumb, m is, by (243),
the same for each portion of the rhumb, and, therefore, by (249), M,
the ratio of cotan. (45° — 3 I') to cotan. (45° — } 1), is likewise the

=M. (250)

. same for each portion of the rhumb., Hence the successive values of

cotan. (45° — § 1), for the points B, . ... ¢, b, a, 4, form a geometric
progression, of which
cotan. (45°— F L) = the first term,
cotan. (45°— & L’) = the last term,
M = the common ratio,
n - 1 = the number of terms.

Therefore, by the theory of geometric progression,
cotan. (45° —§ L) = cotan. (45° — § L) . M*, (251)
and, by logarithms, '
log. cotan. (45° — } L’) —log. cotan. (45° — § L) = log. M*. (252)
8 . .
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Since the value of d is the same for each portion, we have,
by (243),

_D _ Dsin10

"= 4T 2mtang C’ _ (253)
and, if we put
1
, e=M"", : (254)
we have, by (253),
Dsin, 1’
M= e3""=¢ "€ o (255)
__Dsin. v _ log. e .

log.‘M"_— tang. C log. e = D——‘—_“cosec. 1’ tang, G (256)

which, substituted in (253), gives by a simple reduction

[coliegc 1 log. cotan. (45°— § LI)—COSBC llog cotan.(45°—§L)]
X tang. C= D. (257)
c. 1/

Now the value of —l‘ oz e log cotan. (45° — } L) has been

calculated for every minute of latitude and inserted in tables,
such as B., Table ITII. It is called the Meridional Parts of the
Latitude, and the method of computing it is given in §44.

The algebraic difference between the meridional parts of two
latitudes is called the Meridional Difference of Latitude.

Hence (257) gives .
D = diff. long. = mer. diff. lat. X tang. course, (258)
Since (45° — L) is the complement of (45° 4- § L), we have, by
the principles of logarithms,
log. cotan. (45° — } L) ==log. tang. (45° 4- 3 L),
=— log. cotan. (45°4 3 L); (259)

-and it is evident that (45°— % L) and (45° 4 3 L) are the halves of
the angular distances between the place of which L is the latitude
and the two poles of the earth.

In order to apply (257) to the case of two places on opposite sides
of the equator, we must consider L as negative, since, in the above
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solution, the latitude continually increases from L to L', If L =—
L,, we have, by (259),

cosec. 1/ o cosec. 1/ o
—_ = — —————log. cot. (45° —
Tog. log. cot. (45° — 3 L) = - Tog. ¢ log. cot. ( 3L)

or
mer. parts of L = — mer. parts of L,.

Hence, if the latitudes are taken without regard to their
signs, the Meridional Difference of Latitude of two places on the
same gide of the equator is equal to the difference between the
meridional parts of their latitudes ; and that of two places on
opposite sides of the equator is equal to the sum of the meridional
parts.

Since it is supposed, in the above solution, that (¥ —1I) is expressed
in minutes, d is found by (289) in minutes, and, therefore, the value
of D given by (257) is expressed in minutes.

- 43, Corollary. It appears from (258) that the diffenence of
longitude is the leg DE (fig, 20) of a right triangle of which
AD is equal to the meridional difference of latitude and the
angle 4 to the course. This triangle may be combined with
the triangle ABC of Plane Sailing; and all the cases of Merca-
tor’s Sailing are reduced to the solution of these two similar right
triangles.

44. Problem. To calculate the table of Meridional Parts.

Solution. 1. In finding the value of e, which is involved in the
expression for the meridional parts, the portions into which the rhumb
is divided are supposed to be infinstely small. Hence d is infinitely
small, and therefore, by (243), m is also infinitely small.

We have, then, by (249), together with (167) and (168),
log. M =1log. (14 m) —log. (1 —m),
=mlog. e mlog. e = 2mlog. ¢;
which gives

1

e=Min,
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which is identical with (254); so that c'in (254) has the same value
as in (164); that is
e =2.71828. (260)
I1. This value of € gives by (13)
cosec. 1/ 34377 34317
log.e = log. (2.71828) ~ 0.43429
8o that we have by (257)
Jmer- parts of L = 7915.7 log. cotan. (45° — } L)
' = 7915.7 log. tang. (45° 4} L), (262)

which agrees with the explanation of Table III. given in the Preface
to the Navigator. '

= 7915.7, (261)

45, ExAMPLES.
1. Calculate the meridional parts of latitude 45° 48/
Solution. ' 2)45° 48’

45° — } L = 45° — 22° 54/ = 22° 6'
22° 6/ log. cotan.  0.39141 log. 9.59263

, 7915.7 8.89849
mer. parts of 45° 48/ = 3098 ‘ 3.49112
2. Calculate the meridional parts of latitude 28° 14/,
Ans. 1767
3. Calculate the meridional parts of latitude 83° 59'.
Ans. 10127.

46. Problem. To calculate the correction for middle latitude
sailing. ~

Solution. If the angle DBC (fig. 19) were exactly what it should
be in order that the hypothenuse BD should be the difference of
longitude and the leg BC the departure, it would be the corrected
middle latitude, or the true latitude of DD’ (fig. 71), and we should
have

diff. long. = sec. cor. mid. lat. X departure
‘ = sec. cor. mid. lat. X diff. lat. X tang. course, (263)

d
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‘

which, compared with (258), gives, by dividing by tang. course,
mer. diff. lat. = sec. cor. mid. lat. X diff, lat. (264)

. mer. diff. lat.
.whence sec. cor. mid. lat, = — .0 4 —— (265)
If from the corrected middle latitude, calculated by this
formula, the actual middle latitude is subtracted, the correction
of the middle latitude is obtained, and thus a table like that on
p. 76 of the Navigator may be computed. The meridional
difference of latitude should, be obtained for these calculations,
not from the tables of meridional parts, but directly from the
tables of logarithmic sines, &c., by means of (257) and (262) ;
and when the difference of latitude is less than 14°, tables
should be used in which the logarithms. are given to seven
places of decimals.

" 47. Corollary. A formula adapted to calculation by logarithms
of five places can be obtained by the following process.

Let L, = the middle latitude = (L +4- L)
r = the correction of mid. lat.
1, = the difference of latitude = L'— L,

and, by § 42,

cosec. 1/ cotan. (45°—3 L')

mer. diff. lat. — Tog_e 08: o @ =4 L)

(266)

By changing, i (248), the small letters to large ones, we obtain

cotan. (45° —3 L) cos. Ly 4 sin. 3 [,
" cotan. (45° — F L) 98 Gos. L, —sin. § b

log

1 4 sin. 3 I, sec. Ly
= log. 1 —sin. 3 losec. Ly ° (267)
But, by (186),

1 4-sin. 3 7, sec. L,
log. 1 —sin. 4/, sec. L,

+ 3 (sin. § Ly sec. Ly)* 4§ (sin. § % sec. Ly)5 4 &e.]  (268)
g

=2 log. e [sin. § [, sec. L,
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which gives, by substitution in (267) and (266),
mer. diff. lat. = 2, cosec. 1/ [sin. § [, sec. L,
=+ & (sin. § [, sec. L)3 4 &e.] (269)
and (265) gives '

l B
cosec. 1/

sec. (L4 z) = 3 [sin. & J, sec. L,

+4 (sin. § & sec. Lo)* + &e.] ~ (270)
/s
48. ExAMPLES.

1. Find the correction for middle latitude sailing, when the middle
latitude is 35°, and the difference of latitude 14°,

Solution. Greater lat. — 35° + 7° =42°
Less lat. = 35° — 7° = 28°
45° — 4 gr. lat. = 24° log. cotan, 0.35142
45°—} less lat. — 31° ' log. cotan. 0.22123
log. cotan. 24° —log. cotan. 31° 0.13019 log. 9.11458
, .
= 1 7915.7 log. 3.89849
og. €
diff, lat, 840’ log. ar. co. 7.07572
corrected mid. lat. = 35° 24/ log. sec. 10.08879

correction — 35° 24/ — 85° = 24/,

2. Find the correction for middle latitude sailing, when the middle
_latltude is 66°, and the difference of latitude 10°,



§ 48.] MERCATOR’S SAILING, 91
Solution. In this case } [, = 5° =300, L,— 66°.

5% sin. 8.94030
66° sec. 0.39069

sin. 5° sec. 66° = 0.21428 9.33099 ' 0.21428
(sin. 5° sec. 66°)3 = 0.00984 7.99297 3(0.00984) = 0.00328
(sin. 5° sec. 66°)8 = 9.00045 6.65495 1(0.00045) = 0.00009
(sin. 5° sec. 66°)7 = 0.00002 5.31693 $(0.00002) = 0.00000

(0.21765) log. 9.33776 - 0.21765
300’ - ar.co. 7.52288
v ~ cosec. 8.53627

66° 22/ sec. 0.39691
cor. of mid. lat. — 66° 22’ — 66° = 22'.

8. Find the correction for middle latitude sailing, when the middle
latitude is 30°, and the difference of latitude 4°,

Solution. In this case § I, = 2°=120", L,= 80°.

2° sin. 8.54282
80° sec. 0.06247

sin. 2° sec. 80° =—=0.040298 8.60529 0.040298
(sin. 2° sec. 30°)3 = 0.000065 5.81587 0.000022
8.60552 0.040320

120/ ar. co. 7.92082
1/ cosec. 3.53627

30° 2’ sec. 0.06261
cor. of mid. lat. = 30° 2'—30° =2,
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4. Find the correction for middle latitude sailing, when the middle
latitude is 60°, and the difference of latitude 16°.

Ans. 46/,

5. Find the correction for middle latitude sailing, when the middle
latitude is 8°, and. the difference of latitude 16°.

Ans. 77,

6. Find the correction of the middle latitude and also that of I,
(found as in § 39), when the middle latitude is 2°, and the difference
of latitude 32°.

Ans. Cor. of mid. lat. = 450’; cor, of l; =82,

7. Find the corrections of the middle latitude and of I,, when the '
middle latitude is 0°, and the difference of latitude 32°.

Ans. Cor. of mid. lat. = 557’3 "cor. of I, = 77".

. 8, Find the correction for middle latitude sailing, when the middle
latitude is 21°, and the difference of latitude 3°. ’

Ans. V.

- 9. Find the correction for middle latitude sailing, when the middle
latitude is 24°, and the difference of latitude 6°.

Ans. 5.

10. Find the correction for middle latitude sailing, when the middle
latitude is 15°, and the difference of latitude 12°.

Ans. 26,

49. Problem. To find the bearing and the distance from
each other of two given places. [B.,p.79.]

Solution. 'We have by (fig. 20) for the bearing, .

diff. long.

tang. bearing =

(271)

and the distance is found by (230).
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50. Problem. 'To find-the course, the distance, and the dif-
ference of longitude, when both latitudes and the departure are
given. [B., p. 80.]

Solution. The course is faund by (229), the difference of longi-
tude by (258), and the distance by (230). .

51. Problem. To find the distance and the difference of lon-
gitude, when both latitudes and the course are given. [B., p. 82.]

Solution. The distance is found by (230), and the difference of
longitude by (258).

52. Problem. To find the course and the difference of longi-
tude, when both latitudes and the distance are given. [B., p. 83.]

Solution. The course is found by (233), and the difference of
longitude by (258). ‘

58. Problem. To find the distance, the difference of latitude,
and the difference of longitude, when one latitude, the course, and
the departure are given. [B., p. 84.]

Solution. The distance is found by (236), the difference of latitude
by (235), and the difference of longitude by (258).

54. Problem. To find the course, the difference of latitude,
" and the difference of longitude, when one latitude, the distance,
and the departure are given. [B., p. 85.] ’

Solution. The course is fourld by (237), the difference of latitude
by (238), and the difference of longitude by (258) or by the following
proportivn deduced from the similar triangles of (fig. 20),

diff. lat. : dep. = mer. diff. lat. : diff. long. (272)

65. ExaAMPLES.

1. A ship sails from Boston a distance of 6743 ﬁiles, upon a course
8. 46° 57} E.; to find the place at which she arrives.
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Solution.
dist. ~=16743 3.82885
course. = 46° 57} cos. 9.83412 tang. 10.02971

diff. lat. — 76° 42’ 8. = 4602/, 3.66297 m. d. lat. == 5007, 8.69958

lat. left = 42° 20’ N. mer. p. 2809 diff. long. = 5362, 3.72929

lat. in = 34° 22’ S. mer. p. 2198 = 89° 22’ E.

—

mer. diff. lat. = 5007 long. left = 70° 53' W.

'long. in = 18° 29’ E.
Ans. The place reached is the Cape of Good Hope.

2. Find the bearing and distance from Moscow to St. Helena.

Solution. -
Moscow, lat. 55° 45’ N. mer. parts 4047 long. 37° 84’ E.

St. Helena, lat. 15° 55’ S. mer. parts 968  long. §° 43’ W.

——

diff. lat. = 71° 40’ mer. diff. lat. = 5016 d. long. —=43°17" *

= 4300/ ' = 2597
mer, diff. lat. . ='6015 (ar.co.) 6.29973
diff. long. = 2597 3.41447
bearing = 8. 27° 23’ W. tang. 9.71420 sec.  10.05157
diff. lat. = 4300 ‘ 3.63347
dist. = 4842 miles 3.68504

Ans. The bearing = S. 27° 23’ W.; the distance — 4842 miles.

8. A ship sails from a position 200 miles to the east of Cape Horn
a distance of 3636 miles, upon a course N. N. E. ; find the position
at which she has arrived.

Ans. It has arrived at the equator in the longitude of 83° 12’ W.

4. Required the bearing and distance of Botany Bay from Lon-
don.

Ans. Bearing = §. 57° 28' E.
Distance = 9544 miles.
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5. A ship sails northwesterly from Lima until she arrives in the
latitude 28° 8’ N., and has made a departure of 9967 miles; find the
place at which she has arrived.

' " Ams. Canton.

6. A ship sails from Disappointment Island in the North Pacific
Ocean, upon a course S. 61° 163’ E., until she has arrived in latitude
14° 10’ 8.; find the place at which she has arrived.

Ans. 'The Disappointment Islands in the South Pacific Ocean.

7. A ship sails from Smeerenburg Harbor (Spitzbergen) a distance
of 8979 miles southwesterly, when she has arrived in latitude 62°
80’ 8. ; find the place at which she has arrived.

Ans. Yankee Straits in New South Shetland.

8. A ship sails from the Cape of Good Hope, upon a course 8. 82°
12/ E., until she has made a departure of 10951 miles; find the
position at which she has arrived. .

Ans. Her position is 203 miles south of Cape Horn.

9. A ship sails southeasterly from the South Point of the Great
Bank of Newfoundland a distance of 2812 miles, when she has made
a departure of 7993 miles; find the position at which she has
arrived. .

Ans. Her position is 208 miles north of Cape St. Roque.

56. Mercator’s Chart is a map of the earth’s surface or of any
part of it, constructed on the principle of representing departure
by difference of longitude and difference of latitude by meridional
difference of latitude. [B., p. 87.]

In this chart, the equator and the parallels of latitude are repre-
sented by parallel straight lines, and the meridians by straight lines
perpendicular to the equator. The distance between any two merid-
ians is proportional to their difference of longitude (expressed in
miles), and the distance of any parallel from the. equator is in the
" same proportion to the meridional parts of its latitude (which are also
to be regarded as expressed in miles). The position of any place on
the chart is determined by finding the point of intersection of its
parallel with its meridian.
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Mercator’s Chart gives a distorted view of the earth’s surface as a
whole, since the scale on which the regions of the earth are repre-
sented increases continually from the equator towards either pole.
But as .both dimensions are increased the same ratio, any small
territory is given with approximate correctness. The chart is, how- -
ever, excellently adapted to the purposes of the navigator, in sailing
on a rhumb. For the spherical figure AB'B or AA'B (fig. 71) formed
by the rhumb with the meridian of one of its extremities and the
parallel of the other is converted, on the chart, into the correspond-
ing triangle ADE (fig. 20) of Mercator's Sailing; the rhumb be-
coming a straight line, since it crosses all the meridians at the same
angle ; and the course or bearing remaining unchanged, since each
of the small triangles, A m a, &c., 18 converted into a similar triangle.
Hence the mariner can easily estimate, by means of the chart, the

"bearing of one given place from. another or the position which has
been reached by sailing on a given course. The nautical distance is
not correctly given on the chart; but it can be estimated by methods
explained in the Navigator. [B., p. 88.]

The ease of laying down rhumbs on Mercator’s chart furnish one
of the reasons for preferring rhumb sailing to great circle sailing.
Another reason is found in the fact that the problems of rhumb
sailing can be solved by plane trigonometry ; and a third in the use
of the mariner’s compass in steering. Great circle sailing is used,
however, in some long voyages; but it consists practically in sailing
on a succession of rhumbs, approximating to the arc of a great circle ;
for as long as the ship’s head is kept on any given point of the com-
pass, it is plain that she is sailing on a rhumb.

Professor Chauvenet has invented a very ingenious chart, founded
on the properties of the stereographic projection of the earth, for
showing the courses to be taken and the distance to be sailed in
great circle sailing.
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CHAPTER VI.
SURVEYING.

57. Surveying is the art of the mensuration of portions of the
earth’s surface. An accurate survey of extensive territories or
coasts involves the knowledge of the true figure of the earth,
ascertained with the utmost possible exactness. Such surveys
belong to the department of (Feodesy. But we are here to
consider only the determination of the areas of portions of the
earth’s surface which are so small that they can be regarded as
plane.

The measure commonly used by land-surveyors is Gunter’s chain.
The chain is divided into 100 links, and is equal to 4 rods, or 66
feet, or gy of a statute mile. The square chain (that is, the surface
equal to the square of which the side is a chain) is consequently
equal to 10000 square links, or 16 square rods, or 4356 square feet,
Or 4%y of a square mile, or y}; of an acre.

68. Problem. To find the area of a triangular field, when
tts angles and one of its sides are known.

Solution. Let ABC (fig. 2 or 8) be the triangle to be measured
and c the given side. The area of the triangle is equal to half the
product of its base by its altitude, or

area of ABC =14 bp. (273)
But, by (130),
sin, C:sin. B::¢: b,

whence
' p—¢ sin. B
~ sin, C ’
and, by (131),
p=csin. 4,
Substituting in (273), we have
area of ABC = c2 sin. 4 sin. B, (274)

2sin. C
9
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59. Problem. To find the area of a triangular field, when
two of s sides and the included angle are known.

Sofition. Let ABC (fig. 2 or 3) be the triangle to be measured,
b and c the given sides, and A4 the given angle. Then, by (273),

area of ABC =} bp,
and, by (131), o
p =csin. A.
Hence
area of ABC=14%becsin. 4; (275)

that is, the area of a triangle is equal to half the continued
product of two of its sides and the sine of the included angle.

60. Problem. To find the area of a triangular field, when
iL8 three sides are known.

Solution. Let ABC (fig. 1) be the given triangle. Then, by
(275),
area of ABC =14 besin. 4;

but, by (158),
2V =0 (b =]

sin. 4 =

in which s denotes the half sum of the three sides of the triangle.
Hence
besin. A =24/[s(s—a) (s— ) (s—¢c)];
and
area of ABC = A/ [3(s—a) (s—13) (s—¢)]; (276)

that is, to find the area of a triangular field, subtract each side
separately from the half sum of the sides, and the square root of
the continued product of the half sum and the three remainders i8
the required area.

61. ExAMPLESs.

1. Given the three sides of a triangular ﬁeld equal to 45.56 ch.,
52.98 ch., and 61.22 ch. ; to find its area.
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Solution. Let a = 45.56 ch., 5 = 52.98 ch., c = 61.22 ch.

2 s —159.76 ch.
s= 79.88 ch. 1.90244
$—a=— 84.32 ch. 1.53555
8 —b=— 26.90 ch. 1.42975
s§—c = 18.66 ch. 1.27091

2| 6.13865

Area of ABC = 1173.07 sq. ch. 3.06932,
Ans. Thearea— 117 A.1R. 9.

2. Given the three sides of a triangular field equal to 32.56 ch.,
57.84 ch., and 44.44 ch.; to find its area.
Ans. Thearea—171 A.3R.12r.

8. Given one side of a triangular field equal to 17.95 ch., and the
adjacent angles equal to 100° and 70°; to find its area.
Ans. The area —85 A. 3R. 17 .

4. Given two sides of a triangular field equal to 12.34 ch. and
17.97 ch., and the included angle equal to 44° 56 ; to find its area.

Ans. Thearea— 7 A.3 R.13r.

62. Problem. 10 find the area of an trregular field bounded
by straight lines.

First Method of Solution. Divide’the field into triangles in
any manner best suited to the nature of the ground. Measure
all those sjdes and angles which can be measured conveniently,
remembering that three parts of each triangle, one of which is
a side, must be known to determine it.

But it is desirable to measure more than three parts of each tri-
angle, when it can be done; because the comparison of them with
. each other will often serve to correct the errorsof observation. Thus,
if the three angles were measured, and their sum were found to differ
from 180°, there must be an error of measurement equivalent to the
difference ; and the error, if small, might be 8ivided between the
angles ; but if it were large, it would show the observations were so
inaccurate that they must be taken again.
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The area of each triangle is to be calculated by one of the pre-
ceding formulas, and the sum of the areas of the triangles is
the area of the whole field.

This method of solution is’ general and may be applied to
surfaces of any extent, provided each triangle is so small as not
to'be affected by the earth’s curvature.

Second Method of Solution. Let ABCEFHA (fig. 21) be the field
to be measured. Starting from its most easterly or its most westerly
point, the point A for instance, measure successively round the field
the bearings and lengths of all its sides. Through A draw the
meridian IVS, on which let fall the perpendiculars BB', CC’, EE',
FF, and HH'. Also draw CB"E", EF", and HF", parallel to NS,

Then the area of the required field is

ABCEFHA = AC'CEFFA —[ACCBA+4 AHFF A).
But
i AC/'CEFFA=CCEE'+4 E'EFF;
and ' .
AC'CBA+ AHFFA—= CCBB' + B'BA+4 AHH 4 H'HFF.
Hence, .
ABCEFHA = [C'CEE'+ E'EFF]—[C'CBB' + B'BA
+ AHH' 4 HHFF');
or doubling and changing a very little the order of the terms,

2 ABCEFHA =[2 C'CEE' +2 E'EFP]—

277
(2 BBA+ 2 C'CBB' 4 2 HHFF + 2 AHH). (277)

Again, by the principles of the measurement of triangles and trape-
zoids,

2 BBA = B'B X AB

2 C'CBB'=(B'B+4 CC) X BC

"9 C'CEE' = (CC+ EE) X CE

2 EEEFP = (E'E+4 FF) X E'F

2 HHFF = (FF 4+ HH) X FH

2 AHH' = HH - X HA.

(278)
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So the determination of the required area is now reduced to the
calculation of the several lines in the second members of (278).
But the rest of the solution may be more easily comprehended by
means of the following table, which is precisely similar in its
arrangement to the table actually used by syrveyors, when calculating
areas by this process.

Sides.| N. | 8. | B. | W. |Dep. ‘ Sum. I N.Areas. | 8.Areas.
AB|AB’ B‘B B'B BB 2 B‘'BA

BC |B/C’ BB”|C'C| B'B4-C'C | 2C'CBB’

CE C'E’ E“E' : E’EI CC4+EE 2 C'CEE/
EF E'F/\F'F F'F\E’E4F'F 2E‘EFF’
FH [F'H’ FF/" H’H! FF4+HH|2 H'HFF'

HA H'A HH'| 0 H'H 2 AHH'

In the first column of the table are the successive sides of
the field. . o

In the second and third columns are the differences of latitude
of the several sides ; the column headed N. corresponding to the
sides running in a northerly direction, and that headed S.
corresponding to those running in a southerly direction.

These two columns are célculated by the formula

Diff. lat. = dist. X cos. bearing.

In the fourth and fifth columns are the departures of the
several sides; the column headed E. corresponding to the
sides running in an easterly direction, and that headed W. to
those running in a westerly direction.

These two columns are calculated by the formula

Departure = dist. X sin. bearing.

In the sizth column, headed Departure, are the departures
of the several vertices of the field from the vertex A. This
column is calculated from the two columns E. and W. in the

following manner. The first number in columin Departure is
g
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the same as the first in the two columns E. and W.; and every
succeeding number in column Departure is obtained by adding
the corresponding number in columns E. and W.,if it is of the
same column with the first number in those two columns, to the
previous number in column Departure, or by subtracting it
Jfrom that previous number, if it is not of the same column with
the first number in columns E. and W.

Thus
B'B= BB
C'C = BB" = B'B— BB
EE= E'E'+ E'E= CC + E'E
FF=FF' 4 F'F = EE+4 F'F
HH=FF" = F'F — FF"
0 = H'H — HAH'.

In the seventh column, headed Sum, are the first factors of
the second members of (278). This column is calculated from
column Departure in the following manner. The first number
in column Sum is the same as the first in column Departure ;
and every other number in column Sum is the sum of the cor-
responding number in column Departure added to the previous
number tn column Departure, as is evident from simple in-
spection.

In the eighth and nintk columns are the values of the areas
which compose the first members of (278). These columns
are calculated by multiplying the numbers in column Sum by
the corresponding numbers in columns N. and 8., which con-
tain the second factors of the second members of (278). The
products are written in the column of North Areas when the
second factors are taken from column N., and in that of South
Areas when the second factors are taken from column S.

~ If we compare the columns of North and South Areas with
(277), we find that all those areas which are preceded by
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the negative sign are the same with' those in' the column of
North Areas ; while all those which are preceded by the positive
sign belong to the column of South Areas. To obtain, therefore,
the value of the second member of (277), that is, of double the
required area, we have only to find the difference between the
sums of the columns of North and South Areas. [B.,p.107.]

63. Corollary. The columns N., S., E., -and W, are those which
would be calculated in Traverse Sailing, if a ship was supposed to
start from the point 4 and procged round the sides of the field till
it returned to the point A. .The difference of the sums of columns
N. and 8. is, then, by Traverse Sailing, the difference of latitude
of the point from which the ship starts and the point at which she
arrives ; and the dlﬂ'erence of columns E. and W. is the departure ,
of the same two pomts But as both the points are here the same,
their difference of latitude and their departure must be nothing; or

Sum of column N. = sum of column 8.

Sum of column E. = sum of column W.
But when, as is almost always the case, the sums of these columns
differ from each other, the difference must arise from errors of
observation. If the error is great, new observations must be taken;

but if it is small, it may be divided among the sides by the followmg
proportion : —

The sum of the sides : each side = whole error: '

error corresponding to that side. (279)

The errors corresponding to the sides are .then to be sub-
tracted from the differences of latitude or departures which
are in the larger column, and added to those which are in the
smaller column. .

64. Exnn’x.is.

1. Given the bearings and lengths of the sides of a field, as in the
three first columns of the following table ; to find its area.

Solution. The table is computed by § 62.
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2. Given the lengths and bearings of the sides of a field, as
follows ; to find its area,

1st side; N.17° E:; 25ch. ¢
2nd side; East ; 28 ch.
8rd side; South ; 54 ch.

4th side; S.4°W.; 22 ch.
5thside; N.33°W.; 62 ch,
Ans. Thearea =167 A.3R. 21 1.

65. Problem. To find the area of a field bounded by sides
trregularly curved. '

Solution. Let ABCEFHIKL (fig. 22) be the field to be meas- °
ured, the boundary ABCEFHIKL being irregularly curved. Take
any points C and F so that when we join AC,CF, and FL, the field
ACFL, bounded by straight lines, may not differ much from the
given field.-

Find the area of ACFL by either of the preceding methods, and
then measure the parts included between the curved and the straight’
sides by the following method of offsets.

Take the points a, b, c, d, so that the lines A a, ab, be,cd,d C
may be sensibly straight. Let fall on AC the perpendiculars a a’,
by, cc’, dd'. Measure these perpendiculars and also the distances
Ad,a'b, V¢, cd,d C.

The trianglés Aaa',Cdd, and the trapezoids aba'd’, bcb'c,
cd c'd' are then easily calculated, and their sum is the area of ABC.

In the same way.may the areas of CEF, FHI*and IKL be calcu-
lated ; and then the required area is found by the equation.

ABCEFHIKL = ACFL— ABC+ CEF+4 FHI— IKL.

ExAMPLE. -
!

Given (fig. 22) A a’=5 ch, a' =2 ch,, ¥ ¢/=6 ch.,,c'd
=1ch,d C=4ch.; alsoaa =38 ch, ¥ =2ch.,cc’ = 2.5 ch.,
dd' =1 ch.; to find the area of ABC.

vins. Required area=2 A. 3 R. 36 1.
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CHAPTER VII.
HEIGHTS AND DISTANCES.

66. The plane of the sensible horizon at any place is the plane
which is tangent to the earth’s surface at that place.

Any line or plane which is parallel to the plane of the horizon
is said to be horizontal ; and any line or plane which is perpen-
. dicular to the plane of the horizon is said to be vertical.

The visible horizon for any observer is the circumference of a
small circle of the earth which limits his view of the earth’s
surface.

The plane of the sensible horizon coincides with the surface of
tranquil water, when this surface is so small that its curvature can be
neglected ; and it is perpendicular to the plumb line.

67. The angle of elevation of an object is the vertical angle
which a line drawn to the object from the place of the observer
makes with the horizontal plane at that place, when the object
is above this horizontal plane; the angle of depression is the
same angle, when the object is below the horizontal plane.

The bearing of an object from the place of the observer is the
horizontal angle which the vertical plane passing through the
place and the object makes with the plane of the meridian of
the place. ) ’

Various instruments have been devised for estimating the direction
of any visible object from the observer, with reference to the plane
of the horizon or to that of the meridian or to the directions of other
visible objects. The most important of these instruments in land-
- surveying is the theodolite, which consists of a telescope, capable of
being rotated onm its stand, about a vertical axis, into the same ver-
tical plane with any visible object, and also of beiné rotated in that
plane, about a horizontal axis perpendicular to it. By measuring these
rotations, we can measure the horizontal angle made by the vertical
plane of the object with the plane of the meridian (which is indicated




§ 69.] HEIGHTS AND DISTANCES. 107

by the compass) or with any other vertical plane, and also the angle
of elevation or depression of the object. Other instruments, such as
the quadrant, the sextant, and the azimuth compass, are used on ship-
board for measuring angles.

. 68. Problem. To determine the height of a vertical tower
situated on a horizontal plane. [B.,p. 94.] -

Solution. Observation. Let AB (fig. 23) be the tower whose
height is to be determined. Measure off the distance BC on the
horizontal plane of any convenient length. At the point C observe
the angle of elevation BCA.

Calculation. We have, then, given, in the right triangle ACB,
the angle C and the base BC, as in § 34 of Pl. Trig., and the leg
AB is found by (26).

ExAMPLE.

At the distance of 95 feet from a tower, the angle of elevation of
the tower is found to be 48° 19’. Required the height of the tower.

Ans. 106.69 feet.

69. Problem. o find the height of & vertical tower situated
on an inclined plane.

Solution. Observation. Let AB (fig. 24) be the tower, situated
on the inclined plane BC. Observe the angle B which the tower
makes with the plane. Measure off the distance BC of any con-
venient length. At the point C, observe the angle BCA by which
the top of the tower is elevated above the inclined plane.

Calculation. In the oblique triangle ABC, there are given the
side BC and the two adjacent angles B and C, and BA may be found
as in § 73 of Plane Trigonometry.

\

ExAMPLE.

Given (fig. 24) BC = 89 feet, B =113° 12/, C=28° 27’5 to
find BA. ’ ’ ‘ : :
Ans. BA = 51.595 feet. , -
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70. Problem. To find the distance of an tnaccessible object.
{B., pp- 89 and 95.]

Solution. Observation. Let B (fig. 2) be the point the distance
of which is to be determined, and A the place of the observer.
Measure off the distance AC of any convenient length, and observe
the angles 4 and C.

Calculation. AB and CB are found by § 73 of P1. Trig.

71. Corollary. The perpendicular distance PB of the point B
from the line AC and the distance AP and PC are found, in the
triangles ABP and BPC, by § 32 of Pl. Trig.

72. Corollary- Instead of directly observing the angles A and C,
the bearings of the lines AB, AC, and CB may be observed, when
the plane AB( is horizontal ; and the angles 4 and C are then easily
determined, since the meridians may be considered as parallel.

73. ExAMPLES.

1. An observer sees a cape which bears N. by E.; after sailing
80 miles N. W., he sees the same cape bearing east; find the dis-
tance of the cape from the two points of observation.

Ans. The first distance — 21.63 miles.
The second dist. — 25.43 miles.

2. Two observers, stationed on directly opposite sides of a cloud,
observe the angles of elevation to be 44° 56/ and 36° 4, their dis-
tance apart being 700 feet; find the distance of the cloud from each
observer and its perpendicular altitude.

Ans. Distances from observers — 417.2 feet, and = 500.6 ft.
Height = 294 .7 feet.

" 8. The angle of elevation of the top of a tower at one station is
observed to be 68° 19/, and at another station, 546 feet farther from
the tower, the angle of elevation is 32° 34/ ; find the height and dis-
tance of the tower, the two points of observation being supposed to
be in the same horizontal plane with the foot of the tower.

Ans. The height . . . . . . ==467.44 ft,
The distance from the nearest point of observ. — 185.86 ft.
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74. Problem. To find the distance of an object from the foot
of a tower of known height, the observer being at the top of the
tower.

Solution., Observation. Let the tower be AB (ﬁg. 28) and the
object C. Measure the angle of depression HAC.

Calculation. Since
ACB= HAC,

we know in the triangle ACB the leg AB and the opposite angle C,
8o that we can find BC as in § 33 of Pl. Trig.

ExAMPLE.

Given the height of the tower = 150 feet, and the angle of depres-
sion — 17° 25/; to find the distance from the foot of the tower.

Ans. 478.16 feet.

75. Problem. Tv find the height of an inaccessible object
above a horizontal plane, by means of observations taken at any
two points in that plane. [B., p. 96.]

Solution. Observation. Let A (fig. 25) be the object, and let D
be the foot of the perpendicular dropped from A on the horizontal
plane. At two different stations in the horizontal plane, B and C,
whose distance apart and bearing from each other are known, observe
the bearings of the object, which are the same as the angles made by
BD and CD with the meridians of B and C. Also observe the angle
of elevation of A at one of the stations, as B.

Calculation. In the triangle BCD, the side BC and its adjacent
angles are known, so that BD is found by § 78 of Pl. Trig. In the
right triangle A BD, the height DA is, then, computed by § 34 of
Pl. Trig.

ExaAMPLE.

At one station, the bearing of a cloud is N. N. W., and its angle
of elevation 50° 35’. At a second station, whose bearing from the
first station is N. by E. and distance 5000 feet, the bearing of the
cloud is W. by N. Find the height of the cloud.

Ans. 7316.5.
10
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76. Problem. To find the distance of two objects whose
relative position is known. [B., p. 90.]

Solution. Observation. Let B and C (fig. 1) be the two known
objects, and A the position of the observer. Observe the bearings of
B and C from 4. )

Calculation. In the triangle ABC, the side BC and the three
angles are known. The sides AB and AC are found by §78 of
Pl Trig.

ExaMPLE.

The bearings of the two objects are, of the first N. E. by E., and
of the second E. by S.; the known distance of the first object from
the second is 23.25 miles, and the bearing N, W. ; find their distance
from the observer. ‘

Ans. The distance of the first object is — 18.27 miles.

That of the second object = 32.25 ntiles.

7. Problem. To find the distance a;art of two objects
separated by an impassable barrier, and their bearing from each
other. [B., p. 91.]

Solution. Observation. Let A and B (fig. 1) be the objects the
distance and bearing of which from each other is sought. Measure
the distances and bearings from any point C to both 4 and B.

Cadlculation. In the triangle ABC, the two sides ACand BC and
the included angle C are known. The side AB and the angles A
and B may be found by § 82 of Pl. Trig.

ExaAMPLE.

Two ships sail from the same port, the one N. 10° E. a distance of
200 miles, the second N. 70° E. a distance of 150 miles ; find their
bearing and distance from each other.

Ans. The distance . . . . . == 180.3 miles.
The bearing of the first ship from the second — N. 36° 6’ W.

78. Problem. To find the distance apart of two inaccessible
objects situated in the same plane with the observer, and their
bearing from each other. [B., p. 92.]
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Solution. Observation. Let A and B (fig. 26) be the two inac-
cessible objects. At two stations, C and E, observe the bearings of
A and B; and observe the bearing and distance of C from E.

Calculation. In the triangle AEC, we have the side CE and the
angles ECA and AEC, so that CA is found by § 73 of Pl. Trig.

In the same way CB is calculated from the triangle BCE.

Lastly, in the triangle ABC, we know the two sides CA and CB
and the included angle BCA.

Hence AB and the angles BAC and CBA are found by Pl Tr.
§ 82. :

ExaMPLE.

" An observer from a ship saw two headlands; the first bore E. N,
E., and the second N. W. by N. After he had sailed N. by W. 16.25
miles, the first headland bore E. and the second N. W, by W.; find
the bearing and distance of the first headland from the second.

Ans. Distance = 55.89 miles.
Bearing —= 8. 80° 42'E.

79. Problem. 1To find the distance of an object of known
height, which 8 just seen in the visible horizon.

Solution. 1. If light moved-in a straight line, and if A (fig. 27)
were the eye of the observer, and B the object, the straight line
APB would be that of the visual ray. Thé point P, at which the
ray toliches the curved surface CPD of the earth, is the point of the
visible horizon at which the object is seen. The distances PA and
PB may be calculated separately, when the heights CA and DB are
known. For this purpose, let O be the earth’s centre, let BD be
produced to E, and let

h=CA, H= DB,
l= P .A., L = P B,
R — the earth’s radius.
Since BP is a tangent and BOE a secant to the earth, we have
EB: PB=PB: DB; )
and DB is so small in.comparison with the radius that we may take

EB—=ED=2R, .
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and the above proportion becomes
2R:L=0L: H;

whence
L*=2 RH, L=4/(2 RH), (280)
L2
H= TR/ (281)
and in the same way
B=2Rh l=a/(2RbH), (282)
h= % . (283)

II. In consequence, however, of its refraction by the earth’s
atmosphere, light does not move in a straight line near the earth’s
surface, but in a line curved towards the earth’s centre, which line is
nearly an arc of a circle whose radius is seven times the earth’s radius ;
so that for the point of contact P and the distances ! and L, the
positions of the eye and of the object are A’ and B'. Now if we put

BB=H, DB=H—=H—H
CA’: hl!

we can find the value of H’ with sufficient accuracy by changing in
(281) R into 7 R, which gives

[ — LQ —
B=gg=tH
H=H—~H=§ H= ?111;;, 1284)
whence L=/ (3 RH). (285)

III. In calculating the value of L by (285), it is usually desired
in statute miles, while the height H, is given in feet. Now the radius
of the earth is, as given in the Preface to the Navigator, page v,

R=20911790 feet, . (286)
whence % R = 48794177 feet,
log. o/ (§ R) = % log. § R =3.84418,
and  log. (L in feet) — 3.84418 4~} log. (H, in feet).
L in feet

But . mex;es: -—W’
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so that log. L in miles = log. L in feet— 3.72263
= 0.12155 4 } log. H, in feet ; (287)

which agrees with the formula given in the Preface to the Navigator
for calculating Table X.

IV. Table X may be used for finding L and I, when H, and A,
are given, and then the required distance is the sum of L and Z

80. Corollary. Table X gives the correction for the error which
is committed in § 68 by neglecting the earth’s curvature, for it is
evident that to the height PB (fig. 28) of the object above the visible
level must be added the height CP of the level above the curved
surface of the earth, as in B., p. 95.

81. ExamrpLEs.

1. Calculate the distance in Table X at which an object can be
seen from the surface of the earth, when its height is 5000 feet.
Solution.

% log. 5000 = % (3.69897) — 1.84948
constant log. 0.12155

dist. = 93.5 m. (as in Table X)  1.97103

2. Being on a hill 200 feet above the sea, I see just appearing in
the horizon the top of a mast, which I know to be 150 feet above
water ; how far distant is it ?

Solution. By Table X,
200 feet corresponds to 18.71 miles.
150 feet corresponds to 16.20 miles.

—

The distance is 84.91 miles.

3. At the distance of 7} statute miles from.a hill the angle of
elevation of its top is 2° 18/; find its height in feet, the observer
being 20 feet above the sea.

10¢



114 NAVIGATION AND SURVEYING. [cm. vII.

Solution.
2° 13/ tang. 8.58779
73 miles = 39600 4.59770
1533 feet 8.18549

observer’s dist. from hill  =17.50
height 20 gives observer’s dist. from horizon = 5.92

—

dist. of hill beyond horizon —1.58,
which gives 1 foot correction.

Ans. 1534 feet.

4. Calculate the distance in Table X, when the height is 450 feet.
Ans. 28.06 miles.

5. Upon a height of 5000 feet, the top of a hill, one mile high, is
just visible in the horizon ; how far distant is the hill ?

Ans. 189.6 miles.

6. At the distance of 25 statute miles from a mountain the angle
of elevation of its top is 8°; find its height, the observer being 60
feet above the intervening sea.

Ans. 7042 feet.
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SPHERICAL TRIGONOMETRY.

CHAPTER 1.
DEFINITIONS.

1. Spherical Trigonometry treats of the solution of spherical
triangles.

A Spherical Triangle is a portion of the surface of a sphere
included between three arcs of great circles.

2. The sides of a spherical triangle are the measures of the
angles formed, at the centre of the sphere, by the lines of in-
tersection of their planes ; and they are said to be acute or ob-
tuse, according as they are less or greater than 90°.

The angles of a spherical triangle are the same as the angles
formed by the planes of the sides; for any two sides are perpen-
dicular, at their point of intersection, to the line of intersection
of their planes.

The solution of spherical triangles in which any of the sides
or angles are greater than 180° can always be reduced to the
solution of spherical triangles in which all the parts are less than
180° ; and, in this treatise, the discussion is limited to the latter
class of triangles, and when values greater than 180° are found,
in the solution of a triangle, for its unknown parts, they are
rejected. '

The student is directed to Chauvenet’s Trigonometry for a chapter
on the ¢ Solution of the General Spherical Triangle.”

8. Besides the usual method of denoting sides and angles
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by degrees, minutes, &c., another method of denoting them is
so often used in Spherical Astronomy that it will be found
convenient to explain it here.

The circumference is supposed to be divided intos 24 equal
arcs called hours, each hour is divided into 60 minutes of time,
each minute into 60 seconds of time, and so on.

Hours, minutes, seconds, &c. of time are denoted by &, m, s, &c.

4. Problem. To comvert degrees, minutes, §ec. of arc tnto
hours, minutes, §c. of time.

v

Solution. Since
860° = 24*
we have 15° =14, 1°=K*=4",

18 =1 1 =4,
15"=1%, 1"=4,
Hence a®°=4a" a=4a, a'=4d;

so that to convert degrees, minutes, §c. of arc into time, multiply
by 4, and change the marks ° ' ¥ respectively into ™**.

5. Corollary. To convert time into degrees, minutes, &ec. of
arc, multiply the hours by 15 for degrees, and divide the minutes,
seconds, &c. of time by 4, changing the marks™** into °'"'.

The turning of degrees, minutes, &c. of arc into time and the re-
verse may be at once performed by table XXI of the Navigator.

6. ExXAMPLES.

1. Convert 225° 47’ 38 into time.

Solution. By § 4. By Table XXI.
225° = 900~ = 15* 154
47 =188 = 3~ & 3~ g
38" = 152 = . 2°32* 2¢ 32¢

225° 47' 38" = 15*3~ 10 32° 15* 3= 10 32
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2. Convert 17* 19™ 13* into degrees, minutes, &ec. of arc.

Solution. By § 5. By Table XXI.
17 = 255° 17* 16 = 259°
19 13* = 4° 48’ 15/ ™12 = 48/
1= 157

17 19™ 13'= 259° 48’ 15"

17 19 13* = 259° 48/ 15"
8. Convert 12° 34' 56” into time. Ans. 50™ 19°* 44",

4, Find the difference of longitude, in time, of Portland and San
Francisco,

Ans. 8*29™ 16°.
5. Convert 8* 2™ 12* into degrees, minutes, &c. of arc.

Ans. 45° 38/,
_ﬁ; L ’ KA
6. Convert 11* 59™ 59° into degrees, minutes, &c. of arc.

. Ans. 179° 59/ 45",

7. When an arc is given in time, its log. sine, &c. can be
found directly from Table XXVII, by means of the column
headed Hour P. M., in which twice the time is given, so that
the double of the angle must be found in this column.

The use of the table of proportional parts for these columns is ex-
plained upon page 35 of the Navigator. When the time exceeds
6*, the difference between it and 12" or 24* must be used.

.
K ExaMPLES.

1. Find the log. cosine of 19* 33" 11°.
Solution.
24* — 19* 33™ 11* — 4* 26™ 49*
2 X (4* 26™ 49") — 8* 53" 38°
8* 53" 36° P. M. cos. 9.59720
prop. parts of 2° 7

8 53" 38" P.M.  cos.  9.59713
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2. Find the angle in time of which the log. tang. is 10.12049.

™2™ 40'P. M tang. 10.12026
7° prop. parts 23
2) 2”47 P. M 10.12049

Ans. 331733}

3. Find the log. sine of 3* 12™ 2°. Ans.  9.87118.
4. Find the log. cosine of 11* 3™ 13°, Ans.  9.98653,.
5. Find the log. tang. of 15* 0™ 9°. Ans. 10.00057.
6. Find the log. cotan. of 28* 59™ 59°. Ans. 10.57183,.
7. Find the angle in time whose log. secant is 10.23456.

Ans. 3 37" 26",

8. Find the angle in time whose log. cosecant is 10.12346.
Ans. 8*15™ 15,

8. An isosceles spherical triangle is one which has two of its
sides equal.

An equilateral spherical triangle is one which has all its
sides equal.

9. A spherical right triangle is one which has a right angle ;
all other spherical triangles are called odlique.

We shall in spherical trigonometry, as we did in plane trigonom-
etry, attend first to the solution of right triangles.

.
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CHAPTER IIL

SPHERICAL RIGHT TRIANGLES.

10. Problem. To investigate some relations between the sides
and angles of a spherical right triangle.

Solution. The importance of this problem is obvious ; for, unless
some relations were known between the sides and the angles, they
could not be determined from each other, and there could be no such
thing as the solution of a spherical triangle.

Let, then, ABC (fig. 29) be a spherical right triangle, right-angled
at C. Call the hypothenuse AB, k; and call the legs CB and AC,
opposite the angles A and B respectively, a and 5.

Let O be the centre of the sphere. Join O4, OB, OC.

The angle of the planes BOA4 and COA is, by §2, equal to the
angle A. The angle of the planes BOC and BOA is equal to the
angle B. The angle of the planes BOC and AOC is equal to the
angle C, that is, to a right angle ; these two planes are, therefore,
perpendicular to each other.

Moreover, the angle A OB, measured by AB, is equal to AB,or 4 ;
COB is equal to its measure CB, or a; and AOC is equal to its
measure AC, or b.

Through any point A’ of the line OA, suppose a plane B’A'C' to
pass perpendicular to OA. Its intersections A’C’ and A'B' with the
planes COA and BOA must be perpendicular to OA’, because t.hey
are drawn through its foot in the plane B/A’'C'.

As the plane B'A’C’ is perpendicular to OA, it must be perpen-
dicular to the plane AOC, which contains OA4 ; and its intersection
B'C’ with the plane BOC, which is also perpendicular to A0C, must
likewise be perpendicular to AOC. Hence B'C' must be perpen-
dicular to 4’C' and OC', which pass through its foot in the plane

40C.
11
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The triangles OA'B’, OA'C’, OC'B’, and A’C'B’ are then right-
angled, the first two at A/, and the last two at C’; and the com-
parison of them leads to the desired equations, as follows : —

First. We have, from triangle OA’'B’, by (4),

. OA/
| cos. A’/OB' = cos. h — o5
and, from triangles OA’'C' and OC'B/,
. oA
cos. A’0OC' =cos. b — oo
oc H
cos. C'OB' = cos. a =—OB’ .

The product of the last two equations is

o4  oC oA

COS. @ COs. b:w X 0B =0
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