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Preface

In making this revision, it has been my purpose to improve the exposi-
tion, correct those errors that appear inevitable in a first edition, and
augment both text and problems with material that will better achieve the
original objectives of the book. Otherwise, the general plan of presenta-
tion has not been altered.

Among the changes or additions are new material on “definition” and
completeness and independence of undefined terms in Chapter II; simpler
proofs in Chapters IT1I-V on the theory of sets as well as further discussion
of the significance of Choice Axiom and Continuum Hypothesis in the
light of the G&del-Cohen proof of independence; greater emphasis of the
genetic approach to the notion of number (cardinal, ordinal, and real);
more on topology in Chapter- VII; discussion of truth-table methods,
predicate calculus, completeness, the Godel and Léwenheim-Skolem
theorems regarding satisfiability in the domain of natural numbers in the
chapter on mathematical logic; and problems (lacking in the first edition)
provided for Chapters VIII-XI.

Regarding the general intent of the book, there has been misunderstand-
ing on the part of some readers. 1 wish, therefore, to emphasize that its
purpose is twofold: (1) to acquaint the student, mathematical major or
not, with the origin and nature of fundamental concepts of modern
mathematics; and (2) to show how it became natural, and necessary, to in-
quire more deeply (using such tools as the axiomatic method, logical
formalism, etc.) into the implications and dangers of the unrestricted use
of what seem natural, necessary, or intuitively justified concepts (such as
set theory, classical logic, etc.). It was by no means my intention to pre-
sent a formal treatment, logically developed via theorem and proof, of
axiomatic set theory or logical formalism, for example, as of the year 1965.
Excellent books of the latter nature have been written during the past
twelve years, and it is my hope that the student whose curiosity has been
sufficiently aroused by the present book will be stimulated to read some of
these more technical treatises.

For example, I have been asked if it is not an error when, after discus-
sing the axiomatic method in Chapters I and II, T do not thereupon make
use of it to develop set theory in Chapters III and IV. If this is an error,
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vi PREFACE

it is committed deliberately and after careful consideration. Most
mathematicians now agree that geometries and algebras, for example,
should be set up axiomatically. But it is by no means clear that set theory
should be placed on a similar basis. The working mathematician usually
wants precisely the “naive” notions regarding cardinal and ordinal
numbers, Choice Axiom, etc., that are given in Chapters 1I1I-V; he is
ordinarily not interested in what principles he can base them upon (in the
axiomatic sense). For him, set theory is an important method, not a
theory. And after a student becomes acquainted with the method, he
may well be motivated to investigate its validity. In this respect, it is
something like logic. Despite the long time that the working mathe-
matician has used logic, he has evinced little interest in studying it for its
own sake. 1 am still not convinced that the axiomatic framework pro-
vides the proper introduction to set theory for the average mathematician;
any more than | am of the opinion that he should be introduced to logic
through logical formalism.

Similar remarks can be made about the treatment of cardinal numbers
in Chapter 1V, ordinal numbers in Chapter V, and the real number system
in Chapter VI. The natural (naive) approach is first taken, during the
course of which the characterizing features (such as separability and con-
tinuity in the case of the real number continuum) are “discovered” and
made available for axiomatic formulation. I suppose I might formulate
my philosophy regarding this order of presentation by stating that I
believe the student should get the “why” as well as the “what.”” T believe
that it is this philosophy which has motivated much of the new curriculum
for the elementary schools; traditionally the “what” was considered all
that was necessary—the student was given to understand that “this is it,
and you can take it or leave it.” And in a tragic number of cases he was
doing the latter. To present, in axiomatic form, the finished products of
research into basic concepts, while providing no explanation of their
genesis and evolution, comes dangerously close to providing only the
“what.”

For those who wanted me to go more deeply into mathematical logic,
material that is relevant to the major purposes of the book has been
added. To provide more than this would necessitate giving up the idea
that the book is essentially designed for a one-semester course. However,
in the bibliography the reader will find references to recent texts on logic,
axiomatic set theory, etc., which should form entirely satisfactory sequels
to the material given herein. ;

For encouragement and advice (not always heeded) during the process
of revision, I wish to thank Professors J. Bennett, F. Harary, and K. May,
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as well as many students who must go unnamed. To my publisher, John
Wiley and Sons, and especially Cecil Yorke, Staff Editor in the Production
Division, I wish to express thanks for permitting this second edition and
for expert guidance during its production.

R. L. WILDER

Ann Arbor, Michigan
March, 1965



Preface to First Edition

This book grew out of a course in Foundations of Mathematics which
I have given at the University of Michigan for over twenty years. The
reason for instituting the course was simply the conviction that it was not
good to have teachers, actuaries, statisticians, and others who had
specialized in undergraduate mathematics, and who were to base their
life’s work on mathematics, leave the university without some knowledge
of modern mathematics and its foundations. The training of these
people consisted chiefly of “classical” mathematics and its applications—
that part of mathematics which is based on pre-twentieth-century and, in
large part, on pre-Cantorian ideas and methods.

It seemed, too, that a course in Foundations at about the senior level
might serve to unify and extend the material covered in the traditional
mathematics curriculum. The “compartmentalization™ of the prepara-
tory school—arithmetic, algebra, and geometry—is usually continued in
college with a further dose of algebra, followed by courses in analytic
geometry and calculus in which a little unification of preceding subjects
takes place, but no time is spent on the nature of the material or its
foundation.

Also, the growing realization that mathematical logic is a’ new and
legitimate part of mathematics made it seem advisable to institute a course
which would make manifest the importance of studies in the Foundations,
and the reasons for inquiring into the nature of mathematics by either the
tools of logic or other methods.

To my first class in the course I owe much for inspiration and en-
couragement. It consisted, with one or two exceptions, of approximately
thirty actuarial students, most of them first-year graduate students.
Their response was surprising; for I was aware of the antagonism of many
professional mathematicians to any inquiry into the nature of mathe-
matics, especially if it leads to any questioning of the validity of time-
honored principles and methods (the analogue in mathematics, perhaps,
of the historical lag in the cultivation of those sciences that study man’s
own behavior).

Perhaps their reaction was due to the change, possibly refreshing to
them, from the type of teaching which treats mathematics as a “discipline,”

ix
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dogmatic in character. Whatever the reason, the course seemed to
“take” with them and left no question about the desirability of repeating
the experiment. (Even today I occasionally meet members of that
original class, many of them now insurance company executives, and find
them still able to recall topics that were discussed.)

In a few years the course ceased to be an experiment and became as well
established as any other course in the curriculum. This development was
aided, no doubt, by the realization that the course was also fulfilling other
purposes. For those students who were going on to the doctorate in
mathematics, it did spadework in the ideas and methods that were going
to form the principal tools in their graduate courses and research. And
for mature students in other fields, such as philosophy and the social
sciences, it provided an insight into basic mathematical concepts without
the necessity of first wading through the traditional courses in algebra,
geometry, calculus, etc.

In the belief that such a course ought, perhaps, to be offered in most
universities and colleges that train mathematicians either for teaching or
for any of the professional fields, T decided to incorporate the material
covered in a book which would serve as a basis for such a course. Un-
fortunately, a book in my own special field of research took precedence
and delayed my starting on the present work for at least ten years. More-
over, it seemed desirable to include in the book material that it was not
possible to crowd into a one-semester course, and which has usually been
suggested for collateral reading; especially material that is in languages
other than English. For it continues to be true that the students in
American universities are generally not prepared to read in French and
German; and most of the older and basic work in Foundations was
originally published in German. The material in Chapter X (Intui-
tionism), for instance, has heretofore been available almost entirely only
in German.

In a general way, the idea of the book is similar to that which motivated
J. W. Young's Fundamental Concepis of Algebra and Geometry, first pub-
lished in 1911. 1In 1932 I discussed with Professor Young the desirability
of a book such as this one; he agreed thoroughly that it was desirable to
write it, if only to have available a book on fundamental concepts that
would take into account the great strides that have been made in Founda-
tions since the publication of his book.

As already indicated, 1 have given the material in the form of a course
of one semester, with a calculus prerequisite. The students who have
taken the course have, however, been -at all levels, from undergraduate
juniors to students already writing doctoral dissertations. Ideally, the
course should be given at senior level or first-year graduate level, And, [
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have found, it is not necessary to insist on the calculus prerequisite for
mature students in other fields, such as philosophy. (One of the most
enthusiastic students in my experience was a medical student who was
taking the course as a ‘“‘cultural” subject.) No mathematics student,
however, should take the course without having had calculus, and for the
average student it is better that he have taken courses such as advanced
calculus and projective geometry in order to develop the maturity requisite
for abstract thinking.

Whether 1 have succeeded in getting down on paper a reasonable
facsimile of what I have done in class only the reception of this book can
tell. No false modesty prevents me from admitting the success of the
course itself, as numerous past students will testify. But the enthusiasm
and inspiration which come from facing a group of interested students
are hard to duplicate in the seclusion of one’s study, and it is difficult to re-
capture the many spontaneous ideas and illustrations that have revealed
themselves in the classroom from time to time over the years. No doubt,
now that the book is written, I shall occasionally recall some of them and
regret that they are doomed to oblivion.

[ have made it a general rule, incidentally, not to reveal to students my
own opinion regarding a controversial point, despite frequent requests to
do so. It has always seemed better to present, as emphatically as possible
from the point of view of their proponents, such topics as are contro-
versial; and frequently, in order to aggravate class discussion, it has been
my custom to oppose the point of view of a studept-while secretly agreeing
with him. There is nothing new about such methods of instruction, of
course, and I bring them up here largely to afford occasion to remark that
I am including my own opinions regarding the nature of mathematics in
the material of Chapter XII. In the earlier chapters I have tried to follow
my usual rule of acting as advocate for the view presented; and, in thus
breaking my rule, I do so not only with a view to getting in my own
“innings,” but also to furnish additional fuel for the stirring up of con-
troversy which, it seems to me, is the most effective stimulant to original
and creative thinking. And if, after reading this book, the student is not
aroused to the extent of “thinking about’” mathematics, I shall have failed
in one of my chief purposes in writing it.

For rapidity and exactness of reference, the decimal system of number-
ing sections has been employed. Cross references to items in the text are
made by citing chapter and section; thus “IV 2.4 refers to Chapter IV,
Section 2.4. However, for reference to a section in the chapter under
consideration, only the section number is used; thus ‘1.2 refers to
Section 1.2 of the chapter in which the citation occurs.

The Bibliography is divided into two parts, the first listing books and
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longer memoirs, the second listing papers and shorter articles. References
to the Bibliography are enclosed in brackets, those involving capital letters
such as [B], [Ha], [H,] referring to the first part of the Bibliography, and
those involving single lower-case letters such as [a], [b] referring to the
second part. Page or chapter numbers will frequently be included; thus
“Hilbert [Hy; 6] will be found under Hilbert’s name in the first part of
the Bibliography, item [H;] (the reference, then, is to page 6 of Hilbert’s
Foundations of Geometry). Always, “f” indicates “footnote,” and “ff”
indicates “‘and the following page or pages.”

To those colleagues and students who have given me encouragement
and stimulation, I wish to express sincere thanks. I am especially
grateful te Professors E. T. Bell, Leon Henkin, Paul Henle, and Leo
Zippin, and to Dr. C. V. Newsom for suggestions and criticisms; but the
errors and shortcomings to be found herein are not their fault and are
present only in spite of their wise counsel.

For aid in a material way, thanks are due to the Office of Naval Re-
search, under whose Contract N9onr-89300 the first draft of this work
was written, as well as to the California Institute of Technology, which
generously afforded an office and library facilities during the academic
year 1949-1950 for my writing and research.

R. L. WILDER

Ann Arbor, Michigan
September, 1952
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The Axiomatic Method

Since the axiomatic method as it is now understood and practiced by
mathematicians is the result of a long evolution in human thought, our
discussion of it shall be preceded by a brief description of some older uses
of the term aviom. The modern usage of the term represents a high
degree of maturity, and a better understanding of it may be achieved by
some acquaintance with the course of its evolution.

1 Evolution of the method

If the reader has at hand a copy of an elementary plane geometry, of a
type frequently used in high schools, he may find two groupings of
fundamental assumptions, one entitled ‘“Axioms,” the other entitled
“Postulates.” The intent of this grouping may be explained by such
accompanying remarks as: “An axiom is a self-evident truth.” “A
postulate is a geometrical fact so simple and obvious that its validity may
be assumed.” The “axioms” themselves may contain such statements as:
“The whole is greater than any of its parts.” ‘“The whole is the sum of its
parts.” “Things equal to the same thing are equal to one another.”
“Equals added to equals yield equals.” It will be noted that such geo-
metric terms as “point” or “line” do not occur in these statements; in
some sense the axioms are intended to transcend geometry—to be
“‘universal truths.” In contrast, the “postulates” probably contain such
statements as: “Through two distinct points one and only one straight line
can be drawn.” “A line can be extended indefinitely.” “If L is a line
and P is a point not on L, then through P there can be drawn one and only
one line paraliel to L.” (Some so-called “definitions” of terms usually
precede these statements.)

This grouping into “axioms” and “‘postulates” has its roots in antiquity.
Thus we find in Aristotle (384-321 B.c.) the following viewpoint: T

“Every demonstrative science must start from indemonstrable principles;
otherwise, the steps of demonstration would be endless. Of these

+ As summarized by T. L. Heath [Hea; I, 119]; quoted by permission of Cam-
bridge University Press. The reader is referred to this book for citations from
Aristotle, Proclus, er al.
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indemonstrable principles some are (a) common to all sciences, others are
(b) particular, or peculiar to the particular science; (a) the common
principles are the axioms, most commonly illustrated by the axiom that, if
equals be subtracted from equals, the remainders are equal. In (b) we
have first the genus or subject-matter, the existence of which must be
assumed.”

1.1 In Euclid’s Elements (written about 300 B.C.), the two groups
occur, respectively labeled “Common notions” and “Postulates.” From
these and a collection of definitions, Euclid deduced 465 propositions in a
logical chain. Although the actual background for Euclid’s work is not
clear, apparently he did not originate this method of deducing logically
from certain unproved propositions, given at the start, all the remaining
propositions. As we have just noted, Aristotle, and probably other
scholars of the period, had a well-conceived notion of the nature of
a demonstrative science; and the logical deduction of mathematical
propositions was common in Plato’s Academy and perhaps among the
Pythagoreans.

Since the origin of the axiomatic method is not known, we can only
speculate regarding the reasons for its development. The early Greek
philosophers developed forms of deductive reasoning, and were no doubt
astute enough to realize that a deductive system must start with some kind
of initial premises. Moreover, the crises in Greek mathematics attendant
upon the discovery of irrationals and the paradoxes of Zeno may well
have spurred a search for a secure foundation for geometry that could have
culminated in the form of the axiomatic method found in Euclid.

The influence of Euclid’s work has been tremendous; probably no other
document has had a greater influence on scientific thought. For example,
modern high school geometries have usually been modeled after Euclid’s
famous work, thus explaining the still common grouping into ‘“‘axioms”
and “postulates.” Also the use in non-mathematical writings of such
phrases as “It is axiomatic that...,” and “It is a fundamental postulate
of ...,” in the sense of something being “universal” or beyond opposition,
is explained by this traditional use of the terms in mathematics.

The method featured in Euclid’s work was employed by Archimedes
(287-212 B.c.) in his two books which provided a foundation for the science
of theoretical mechanics; in Book I of this treatise Archimedes proved
15 propositions from 7 postulates. Newton’s famous Principia, first
published in 1686, is organized as a deductive system in which the well-
known laws of motion appear as unproved propositions, or postulates,
given at the start. The treatment of analytic mechanics published by
Lagrange in 1788 has been considered a masterpiece of logical perfection,
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moving from explicitly stated primary propositions to the other
propositions of the system.

1.2 There exists a large literature devoted to the discussion of the
nature of axioms and postulates and their philosophical background.
Most of this is influenced by the fact that only within comparatively recent
years have axioms and postulates been very generally employed in parts of
mathematics other than geometry. Even though the method popularized
by Euclid is acknowledged now as a fundamental part of the scientific
method in every realm of human endeavor, our modern understanding of
axioms and postulates, as well as our comprehension of deductive methods
in general, has resulted to a great extent from studies in the field of
geometry. And since geometry was conceived to be an attempt to describe
the actual physical space in which we live, there arose a conviction that
axioms and postulates possessed a character of Jogical necessity. For
example, Euclid’s fifth postulate (the “parallel postulate”) was “Let the
following be postulated that, if a straight line falling on two straight lines
make the interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on which are
the angles less than the two right angles.”t Proclus (A.D. 410-485)
described vividly in his writings the controversy that was taking place in
connection with this postulate even in his time; in fact, he argued in favor
of the elimination ‘““from our body of doctrine this merely plausible and
unreasoned statement.” ¥ With the renewal of interest in Greek learning
during the Renaissance, controversy in regard to the fifth postulate was
renewed. Attempts were made to prove the ‘““parallel postulate,” often
from logical—non-geometrical—principles alone. Surely, if a statement
is a “logical necessity’”’ the assumption of its invalidity should lead to
contradiction—such was the motivation of much of the work on the
postulates of geometry. With the invention of non-euclidean geometries
the futility of such attempts became clear.

1.3 The development of the non-euclidean geometries was evidence of a
growing recognition of the independent nature of the fifth postulate; that
is, this postulate cannot be demonstrated as a logical consequence of the
other axioms and postulates in the euclidean system. By a suitable
replacement of the fifth postulate, we may obtain the alternative and
logically consistent geometry of Bolyai, Lobachevski, and Gauss in which
the fifth postulate of Euclid fails to hold. In it appears, for example, the
proposition that the sum of the interior angles of a triangle is less than
two right angles. Riemann in 1854 developed another non-euclidean

T Quoted from T. L. Heath [Hea; I, 154-155, 203], by permission of Cambridge
University Press.
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geometry, likewise composed of a non-contradictory collection of prop-
ositions, in which all lines are of finite length and the sum of the interior
angles of a triangle is greater than two right angles.

The invention of the non-euclidean geometries was only part of the
rapidly moving developments of the nineteenth century that were to lead
to the acceptance of formal geometries apart from those that might be
regarded as constituting definitive sciences of space or extension. Grass-
mann’s Ausdehnungslehre, published in 1844 and a critical landmark
during this era of changing ideas, was described by its author in these
terms: “My Ausdehnungslehre is the abstract foundation for the doctrine
of space, i.e., it is free from all spatial intuition, and is a purely mathe-
matical discipline whose application to space yields the science of
space. This latter science, since it refers to something given in nature
(i.e., space), is no branch of mathematics, but is an application of
mathematics to nature.”f In explanation of Grassmann’s concept
of a formal science, Nagel [a; 169] writes: “Formal sciences are char-
acterized by the fact that their sole principles of procedure are the rules
of logic as well as by the further fact that their theorems are not ‘about’
some phase of the existing world but are ‘about’ whatever is postulated
by thought.”

1.4 The idea expressed by Grassmann is essentially the one held at the
present time; that is, a mathematical system called “‘geometry” is not
necessarily a description of actual space. We must distinguish, of course,
between the origin of a theory and the form to which it evolves. Geom-
etry, like arithmetic, originated in things ‘“‘practical,” but to assert that
any particular type of geometry is a description of physical space is to make
a physical assertion, not a mathematical statement. In short, the modern
viewpoint is that we must distinguish between mathematics and applications
of mathematics.

A natural consequence of this change in viewpoint on the significance of
a mathematical system was a re-examination of the nature of the basic,
unproved propositions. It became clear, for instance, that the euclidean
“common notion” that “the whole is greater than the part” has no more
of an absolute character than the “parallel postulate” but is contingent
upon the meaning of ““greater than”; in fact, the proposition may even fail
to hold, as in the theory of the infinite (cf. Chapter IV). Although there
was much discussion as to whether the parallel postulate should be listed
as a “postulate” or as a ‘““‘common notion” (axiom), it was finally realized
that neither had any more universality than the other and the distinction

t As quoted by E. Nagel [a; 172, 169]; used here by permission of E. Nagel and
Osiris.
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might as well be deleted.t Accordingly we find in the classical work of
Hilbert on the foundations of geometry,] published in 1899, that only one
name, “axioms,” is applied to the fundamental statements or assumptions,
and that certain basic terms such as “point” and “line” are left completely
undefined. To be sure, Hilbert made a grouping of his axioms—into
five groups—but this pertained only to the technical character of the
statements, and not to their relative status of “‘trueness’ or “commonness.”

1.5 Although this work of Hilbert has come to be regarded by many as
the first to display the axiomatic method in its modern form, it should be
recognized that similar ideas were appearing in works of his contemporaries.

In 1882 appeared the first edition of Vorlesungen iiber Neuere Geometrie
by M. Pasch [Pa]. Pasch based his treatment of geometry on a small
number of so-called ‘“‘nuclear” concepts and propositions, which are
introduced respectively without definition and without demonstration,
but which he believes have a common basis of acceptance and understand-
ing in man’s experience. After the basic system of propositions (axioms)
has been introduced, the logical deduction of the remaining propositions
of the system would probably be regarded as quite ‘‘rigorous” by modern
mathematical scholars. Pasch’s ideas in this regard were described by him
as follows:§

“Indeed, if geometry is to be deductive, the deduction must everywhere
be independent of the meaning of geometrical concepts, just as it must be
independent of the diagrams ; only the relations specified in the propositions
and definitions employed may legitimately be taken into account. During
the deduction it is useful and legitimate, but in no way necessary, to think
of the meanings of the terms; in fact, if it is necessary to do so, the inade-
quacy of the proof is made manifest. If, however, a theorem is rigorously
derived from a set of propositions—the basic set—the deduction has a
value which goes beyond its original purpose. For if, on replacing the
geometric terms in the basic set of propositions by certain other terms,
true propositions are obtained, then corresponding replacements may be
made in the theorem; in this way one obtains a new theorem as a conse-
quence of the altered basic propositions without having to repeat the proof.”

It is probable that the organization and the logical perfection of the
work of Pasch were influential in the thinking of Peano. However, of the

t For an excellent non-technical description of this “revolution” in thought, see
E. T. Bell [By; XIV]

1 Hilbert [H;, H;]; the work [Hs] is in English, but the seventh edition [H.],
published in 1930, incorporates some of the improvements found by various col-
leagues of Hilbert in the interval between the first and seventh editions.

§ [Pa; 98-99.] The translation given here is from Nagel [a; 197], with slight
change of wording; used here by permission of E. Nagel and Osiris.
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work of this imaginative Italian, Nagel (Joc. cit.) writes: “No phase of
Pasch’s empiricism is reflected in Peano’s version, and pure geometry in
his hands became a calculus operating upon variables formally stipulated
to be related to one another in certain ways.”t Peano’s Principii di
Geometria [P}, published in 1889, treated the geometric elements as mere
“things,” and was a demonstration of the idea, which Peano emphasized,
that a relatively small number of undefined terms can be used in defining
all the other terms that occur in geometry; he insisted that there should be
as few undefined terms (mere “symbols”) as possible. Peano’s work
employed the language of mathematical logic, of which he was one of the
originators, and was based essentially upon an undefined entity called a
“point” and an undefined relation of “betweenness.” (The concept of
betweenness was fundamental in several of the well-conceived organizations
of geometry that were constructed during the latter part of the nineteenth
century; it was employed by both Pasch and Hilbert.) In later work on
the foundations of geometry, published in 1894, Peano [a] discussed
independence of axioms.

1.6 Such studies as those of Pasch, Peano, Hilbert, and Pieri in
euclidean geometry provided a tremendous impetus for investigations of
possible formal organizations of the subject matter of this old discipline;
these considerations, in turn, provided new understanding of mathe-
matical systems in general and were partly responsible for the remarkable
mathematical advances of the twentieth century. Among the other
important modern organizations of euclidean geometry may be mentioned
the following: Pieri, a member of Peano’s school in Italy, published, in the
same year (1899) in which Hilbert’s book appeared, a treatment of the
subject in which he based his development upon an aggregate of “points”
and an undefined concept of “motion.”{ In 1904, Veblen [a] proposed
an organization of euclidean geometry in which the notion of between-
ness, as used by Peano and Hilbert, was replaced by an order relation.§
As a result of suggestions made by R. L. Moore, a revision of Veblen’s
system appeared in 1911.]] (A rather interesting combination of the
axiomatic systems of Hilbert and Veblen was employed by Robinson [Ro]
in a treatment of euclidean geometry.)

It is noteworthy that these early studies in the field of geometry were
revealing the great generality that was inherent in formal mathematical
systems. Mathematics was evolving in a direction that was to compel the
development of a method which could encompass in a single framework of

t From Nagel [a; 199]; quoted by permission of E. Nagel and Osiris.

I For a discussion of Pieri’s system see Young [Y; Lecture XV].

§ See, however, II 5.2.
|| See J. W. A. Young [Yo; 3-51].
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undefined terms and basic statements concepts like group and abstract
space that were appearing in seemingly unrelated branches of mathematics.
As will be pointed out later, the economy of effort so achieved is one of the
characteristic features of modern mathematics.

2 Description of the method; the undefined terms and axioms

As commonly used in mathematics today, the axiomatic method
consists in setting forth certain basic statements about the concept (such
as the geometry of the plane) to be studied, using certain undefined
technical terms as well as the terms of classical logic. Usually no descrip-
tion of the meanings of the logical terms is given, and no rules are stated
about how to use them or the methods allowable for proving theorems.
The basic statements are called axioms (or, synonymously, postulates).
It is usually assumed that in proving theorems from the axioms the rules
of classical logic regarding contradictions and “‘excluded middle” (I 2.1)
may be employed; hence the reductio ad absurdum type of proof is in
common use. The statements of both the axioms and the theorems proved
from them are said to be implied by or deduced from the axioms. An
example might be instructive.

2.1 Let us consider again the subject of plane geometry. It will be
unnecessary to recall many details. However, we hope the reader recalls
from his high school course that points and straight lines, and such
notions as that of parallel lines, were fundamental. Now, if we were
going to set forth an axiomatic system for plane geometry in rigorous
modern form, we would first select certain basic terms that we would
leave undefined ; perhaps “point” and *“line”” would be included here (the
adjective “straight” can be omitted, since the undefined character of the
term “line”” enables us to choose to mean ‘‘straight line” in our thinking
as well as in the later selection of statements for the axioms). Next, we
would scan the propositions of geometry and try to select certain basic
ones with an eye to both their simplicity and their adequacy for proving
the ones not selected; these we would call our primary propositions or
axioms, to be left unproved in our system.

+ In modern textbooks of geometry for elementary school use there are of course
directions to the student as to how to go about proving theorems; but such books
do not generally, on the other hand (and for obvious reasons), set forth the subject
in rigorous axiomatic form.

1 We are not here describing the method as used in modern mathematical logic
or the formalistic treatises of Hilbert and his followers, where the rules for operations
with the basic symbols and formulas are (of necessity) set forth in the language of
ordinary discourse. See Chapters IX and XI.
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22 To be more explicit, let us proceed as though we were actually
carrying out the above procedure; although we do not intend to give a
complete system of axioms (cf. Il 4), a miniature sample of what the
axioms and secondary propositions or theorems might be like, together with
sample proofs of the latter, follows:

Undefined terms: Point; line.

Axiom 1. Every line is a collection of points.

Axiom 2. There exist at least two points.

Axiom 3. If p and g are distinct points, then there exists one and only one
line containing p and gq.

Axiom 4. If L is a line, then there exists a point not on L.

Axiom 5. If L is a line, and p is a point not on L, then there exists one
and only one line containing p that is parallel to L.

These axioms would not by any means suffice as a basis for proof of all
the theorems of plane geometry, but they will be sufficient to prove a
certain number of the theorems found in any organization of plane
geometry. Their selection is motivated as follows: In the first place, the
undefined terms “point” and “line” are to play a role like that of the
variables in algebra. Thus, in the expression

X —yt=x -+
the x and y are undefined, in the sense that they may represent any
individual numbers in a certain domain of numbers (as, for instance, the
domain of ordinary integers). In the present instance, “point” may be
any individual in a domain sufficiently delimited as to satisfy the statements
set forth in the axioms. On the other hand, “line,” as indicated in
Axiom 1, has a range of values (= meanings) limited to certain collections
of the individuals that are selected as “points.” Thus Axiom 1 is designed
to set up a relationship between the undefined entities point and line. It is
not a definition of line, since (if the study is carried through) there will be
other collections of points (circles, triangles, etc.) that are not lines.
Furthermore, it enables us, as we shall see presently, to define certain
terms needed in the statements of the later axioms. Axiom 2 is the first
step toward introducing lines into our geometry, and this is actually
accomplished by adding Axiom 3. Before the latter can have meaning,
however, we need the following formal definition:

23 Definition. If a point p is an element of the collection of points
which constitutes a line L (cf. Axiom 1), then we say, variously, that L
contains p, p is on L, or L is a line containing p.

Having stated Axioms 2 and 3, we would have that there exists a line in
our geometry; but in order to have plane geometry and not merely a line
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or “one-dimensional” geometry, we would have to say something to insure
that not all points lie on a single line. Axiom 4 is designed to accomplish
this. We would now imagine, intuitively (since we have a line L, a point p
not on that line, and also a line containing p and each point g of L), that we
have practically a plane; however, so far as euclidean geometry is con-
cerned, we have not provided, in Axioms 1-4, for the parallel to L through
p until we have stated Axiom 5. And of course Axiom 5 is not significant
until we have the definition:

2.4 Definition. Two lines L, and L, are called parallel if there is no
point which is on both L, and L,. (We may also call L; “parallel to” L,
or conversely.)

25 Let us denote the above set of five axioms, together with the
undefined terms point, line, by I" and call it the axiom system I'. ‘

(We shall also frequently use the term “axiom system” in a broader
sense to include the theorems, etc., implied by the axioms.)

For future purposes we note two aspects of I', but we shall not go into
these fully at this point: (1) In addition to the geometrical (“‘technical’)
undefined terms point, line, we have used certain terms such as collection,
there exist, one, every, and not, which may be called universal (sometimes
“logical”) in that their meanings are tacitly assumed to be fixed and
universally understood (compare Aristotle’s “‘common to all sciences,”
in Section 1). (2) That I is far from being a set of axioms adequate for
plane geometry may be shown as follows: Since point and line are left
undefined, we are at liberty to consider possible meanings for them,
subject, of course, to the restriction that we take into account the state-
ments made in the axioms. If we have been educated in the American or
English school systems, our reactions to these terms will no doubt im-
mediately be specialized, our geometric experience in the schools having
the upper hand in our response. But let us imagine that the terms are
entirely unfamiliar, although the universal terms used in the axioms are
not unfamiliar, so that we may consider other possible meanings for point
and line. Unquestionably this will involve considerable experimenta-
tion before suitable meanings are found. For example, we might first
try letting ““point” mean book and ““line” mean library; we know from the
statement in Axiom 1 that a line is a collection of points, and libraries form
one of the most familiar collections in our daily experience. We can
imagine that we live in a city, C, which has two distinct libraries, and that
by library we mean either one of the libraries of C, and by book any one
of the books in these two libraries. Axiom 2 becomes a valid statement:
“There exist at least two books.” However, Axiom 3 fails, since, if p and
q designate books in different libraries, there is no library that contains p
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and q. However, before trying other meanings for point and line, we
notice that Axioms 4 and 5 are valid, becoming, respectively, “If L is a
library, then there exists a book not on (i.e., in) L”; and, “If L is a library
and p a book not on (i.e., in) L, then there exists one and only one library
containing p that is parallel to (has no books in common with) L.” ¥

Now, impressed by our failure to satisfy Axiom 3 on our first attempt at
meanings for “point” and “line,” we may, with an eye on Axiom 3, try to
imagine a community, which we denote by Z, of people in which everyone
belongs to some club, but in such a manner that, if p and g are two persons
in Z, then there is one and only one club of which p and g are both mem-
bers. In other words, we may try letting “point” mean a person in Z and
“line” mean a club in Z, and imagine that the club situation in Z is such
that the statement just made is valid, so that Axiom 3 is satisfied. We
would then have no difficulty in seeing that Axioms 1, 2, and 4 are satis-
fied: ““A club in Z is a collection of people in Z”; “There exist at least two
people in Z”; etc. However, Axiom 5 becomes (with suitable change of
wording to express the new meanings): “If L is a club in Z, and p is a
person in Z not in the club L, then there exists one and only one club in Z
of which p is a member and which has no members in common with L.”
This is a statement which apparently makes a rather strong convention
regarding the club situation in Z, and which may conceivably fail to
apply; in any case, the stipulation that only one club have a given pair of
persons as members can hardly be expected to suffice for Axiom 5. To
clinch the matter, suppose that Z is a ““ghost” community, there being only
three persons, whom we shall designate by a, b, and ¢, respectively, living
in Z; and that as a result of certain circumstances each pair ab, bc, and ac
shares a secret from the third member of the community, so that we may
consider this bond between each two as forming them into a club (“‘secret
society’’) excluding the third member. Now, with the meaning of point
and line as before, we see that Axioms 1-4 hold but Axiom 5 does not hold.

Before rejecting the latter attempt as impossible, however, let us imagine
that Z has four citizens: a, b, ¢, and d. And suppose that each pair of
these people forms a club excluding the other two members of the com-
munity; that is, there are six clubs consisting of ab, ac, ad, bc, bd, and cd.
Now all the axioms of T' are satisfied with the meanings person in Z for
“point” and club in Z for “line.”” And we may then notice that we could
arrive at a similar example by taking any collection Z of four things a, b, c,
and d, and, by letting ‘““point” mean a member or element of the collection
Z, and “line” mean any pair of elements of Z, satisfy the statements
embodied in the axioms of I'.

+ In parentheses we have placed the terms commonly employed in connection
with libraries and books that are indicated by our definition of “‘on’ and ‘‘parallel.”
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2.6 Although we may experience no particular thrill at this discovery—
may, rather, begin to feel that it is a rather trivial game we are playing in
toying with possible meanings for the system I'—we might conceivably be
beguiled into secking an answer to questions such as: How many “points”
must a collection have in order to serve as the basis for an example
satisfying the statements in I'? For a given collection at hand, how many
“points” must a “line” have in order to satisfy I'? (For example, a “line”
above could not have consisted of three persons in Z in the case where Z
has exactly four citizens.) Furthermore, if we have already a general
knowledge of, or experience with, plane geometry, the above example
shows us that T is far from being a sufficient basis for euclidean geometry;
certainly an adequate set of axioms for plane geometry would exclude the
possibility of the geometry permitting a set of only four points satisfying
all the axioms.

Before proceeding any further with this general discussion, however,
let us notice how theorems would be proved from such a system as I'.

3 Description of the method; the proving of theorems

Having set down a system such as I, for instance, we then proceed to
see what statements are implied by, or can be proved or deduced from, the
system. Contrary to the manner in which we proceeded in high school,
when we brought in all kinds of propositions and assumptions not included
in the fundamental terms and axioms (such as “breadth’; “a line has no
breadth), and even drew diagrams and pictures embodying properties
that we promptly accepted as part of our equipment,t we take care to use
only points and lines, and those relations and properties of points and lines
that are given in the axioms. (Of course, after we have proved a state-
ment, we may use it in later proofs instead of going back to the axioms and
proving it all over again.) There is no objection to drawing diagrams,
provided they are used only to aid in the reasoning process and do not
trick us into making assumptions not implied by the axioms; indeed, the
professional mathematician uses them constantly. The reader might
recall here the quotation from Pasch in Subsection 1.5.

31 Consider the following formal theorem and proof:

Theorem 1. Every point is on at least two distinct lines.

Proof. Consider any point p. Since by Axiom 2 there exist at least
two points, there must exist a point ¢ distinct from p. And by Axiom 3

T A classical example may be found in the well-known “‘proof” that all triangles
are isosceles, which is based on a diagram that deceives the eye by placing a certain

point within an angle instead of outside, where rigorous reasoning about the situation
would place it. This may be found in J. W. Young [Y; 143-145].
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there exists a line L containing p and q. Furthermore, by Axiom 4 there
exists a point r not on L, and (again by Axiom 3) a line X containing p
and r.

Now by Axiom 1 every line is a collection of points. Hence, for two
lines to be distinct (i.e., different), the two collections which constitute
them must be different; or, what amounts to the same thing, one of them
must contain a point that is not on the other. The lines L and K are
distinct, then, because K contains the point r whichis noton L. Aspis on
both L and K, the theorem is proved.

32 Now it will be noticed that we have used Axioms 14 in the proof,
but not Axiom 5. We could, then, go back to the example of the com-
munity Z, let “point” mean person in Z and “line” mean pair of persons in
Z, rephrase Axioms 1-4 in these terms, and carry through the proof of
Theorem 1 in these terms. That is, Theorem 1 is a “true” statement about
any example, such as Z, which satisfies the statements embodied in Axioms
1-4 of I In proving Theorem 1, then, we have in one step proved many
different statements about many different examples, namely, the statements
corresponding to Theorem 1 as they appear in the different examples that
satisfy Axioms 1-4 of I'.  This aspect of the “‘economy” achieved in using
the axiomatic method will be further dwelt upon later (II 4.10). If,
because of some diagram or other aid to thought, we had used some
property of point or line not stated in Axioms 1-4, we could not expect to
make the above assertions, and the “economy” cited would be lost.
Note, too, that Theorem 1 will remain valid in any axiom system (such
as I') that contains the undefined terms point and line as well as Axioms 1-4.
In particular, it is valid for euclidean plane geometry, which is only one of
the possible geometries embodying these four axioms, and which, as we
stated before, would require many more axioms than those stated above.

33 Now consider the following statement, which we call a corollary of
Theorem 1:+

Corollary. Every line contains at least one point.

34 Before considering a proof (see 3.5), we hasten to meet an objection
which the “uninitiated” might make at this point; to wit, since Axiom 1
explicitly states that a line is a collection of points, of course every line
contains at least one point, so why should this be repeated as a corollary of
Theorem 1? This is not a trivial matter, and it leads directly to what is
meant by collection—a question which causes considerable concern in
modern mathematics. We said above that “collection” is an undefined

t We assume the reader recalls that this indicates that the statement so desig-
nated follows almost directly from Theorem 1.
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universal term, and as such we took it for granted that its use is generally
understood and employed, just as the word “the” is universally understood
and used by anyone familiar with the English language. But now we find
ourselves almost immediately in need of explaining the use of the term in
the above corollary (see also 111 1-3).

However, there is nothing so very astonishing about this if we reflect
that, whenever we try to make very precise a term in ordinary use, it is
usually necessary to adopt certain conventions. For example, such terms
as vegetable, fruit, animal are commonly “understood” and used by anyone
who habitually uses the English language; but, when we come to apply
them to certain special objects, it is frequently necessary to agree on some
convention such as, for example, that a certain type of living substance
shall be called “mammal” rather than ‘“fish” (e.g., whale). So, for
instance, we may want to make the convention that, if person A wishes to
talk about “‘the collection of all coins in B’s pockets,”” he may do so even
though person B is literally penniless! In other words, no matter whether
there actually are coins in B’s pockets or not, the collection of all such
coins is to be regarded as an existing entity; we call the collection empty if
B has no coins. (In case B is penniless, we may also talk about ““‘the coin
in B’s pocket,” but in this case there is no existing entity to which the
phrase refers.) And this is the convention that is generally agreed on
throughout mathematics and logic, namely, that a collection may “exist,”
as in the case of the collection of all coins in B’s pockets, even though it is
empty.

When we come to mention an algebra of sets, we shall see another
reason for the convention regarding empty collections, analogous to the
reason for the introduction of a number zero in arithmetic (cf. I11 3.4).

3.5 Proof of corollary to Theorem 1. There exists a point p by
Axiom 2, and by Theorem 1 there exist two distinct lines L, and L,
containing p.

Now, if there exists a line L that contains no points, then both L, and
L, are parallel to L (by definition). As this would stand in contradiction
to Axiom 5, it follows that there cannot exist such a line L.

3.6 A statement “stronger” than the above corollary is embodied in
the next theorem:

Theorem 2. Every line contains at least two points.

Proof. Let L be any line. We shall show that L contains at least two
points. By the above corollary, L contains a point p, and by Theorem 1
there is another line K containing p. Either L or K must contain a point
g distinct from p, else they are the same collection of points and hence the
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same line (Axiom 1). Ifgqis on L, the proof is complete. Suppose g is on
K. By Axiom 4 there is a point x which is not on K, and by Axiom 5 there
is a line M containing x and parallel to K. The lines L and M must have a
common point y, else L and K would be two lines containing p and parallel
to M in violation of Axiom 5. Since p is not on M, the point y is distinct
from p and L contains at least the two points p and y.

Now, since by Theorem 2 every line contains at least two points, and
since by Axiom 3 two given points can lie simultaneously on only one line,
we can state:

Corollary (to Theorem 2). Every line is completely determined by any
two of its points that are distinct.

3.7 Theorem 3. There exist at least four distinct points.

Proof. By Axiom 2 there exist at least two distinct points p and gq.
By Axiom 3 there exists a line L containing p and ¢, and by Axiom 4 there
exists a point x not on L. By Axiom 5 there exists a line L, containing x
and parallel to L, and by Theorem 2 L, contains at least two distinct points
(cf. Definition 2.4).

3.8 Theorem 4. There exist at least six distinct lines.

Before proving Theorem 4, we perhaps need to make sure that the
meaning of another one of our “common’ terms is agreed upon, namely
the word ““distinct.” As we are using the term, two collections are distinct
if they are not the same. Thus the lines L and K, which figure in the proof
of Theorem 2, are distinct although, until shown otherwise, K might actu-
ally contain L, for they are not the same line (K contains g and L does not).

Proof of Theorem 4. We proceed, as in the proof of Theorem 3, to
obtain the line L containing the points p and ¢, and the line L, parallel to
L containing two distinct points (Theorem 2) x and y. By Axiom 3 there
exist lines K and K, determined respectively by the pairs (p, x), (g, »).
Now the point ¢ is not on K, else by Axiom 3 K and L would be the same
line (which is impossible since x is not on L). Also, y is not on K, else
K and L, would be the same line. Similarly, p is not on K; and x is not on
K,. Now there also exist lines M and M, determined respectively by the
pairs (p, »), (¢, x); and we can show that g is not on M, x is not on M,
p is not on My, and y is not on M;. It follows that no two of the lines
L,L,, K, K;, M, M, are the same.

4 Comment on the above theorems and proofs

If the reader has followed the proofs given above, he has probably
resorted to the use of figures by this time! This would be quite natural,
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since in high school geometry he used figures; and they help to keep the
various symbols (L, p, ¢q, - - -) and their significance in mind. However,
as we stated above, no special meanings have been assigned to “point”
and “line,” and consequently the above proofs should, and do, hold just
as well if the reader uses coins for “points’ and pairs of coins for “lines.”
As a matter of fact, if any collection of four objects is employed, and
“point” means any object of the collection and “line” any pair of the
objects, then the reader may follow the above proofs with these meanings
in mind.

Of course, the theorems we have stated in the preceding sections are not
by any means all the theorems that we might state. For example, we can
show that any collection of objects satisfying the axioms of the system I'
must, if not infinite as in ordinary geometry, satisfy certain conditions
regarding the number of points (there cannot be just 5 points in the
collection, for instance), and that there must be a relation between the
number of lines and the number of points in the collection. (See Problems
10-14 at the end of the chapter.) Infact, we can continue the above study
to a surprising extent; we could hardly expect to reach a point where we
could confidently assert that no more theorems could be proved. Tt is not
our intention to extend the number of theorems, however, since we believe
that we have already obtained enough theorems and proofs to serve as
specimens for our later purposes.

4.1 As a useful terminology in what follows, let us agree that, when we
use the term “‘statement” in connection with an axiom system X, we shall
mean a sentence phrased, or phrasable, in the undefined terms and universal
terms of X; such a statement may be called a X-statement. Thus the
axioms of I' are I'-statements (Axiom 5 contains the word “parallel,”
but this is “phrasable” in the undefined terms and universal terms), as are
also the theorems.

42 In conformity with the conventions made in Section 2, we shall say
that an axiom system X implies a statement S if S follows by logical argu-
ment, such as used above, from Z. In particular, each axiom is itself
implied, trivially. We shall also say that S is logically deducible from X if
2 implies S.

4.3 In the course of our work above we had to pause in two instances
to explain the conventions we were making in regard to the use of two
words commonly used in ordinary discourse, namely, ‘“collection” and
“distinct.” These words were left undefined, to be sure, in the sense that
they are supposedly universally understood non-technical terms; but, as we
discovered, not so “‘universal” but that it was felt advisable to give some
conventions we were making in regard to their use here. On the other
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hand, the words “point™ and “line” we left strictly undefined, saying that
any meaning whatsoever could be assigned to them as long as these mean-
ings were consistent with the statements embodied in the axioms. We saw
that the “collection = library,” “‘point = book” meanings were not
permissible, but that if C is any collection of four objects, then “point =
object of C,” “line = pair of objects of C” are permissible meanings. The
terms “point,” “line,” “parallel,” etc., we may call fechnical terms of the
system, the terms “point” and “line” being the undefined technical terms
(often called primitive terms). The terms “collection,” “distinct” are
universal terms of the type mentioned in 2.5.

Other examples of universal terms in I" are “exist” (in Axiom 2), “one”
(Axiom 3), “two” (Theorem 1), “four” (Theorem 3), “six” (Theorem 4),
“and” (Axiom 3), “or” (Definition 2.3), “not” (Axiom 4), and “every”
(Theorem 1). However, if we were setting up an axiom system for the
elementary arithmetic of integers (1 + 2 = 3,2 x 2 = 4, etc.), we might
use a term like “one” as an undefined technical term. Thus the same term
may have different roles in different axiom systems! The sense in which
the numbers “one,” “two,” etc., are used above—that is, in the universal
sense—will be discussed in greater detail later (IV 4). As the term “exist”
is used above, it is chiefly permissive so far as proofs are concerned, and
stipulative for examples; thus in the proof of Theorem 3 we were permitted
to introduce the line L; by virtue of Axiom 5, and the example of the
“ghost community” containing only three persons (2.5) failed because it
could not meet the stipulation concerning the existence of a certain line
parallel to another line which is made in Axiom 5. It will be necessary, as
we shall see, to distinguish between this type of “existence” and what is
generally called “mathematical existence.” The terms “and,” “or,” and
“not,” as logical terms, will be discussed further later. We also wish to
call attention to the use of the word “element” in connection with the
term “‘collection” in Definition 2.3; more will be said about this in the
sequel.

5 Source of the axioms

Let us consider more fully the source of the statements embodied in the
axioms. We chose axioms for geometry in our example I since we felt
we could assume that the reader had studied some elementary geometry in
high school.  That is, we were careful to pick an already familiar subject.
The undefined technical terms ““point” and ““line” already have a meaning
of some sort for us. And, as we shall see, this is the usual way in which
axioms are obtained; they are statements about some concept with which we
already have some familiarity. Thus, if we are already familiar with
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arithmetic, we might begin to set down axioms for arithmetic. Of course,
the method is not restricted to mathematics. If we are familiar with some
field such as physics, philosophy, chemistry, zoology, or economics, for
instance, we might choose to set down some axioms for it, or a portion of
it, and see what theorems we might logically deduce from them.t We
may say, then, that an axiom, as used in the modern way, is a statement
which seems to hold for an underlying concept, an axiom system being a
collection of such statements about the concept.

Thus, in practice, the concept comes first, the axioms later. Theo-
retically this is not necessary, of course. Thus we may say, “Let us take
as undefined terms aba and daba, and set down some axioms in these and
universal logical terms.” With no concept in mind, it is difficult to think
of anything to say! That is, unless we first give some meanings to “aba”
and “daba”—that is, introduce some concept to talk about—it is difficult
to find anything to say at all. And if we finally do make some statements
without first fitting a suitable concept to “aba” and ‘““daba,” we shall very
likely make statements that contradict one another! As we shall see
below, the underlying concept is not only a source of the axioms, but it also
guides us to consistency (about which we shall speak directly).

We can take the point of view that in selecting axioms we are actually
selecting, from a totality T of statements about a concept, a collection A of
certain “key” or “basic” statements, which we hope will imply all state-
ments in T. In practice we may not know all the statements in T (usually
we do not), but we know many that have proved significant. Thus in
axiomatizing the concept plane geometry, we do not know all the possible
statements that may be valid; but we know enough of them to serve as a
guide for our selection of axioms.

The process may be compared with that of making colors. Suppose T
is a collection of colors, and that we are given certain rules for mixing
colors to produce new colors; select a collection A of colors from T which
will be sufficient, by using the given rules for mixing, to produce all colors
of T. Inthis analogy we have substituted colors for statements and mixing
of colors for implication.

A similar process governs selection of terms. As pointed out in 4.3, we
differentiate between terms that are technical and terms that are universal.
If T denotes the totality of all technical terms, and we have certain rules
for defining terms, then we desire to select from T a collection A of terms
(to be left undefined) from which we can derive definitions of all the terms
of T. The defining of terms will usually involve use of the universal
terms; for example, in the definition given in 2.3, we used the universal
term “collection.” And some definitions may depend upon previously

T As an example in genetics and embryology, see J. H. Woodger [Wol.
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proven statements. In particular, we may not know that two definitions
actually define the same concept unless we resort to logical implication.
But if we substitute for implication the process of defining, then the
situation is quite analogous to the derivation of theorems from axioms; all
that has changed is what constitutes T and A, and the process of derivation.

If we employ the ideogram = which is frequently used in mathematics
to denote “implies,” then the diagram

A=T

symbolizes both the process of deriving theorems and the process of deriv-
ing definitions. In neither case have we explicitly set forth the rules
governing the process symbolized by “=""; in the case of implication, this
would involve stating the underlying logical laws and rules for proving
theorems; and in the case of definition, it would involve giving the precise
modes that govern the derivation of new terms from previously given
terms. We go into this more thoroughly in the next chapter.

To summarize: We select the concept; then we select the terms that are
to be left undefined and the statements that are to form our axioms; and
finally we prove theorems as we did above, introducing new terms as
needed. This is a simplification of the process, to be sure, but in a general
way it describes the method. Note how the procedure, as so formulated,
differs from the classical use of the method. In the classical use the
axioms were regarded as absolute truths—absolutely true statements about
material space—and as having a certain character of necessity. In the
past, to have stated the parallel axiom, Axiom 5 above, was to have stated
something ‘“‘obviously true,” something taken for granted if we had
thought about the character of the space in which we lived. It would have
been inconceivable before the nineteenth century to state an axiom such as
“If L is a line and p a point not on L, then there exist at least two distinct
lines containing p and parallel to L.” To have in mathematics, simul-
taneously, two axiom systems I'; and I', with axioms in I'; denying axioms
in I'y, as is the case in mathematics today with the euclidean and non-
euclidean geometries, would also have been inconceivable! But, if we
take the point of view that an axiom is only a statement about some con-
cept,t so that axioms contradicting one another in different systems only
express basic differences in the concepts from which they were derived, we
see that no fundamental difficulty exists. What is important is that axioms
in the same system should not contradict one another. This brings us to
the point where we should discuss consistency and other characteristics of
an axiom system.

t It is only in this sense—that an axiom is a statement true of some concept—that
the word ““true” can be used of an axiom.
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5.1 Remark

The derivation of an axiom system for non-euclidean geometry from
axioms for euclidean geometry, using the device of replacing the parallel
axiom with one of its denials, is an example of another manner in which
new axiom systems may be obtained. In general, we may select a given
axiom system and change one or more of the axioms therein in suitable
manner to derive a new axiom system. (See II 6.1.)
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PROBLEMS

1. Obtain other meanings for ‘“point” and “line” which make the axioms
of T true statements. Also find a collection of nine objects (instead of four,
as in Section 2.5) “‘satisfying” these axioms.

2. Why is not the corollary to Theorem 2 a direct consequence of Axiom
3 of the system I'?

3. Do the lines M and M; defined in the proof of Theorem 4 in Section
3.8 necessarily have a point in common?

4. Is Axiom 5 necessary for the validity of the corollary to Theorem 1 in
the system I'? [Hint: Consider a collection containing three points p, g, and
r, and let each pair of these be a line; also let the empty collection be a line.]

5. May a term appear in one axiom system as an ‘‘undefined technical term”
and in another axiom system as a ‘“‘universal logical term” ?

6. What fundamental differences distinguish the Greek conception of
axioms and the modern conception?

7. Would it be feasible to use the axiomatic method in order to describe
ethical, political, or other social systems?

8. Would we necessarily become involved in contradictions in an axiom
system if, in formulating an axiom as a statement which *“seems to hold”
for some concept, the statement is actually a false statement about the concept ?

9. In what respect do definitions such as those given in Definitions 2.3 and
2.4 differ from those given in Sections 4.1 and 4.2? [Hint: Note that 2.3
and 2.4 are especially designed for I'.]

In Problems 10-14, theorems are stated which are to be proved as theorems
of the axiom system I'. It is assumed that the number of points is finite
(although in Problems 10 and 11 this is an unnecessary assumption if familiarity
with the notion of cardinal number is assumed; see Chapter IV).
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10. The number of points on a line is constant; that is, any two lines have
the same number of points.

11. The number of lines containing a given point is constant.

12. If m is the number of lines containing a given point, and r is the number
of points on a line, then m = r + 1.

13. If n is the total number of points, then n = (r — 1)m + 1; and hence
n=r2

14. The number of lines is n + r and hence, in view of Problem 13, mr.

15. In the light of the theorems stated in Problems 10-14 above, show that
a collection of nine things considered as ‘“‘points” yields several different
interpretations of I' according to how we select the possible combinations
of points to form lines.



Analysis of
the Axiomatic Method

When the undefined terms and the primary propositions or axioms have
tentatively been selected, how can it be ascertained that the resulting axiom
system is suited to the purposes for which it was set up? If, for example,
it was set up to serve as a base on which to prove all theorems of euclidean
plane geometry, then we should like some method whereby we can show
that it suffices to do so. On the contrary, we may wish an axiom system
to serve as an introduction to several different kinds of geometry, sufficing
to prove the theorems common to them all, and no more. Another
question that might arise would concern the so-called “independence” of
the axioms; are any of the axioms provable from the others, and, if so,
should we not delete them from the system, relegating them to the body of
theorems to be proved later?

Experience has shown, however, that a much more fundamental and
critical question is: does the system imply any contradictory theorems?
If it does, clearly something is wrong, and it is useless to inquire into other
questions until this defect has been eliminated. We shall therefore
consider this question first.

1 Consistency of an axiom system

From a logical point of view we can make the following definition:

1.1 Definition. An axiom system X is called consistent if contradictory
statements are not implied by Z.

This definition gives rise to certain questions and criticisms. In the
first place, given an axiom system X, how are we going to tell whether it is
consistent or not? Conceivably we might prove two theorems from X
which contradict one another, and hence conclude that X is not consistent.

For example, if we added to the system I' of Chapter I the new axiom,
“There exist at most three points,” it would become apparent, as soon as
Theorem 3 of I was proved (cf. I 3.7), that the new system of axioms is not
consistent.

23
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But, supposing that this does not happen, are we going to conclude that
% is consistent? How can we tell that, if we continued stating and proving
theorems, we might not ultimately arrive at contradictory statements and
hence inconsistency? We remarked in Chapter I (I 4) about the system I’
that we could hardly expect to reach a point where we could say with
confidence that no more theorems could be stated. And unless we could
have all possible theorems in front of our eyes, capable of being scanned
for contradictions, how could we assert that the system is consistent?
There are examples in mathematical literature of cases where considerable
material was published concerning certain axiom systems which later were
found to be inconsistent. Until someone suspected the inconsistency and
set out to prove it, or (as in some cases) stumbled upon it by chance, the
systems seemed quite valid and worth while. It can also happen, for
example, that the theorems become so numerous and complicated that we
fail to detect a pair of contradictory ones. For example, although two
theorems might really be of the form “S” and “not S respectively,
because of the manner in which they are stated it might escape our atten-
tion that they contradict one another. In short, the usefulness of the
above definition is limited by our ability to recognize a contradiction even
when it is staring us in the face, so to speak. Is there any procedure for
proving a system of axioms consistent? And, if so, on what basis does the
proof rest, since it may not be possible to carry out the proof within the
system as in the case of the theorems of the system ?

Let us make the definition:

1.2 Definition. If 2 is an axiom system, then an interpretation of =
is an assignment of meanings to the undefined technical terms of X in such
a way that the axioms become simultaneously true statements for all
values of the variables (such as p and g of Axiom 3, I 2.2, for instance).

This definition requires some explanation. First, as an example we can
cite the system I' (I 2.2) and let “point” mean any one of a collection of
four coins and “line” mean any pair of coins in this collection. The
axioms now become statements about the collection of coins and are
easily seen to be true thereof. Hence, this assignment of meanings is an
interpretation of I'.  As the axioms stand, with ““point” and “line’” having
no assigned meanings, they cannot be called either true or not true.
(Similarly, we cannot speak of the expression “x2 — y% = (x — y)(x + »)”
as being either true or false until meanings, such as “x and y are integers,”
are assigned.) But, with the meanings assigned above, they are true
statements about a “meaningful” concept. As a rule, we shall use the
word “model” to denote the concept which results from the interpretation.
Thus the concept of the collection of four coins, considered a collection
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of points and lines according to the meanings assigned above, is a model of
I'. Generally, if an interpretation I is made of an axiom system, we shall
denote the model resulting from I by (I).

For some models of an axiom system X, certain axioms of X may be
vacuously satisfied. That is, axioms of the form “If ..., then...,” such as
Axiom 3 of T, which we might call “conditional axioms,” may be true as
interpreted only because the conditional “If . ..” part is not fulfilled by the
model.

Suppose, for example, we delete Axioms 2 and 4 from I" and denote the
resulting system by I". Then a collection of coins containing just one
coin is a model for I, if we interpret “point” to mean coin and “line”
to mean a collection containing just one coin. For in this model the
“If...” parts of Axioms 3 and 5 are not fulfilled. (Note that for Axiom 3
to be false of a model M, there must be two points p and ¢ in 9k such that
either no line of M contains p and g or more than one line of M contains
p and ¢.) Indeed, whenever all axioms of a system are conditional, the
empty collection will generally be a model.

This may be better illustrated, perhaps, by the following digression:
Suppose boy A tells girl B, ““If it happens that the sun shines Sunday, I will
take you boating.” And let us suppose that on Sunday it rains all day, the
sun not once peeping out between the clouds. Then, no matter whether A
takes B boating or not, it cannot be asserted that he made her a false
promise. For his promise to have been false, (1) the sun must have shone
Sunday, and (2) A must not have taken B boating. Thus, in general,
for a statement of the form “If..., then...” to be false, the “If...”
condition must be fulfilled and the “then . ..” not be fulfilled. For if S and
T are statements, the denial of the statement “If S, then T” is “There is a
fulfillment of the statement S for which T is false.”

Now we did not have in mind a collection of four coins when we set
down the axioms of I'.  We were thinking of something entirely different,
namely, euclidean geometry as we knew it in high school. “Point” had
for us then an entirely different meaning—something “without length,
breadth, or thickness”; and “line” meant a “straight” line that had
“length, but no breadth or thickness.” Do not these meanings also yield
a model of '—what we might perhaps call an “ideal” model? We may
admit that this is so, and, as we shall see later, we resort frequently in
mathematics to such ideal models; this is always the case when every
collection of objects serving as a model must of necessity be infinite in
number (for instance, when we have enough axioms in a geometry to
insure an infinite number of lines). We return to this discussion later
(see 2.3); at present, let us go on to the so-called “working definition” of
consistency:
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1.3 Definition. An axiom system X is satisfiable if there exists an
interpretation of Z.

What is the relation between the two definitions in 1.1 and 1.3? What
we actually want of any axiom system is that it be consistent in the sense
of 1.1. But we saw that 1.1 was not a practicable definition except in
cases where contradictory statements are actually found to be implied by
the system and inconsistency is thus recognized. Where a system is
consistent, we are usually unable to tell the fact from 1.1. But, as in the
case of the four-coin interpretation of I', we may have a model showing
“satisfiability” in the sense of 1.3. Does this imply consistency in the
sense of 1.1? The working mathematician takes the point of view that it
does, and to explain why, we have to go into the domain of logic for a
few moments.

2 The proof of consistency of an axiom system
2.1 The Law of Contradiction and the Law of the Excluded Middle

First, let us recall two basic “laws” of classical (i.e., Aristotelian) logic,
namely, the Law of Contradiction and the Law of the Excluded Middle;
the latter is also called the Law of the Excluded Third (“tertium non
datur”). These are frequently, and loosely, described as follows: If S is
any statement, then the Law of Contradiction states that S and a contradic-
tion (i.e., denial) of S cannot both hold. And the Law of the Excluded
Middle states that either S holds or the denial of S holds. For example,
let S be the statement “Today is Tuesday.” The Law of Contradiction
certainly holds here, for today cannot be both Tuesday and Wednesday,
forexample. And the Law of the Excluded Middle states that either today
is Tuesday or it is not Tuesday.

But “things are not so simple as they seem” here. Unless we limit
ourselves to a specified point on the earth (or parallel of longitude), it can
be both Tuesday and Wednesday at the same time! Thus, unless
such a geographical provision is included in S, the statement “Today is
Tuesday and it is not Tuesday” can hardly be rejected. As a matter of
fact, whenever such statements are made, there usually exists a tacit
understanding between speaker and listener that their locale at the time is
the place being referred to.

Or consider the statement “The king of the United States wears bow
ties.” Does the Law of the Excluded Middle hold here? Ofr let S be the
statement “All triangles are green.”

The upshot of this is merely that, although these “laws” are called
“universally valid,” some sort of qualifications have to be made with
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regard to their applicability in order for them to have validity. So far as
axiomatic systems are concerned, the problem is not so great, since we can
restrict our use of the term “‘statement” to the convention already made in
Section I 4.1 (“Z-statement™). And this will be our understanding from
now on. Further qualifications regarding the applicability of these
logical “laws” will be noted in the discussion of completeness below.

22 As soon as an interpretation of a system X is made, the statements
of the system become statements about the resulting model. Let us
assume the following, which may be considered basic principles of applied
logic!

2.2.1 All statements implied by an axiom system X hold true for all
models of X;

2.2.2 The Law of Contradiction holds for all statements about a
model of an axiom system X, provided they are Z-statements whose
technical terms have the meanings given in the interpretation. We can
make this clearer and more precise by introducing the notion of an
[-X-statement:

2.2.3 If = is an axiom system and I denotes an interpretation of X, the
result of assigning to the technical terms in a Z-statement their meanings in
I will be called an I-Z-statement.

Then 2.2.1 and 2.2.2 become, respectively:

2.2.1 Every I-Z-statement, such that the corresponding Z-statement is
implied by X, holds true for M(I) (cf. 1.2);

222 Contradictory I-Z-statements cannot both hold true of SR(I).

Under the assumption that 2.2.1 and 2.2.2 hold, satisfiability implies
consistency. For if an axiom system X implies two contradictory -
statements, then by 2.2.1 these statements as [-X-statements hold true for
the model MM(I); but the latter is impossible by 2.2.2. Hence, we must
conclude that if 2.2.1 and 2.2.2 are valid, the existence of an interpretation
for an axiom system & guarantees the consistency of X in the sense of 1.1.
And this is the basis for the “working definition” 1.3. For example, the
existence of the “four-coin interpretation” of the system I' guarantees the
consistency of I' if we grant 2.2.1 and 2.2.2.

The reader will have noticed that we have not proved that consistency in the
sense of 1.1 implies satisfiability. To go into this question would be impractical,
since it would necessitate going into detail concerning formal logical systems (cf.
Chapter XI) and is too complicated to describe here.

2.3 In Section 1 we used the term “ideal”” model, by way of contrast to
such models as that of the four coins for I'; the latter might be termed a
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“concrete” or “physically realizable” model. It was pointed out that
whenever an axiom system X requires an infinite collection in each of its
models, of necessity the models are ““ideal.”

This raises not only the question as to how reliable are “ideal” models,
but also the question as to what constitutes an allowable model. What we
should like, of course, is a criterion which would allow only models that
satisfy assumptions 2.2.1 and 2.2.2, especially the latter. If there is any
danger that an ideal model may require such a degree of abstraction that it
harbors contradictions in violation of 2.2.2, then clearly the use of models
is no general guarantee of consistency in spite of what we have said above.

Further light can be shed on this matter by a consideration of well-
known examples. It is not an uncommon practice, for instance, to
obtain a model of an axiom system X in another branch of mathematics—
even in a branch of mathematics that is, in its turn, based on an axiom
system X'.+ How valid are such models? Do they necessarily satisfy
2.2.2? For example, to establish the consistency of a non-euclidean
geometry we give a model of it in euclidean geometry. (See Richardson
[R; 418-419] for instance.) But suppose that the euclidean geometry
harbors contradictions; what then? Evidently all we can conclude here
is that, if euclidean geometry is consistent, then so is the non-euclidean
geometry whose model we have set up in the euclidean framework.

We are forced to admit that in such cases we have no absolute test for
consistency, but only what we may call a relative consistency proof. The
axiom system X’ may be one in whose consistency we have great confidence
and then we may feel that we achieve a high degree of plausibility for
consistency, but in the final analysis we have to admit that we are not sure
of it.]

As we shall see later, other tests for consistency have been explored by
the methods of formal logic; but until such methods are sufficiently
developed, the use of models, even of an “ideal” character, will have to
suffice.

3 Independence of axioms

In the first paragraph of this chapter we mentioned “independence” of
axioms. By “independence” we mean essentially that we are “‘not saying
too much” in stating our axioms. For example, if to the five axioms of

T In general, a model of an axiom system X in a system X’ is the result of an in-
terpretation of the undefined terms of X in the terminology of ¥’ in such a way that
the axioms of 2 become X’-statements implied by £’. (See Problem 29.)

I In one well-known case, the system X’ is a subsystem of X; viz., the Gédel proof
(Godel [G]) of the relative consistency of the axiom of choice (III 6.3) when adjoined
to the set theory axioms.
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the system I' (I 2.2) we added a sixth axiom stating, “There exist at least
four points,” we would provide no new information inasmuch as the
axiom is already implied by I" (see Theorem 3 of I 3.7). Of course, the
addition of such an axiom would not destroy the property of consistency
inherent in T'.

31 In order to state a formal definition of independence, let £ denote
an axiom system and let A denote one of the axioms of . Let us denote
the denial of A by ~ A, and let Z — A denote the system Z with A deleted.
If S is any X-statement, let £ + S mean the axiom system containing the
axioms of X and the statement S as a new axiom. Then we define:

3.1.1 Definition. If X is an axiom system and A is one of the axioms
of X, then A is called independent in Z, or an independent axiom of X, if
both X and the axiom system (X — A) + ~ A are satisfiable.

In practice, a X-statement whose addition to £ — A implies ~A is
often used instead of ~A. For example, to show Axiom 5 independent in
I' (1 2.2), let S be the statement “There exist a line L and a point p not on L,
such that there does not exist a line containing p that is parallel to L.”
Then S is not the precise denial of Axiom 5, but certainly implies it.
(The denial of Axiom 5 is: “There exist a line L and a point p not on L
such that there does not exist one and only one line containing p that is
parallel to L. Cf. the italicized statement in 1.2 above.) However,
denoting Axiom 5 by A and noting that (I' — A) + S implies ~ A (since
S already implies ~A), and recalling 2.2.1 above, we see that any model of
(' — A) + Sisalso a model of (I" — A) + ~A. Like remarks hold for
axiom systems in general. Consequently, 3.1.1 may be replaced by the
statement:

3.1.1 If 2 is an axiom system and A is one of the axioms of Z, then A
is independent in X if (1) X is satisfiable, and (2) there is a Z-statement S
such that the axiom system (X — A) + S implies ~A and is satisfiable.

3.2 Thus Axiom 5 is independent in I' (I 2.2) if I' is satisfiable and if the
first four axioms of I' together with a “non-euclidean” form of the axiom
constitute a satisfiable system. For example, let S be the statement “There
exist a line L and point p not on L, such that there does not exist a line
containing p and parallel to L. To show that the system I" with Axiom 5
replaced by S forms a satisfiable system, let us take a collection of three
coins, let “point” mean a coin of this collection, and “line”” mean any pair
of coins of this collection. Then we have an interpretation of the new
system, showing it to be satisfiable. We have already ascertained (2.2)
that I' is satisfiable, and so we conclude that Axiom 5 is independent in T
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33 The reader will probably gather by this time that the reason for
specifying the satisfiability of Z, in Definition 3.1.1, is to insure that ~ A
is not a necessary consequence of the axioms of & — A; for if it were, we
would not wish to call A “independent.” Thus, as the definition is
phrased, it insures that neither A nor the denial, ~A, of A is implied by
the system X — A, so that the addition of A to X — A is really the supplying
of new information.

34 Actually, however, we do not place the same emphasis on inde-
pendence as we do on consistency. Consistency is always desired, but
there may be cases where independence is not desired. Examples of this
arise in the teaching of mathematics. Frequently, we develop a subject
by stating axioms and proving theorems—so that the axiomatic method
assumes thereby a pedagogical role. Now it sometimes happens that an
early theorem is extremely difficult to prove. Then the theorem may be
stated as one of the axioms. Later, when the students have gained
sufficient maturity and familiarity with the subject, it may be disclosed to
them that the “axiom” is not really independent and a demonstration of
its proof from the other axioms of the system may be given. Generally
speaking, of course, it is preferable to have all axioms independent; but if
some axiom turns out not to be independent, the system is not invalidated.

As a matter of fact, some well-known and important axiom systems,
when first published, contained axioms that were not independent (a fact
unknown at the time to the authors, of course). An example of this is the
original formulation of the set of axioms for geometry given by Hilbert
[H:] in 1899 (already referred to in I 1.4 and I 1.5). This set of axioms
contained two axioms which were later discovered to be implied by the
other axioms.t This in no way invalidated the system; it was only
necessary to change the axioms to theorems (supplying the proofs of the
latter, of course). Other cases could be cited.

3.5 Types of independence other than that defined in 3.1.1 have been
proposed. For example, E. H. Moore [Mo, ; 82] defined what he called
“complete independence”:

3.5.1 A system of axioms, X, is called completely independent if, for
every subsystem A; Aj, - - -, A, of the axioms, both X and (£ — A, —
Aj— - —A)+ ~A + ~A; + --- + ~A, are consistent. Here

1 See E. H. Moore [a], A. Rosenthal [a, b, c], S. Weinlds [a, b], and Lindenbaum
[a]. Also see the footnotes tothe first chapter of Hilbert [Hg].

I For example, a well-known and for many years widely used (for teaching pur-
poses) system of eight axioms for plane topology due to R. L. Moore [a] was found
by the present author [a] to contain a non-independent axiom. In this case the
suspicion that the axiom was not independent arose from the fact that the independ-
ence proof given for the axiom was not valid, and search for a new proof proved fruitless.
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A, A, -+, Ay are axioms of £ and ~A;, ~A;, -+, ~A, are denials of
A, Ay, -, A, respectively. If we take ‘‘consistent” to mean ‘‘satis-
fiable,” this definition evidently yields a generalization of Definition 3.1.1.
We shall not go further into this notion, however.t

3.6 Before leaving the notion of independence, it might be interesting
to consider its relation to the number of axioms in a system. 1f a consistent
system of axioms, X, contains twelve axioms, say, and one of them is
discovered to be not independent, then the system is reducible to only
eleven axioms. The system may then be said to be “simplified by this
reduction”; the concept “described” by £ can now be “described” in
fewer words. However, this line of thought is illusory, for it does not
take much reflection to convince us that mere number of axioms is no
measure of simplicity. An axiom system may, in a valid sense, be said to
be simplified if an axiom is split up into several axioms. Sometimes we
decide that an axiom has said too much; so much, in fact, that it becomes
difficult to digest its meaning. The difficulty may be removed by giving
instead several axioms, each of a simply understood character, and in toto
saying what the original axiom stated.

There is no general rule to guide us in these respects. It is a case of
“the same thing can be said in many ways,” and consequently we use our
best judgment as to how we will accomplish “‘simplicity.” We can put
too much into a single axiom; as an extreme, all axioms of a system can be
lumped together in one axiom—thus achieving independence neatly—or
we can split an axiom to the point of triteness.

An amusing example is given by Helmer [a] which we may transfer to the system
I' (I 2.2) as follows: Consider Axiom 3 of I'. For the sake of brevity let us denote
the combination of words “The number of lines containing p and ¢ where p and ¢
are distinct points” by the symbols “¢(p, q).” Then Axiom 3 can be replaced
by the axioms: (a) ¢(p, q) is odd; (b) ¢(p, q) is less than 8; (¢) ¢(p, q) is not 7;
(d) o(p,q) is not S; (e) ¢(p,q) is not 3. Axiom 3 may be replaced by these five ax-
ioms if preferred! In the same article, incidentally, Helmer gives a simple axiom
system that is easily seen to consist of independent axioms, and to be not completely
independent.

4 Completeness of an axiom system

It was pointed out in I 2.6 that the system I' would not yield all theorems
of plane geometry; and, as we have seen, I' actually has a model containing

t Harary [a] calls an axiom A very independent in a system T if the system has a
model in which all the axioms of X other than A hold and A “‘never holds.” For
example, if X is a system for euclidean plane geometry and A the parallel axiom,
then we can give a model of a non-euclidean geometry in which the hypothesis of A
always implies the negation of its conclusion. In another paper [b] he has introduced
a measure of independence.
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only a finite number of points; this could not be the case if I" were adequate
as a foundation for euclidean plane geometry. In plane geometry we
would wish to be able to assert, for example, that between two points on a
line there is a third point (the “bisecting” point for example), which is
certainly not assertable on the basis of T" (cf. the model consisting of four
coins!).

41 Now, a priori, there is no reason to believe that it is even possible
to give an axiom system that would imply al/ theorems of plane geometry.
Presumably we could hardly hope to set down all possible theorems of
plane geometry, so that we might easily judge that it would be equally
impossible to set down a system of axioms that would imply all theorems of
plane geometry.t Assuming, however, that it is possible to set down such
a system of axioms, how shall we phrase an explicit definition of the sort
of “completeness” which we have in mind here; and, after this, how can
we ascertain the fact that a given system is complete ?

4.2 To fix our ideas, let us suppose that we have given an axiom system
Z which was derived from some concept C, using a collection T of unde-
fined terms. (Thus X might be the system I' (I 2.2), C the concept of plane
geometry, and T the collection of terms “point,” “line.”) Now X might
be inadequate as a system of axioms for C in that there are not enough
axioms; more explicitly, in that the axioms do not contain enough asser-
tions to imply all the theorems we want. On the other hand, ¥ might be
insufficient in the sense that T does not contain enough undefined terms.
For example, for plane geometry, not only might the system I' be lacking
in axiomatic assertions, but also it may be necessary to add new terms
(for instance, “congruent”) to T before we could get all the theorems of
plane geometry. It may also occur to the reader that in addition to in-
adequacies that the axioms, and the collection T, may have, there may also
be defects in our logical apparatus and the logical processes themselves,
as well as in such “universal” terms as “set.” FEach of these possibilities
will be considered; the first two in the present section, and the others in
subsequent chapters.

4.3 Definition of completeness

Let us first consider incompleteness due to inadequacy of the axioms
themselves. If we revert to the idea of completeness that is based on the

+ When we speak of “all theorems” we do not, of course, include “false” theo-
rems. And we are tacitly ruling out the trivial fact that by logical manipulation
(see IX 3.5.3, for instance) it is possible to prove all theorems (“true” or “false’)
by the simple device of introducing contradictory axioms. We therefore tacitly
assume throughout the discussion of completeness that the axiom systems discussed
are consistent,
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notion of a system being sufficient to “imply all theorems,”” we might say
that if we can find a theorem which can neither be proved nor “disproved”
(i.e., the denial of it is not provable), then we see that if such a theorem
exists it becomes a candidate for a new axiom. This leads to the following
definition (recall that a Z-statement must be phrasable in terms of T):

4.3.1 Definition. An axiom system X is complete if there is no Z-
statement A such that A is an independent axiom in the system X + A;f
i.e., such that both £ + A and £ + ~ A are satisfiable.

Loosely speaking, according to 4.3.1 a system X is complete if it is
impossible to add to it a new independent] axiom (always bearing in mind
that we are keeping T fixed, of course).

For example, let X be the system I" (I 2.2), and let Ag be the statement
“There exist at most four points.” Both I' + Ag and ' + ~A, are
satisfiable; the former because of the four-coin interpretation, the latter
because of the usual euclidean geometry interpretation (there exist other
interpretations of I' + ~ Ag consisting of only a finite number of points;
cf. Problem 1 at the end of Chapter I). Thus I' is not complete according
to Definition 4.3.1.

How about the system I' + Ag; is this complete? Let us denote
I' + Ag by T's. For reasons given later, we would search in vain for a
I¢-statement, A’, such that A’ is independent in the system I's + A’.  But
failure to find such an A’ after any finite number of trials would hardly
prove T's complete in the sense of 4.3.1.  This fact reveals that Definition
4.3.1 is subject to the same short-coming that Definition 1.1 has, namely,
the seeming impossibility of proving the property defined when it may actu-
ally be possessed by an axiom system. And, as in 1.1, where we gave as
“working definition” the Definition 1.3, that of satisfiability, we shall here
also give a “working definition” as an alternative to 4.3.1. And, just as
in 1.1, where we had to interpolate a new notion, that of “interpretation”
of an axiom system, before we could give the alternative definition, we shall
here also have to introduce a new notion before stating the new definition.

4.4 One-to-one correspondence; isomorphism

Let us recall the four-coin interpretation of I', which we shall call
interpretation I, for present purposes, and the “ghost town” Z containing
only four persons which we described in12.5. In the latter case, “person”

+ It must be emphasized that X is actually augmented by A to form X + A (even
though A may already be in X—in which case A appears twice in £ + A). Inevery
case, however, [(EZ + A) — Al +~A =X + ~A.

t So far as our discussion is concerned, the importance of the notion of “inde-
pendence” is due almost solely to its use in connection with completeness.
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was to serve as the meaning of “point,” and ‘“‘pair of persons” as the
meaning of “line”; assigning these meanings constitutes an interpretation
I, of I Now, in what ways do the models (I,) and IMM(I,) differ? For
the sake of brevity, let us denote M(I,) by IM;, M(I;) by M.

This may seem like a trivial question since a collection of four coins
and a collection of four persons differ so obviously in so many ways.
But let us consider only those properties of I, and M, that have signif-
icance for I's. Then the obvious differences, such as the fact that a coin
is metallic whereas a person is organic, are not to be taken into account.
Only properties and relations having to do with peoint and /ine have any
significance so far as I'g is concerned. And, with regard to these, I, and
M, have no differences whatsoever. To make this more precise, we first
introduce the following notions:

4.4.1 Definition. If X and Y are two collections (not necessarily
disjoint), then a function from X to Y is a collection f of ordered pairs
(x, y) such that (1) x and y are elements of X and Y, respectively, and (2)
each element x of X occurs as an “x” in a pair (x, y) exactly once. That f
is a function from X to Y may be denoted by the expression “f: X — Y.”
And that y is paired with x in a pair (x, y) may be denoted by the expression
“y = f(x).” The collection X may be called the domain of f and the
collection of all y’s such that y = f(x) for some x called the range or
image of f. If a function f: X — Y has Y as its range, and g: Y — Z is
another function having Y as its domain, then we may define a function
gf+ X — Z called the composition of f and g; for two pairs (x, y) and
(», z) of f and g, respectively, having a y in common, the pair (x, z)
constitutes a pair of the function gf.

442 When it happens that X and Y are the domain and range of a
function £, and each element y of Y occurs exactly once in the correspond-
ing pairs (x, y), then f'is called a (1-1)-correspondence between the elements
of X and the elements of Y, or, briefly, a (1-1)-correspondence between
X and Y. In this case one has also a function from Y to X, denoted by
“f=1 called the inverse function of f; its pairs are of the form (y, x)
formed by reversing the order in each pair (x, y) of £ And x and f(x)
are called corresponding elements.

As we shall see later (Chapter IV), (1-1)-correspondence is the basis for ascertaining
whether two collections have the same number of elements. Thus, two collections
X and Y have the same number of elements if and only if there is a way of pairing
off their elements, which constitutes both a function f from X to Y and a function
f~tfrom Yto X as defined above. We might also remark that even when a function
f does not constitute a (1-1)-correspondence, the symbol “f~*" is frequently used,
f~X(») being the collection of all the x’s such that y = f(x); f~'(») is called the
counter-image of y. A more general notion than function is that of relation, but we
shall reserve this for later discussion.
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The collections X and Y may have common elements; in fact, one of
the most important cases, as we shall see later (III 4.8.1) is that in which
one of these collections is a part (subcollection) of the other. Of great
importance, as a matter of fact, is the identity correspondence in the case
where X and Y are the same collection; this is the (1-1)-correspondence
consisting of the collection of pairs (x, x), in which there is one pair (x, x)
for each element x of X (= Y).

4.4.3 Now M, and M, have four “points” each and, in each, every pair
of “points” constitutes a “line.” Considering M, and M, collections of
points and lines, it is easy to see that there is a (1-1)-correspondence I, ,
between M, and M, such that (1) if x, is a point in M, then the corre-
sponding element in M, is a point; and (2) if x, and y, constitute a line in
<M,, then the corresponding elements x, and y, constitute a line in M,;
and vice versa. Moreover, any true statement about the points and lines
of M, is also a true statement about M, if the special points and lines
mentioned in the statement are replaced by the corresponding points and
lines of M,. For example, if the statement “The lines L, and L,’ have the
point p; in common” is a true statement about 9M,, then the statement
“The lines L, and L," have the point p, in common”™ is a true statement
about I, if L,, L', p, correspond respectively to L,, L,’, p,. Conse-
quently, we call 9, , a (1-1)-correspondence between M, and M, with
preservation of I'g-statements. And we define:

4.4.4 Definition. Two models M, and M, of an axiom system X are
called isomorphic with respect to ¥ if there exists between M; and M,
a (1-1)-correspondence with preservation of Z-statements; and such a
(1-1)-correspondence is called an isomorphism. Thus M, , constitutes
an isomorphism between 9%, and ..

445 It should be emphasized that mere (1-1)-correspondence between
two models is generally not sufficient to yield an isomorphism between
the models. That any (1-1)-correspondence between the points of the
model 9, and the points of the model M, of I'y above yields an iso-
morphism is an accident due to the simplicity of these models. For, since
every pair of points constitutes a line in each model, the (1-1)-correspond-
ence between points can be extended to a (1-1)-correspondence between the
lines, which is sufficient in the case of these models to give an isomorphism.

But suppose that, instead of Ag, we add to I' the axiom Ag': “There
exist exactly nine points,” and denote the system I' + Ay by T'y’. As
stated in Problems 13 and 14 of Chapter I, in any model of I'y’ there must
then be exactly 3 points on each line, and 12 lines in all. Since there are
84 different triples in a collection of 12 things, it is clear that the 12
triples that constitute lines must be carefully selected in defining a model of
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I's’, because not every triple constitutes a line. Consequently, if 9’ and
M, are models of I's" and we wish to set up a (1-1)-correspondence
between the points and lines of 3M," and the points and lines of M, in
such a way that lines correspond to lines, then not every (1-1)-correspond-
ence between the points of M," and the points of M," will work. (See
Problem 20.)

Of course, if the numbers of elements in two models are different so
that no (1-1)-correspondence exists, then isomorphism of the models is «
Sfortiori impossible. But the existence of (1-1)-correspondence does not
guarantee the stronger property implied by isomorphism. In short,
(1-1)-correspondence is a necessary but not a sufficient condition for
isomorphism. [For another example where (1-1)-correspondence exists
although isomorphism does not exist, see Problem 9 at the end of this
chapter.]

4.5 Categoricalness

With the notion of isomorphism thus defined, we are ready to state the
“working definition” of completeness, which is embodied in the notion of
categoricalness:t

4.5.1 Definition. An axiom system X is called categorical if every
two models of X are isomorphic with respect to X.

4.6 Proof that categoricalness implies completeness in the sense of
Definition 4.3.1%

Suppose that an axiom system X is categorical. Now, if X were not
complete in the sense of 4.3.1, there would exist a Z-statement A such that
both X + A and X + ~A are satisfiable systems. Let I, be an inter-
pretation of ¥ + A and let I, be an interpretation of £ + ~A. Since T
is categorical, there is a (1-1)-correspondence M, . between M(I,) and
M(I,), with preservation of Z-statements. But this is impossible, since A
is a Z-statement, true of M(I,) and false of M(L,).

4.7 Completeness of Hilbert’s geometry

In T's we have, then, an example of an axiom system that is complete.
But I's is not, it must be admitted, a very interesting system, its chief
virtue being its simplicity and consequent adaptability to purposes of
exposition. The reader may still feel that, when it comes to mathematically

T The term categorical seems to have been introduced by O. Veblen [a], who
states that it was suggested by John Dewey. As a test for completeness, however,

the notion was used earlier; see Huntington [a] for instance.
I We recall that our definition of independence, 3.1.1, is in terms of satisfiability.
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“rich” concepts, such as the usual euclidean geometry, with their seemingly
unlimited number of theorems, completeness may not be so easily attained.
Fortunately, this is not necessarily the case, although the proofs of com-
pleteness are not, as a rule, so easily attained as the above. In the case of
plane euclidean geometry, a number of categorical axiom systems have
been given. The system of Hilbert for the geometry of the plane and three
dimensions (“‘solid” geometry) achieved completeness in a way that excited
considerable discussion. As originally set up by Hilbert, the system
included the following statement, which he called ‘“Completeness
Axiom™: ¥

“The elements (points, straight lines, planes) form a class of objects
which, under the set of all previously made assumptions, is not capable of
further extension.”

This meant that no new points, lines, or planes could be added to the
collection of points, lines, and planes satisfying the other axioms without
rendering at least one of these other axioms false.

Clearly, this is a peculiar type of axiom in that it almost seems to achieve
completeness for the system by boldly asserting it; and its reference to “all
previously made assumptions” smacks of an element of “‘higher caste” in a
“hierarchy” of axioms. It is intimately related, moreover, to its pre-
decessor, the “Archimedean axiom,” which, roughly speaking, assures that
the lines of the geometry shall be ““long enough” without being “too long.”
Possibly it was this that led P. Bernays to the discovery that the axiom can
be stated as a theorem, being replaced in the axiom system by the following
“Axiom of Linear Completeness”:

“The points of a line form a system which under the set of previously
given axioms is not capable of further extension.” }

4.8 For other systems of axioms for geometry, the reader is referred to
the “Suggested Reading” at the end of this chapter.

Axiomatic treatments of other mathematical concepts (in arithmetic,
algebra, analysis, etc.) will be referred to later.

4.9 Desirability of completeness

Some comment regarding the desirability or undesirability of complete-
ness should also be made at this point. When we wish to define a concept

T The English translation given here is derived from Young [Y]; quoted by per-
mission of The Macmillan Co. Hilbert did not include this axiom in the first
edition of his Grundlagen [H,]; it did appear in the second and later editions, and
was modified in the seventh edition [Hz].

} This axiom (the above is not a literal translation) appears in the seventh (1930)
edition of Hilbert’s book. See Hilbert [Hg; 30].
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allowing a wide variety of interpretations, or a large range of application to
different fields of mathematics or physics, then completeness will usually
not be achieved or even desired. We shall see instances of this later in
the axioms for simple order, group, etc. In such concepts we see one of
the great advantages of the axiomatic method, what we might call the
“economy aspect.”” For, as we have pointed out in Section 1, we are at
liberty to make any interpretation we please, and the theorems which have
been proved in the system of axioms become true statements about the
model resulting from the interpretation. The “economy’ involved here
consists of the proving, once for all, of statements about a large number and
variety of (seemingly unrelated) fields of study. Thus, when we come to
study the notion of group, we shall notice that examples of groups (i.e.,
models of the group axioms) abound in mathematics (and in other fields),
and the theorems proved on the basis of the group axioms are immediately
available for use in all such cases. Itis also a common mathematical de-
vice to prove, of a given concept, that it contains a model of some already
known and developed axiom system, so that the theorems of the system
may be made available for use in the study of the given concept. It is
interesting to note, too (as a sort of converse), that it has not infrequently
happened that mathematicians, working in different branches of mathe-
matics, have duplicated one another’s work; the only difference between
their results being that of language—each speaking in terms which could
be made the common terminology of some axiom system. Naturally,
this is one of the things that /eads to the invention of axiom systems, i.e.,
the discovery that the same “abstract notions” are operating under various
guises in different branches of mathematics.

So far as a concept like that of plane euclidean geometry is concerned,
the object is usually to set down, as Hilbert did, a complete set of axioms.
We shall see an example of the same sort of thing in other cases, as for
instance in the definition of the “mathematical continuum” which lies at
the basis of analysis. It is of the very nature of such special concepts that
their “definition,” or characterization (to use the term most frequently
employed), leads to complete systems of axioms. As we shall see later,
we can so specialize the order and group concepts, mentioned above, as to
attain completeness in describing them axiomatically, somewhat as we
specialized the system I' to obtain L.

4.10 The logical basis

In our discussion of consistency, we mentioned (2.1) the Law of Contra-
diction and the Law of the Excluded Third; that we place a great degree of
confidence in their applicability is evidenced in 2.2.1 and 2.2.2. Inde-
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pendence of axioms was defined (3.1.1) in terms of satisfiability, so that
the same “laws” are involved in this notion.

Definition 4.3.1 makes completeness of axioms, in turn, dependent on
the notion of independence, and hence of satisfiability. The definition
(4.5.1) in terms of isomorphism, as we saw, “implies” the former definition
in the sense that, when a system is categorical, it is complete according to
4.3.1. Now, aside from the assumption of the “laws” of classical logic,
there is the interpretation—not always clear, as we have noticed (I 3.4,
for instance)—placed on the “universal” terms. The average person’s
only contact with geometry is in the high school course, and as a rule no
mention by name is made there of the “Aristotelian logic.” The logical
apparatus employed (justifiably, for pedagogical reasons) is usually a
“taken-for-granted” or “rule-of-thumb” logic. Its value probably lies in
its naturalness, and as such it undoubtedly forms a good basis for the study
of “formal logic” in college, if the student goes this far and happens to
“elect” a course in the latter.

This “natural” logic tacitly assumes the Law of Contradiction and the
Law of the Excluded Third; witness the “reductio ad absurdum” type of
proof which is such a favorite in high school geometry. No attention at
all is paid to logical or universal terminology, such as the use of the terms
“collection,” ““all,” “not” (again, justifiably).

It is not surprising, therefore, that the axiomatic method, originally
derived from the axiom-postulate method of Euclid, proceeded on the
same logical basis, employing a “taken-for-granted” logic. However, as
we shall see, concurrently with the development of the axiomatic method
during the latter part of the nineteenth and the beginning of the twentieth
centuries, this “natural” logic was beginning to be attacked. The first
criticism was directed not so much at the “laws” of the logic, as at the
universal terms, particularly at the notion of “collection.” And, in our
return to this subject in the sequel, it will be to this notion of collection that
we first direct our attention. For not only does the consistency of an
axiom system depend on our assumption of the logical “laws,” but also
all the attributes of an axiom system discussed above, including complete-
ness, are determined to a greater extent than we realize by the way in
which we use the so-called “universal” terms.

5 Independence and completeness of undefined technical
terms

In 4.2 we remarked that a system of axioms may be inadequate for plane
geometry because it lacks certain technical terms (for instance, ‘‘con-
gruent”). Indeed, how can we expect the statements incorporated in the
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axioms to be sufficient, if the technical language in which they are phrased
is inadequate ?

To make this clearer, let us look again at the manner in which an axiom
system is developed. As we saw in Chapter I, theorems are deduced from
the axioms; but in addition, we frequently add new technical terms by
definition. That is, as the number of theorems grows, the body of
technical terms also grows; but whereas the growth of theorems advances
by deduction, the growth of technical terms proceeds by definition. And
since definition of all technical terms would lead to endless regression, it is
necessary to begin with some undefined technical terms. But how can we
tell what is a suitable choice of undefined terms? For example, “parallel”
was not included among the undefined terms of the system I’ because it
turned out that it was definable in terms of “point” and “line.”” This
raises the question, “How can we tell if a term is definable by means of the
given undefined terms?” The analogy to the situation concerning the
axioms themselves may be brought out by using the word “independent.”
But when is a new term independent of the undefined terms? This
question, of course, is meaningless in the absence of a more precise meaning
for the word “independent” in this context.

5.1 Such a meaning was suggested by Padoa [a] about 1900 (see
Padoa [a, b, c]). He proposed that in order to show that a term ¢ cannot
be defined by means of a collection T of given undefined terms (always
assuming a given axiom system X), it is sufficient to provide two models
M, and M, of 2 in each of which the terms of T have the same meaning,
but in which ¢ has different meanings. The analogy to the test for
independence in terms of models (3.1.1) is obvious, the only lack being
that it may not always be clear when a term has “different meanings.”
Although a thorough investigation of this would necessitate a much deeper
analysis than we can go into here, we shall go a little more into detail while
hoping to make it more precise.

5.2 The nature of definition

We need to have a clearer idea of just what we mean by “defining” a
term ¢ by means of a collection T of terms in a given axiom system X.
In the axiom system I' (I 2.2), we gave two definitions: one of what is meant
by “a point on a line” (I 2.3) and the other of “parallel” (I 2.4). Since
“point” and “line” were undefined, Definition I2.3 would have been
meaningless unless we had known, from Axiom 1 of I', that a line is a
collection of points. A similar remark holds for Definition [ 2.4. How-
ever, if we had developed the implications of I further, we would probably



Sec. 5 COMPLETENESS OF UNDEFINED TECHNICAL TERMS 41

have found it convenient to introduce new definitions which depended for
their significance on theorems rather than directly upon the axioms.
That is, generally a term ¢ is defined by means of a E-statement involving
both the undefined terms and the theorems. And to define a term t by
means of a collection T of (defined and undefined) terms is to give a >-
statement which renders t fixed in any model in which the terms of T have
been fixed.

Then how are we to know that no one of a set of terms 1y, - -, ¢, is
definable in terms of the others in the sense just described—i.e., is to be
independent of the other terms? According to Padoa, if for each term t;
we can find an interpretation of all the terms ¢y, -- -, t, satisfying the
axioms, and which continues to satisfy them when the interpretation of ¢, is
changed while the interpretations of the other terms are left unchanged,
then #; is not definable by means of the other terms; i.e., 7, is then an
independent term of the system. The analogy to independence of axioms
is evident. A statement defining ¢, in terms of the other undefined terms
should leave #; unchanged when the other terms are left unchanged.

For example, consider the systems 'y and T'y’. In T, “line” is not
independent, since the statement “A collection of points constitutes a line
if and only if it contains exactly two points” suffices to define the term.t
(See Problem 5.) But in I'y’, “line” is independent, for we can easily
give two models of I'g" in which the same points are involved, but “line”
has different meanings (i.e., without change of the points, the triples
constituting lines can be specified differently for the two models).

Or consider the system of euclidean geometry given by Veblen in 1904
[a]. Only two terms, “point” and “order,” were left undefined, all other
geometrical terms presumably being defined in terms of these. However,
as was first pointed out by Tarski [Ta, 306-307] (see also his paper [b]),
the definition of “congruent” involves not just “point” and “order,” but
a geometric entity E which is not postulated by the system, but is arbi-
trarily chosen. Consequently, it is possible to find two models of Veblen’s
system consisting of the same points and having the same order relations
between points, but in which congruence is different in the sense that two
given pairs of points may be congruent in one model but not in the
other.

53 We cannot extend the analogy to a concept of “completeness” of
undefined terms in the spirit of Definition 4.3.1. It would make no sense
to say that a collection 7 of terms is “complete” in an axiom system X if it
is impossible to add a new undefined term ¢ such that 7 is independent in
the set consisting of 7 and the terms of 7.  For the axioms of T are stated

T Note that Axioms 1 and 3 now follow from the definition of ““line.”
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by means of the terms of 7"and do not involve ¢ at all. We can, however,
consider the effect of simultaneously adding new terms and axioms involv-
ing them—a process which we shall use later. This may be possible in
two ways. (1) Without enlarging the domain of individuals involved, we
may introduce new relations and axioms involving them, or axioms
naming specific individuals may be added. Examples of this are found in
arithmetic where certain units may be specified (as “0” or “1”’), or where
new operations are introduced. (2) The domain of individuals may be
enlarged; for instance, from the arithmetic of real numbers to that of
complex numbers (involving naming a new unit “i”’), or enlarging plane
geometry to yield solid geometry.

In [T,, 308], Tarski used the concept of categoricalness to define the
notion of “completeness of concepts,” subject to process (1). He first
defined a system X, to be essentially richer than a system X, relative to
undefined terms if (a) every axiom of X, is in X, (hence, all undefined terms
of ¥, are in X,); and if (b) in the axioms of X, there are undefined terms
which are not among the terms of X,, that cannot be defined, on the basis
of £;, by means of the undefined terms of Z,. For example, the axioms for
the order type of the points on a euclidean straight line (see VI 1.4)—i.e.,
the “linear continuum”—given in terms of the undefined term “point”
and an undefined relation between points, ““<,”” form a categorical system
A. If the relation of “‘congruence” is added along with suitable axioms,
we obtain a new system A’ which is both categorical and essentially richer
than A relative to undefined terms. Then by further introducing two new
undefined symbols, “0”’ and “1,” naming certain individual points, and a
new axiom stating that these symbols denote two distinct points, a system
A" is obtained—one which is essentially richer than A’ relative to undefined
terms. (This example is cited from Tarski, /loc. cit.). But we can go no
further by process (1), and Tarski calls system A” complete relative to
undefined terms. That is, an axiom system X is complete relative to its
undefined terms if there does not exist a categorical system X’ which is
essentially richer than Z relative to undefined terms.

We shall not go further in this direction except to remark that Tarski
(loc. cit)) worked out an interesting test sufficient for this type of complete-
ness. It may be described, roughly, as follows: Suppose X is an axiom
system having at least one model. Also suppose that, if 9%, and M, are
any two models of £, a (1-1)-correspondence constituting an isomorphism
(with respect to X) can be set up between I, and M, in one and only one
way. Then X is called monotransformable. 1f a system X is monotrans-
formable, it is complete relative to undefined terms.

For further information concerning these notions, the reader is referred
to Tarski (Joc. cit.) and to papers cited therein, as well as to Tarski [T; 1X]
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and E. W. Beth [a]. An interesting discussion and application of Padoa’s
method will be found in McKinsey [a].

6 Miscellaneous comment

It was emphasized in Chapter I (I 5) that in setting up an axiom system
% we usually have some concept C in mind that we are actually describing.
The concept C is not only the source of our axioms, but, if it is a valid
model of X, it also predetermines the consistency of X. Moreover, if C
possesses the requisite sort of uniqueness, then the axiom system £ will be
categorical if it is sufficiently descriptive of C.

6.1 Now there are cases where, instead of C preceding X, we have
preceding C. This happens whenever  is derived from a previously
existing axiom system X’ by alteration (such as by denying or deleting an
axiom). For example, if from the concept C of euclidean geometry we
derive a complete axiom system X’ that includes the ‘“parallel axiom”
(Axiom 5 of the system I' in I 2.2), we might derive a non-euclidean
geometry 2 from X’ by replacing the “parallel axiom” with a denial of the
same—and then look for a concept which £’ might describe. Historically,
this is essentially what happened in non-euclidean geometry.t And
we duplicate this process whenever we prove independence of an axiom
A in an axiom system X, since we first set up the system (X — A) + ~A
and then look for an interpretation of the latter.

Of course, the derivation of new axiom systems from old can degenerate
into a game, but frequently the “game” turns out to be sufficiently interest-
ing to justify itself, and is often found useful in both mathematics and
its applications.] Many important concepts are developed in modern
algebra, which makes great use of the axiomatic method, through the
investigation of “altered” axiom systems.

6.2 Advantages of the axiomatic method

Certain advantages of the axiomatic method have already been alluded
to. For example, we mentioned (4.9; also see 1 1.5, I 3.2) the “economy”’
achieved when an axiom system X has many models in the same or different
branches of mathematics. A single theorem in X yields a theorem in each
interpretation; but the latter requires no special proof so long as the
theorem was proved in the system 2. An excellent example of this,

t Cf. Bell [B;; 40-46], for instance.
1 Cf. Bell [B;; 36-40].
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mentioned in 4.9, is the axiom system for a group, which we shall study in
the sequel; this notion, defined axiomatically, is one of the most outstand-
ing “labor-saving devices” in modern mathematics. Other examples will
be given in Sections 7 and 8 which follow. And, obviously, once we have
recognized, in some branch of mathematics, that a certain setup or
structure constitutes a model of a previously known axiom system X,
then we are likely to see many new possibilities opening up because of the
knowledge already embodied in the study (previously made) of £. In this
way, the axiomatic method not only achieves economy but also throws
new light wherever interpretations of known axiom systems are possible.

We have also just pointed out that, by altering existing axiom systems,
new mathematical concepts may be generated—not always fruitful
concepts, to be sure, but nevertheless frequently of sufficient importance to
justify their study.t In this manner, new branches of mathematics may be
created, and the method becomes (as in modern algebra) a useful research
tool.

Another distinct advantage of the method that deserves special mention
is its character of implicit “definition.” Although the genesis and
development of a mathematical concept may proceed alongseveral entirely
different lines, once the concept has matured, so to speak, the axiomatic
characterization of it may prove extremely advantageous. For example,
the development of the real number system, which forms the foundation of
modern analysis, was a slow evolution over many centuries. Today, as
we shall see, we can give it a precise axiomatic definition and study its
properties by means of the theorems based on the axioms. Many other
mathematical concepts have developed in a similar manner.

An advantage, related to the above, which may or may not have occurred
to the reader while we were proving theorems on the basis of the system T,
is that of ““placing the responsibility where it belongs.” Frequently a
mathematics student exclaims, “I could work this problem, I think, if I
only knew what I could assume!” This is an oft-heard complaint. For,
if he is not certain about just what assumptions he can make, how is he to
proceed with a proof? However, if we present a student with an axiom
system X and wish him to prove a certain Theorem A, he can say, “Here is
a X-statement, A. Prove A”’; we have thus given a specific direction to the
student who now knows exactly what his “point of departure” is. For this
reason, the axiomatic method forms a useful pedagogical device in the
teaching of mature students. (See Wilder [c].)

+ We recognize that some of the above commentary is probably productive of
questions in the reader’s mind such as, “What is a fruitful concept?’ We prefer to
delay the discussion of such matters, with the assurance that we shall discuss them
later.
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6.3 Disadvantages of, and objections to, the axiomatic method

“Nothing is perfect,” and the axiomatic method turns out to be no
exception. Most of the criticisms of the method, as it is commonly
employed and as we have described it, are too complicated to permit
simple exposition in the compass of a single section, and will have to be
allowed to emerge as we progress through the succeeding chapters. For
not the least of the disadvantages of the axiomatic method as it is usually
employed are related to its utter dependence on logic—not only the
Aristotelian ‘““laws,” but also the assumed “universality” of the logical
terms. If it should turn out that the logical machinery itself reveals flaws,
then what faith can be placed in the reliability of the theorems deduced ?

Some mathematicians object to the highly formal character of the
method, particularly its foundation in undefined terms, basic assumptions
(axioms) in terms of these, and logical deduction capable of being carried
through without any interpretation in mind whatsoever. They feel that
formality is quite good and entirely justified in some instances, but that it
can be carried too far, especially when it is used, for instance, to treat the
ordinary integers 1, 2, 3, - - -, as undefined terms. (See the Peano axioms
in VI 3.1; also see the criticism by Russell [R;; [] in that connection, and
Klein [KI; 14-15].) Clearly the method is not for the immature mind.
Most mathematicians and pedagogues are agreed that in teaching geometry
to high school students it is much better to allow the student to take for
granted as ‘“‘obvious” all those fundamental notions whose formalization
would only seem a waste of time to him.

There are mathematicians, to be sure, who will maintain that all
mathematics should be placed on an axiomatic basis. This does not
mean that they ask that a single axiom system should be given for all
mathematics. This would certainly be impossible, and tantamount to a
definition of mathematics—something which, as we shall see, it would be
almost a miracle to get as many as fivet mathematicians to agree upon.
But it is asserted by many that each branch or portion of mathematics
should be axiomatized. At the other extreme are mathematicians who
will have nothing to do with axioms, whose conception of mathematics is
such that formalization immediately squeezes the mathematical substance
out of the material formalized.

7 Axioms for simple order

Before leaving the study of the axiomatic method, let us describe two
very simple examples of concepts which appear in various guises in mathe-
matics, and which were axiomatized and studied for their own sake so that

t Perhaps “two” would be correct here, but we would rather allow a little margin
for error.
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the “economy” feature of the method (application to many different
models) might be utilized. One of these is the concept of simple order
(frequently called linear order). 1t is probably unnecessary to demonstrate
to the reader that ‘“‘ordered” collections abound in mathematics. The
points of a line, the integers 1, 2, 3, --- used in counting (these we shall
call the natural numberst), are two of the most common examples of
ordered collections. And the notion is of such a fundamental character
that it is abundantly exemplified in our physical surroundings; we order
our streets, our books on shelves, soldiers in file, and so on.

What common element is involved in all such cases? Simply that, if
p and g are distinct elements of any one of these collections, then either p
precedes g or q precedes p. In the case of points on a line, “precedes”
may mean “is to the left of”’; in the case of the natural numbers, “2
precedes 5 means ““2 is smaller than 5”; in the case of streets running
“north and south,” “precedes” may mean ““is to the west of”’; and so on.
Consequently we make “precedes” the basic term which receives meaning
according to the nature of the collection ordered; that is, precedes is
adopted as an undefined technical term. And, as the objects that occur in
ordered collections also vary from one collection to another, we adopt
some undefined term for these; point is as good as any.

So far as the axioms themselves are concerned, we naturally start with
the property that we have already noticed is common to all simply ordered
systems, namely, “If p and ¢ are distinct points, then either p precedes g or
q precedes p.” But is this all we need state? Suppose p and g are not
distinct points; shall we let p precede ¢ or vice versa? Since this is clearly
not the case in any of the examples that we have scanned, we ought to rule
it out by an axiom: “If p precedes g, then p and g are distinct points.”
And now do we have all we need by way of axioms? To see that we do
not, we need only point out that, if we would avoid circular or ““cyclical”
order, we need to say more. Let p, g, r be the vertices of an equilateral
triangle inscribed in a circle C, and let “x precedes y” mean that x and y
are distinct and that the arc from x to y on C in a clockwise direction is less
than a semicircle. Then if p, g, r occur in the order stated in a clockwise
direction around C, p precedes g, g precedes r, and r precedes p. This
example is a model of the system formed by the two axioms already stated,
and, if we wish to restrict ourselves to defining linear rather than cyclical
order, it should be ruled out. This may be done by stating “If p precedes
g and g precedes r, then p precedes r.” In all the examples previously
mentioned this is a true statement, but it fails in the example of cyclical
order just given.

It is not obvious, of course, that the three statements fixed upon above

+ Some writers include 0 among the natural numbers.
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suffice to describe exactly what we mean by linear order. This becomes
apparent only when we see what the three statements imply. For
certainly we are not looking for a complete axiom system—an ordered
collection may contain any number of ‘“points,” and consequently not
every two models of the axioms we decide on are going to be isomorphic.
If we are interested in defining a linearly ordered triple, we would of course
add the statement “There exist three and only three points,” and we could
then show, without much labor, that the collection of four statements forms
a categorical axiom system; whereupon it would be apparent that we had
made enough basic assumptions to accomplish our purpose (i.e., to define
a linearly ordered triple).

The three statements about order can be presented succinctly in the
following way: Let C be any collection whose elements we call points and
which are denoted by small letters x, y, z, a4, b, - - - ; and let there be given
a “binary relation”t between the points of C which we denote by “<”
and call “precedes.” Then C is called simply ordered, or linearly
ordered, relative to <, if the following axioms (cf. Huntington [Hu; 10])
hold:

(1) If x and y are distinct points of C, then x < y or y < x.}
(2) If x < y, then x and y are distinct.
(3) If x < yand y < z, then x < z.

On the basis of these axioms we can now prove such theorems as “If x
and y are points of C, then not both x < y and y < x hold”; “If nis a
natural number such that C contains exactly n points, then symbols
X1, Xg, - - -, X, can be so assigned to these points as to make the relations
X, < Xg, Xg < Xg,--+, Xn_1 < X, all hold.” Note that the latter state-
ment goes a long way toward justifying the feeling that (1)-(3) above
imply all that we wish concerning linear order, assuming that we want to
keep sufficient “incompleteness” to allow many different interpretations.
Let us call the above axiom system O.

(The reader may like to establish the independence of the axioms
of O.)

71 The statement “(C, <) is a simply ordered system” may be used
as an abbreviation for the statement “C is a set and < is a binary relation
between elements of C such that C is simply ordered relative to <.”

+ Here we treat “relation” between two things as a universal logical notion
(cf. 6.3 “Disadvantages ...”). For analysis of the notion in terms of classes, see
VIII 8.2.7.1; in terms of propositional functions, see IX 5.2.2.

t We always use “‘or” in the sense of “and/or.”” Thus, so far as Axiom (1) is
concerned, both “x < »” and “y < x” might hold. However, the combined
Axioms (1)—(3) will rule out this possibility.
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8 Axioms defining equivalence

One of the most used (and abused) notions in mathematics is that of
equivalence relation. Like the notion of simple order, it is also exemplified
in our social and physical environment. Wherever classification occurs,
we find what the mathematician calls equivalence. We merely agree to
call all those things in the same class “equivalent.” For example, if in a
given city we classify all people according to their church membership,
placing in a single class all those belonging to the same church (and in a
single class all those not belonging to any church), then there is established
an equivalence with respect to church membership; all Catholics would be
considered “‘equivalent,” all Baptists would be “equivalent,” etc. Or we
might classify them according to age, two persons being then “equivalent”
if they are of the same age in years. Thus two persons, x and y, might be
equivalent in the sense of church membership, and not equivalent with
respect to their ages. Similarly, in a college, two students may be
equivalent with respect to their status as freshmen, sophomores, etc.

8.1 Without pausing to attempt an analysis of their origin (see Peano
[P1; 9]) or to justify the particular choice of statements, we give the usual
axioms for equivalence as follows: Let S be any collection whose elements
we denote by small letters x, y,---, and X a binary relation between
elements of S. (We avoid the symbol = since it has too many connota-
tions, such as “identity.””) Then =% is called an equivalence relation in S if
the following axioms hold:

(1) If x is an element of S, then x ~ x.
(2) If x = y, then y ~ x.
(B) Ifxx yand y x z, then x ~ z.

Note that (3) is the same as (3) of the system O of Section 7, if the difference
in symbols denoting the relations is ignored—this property of a binary
relation is called tranmsitivity—and that it holds for both < and =~ is
expressed by stating that both these relations are fransitive. Similarly,
(1) is called reflexiveness and (2) symmetry. Thus the relation =~ is
reflexive, symmetric, and transitive. Let us call this axiom system E.

8.2 In the examples cited above, perhaps statements (1) and (2) appear
trivial. Thus, in the classification according to age, it appears too trivial
to mention that a person is the same age as himself. And, of course, if x
is the same age as y, then y is the same age as x. The necessity for stating
these properties as axioms becomes apparent as soon as we begin the
“justification process”; i.e., showing that the axioms imply all that we wish
to have implied (without implying too much). And, if x is the same age as
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y, and y the same age as z, then x is the same age as z. Evidently in any
decomposition of a collection into classes, where no two classes overlap,
the meaning *“x is in the same class as y” for “x & »” constitutes an inter-
pretation of the axiom system E. Incidentally, the system is consistent in
view of the interpretations stated above. The reader will find it amusing
to establish the independence of the axioms in E. [In connection with
axiom (1), note that it is never essential in a case where for each element x
of the collection S there is some element y of S such that x = y, since in
this case x ~ x will follow from (2) and (3). In general, however, (1) is
independent.}

8.3 Now the use of equivalence relations in mathematics is usually of a
sort that is the direct converse of the manner in which we have presented
the notion above. Instead of starting with a collection S which is already
split into non-overlapping classes, and getting the corresponding equiv-
alence relation, the mathematician notices the presence of an equivalence
relation and then sets up the classes. A simple illustration of this is
furnished by the collection of natural numbers, with “x & y” meaning
“x differs from y by a multiple of 3> (0 is a multiple of 3—the Oth multiple).
This is obviously an equivalence relation, and if we decompose the
collection of natural numbers into classes, putting into the same class two
numbers that differ by a multiple of 3, we get three classes of numbers:
1,4,7,--),2,5/8,---),and (3,6, 9, - - -).

8.4 A better example, and one of great interest in connection with the
subject of this chapter, is furnished if we notice that isomorphism forms an
equivalence relation. Specifically, if £ is an axiom system, u(Z) is the
collection of all models of £, and if 9 and N are models of Z, let “M =~ N
mean “I and M are isomorphic with respect to X.” Note that the
axioms of E become true statements with this meaning for ““~,” so that we
get an interpretation of E.  In this case, if we decompose u(Z) into classes,
placing two models in the same class if and only if they are isomorphic, we
notice that categoricalness of £ corresponds exactly to the case where only
one class results. 1In the case of non-categoricalness there might be any
number of classes. In a way, the number of such classes serves as a
“measure of completeness” of an axiom system; the fewer the number of
classes, the greater the amount of completeness present.

8.5 We notice then that, corresponding to any collection S and an
equivalence relation = in S, there always exists a unique decomposition of
S into classes, called the class decomposition of S corresponding to ~. We
shalil leave to the reader the proof of this on the basis of the axiom system
E. He may accomplish this by using the following outline:
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Definition. If x is an element of S, let S(x) denote the collection of all
elements y of S such that x ~ y.

Theorem 1. If x is an element of .S, then S(x) is not empty; in particular,
x is an element of S(x).

Corollary. Every element x of S is in some S(x).

Theorem 2. If x X y, then the classes S(x) and S(y) are the same.

Corollary. A class S(x) is completely determined by any one of its
elements.

As a consequence of this corollary, we frequently say that any element
of an “equivalence class” S(x) may serve to represent S(x), or to be a
representative element of S(x).

Theorem 3. If two classes S(x) and S(y) have a common element z,
then they are the same class.

Theorem 4. The classes S(x) constitute a unique decomposition of S
into non-overlapping classes; we call this the class decomposition of S
corresponding to ~.

SUGGESTED READING

Birkhoff [Bi; I1 Richardson [R; XVI, 448-457]
Hilbert [Hs; §§ 8-12] Tarski [T], [Tz]

Hilbert and Bernays [H-B; § 1] Veblen {a]

Huntington [Hu; II] Veblen and Young [V-Y; Intro.]

Young [Y; IV-V, VII]

PROBLEMS

1. Show that if £, and X, are axiom systems such that X, is consistent and
X, has a model in X,, then £, is consistent.

2. If an axiom system that is known to be consistent has a model in a
system X, need X be consistent? (Illustrate by means of an example.)

3. Show that an empty collection is a model of the axiom system O of Sec-
tion 7. Does the existence of this model prove O consistent ?

4. Show that axiom (1) of the system E of Section 8 is independent in E.

5. Prove on the basis of I's that “line” may be defined in terms of “point.”
(Recall that since the axioms of I' are included among those of I'g, the theorems
proved in Chapter I from I' are valid for T's.)

Let us designate by O’ the axiom system O of Section 7 augmented by the
following axiom:
Axiom 4. There exist two and only two distinct points in C.

6. Show that the system O’ is satisfiable.

7. Is the system O’ consistent by Definition 1.1?

8. Show that Axiom 3 is independent in the system O’.

9. Show that the axiom system obtained by deleting Axiom 3 from O’ is
not categorical. (Note, incidentally, that although Axiom 3 is only vacuously
satisfied in every model of O’, it does give information about the model.)
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10. Show that if in axiom system O’ Axiom 3 is replaced by the axiom ““Not
both x < y and y < x hold,” then the resulting axiom system is categorical.

11. Show that if the axiom system O of Section 7 is augmented by the
axiom “There exist three and only three points,” then the resulting system O is

categorical.
12. Let Oy denote the system Oz of Problem 11 augmented by some
axiom of the form “If a, b, ¢, d are four distinct points, then...” Is this

axiom independent in O3"?

13. If S is a collection whose elements are themselves collections (for
example, & might be a collection of libraries, each library being itself a
collection of books), and A, B are elements of &, let A «» B mean that there
exists a (1-1)-correspondence between the elements of A and the elements of
B (cf. 4.4.2). Show that < is an equivalence relation in the collection 3.

14. Show that if two simply ordered sets 4 and B have the same number, ,
of elements, then they are isomorphic relative to the simple order axioms.

15. Let T be an axiom system and suppose that, if 3, and M are any two
models of T, there exists a (I-1)-correspondence between the elements of
M, and the elements of M, which preserves those Z-statements that form the
axioms of . Is T categorical? [Hint: Consider axiom system O’ with
Axiom 3 deleted.]

16. If Cis any collection and < a binary relation between certain pairs of
elements of C, then C is called partially ordered with respect to = if the
following axioms hold:

(1) For every element x of C, x = x.

(2) If x £ yand y £ x, then x and y denote the same element of C.

B)Ifx=<yandy = z, thenx = z.

[Note that (1) and (3) are, respectively, the reflexiveness and transitivity of =.
The property of the binary relation stated in (2) is called anti-symmetry.]

Denote this axiom system by P. Prove P consistent and non-categorical;
establish independence of each of its axioms.

17. (2) If M is a collection of objects of various ages, and the relation = is
interpreted to mean ““is at least as old as,” is M partially ordered with respect
to this relation? (b) Show that every collection of sets is partially ordered
with respect to the relation ““is contained in” (compare III 3.1.2.)

18. Let F be an axiom system with undefined terms figure and rectangular,
the former being an undefined object and the latter an undefined property of
figures. The axioms of F are:

(a) There exist at most twenty figures.

(b) If x is a figure, then x is rectangular.

(c) If x is a figure, then x is not rectangular.

Show that F is satisfiable and categorical, and that its axiom (c) is independent.
How would the system be affected if in (a) ““at most” were replaced by “at
least™?

19. Let £ be an axiom system and T a theorem in the proof of which an
axiom A of = is used. Show that if we wish to demonstrate that T cannot be
proved without using axiom A, it suffices to give a model of Z — A in which
T fails to hold.

20. Is the axiom system I'¢” of 4.4.5 categorical? Is it a monotransformable
system? [A determinant D of order 3 yields a model of I'¢’ if the triples
used in evaluating D, as well as rows and columns, are called “‘lines.”]
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21. The definition of independence in 3.1.1 is stated in terms of satisfiability.
Suppose, however, that the word “satisfiable” is replaced by ‘“‘consistent” in
3.1.1. Then show that, as a result, Definition 4.3.1 becomes equivalent to:
“An axiom system X is complete if the addition of a Z-statement, A, not
implied by X, results in contradiction.”

22. Show (under assumptions 2.2.1 and 2.2.2) that completeness of an
axiom system X in the new sense given in Problem 21 in quotations implies
that £ is complete in the sense of Definition 4.3.1 (where “‘independent” is
understood in terms of satisfiability as given in 3.1.1).

23. If £ is an axiom system, define a Z-question to be a question of the form
“Does A hold?” where A is a Z-statement. Then define £ to be complete
if it implies an answer to every Z-question. Show that this definition is
equivalent to that given in Problem 21 (in quotations).

24. If Z, and I, are axiom systems having the same set, T, of undefined
terms, define £; = £, to mean that the collections w(Z,) and u(X,) of models
are the same. Is this relation x an equivalence relation in the collection of
all axiom systems based on T (i.e., having T as their sets of undefined terms)?

25. If Z; and Z, are axiom systems based on T (as in Problem 24), define
%, £ I, to mean that u(Z,) contains u(Z,) as a subcollection. Is the collection
of all axiom systems based on T partially ordered with respect to this relation
=<? (See Problem 16.)

26. Let £, and X, be axiom systems as in Problem 25. Define =; = =,
to mean that the axioms of X, are provable (as theorems) in the axiom system
%, (we may read “%; = X,” as “E; implies ;). Show that £; = X, implies
that £, < X, (the latter being defined as in Problem 25).

27. With &,, X,, etc., as in Problem 26, define £, <= Z, to mean that both
Z;, > Z;and I, = Z;. Show that < is an equivalence relation in the collec-
tion of all axiom systems based on T.

28. Let P’ denote the axiom system obtained when axiom (1) of the system
P (Problem 16) is replaced by the axiom “If x and y are elements of C, then
x =yory =x." If,in P, “=” is replaced by “ < or identical with,” what
relation is there between the resulting axiom system and the axiom system for
simple order (Section 7)?

29. Problem 28 suggests generalizations of the “ =" and ‘<" of Problems
26 and 27, such as the following: If £, and Z, are axiom systems based re-
spectively on collections T, and T, of undefined technical terms, let £, = X,
mean that the elements of T, may be so defined in terms of the elements of T; as
to make the axioms of Z, provable theorems in the axiom systemX;. Discuss.

30. Let us alter axiom system P of Problem 16 as in Problem 28 to obtain
system P’. Show that if we define x < y to mean “x is not identical with
yand x = y,” then P’ = O in the sense of Problem 29. (Does O < P’ hold?)

Problems 31-35 will be based on the following axiom system: t

Let S be a collection, of which certain subcollections are designated as
m-classes. By definition, two such m-classes are called conjugate if they have
no element incommon. The following axioms are to hold (we denote elements
of S by small letters x, y, z, -+ -):

T See Problem 2894 in the American Mathematical Monthly, vol. 29 (1922), pp.
357-358, for solutions as well as a discussion by Professor O. Veblen of the origin
of this axiom system in his class.
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(1) If x and y are distinct, there is one and only one m-class containing x

and y.

(2) For every m-class, there is one and only one conjugate m-class.
(3) There exists at least one m-class.

(4) No m-class is empty.

(5) Each m-class contains only a finite number of elements of S.

. Show that every m-class has at least two elements.

Show that S contains at least four elements.

. Show that S contains at least six m-classes.
. Show that no m-class has more than two elements.
. Prove that the given axiom system is categorical.

36.

Show that the axiom system on which Problems 31-35 are based is

equivalent (as in Problem 27) to the system I's of Section 4.3, if elements of §
are called points, and line is substituted for m-class.



Theory of Sets

In Chapter I, Section 2, we gave an example of a simple geometric axiom
system. The first axiom of this system stated: “Every line is a collection of
points.”  The corollary to Theorem 1 (I 3.3) stated: “Every line contains
at least one point”; i.e., the collection of points constituting a line is never
empty. It will be recalled that in connection with this corollary some
Justification was given for the use of the notion of empty collection, and it
was remarked that, although “collection” was one of the supposedly
“universal” terms, we found it necessary to explain, in part at least, just
how or in what sense we were using the term. In the same connection it
was also remarked that we were touching upon a question that has caused
considerable concern to mathematicians and logicians, namely, What is a
collection ?

Of course, we can look up the word “collection” in a dictionary, but if
we do we find such definitions as “a group of collected objects or indi-
viduals,” “an aggregation,” “accumulation.” These will hardly be of
much help. And the mathematician uses “definition” in a different sense
from that of the dictionary. When a mathematician gives a definition, it
is intended that it will be not a mere synonym (such as “aggregation” for
“collection’’) which the reader may happen to know the meaning of, but a
criterion for identifying; a characterization of the thing defined.t If the
“definition” is not of this kind, it is of little use to the mathematician.

During the past fifty years, there have been proposed almost as many
“definitions” of the term ‘“‘collection” as there have been of the term
“mathematics” itself (we shall come to the latter in due time). And none
has yet met the criterion that it serve satisfactorily to identify the notion.
Let us look into the reasons for this state of affairs concerning a notion that
must seem so trivial to anyone who has never looked into it before.

¢

t Incidentally, this kind of definition is probably one of the most difficult notions to
get over to the student of mathematics. Try as we will, it sometimes seems im-
possible to convince a student that, if he wants to know whether something is a certain
type of mathematical entity which has previously been defined, he should see if it
satisfies the criterion given in the definition. This sounds trivial, probably, to a
person who has never faught mathematics, but I am sure that any teacher of mathe-
matics will understand.

54
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1 Background of the theory

In the first place, let us straighten out the synonyms for “‘collection.”
This chapter is labeled “theory of sets” because the American mathe-
matician uses the word “set” more frequently than ‘“collection”; this is
probably because of its brevity, for mathematicians like abbreviations.
However, our English colleagues seem to prefer “‘aggregate’; an English-
man would have entitled this chapter “theory of aggregates.”” On the
other hand, our American colleagues who teach philosophy, including a
course in logic, would probably label it “theory of classes.” And
mathematicians have frequently employed the terms “‘family,” “system,”
and “group,” although these words are usually reserved for more special
types of collections.t It is probably safe to say that in the United States
mathematicians prefer the terms set, collection, class, in that order.}

Since some readers may wish to consult French or German works, we might
interpolate here the remark that the French term for ‘“collection” is ‘“‘ensemble,”
and the German term is ‘“Menge.” (In French the title of this chapter would
become “Théorie des ensembles”; of course the Germans have combined it into one
word, ‘“Mengenlehre”). In French texts the letter E (with or without an index as
in E;) is almost invariably used to denote a set, and in German texts the letter M
is used.§

Of course collections have been used in mathematics since the very
beginnings of the subject; by the Greeks, for instance. The modern
theory of sets is usually considered to have begun with Georg Cantor
(1845-1918), who devised the first numbers for infinite sets (i.e., transfinite
numbers) during the latter part of the nineteenth century.|| It is revealing
to read the ““definition” of set given by Cantor. The first sentence of the
first of the papers just cited is (translated): By a ‘set’ we shall understand
any collection into a whole, M, of definite, distinguishableY objects m
(which will be calied ‘elements’ of M) of our intuition or thought.” This

+ For example, a mathematician would be very unlikely to use the term “‘group”
instead of “‘set” or “collection” if he actually meant the latter, because of the special
use (see Chap. VII) for which the term “group” is reserved today.

1 Undoubtedly a ‘““collection of sets” sounds better, to many, than “a set of sets.”
We never seem to see the term “‘a set of collections.”

§ In the early part of the present century, when so many American mathematicians
went abroad for their doctoral or post-doctoral work, we could usually detect which
foreign influence was dominant, on their return, by the preference for E or M to
denote a collection.

il Fortunately, Cantor’s two most authoritative papers (see Cantor [C; 282fF]) are
available in an English translation by Jourdain; Cantor [C,].

4 In his translation (Cantor [C,]), Jourdain says ‘‘definite and separate.” How-
ever, it seems likely that by ‘“‘bestimmten wohlunterschiedenen Objekten,” Cantor
meant to imply that the objects are distinguishable from one another in some sense.
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was written by a first-class mathematician who clearly did not know, at
the time he wrote, that the word “‘set” was “loaded” (as did nobody else
at the time).

1.1 Enlightenment was not long in forthcoming. As a matter of fact,
it was virtually ready not long after Cantor published his ideas, as a result
of the announcementt by an Italian logician, Burali-Forti, of a funda-
mental difficulty with one of Cantor’s basic definitions. Unfortunately
Burali-Forti misinterpreted the definition, so that his insight did not at
first win recognition (for the objection he raised was just as valid when
opposed to the correct interpretation). Soon after, Russell announced his
famous ‘‘antinomy,” described below, and this time there was no attempt
to avoid the difficulty by subterfuge or otherwise, and the problem of
“what to do?” had to be met head on. Once the dam was broken, the
flood was on, and the construction of contradictions and paradoxes
became almost a mathematical “indoor sport.”

1.2 Notice that we said “contradictions and paradoxes.” The ex-
amples constructed were generally of two kinds: those that were bona
fide contradictions, and those that were only “apparent contradictions”
without actually being contradictory. The former are frequently given
the technical name antinomy; the latter we do not worry about, although
we often use them for amusement or instructional purposes (for instance,
in the case of the “proof™ that all triangles are isosceles cited in I 3f).
We shall describe both the (amended) Burali-Forti and Russell examples,
since they are real contradictions.

The Burali-Forti contradiction we shall defer until a later section
(V 3.5.3), . however, since it requires an acquaintance with the notion of
“ordinal number.” The Russell antinomy involves no such technicalities,
and for our future purposes we shall state it in the following form.

2 The Russell contradiction

Consider any collection S. Its elements are to be thought of as indi-
vidual objects—each a “unit.” However, in general the elements will
themselves be sets if we care to “dissect” them. Thus a collection of
books has, for each element, a single, individual book. But, if we wish,
we can consider a book not as an individual, indivisible object, but as an
(ordered) collection of printed words; and, in turn, each word as an
(ordered) coliection of letters.

Since, generally, the elements of .S may be sets themselves, the possibility
arises that S may happen to be an element of itself. For example, some-

T According to F. Bernstein, however, Cantor had already become aware of possible
difficulties; see V 3.5.3f.
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one (the name has escaped us) has suggested the set of all abstract ideas;
such a set is certainly an element of itself if we grant (and who wouldn’t!)
that it is itself an abstract idea. If the notion seems rather far-fetched,
however, there is no need to worry about it, since the Russell antinomy
involves only sets that do not have themselves as elements. Such sets we
may call ordinary sets. Thus, the set of natural numbers is ordinary—
and most sets that we use are ordinary.

21 Now suppose that we assemble all ordinary sets in one collection
1. Then the elements of U, by definition, are ordinary sets, and every
ordinary set is an element of 11. Using exactly the same type of reasoning
that we used in high school geometry, we prove the following two theorems:

Theorem A. The set U is an ordinary set.

Proof. For suppose 11 is not an ordinary set. Then U is an element of
itself.

But the elements of 11 are all ordinary sets. Hence, as U1 is an element
of 1, it is an ordinary set.

Thus the supposition that 11 is not ordinary leads to the conclusion that
U is ordinary, hence to a contradiction. We must conclude that our
supposition is false, hence that U is ordinary. Q.E.D.

Theorem B. The set U is not an ordinary set.

Proof. For suppose U is an ordinary set. Then 1 is not an element
of 1, by definition of “ordinary.”

But al/ ordinary sets are elements of 1. Hence, if 11 is not an element
of 1, it is because U is not ordinary.

Thus the supposition that U is ordinary leads to the conclusion that U
is not ordinary, hence to a contradiction. We must conclude that our
supposition is false, hence that 1 is not ordinary. Q.E.D.

2.2 Theorems A and B plainly contradict one another. And we have
obtained this contradiction by purely logical deduction. Furthermore, if
“set” is to be regarded as a logical notion, as many maintained, the whole
affair, from the definition of the set 11 to the end of the proof of Theorem
B, is purely logical.

The set U is often called ‘“‘the Russell set.”” Actually, in view of the above, it
cannot be admitted as a set if we are to continue to hold fast to the Law of Con-
tradiction. Some have also called u a *‘self-contradictory set.”

An amusing (except to philosophers, who can substitute the word ‘‘mathema-
ticians” for ‘“‘philosophers” below) formulation of Russell’s contradiction was
given by Grelling [Gr; pp. 44-49] in a “proof™ that ‘“‘the set of all philosophers is a
camel.”

It is not surprising, then, that the first reaction of some mathematicians
to this matter was that it concerned ‘‘logicians,” not ‘“‘mathematicians,”
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so let the logicians find what was wrong and set their house in order!
But this attitude was short-lived, since, if mathematics is to use logic, any
defect of logic is of concern to mathematics—especially when the defect is
found in a concept that is so frequently used in mathematical definition
and proof. The natural result was a movement among mathematicians,
slow at first but accelerating in recent years, toward the study of logic.
And, whereas logic was traditionally a cut-and-dried rehash of the work
of Aristotle—with great concentration on the syllogism, etc.—it has today
become a live and growing field of investigation, known under the name of
symbolic logic or mathematical logic.

23 Two comments should be made here. In the first place, symbolic logic itself
had its beginnings long before the discovery of contradictions such as the one just
described above. For evidence of this, the reader may glance at the bibliography of
symbolic logic compiled by Church [a, b]; the works cited cover a period beginning
with the year 1666. There can be little doubt, however, of the great impetus given
to its development by the contradictions. Secondly, and related to the preceding
sentence, the breadth of the modern interest and extent of research in symbolic logic
is evidenced in the formation of the Association for Symbolic Logic, Inc., and the
founding of a journal, The Journal of Symbolic Logic, which began publication in
1936 and has now (1963) reached its twenty-eighth volume.

It is of interest also to remark that “border-line” interests such as have been
exemplified for so long among the mathematical physicists are paralleled among the
“mathematical logicians.” And just as the former may be found in either the
mathematics or the physics department (or both) of a university, so may the latter
be found in either the mathematics or the philosophy department. (Probably
because it was developed by the Greek philosophers, logic has traditionally been
taught in the philosophy department—a distinction of significance only in the
modern university where the departmentalization due to the tremendous growth of
learning has been made necessary.) That breaking down of barriers between fields
in our universities, implored and exhorted by so many educators but opposed by
budgetary officers, will probably be brought about by forces within the fields them-
selves. In the introduction to his bibliography, Church [a] was moved to state
“It has been the intention to confine the bibliography to symbolic logic proper as
distinguished from pure mathematics on the one hand and pure philosophy on the
other. The line is, of course, difficult to draw on both sides, . . .”

3 Basic relations and operations

Deferring any attempt to explain the above contradiction—it was
introduced at this point only to show the necessity for a closer analysis of
the term “‘set”—Ilet us consider some of the elementary parts of so-called
“set theory,” illustrating them with important examples of sets basic in
mathematics. We shall not begin with a definition of “set,” but will
proceed, as before, as though we are dealing with a ““universal,” with the
idea of becoming more familiar with its meaning and application in
mathematics before attempting further analysis.
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First, let us introduce a few symbols, not because we wish to become
“technical,” but for the sake of brevity and simplification. Probably
anyone who has ‘“taken” high school algebra thinks of symbols when the
word “mathematics” is mentioned. If the course was satisfactorily (1)
taught by the teacher and (2) absorbed by the pupil, then the pupil must
have realized the gain accomplished in the introduction of “x, y, z,---”
and operations (addition, equating, transposition in an equation, etc.)
with them. Anyone unconvinced of this should see what efforts were
involved in the solution of simple problems before the introduction of
modern algebraic techniques (for that matter, imagine having to add,
multiply, or divide numbers in the Roman symbols: MXVI x XLVII,
for instance).t

3.1 Relations between sets

If S'is a set, and x is an element of .S, then we express this by the symbols
(3a) xeS,

which may be read “x is an element of S.” In special instances, but rarely,
we may wish to reverse (3a):

(3a") S3x;

in general, however, we shall use (3a).f The negation of (3a) is denoted
by the symbols x ¢ S. We may abbreviate the relations x; € S, x, € S, - - -,
X, €S 10 X4, Xg, -+, X, €S.

3.1.1 Notice that in 3.1 we used different types of symbols for the
element and the set: a lower-case x and capital S. Generally we shall
adhere to this custom.§ It can become complicated, of course, if we start
“pyramiding” sets. Thus, if x, S are already introduced, and S is in turn
an element of a “still larger” set, we shall resort to German capitals:
S &€ for instance. Greek capitals may be used for higher types:
& g, etc.

312 A set A is called a subset of a set B if x € A implies x € B for all
x; in words, A is a subset of B if every element of 4 is also an element of
B. The relation is expressed symbolically by the symbol < :

(3b) A< B,

t There is in existence a letter to an Italian of the Middle Ages advising that he
send his son to the German universities because long division was taught there!

1 The alternative form ‘€ of the Greek epsilon is also widely used instead
of “8.”

§ Exceptions may be made in the case of symbols that have become traditional;
for example, the use of “f” for a function; see II 4.4.1.
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which may also be reversed:
(3b) B o A.

Since, by definition, 4 = A4 for every set 4, we express the fact that
A < B and A is not identical with B by the statement that A is a proper
subset of B (sometimes the term “true subset’ is used).

3.1.3 That the sets 4 and B are identical, i.e., have the same elements,
is expressed by the equality sign:

3c) A= B.

Evidently a necessary and sufficient condition that A = B is that both
A < Band B < A hold. This is the basis of one of the most frequently
employed methods for establishing the identity of two sets. It should be
noticed, too, that the equality relation = is an equivalence relation (II 8)
in any collection of sets whatsoever. In particular, in any collection of
sets there can be at most one empty set, and it is usually denoted by a
“zero” symbol, “0,” or a modification thereof such as “Q.” We shall
generally use the latter. The empty set is frequently called the null set.

3.1.4 If S is any collection of sets and Q € S, then for every S€ &,
P <S.

[The logical equivalent of “xe 4 implies x & B” is “x ¢ B implies
x ¢ A”; the reader may prefer the latter form of the definition of “4 < B”
in proving that 0 < S.]

Negations of =, ®, and = are denoted by ¢, D, and #, respectively.

3.2 A symbol for defining special sets

An especially useful symbol for the defining of individual sets is the
formula “{|},” which is applied as follows: Suppose that we have the
combination of symbols:

(3d) A = {x | x is a human being}.
Then (3d) would be read:
(3d") A is the set of all things x such that x is a human being.”

In other words, 4 is the set of all human beings. In (3d) the braces {}
are used to denote the set of all things denoted by whatever is enclosed by
the braces, and the ““|” may be read “such that.”

To get a better idea of the use of this symbol, suppose that we wish to
define the set, S, of all points that lie within the unit square of the co-
ordinate “xy-plane” (such as is used in the subject of “‘graphs” in the
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elementary algebra or analytic geometry courses), which is bounded by
the two coordinate axes and the lines, parallel thereto, one unit to the right
of the y-axis and one unit above the x-axis, respectively. This set [within
the framework of the subject matter, so that the meaning of (x, y) is
understood], may be defined as follows:

S={(x»]|0<x<1,0<y <1}

Certainly this is more specific and easily understood, as well as more
economical of symbols, than the definition in words which precedes it.

In cases where the “such that” is superfluous, we use the braces {}
within which the elements are named instead of { | }. Thus, {2, 4} denotes
the set whose elements are the numbers 2 and 4; {2} denotes the set whose
single element is 2 (we shall wish to distinguish this set from the number 2).

An exception which has evolved in practice often occurs when, given a
set S and x ¢ S, we frequently write S U x instead of SU {x}, or S — x
instead of S — {x} (the operations U and — are defined in 3.3.1 and 3.3.2).
However, when standing alone, the symbol {x} must be used to distinguish
between the set whose single element is x, and x itself. This is particularly
important when x is itself a set, since then {x} has only one element whereas
x may have many elements.

3.21 The proposal of the symbol { |} suggests that the notion of
“property” might be made basic instead of the notion of “set.”” Just as in
(3d) the set A4 is defined by the property of “being a human being,” so in
general we would expect that some property distinguishes the elements of
any given set. If so desired, it would be feasible to build a theory of sets
on this basis.

3.3 Operations with sets

In the classical set theory, the basic operations are addition and multi-
plication.  As might perhaps be inferred from its connotation in ordinary
use, to add sets is merely to combine their elements to form one set.
Thus, if A4 is the set of all even natural numbers, and B the set of all odd
natural numbers, then A + B would be the set, N, of all natural numbers.
If 4 were also to have all prime numbers—2, 3, 5, 7, etc.—as elements,
A + B would still give N, since the occurrence of 3, say, in both 4 and B,
does not ““double” its occurrence in 4 + B. As another example, using
points in the coordinate xy-plane again, we can write:

Be) {(x,»|0<x<1L,0<y<1}+{x»|0=x<20<y<]l}
={(x»[0=x<20<y<1}.

In relation (3e), the second term has ‘“swallowed” the first; in general, if
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A < B, then 4 + B = B. If sets A; are given, where the index i ranges
over some “index set” 7, then X, 4;, or Z; ., 4, denotes the set of all elements
that belong to at least one of the sets 4;. For example, if 4, A,, A, are
sets, then 4; + A, + A; may be replaced by %, ,4;, where I is the set of
integers {1, 2, 3}; in this case, however, the symbol >3_,4, is used more
frequently, n being an almost universally employed generic symbol for a
natural number (compare ‘“‘n-dimensional space” for example).

3.3.1 The symbols + and X are today usually replaced by the symbols
v and |, especially where the + symbol is being used for other purposes
(in algebra, for instance). The symbols U, {J, which may be called
“union,” “‘join,” or “‘cup,” are derived from the symbol v used commonly
in symbolic logic to denote “and/or.” In fact, U may be defined in terms

of v by the expression
(3) AUB={x|(xeA)v(xeB)};

in words, “A4 U B is the collection of all those things x such that x is an
element of A4 and/or x is an element of B.” Similarly, X, 4; is replaced by
U:4;. We shall give preference to the new symbols U, [J in the sequel,
reserving + for its traditional role in arithmetic and algebra.

332 The difference, A — B, is defined by the expression
(g A—-B={x|(xed) &(x¢B)}

which can be read “4 — B is the collection of all those things x such that x
is an element of A4 but not an element of B.”” 1In (3g) we use the symbol &
instead of the symbol - ordinarily used in symbolic logic to denote “and,”
preferring to restrict - to such uses as algebraic multiplication. In (3g) it
is not necessary that B be a subset of 4. Thus, if 4 = {x| x is a prime
number} and B = {x | x is an odd number}, then 4 — B is the set whose
only element is the number 2; in symbols, we write A — B = {2}, When
B is a subset of 4, then A — B may be called the complement of Bin A.

333 To “multiply” sets 4 and B is to give the product A-B, in the
classical terminology; or, for a collection of indexed sets A;, the product
is indicated by J]:4; or more specifically T ];.;4;, where I is the index set.
Today - and T are usually replaced by N and () respectively, which may
be called ““intersection,” “meet,” or ‘“‘cap.” The definitions are:

(3h) A-B=ANB={x|(xeA) & (xeB))
(3h) TTic:4: = Nicsdi = {x| x & A, for every i I}.

An expression such as [)%_,4, indicates ();¢,4;, where I = {1, 2, - -, k};
(=14, is an intersection of sets 4, where, for every natural number #,
A, is a given set. We shall prefer the symbols N, ).
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34 At this point we can augment the argument given in I 3.4 for the
empty set, . Suppose that 4 and B are sets having no element whatso-
ever in common. Then we can express this fact, using the § symbol, by
the symbols

AN B =0.
Or, if A < B, then

A— B=0.

This use of § may be compared with the use of zeroin 3 — 3 = 0. The
reader familiar with the history of mathematics will recall the antagonism
to the introduction of zero as a number ;1 an analogous antagonism is felt,
by many who are unfamiliar with set theory, to the introduction of the
null set.

35 Parentheses are used, as in elementary algebra, to indicate opera-
tions that are to be performed before removal of the parentheses. Thus,
S = (A — B) U C indicates that the set S is the union of (1) the set
A — Band (2) the set C. On the other hand, the set A — (B U C) is the
set of all elements of A that are in neither B nor C. We see that the use
of parentheses in a union of sets—such as (4; U A4,) U A;—is unnecessary,
if we refer to the definition in 3.3.1. However, it is sometimes clarifying,
when the union of A; and A, is of special significance, to enclose their
union in parentheses.

3.6 If A # 0, then A is called non-empty or non-vacuous. If A has
more than one element, then it is called non-degenerate. 1If AN B = (,
then A and B are called disjoint sets. And, more generally, if {4,} is any
collection of sets A4,, where v runs over some set of indices or marks, such
that for every two different indices ' and v", 4, N 4,. = @, then we shall
again call the 4, disjoint sets.

4 Finite and infinite sets

One of the most important distinctions in mathematics, from any
standpoint (be it methodological or philosophical), is that between finite
sets and infinite sets. If we wish to give them explicit definitions, we
usually define one or the other and arbitrarily place all sets not satisfying
the definition in the other category. Thus we may define finite set, and
then infinite set as any set that is not finite; or we may define infinite set,

+ The author has frequently illustrated, for his students, the difference between
*0” and ‘“‘nothing” by pointing out that a ““0” in the grade book opposite a student’s
name indicates that the student actually handed in an assignment, whereas nothing

opposite the name indicates no work handed in; in the former case, “‘good intention™
is indicated on the part of the student at least.
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and then finite set as any set that is not infinite. In either case, we divide
any collection 4 of sets into two categories, each set in the collection falling
definitely in one category or the other.

It would seem more natural, surely, to define finite set and then infinite
set as ‘“not finite,” rather than the reverse, inasmuch as our everyday
experience seems to involve encounters only with “finite” sets (sets of
people, sets of books, etc.). Furthermore, it is only in comparatively
recent times that there has been developed any respectable theory of
infinite sets.

In defining “finite”” we shall presume for the present that the reader is
familiar with the sequence of natural numbers—1, 2, 3,---.f However,
there may be no serious objection to this, as it means, virtually, that we
presuppose familiarity with the ordinary counting process. As we define
the term, a set is finite if, roughly speaking, its elements can be counted.
We say “roughly” because, practically speaking, we can hardly say that
the set of all grains of sand on the earth allows of its elements being
counted! The trouble here, however, is that we are thinking of counting
as a physical process, hence a time-consuming process.

4.1 To avoid this difficulty, we revert to the notion of (l-1)-corre-
spondence defined in Il 4.4.2. Let us denote by N the set of all natural
numbers, and by N, the set defined by the expression

(4a) N,={x|(xeN)y&(1 = x £ m}i
Then we may define “finite” as follows:

4.1.1 Definition. A set S is finite if either it is empty, or there exists a
natural number 7 such that between the elements of S and the elements of
the set N, there exists a (1-1)-correspondence.

Note that, for a non-empty finite set, the pairs in the (1-1)-correspondence are of
type (x, k), x € S, k € N, and, consequently, we may denote uniquely the element x
in the pair (x, k) by x,. Thus the set of all states in the United States is finite, since
between its elements and the elements of Nso there exists a (1-1)-correspondence;
the set of all (natural) moons of the earth is finite since between its elements and the
elements of N, there exists a (1-1)-correspondence; the set of all present-day kings of
France is finite, since it is empty. In the case of the set G of all grains of sand on the
earth, we do not know the corresponding N,, since we cannot count them; but, by
virtue of simple physical facts and the properties of the set N (we go more fully into
these later), it is not difficult to show that the required N, exists (at a given time,
because, owing to erosion, etc., there is no reason to think that G is a fixed set).

+ Regarding alternative definitions of ““finite,” see 4.9 in this chapter.

1 Whenever we use symbols < and = in connection with natural numbers, we
shall, unless otherwise stated, mean 1 < 2, 2 < 3, and so on, and = denoting
“equals” in the ordinary sense of logical identity (2 = 2, 3 = 3, etc.). The set N
is simply ordered relative to this relation < (II 7) in what we may call its natural
order.
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42 Having defined “finite” as above, we define infinite as not finite.
Thus N itself is infinite although this has to be proved, of course; the set
of all points on a euclidean line or euclidean plane is infinite; etc.

43 In order to differentiate between the above definitions of finite and
infinite and those given later, let us agree to call them the ordinary finite
and ordinary infinite (if for no other reason than that they represent what
we ordinarily think of as the meanings of these terms).

4.4 The alternative definitions, which were originated by Dedekind,
will seem more natural if we recall the classic examplet of the (1-1)-
correspondence between the set N of all natural numbers and the set N, of
all even numbers. The pairs in this case are of the type (n, 2n), where
ne N, 2n e N,; in detail, the pairs are (1, 2), (2, 4), (3, 6), (4, 8), and so on.

4.5 A more elementary example, perhaps, is the (1-1)-correspondence
between the elements of N and the elements of the set N — {1} (the latter
being the set of all natural numbers except the number 1; cf. 3.3.2). The
pairs representing the (1-1)-correspondence are of the type (n,n + 1),
wherene N,n + 1 ¢ N — {1}. We shall make use of this example in the
sequel (5.3).

4.6 The reader should note that in each of these examples the “law” or ‘“‘rule”
for the (1-1)-correspondence is explicitly stated. Up to now we have avoided
mentioning the significance of the term “‘there exists” as used in Definition II 4.4.4,
for instance. The “rule” (n, n + 1) tells us explicitly what are the elements of the
(1-1)-correspondence between the elements of N and the elements of N — {1}, and is
one of the ways in which we fulfill the requirement “there exists a (1-1)-corre-
spondence. . ..” We shall consider this matter more fully later. It is possible, for
instance, that we may sometimes be satisfied with a logical proof of the “‘existence”
of a (1-1)-correspondence, without knowing any such explicit definition of it such
as is given above.

4.7 If we denote the set of all odd numbers by N,, then there exists a
(1-1)-correspondence between N, and N, whose elements are of the type
(2n, 2n — 1), where n is a natural number. This example differs from the
two above in that here the sets involved (N, and N,) are disjoint, whereas
in each of the above two cases one of the sets was a proper subset of the
other.

4.8 Dedekind’s definition of infinite is suggested by observation of such
correspondencesf as that between N and N, in which one of the sets (N,)

T Galileo evidently was aware of such examples; see Bell [Bs; 272ff].

I As Dedekind observed ([D2; 2nd ed.], or the Werke), both Cantor and Bolzano
had called attention to the property of infinite sets which he (Dedekind) made the
basis of his definition; however, neither elevated it to the rank of a defining charac-
teristic.
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is a proper subset of the other (N). Such a circumstance, Dedekind
observed, must be characteristic of what we intuitively recognize as
“infinite” sets:

4.8.1 Definition (Dedekind). A set S is infinite if it has a proper
subset S; such that between the elements of S and the elements of S; there
exists a (1-1)-correspondence.

Thus the set N is infinite, according to Definition 4.8.1. (It is interest-
ing to notice that it is much easier to prove this than to prove N infinite by
the ordinary definition; see below.)

Of course, we may now call a set finite if it is not infinite. And to
distinguish this definition from that (4.1.1) of the ordinary finite, we call it
the Dedekind finite; and, similarly, we call the ““infinite” defined in 4.8.1 the
Dedekind infinite.

4.9 In the foreword to the second edition (1893) of [D,], Dedekind proposed a
non-negative definition of ‘“finite”” as follows:

“A set S is called finite if there exists a mappingt of S into itself such that no
proper subset of S is mapped into itself.”

He predicted that it would be very difficult to develop a theory on the basis of this
definition unless the sequence of natural numbers is assumed. However, in an
unpublished note (see [Dg; LXIII]), he developed some of the properties of sets
that are finite by the new definition; and in 1932 Cavaillés [a] continued the investiga-
tion, showing how to develop the fundamental properties of finite sets (such as the
finiteness of all subsets of a finite set, the mathematical induction property, etc.).
None of this necessitates any use of the Choice Axiom (see Section 6).

An extensive investigation of possible definitions of ‘“finite”” and of their inter-
relations was made by Tarski [a]; the reader is referred to his work for further details
and citations to earlier investigations.

5 Relation between the ordinary infinite and the Dedekind
infinite

When we have two definitions of the same term, here ““infinite,” we
should investigate the relationship between them. The ordinary finite and
infinite presuppose a knowledge of the set, N, of natural numbers; the
Dedekind definitions of finite and infinite presuppose only the concept of
(1-1)-correspondence. We have defined what we mean by a (I-1)-
correspondence; but up to now we have used the set N as a universally
known concept, just as we suppose that its elements, such as the number 2,
are universally known in the context of such axiom systems as are set up
for geometry.

T See IV 3.2.3.1.
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5.1 The mathematical induction principle

In attempting to compare the two definitions of infinite given above, we
shall come face to face with the fact that the set N has certain associated
properties which are necessary for a solution of the problem, and which
we do not encounter in the concept of any individual number, such as 2.
For example, associated with the set N is the “mathematical induction
principle,” which has no significance for the individual number. A
knowledge of individual numbers, and how to use them in counting, by no
means implies a knowledge of the induction principle, as every instructor
who has tried to teach it is well aware.

To explain the principle, it is convenient to introduce the notion of an
“inductive” set of natural numbers. A set, G, of natural numbers, is
called inductive if n ¢ G implies n + 1 € G; that is, if a natural number # is
in G, its ““successor” (in the natural order) is in G. Then the mathematical
induction principle states that if G is an inductive set and 1 € G, then G is
the set of all natural numbers; i.e., G = N.

The intuitive notion behind the principle is simply that if 1 € G, then
2eG; and if 2€ G, then 3 € G; and so on. We can imagine the natural
numbers represented by blocks standing in juxtaposition so that a forward
push on the block representing the number n forces it to knock over the
block representing n + 1;] the block representing 1 is pushed over and in
its fall knocks over the block representing 2; the latter, in turn, falls against
the block representing 3 and knocks it over; and so on—all the blocks being
knocked over as a result of the pushing over of the first block. The
analogy, of course, is that G is the set of blocks that actually fall; if it
contains 1, and if for each number in G the successor is in G (and hence
ready to be knocked over), then all the blocks fall; that is, G is the whole
set of blocks, the set N.

This is not a proof of the principle, of course. As we hope to make clear
later, it is inherent in any actual definition of the “natural order” of N and
is either explicitly stated therein (as in the famous axiom system of Peano;
see VI 3.1), or is provable from the definition. As used in proofs which
involve N (as in the proof below), it may be considered as a method which
augments the classical rules of logic (which were derived from the finite
sets of man’s environment). However, it is not an assumption about N,
but is a consequence of the type of order represented in N. Put another
way, when we assume a knowledge of the complete set, N, of natural

T These associated properties are not properties of N as a set, any more than is the
fact that 2 x 2 = 4 is such a property. They are associated with the fact that the
elements of N have a “natural order,” 1, 2, 3, and so on. Cf. 4.1f.

} Just as children frequently stand dominoes in this fashion, so that a push on the
first domino in line is sufficient to knock over a/l the dominoes.
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numbers, we have in particular assumed the mathematical induction
principle.

The use made of the mathematical induction principle in practice is
generally of two kinds: (1) As a mode of definition, and (2) as a method of
proof. If we wish to define some entity or concept D(n) for every
natural number n, we may first define D(1), and then show how from D(n)
we can define D(n + 1). By the mathematical induction principle this
will define D(n) for all elements of N, since if we let G denote the collection
of natural numbers for which we have defined D(n), then 1 € G since we
defined D(1); and if ne G, then n + 1 & G since we showed that from
D(n) we can define D(n + 1), so that G is inductive; thus G = N. An
example of this mode of definition is given in 5.3 below. Similarly, if we
wish to prove some theorem 7'(n) about the natural number n, for every
natural number n, we may prove 7(1), and then show how from T'(n) we
may prove T'(n + 1). From the mathematical induction principle it will
then follow that the set G of all numbers » for which the theorem 7'(n) has
thereby been proved consists of all the numbers of N. This type of proof
is called proof by mathematical induction; we shall see examples of this type
of proof later.

Sometimes, in practice, to prove a theorem T'(n) for all n we first prove
T(1) and then show how, from the assumption that 7(1), T(2),- - -, and
T(n) all hold we may prove T'(n + 1). [Compare (3a) in V.] Other
variations in modes of proof and definition are also possible, all of which
may be justified by the mathematical induction principle. (See Problems
25 and 26.)

In the case where T(n) is a theorem concerning the existence of some
entity or entities of some type T forming a set S, of n elements, whether
proved by mathematical induction or not, we must be careful not to
conclude, without further justification, that there then must exist an
infinite set S, of entities of type 7. If, however, after having proved the
existence of S, for each n, we can prove that S, < S, ., then the con-
clusion that there exists an infinite set of entities of type T follows. (See
Problems 23 and 27.)

5.2 Proof that a set which is Dedekind infinite is ordinary infinite

Let S be a set which is Dedekind infinite. Then S has a proper subset S’
such that between the elements of S and the elements of .S’ there exists a
(1-1)-correspondence.

Either S is ordinary finite or ordinary infinite, since we defined ordinary
infinite as “not ordinary finite,” and it will be sufficient to show that
S is not ordinary finite. If S were ordinary finite, there would exist a set
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N,, as defined earlier (4.1.1), such that between the elements of S and the
elements of N, there exists a (1-1)-correspondence.}
Now consider the following lemma:

Lemma. Let A and B be sets such that there exists a (1-1)-correspondence
f between A and B, as well as a (1-1)-correspondence g between A and a
proper subset A" of A. Then there exists a (1-1)-correspondence between
B and a proper subset B’ of B.

Proof. Consider the following diagram:

A——>B
!
g L hgf

h v

A—>F
The arrow between A4 and B represents the function f: A — B, and the
vertical arrow between A and A’ the function g: A — 4’. The function A
is simply the collection of all pairs (x, ) of f whose x’s are also in 4’; their

y’s form the set B’. Then hgf~!, the composition of gf~* and A, is the
desired (1-1)-correspondence between B and the proper subset B’ of B.

It follows from this Lemma that if 4, B, and A4’ are replaced by S, N,,
and S’, respectively, we can assert that there exists a proper subset N, of
N, such that there exists a (1-1)-correspondence between the elements of
N, and the elements of N,’. We shall show that this is impossible.

5.2.1 Theorem. There exists no N, such that there exists a (1-1)-
correspondence between N, and a proper subset of N,.

Proof. . The theorem certainly holds for k = 1, since the only proper
subset of N; is §. Hence, if G is the subset of N for which the theorem
holds, 1 € G.

Now we shall show that if a natural number k is in G, then k + 1 ¢ G;
and, hence, that G is N by the mathematical induction principle. Suppose
that for some k in G, k + 1 ¢ G. Then N,,, has a proper subset Ny, ,
such that between N, ,; and Ny, there exists a (I-1)-correspondence f.
Let us represent this correspondence by the following diagram:

Nk+1: 1 2 ......... k k + 1
}é+1: ny n2 ......... nk nk+1

(n = f(1), ny = f(2), etc.)
T It must be emphasized that we are here assuming a knowledge of the natural

numbers just as in Section 4 (especially in terms of < as in 4.1), including a knowledge
of the mathematical induction principle.
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There are two cases to consider: (1) If ny, ; is the natural number k& + 1,
then by deleting the last column of the diagram it is clear that we are left
with a (1-1)-correspondence between N, and a proper subset N, of N,—
which is impossible since k € G. (2) If n, ., is not the natural number
k + 1, perhaps one of the numbers ny, ny, - - -, n,, (say, n;) is k + 1; if so,
we need merely exchange the position of »; and n, , ; in the diagram and we
are back to case (1), which we have shown impossible. But then none of
the numbers ny, ny, - - -, 1, is k + 1, implying that they are all in N, ; and,
moreover, that they constitute a proper subset N, of N, (since n,,, is
missing). But, again, by deleting the last column of the diagram, we
would have a (1-1)-correspondence between N, and N,'.

It is impossible that & + 1 ¢ G, then, and we conclude G = N; i.e., the
theorem is true for all natural numbers.

Corollary. The set N is ordinary infinite.

The above type of argument (without using mathematical induction) can
be adapted to prove:

5.2.2 Theorem. If S is a set such that there exists no (1-1)-correspond-
ence between the elements of S and the elements of any proper subset of S,
and S is augmented by a new element e, then the set S\U {e} = S; has a
like property.

[In the above terminology, if S is not Dedekind infinite then S; =
S U {e} is not Dedekind infinite.]

523 Corollary. If a set S is Dedekind infinite, and x ¢ S, then
S — {x} is Dedekind infinite.

5.3 Proof that a set which is ordinary infinite is Dedekind infinite

Now we consider the converse problem: Is a set which is ordinary infinite
also Dedekind infinite? In the same manner as we had to introduce a
new principle, mathematical induction, to prove that a Dedekind infinite
set is ordinary infinite, we shall find here that we encounter another new
principle in our proof.f But while the mathematical induction principle
is generally accepted (as it must be, if we accept the set N), the one that
we shall appeal to now is not generally accepted. First, let us consider
the following argument:

Let S be a set which is ordinary infinite, i.e., not ordinary finite. Then S
is not empty, and we can select an element x, of S. Again, S — x; is not
empty; for otherwise S = {x,}, and the pair (x;, 1) constitutes a (1-1)-
correspondence with N, rendering S ordinary finite. So we can select an
element x, of § — x;.

T Historically, it was first noticed in another connection, which will be described
later.
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Continuing in this way, suppose that we have selected elements x;,
Xg,+ -+, X, of S. Then we argue that S — x; — x3 — .-+ — x; is not
empty; for otherwise S = {x;, x5, - - -, X}, and the pairs (x;, 1), (x5, 2), - - -,
(xy, k) would constitute a (1-1)-correspondence between S and N, render-
ing S ordinary finite. So we can select an element x; ., of § — x; —
Xg — ¢ — X

In this manner, we have shown how to select an element x, of S for
every natural number 7 (by virtue of the mathematical induction principle).
Let S; denote the collection of all such elements x,. Now consider the
collection, &, consisting of all pairs (x,, x,.;) as well as all pairs (x, x)
such that x is not in S; (if such elements x exist; they may or may not
exist). Then, since x; is never the second element in the pairs as indicated,
this collection & of pairs constitutes a (1-1)-correspondence between the
elements of S and the elements of S — x;. Hence S is Dedekind infinite.

5.3.1 Comment on the above proof

We said above that “we have shown how to select an element x, of S
for every natural number n,”” and no two such elements are the same. But
have we? We “select” x;, then x,, then x;, and so on. We don’t give
any rule for these selections—they seem to be the result of free choice.
But how are we to make an infinite set of free choices, one after the other
(the collection Xy, x,, X3, - - - is infinite in either the ordinary or Dedekind
sense) ?

5.3.1.1 An example may make the above criticism clearer. If we have
a die with faces numbered 1 to 6, we can consider a decimal number 0.a,
obtained by one throw of the die; if 1 comes up, let @; = 1 and we have
the number 0.1; or, if 6 comes up, we have 0.6. We can also consider a
number 0.a,a,a; obtained from three throws of the die, letting the digits
a;, a,, a; be the numbers successively obtained in the three throws. To
be sure, the number is not determinate from our definition; thus 0.a, may
be any one of six different numbers. We would not be justified in speaking
of the number so obtained until after we threw the die; and then the
number is quite definite. But, before the throw, its definition is not precise
enough to fix it. In what sense, then, could we possibly speak of the
number 0.a;a; - - - a, - - -, where there is a digit a, for each ne N, to be
obtained by a throw of a die? In this case, we cannot even complete the
throws of the die and hence make the number precise.

The objection can now be raised that there is no sense in mixing numbers,
which are a mathematical notion, with physical concepts such as throwing
of dice, and with time (which is used up in throwing and which conse-
quently renders the number 0.q,a,- - - a,--- indefinable in any precise
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sense). This objection may be met by pointing out that it is the indeter-
minacy, the free choice, of a, that is the root of the difficulty, and that this
is present in the above proof which utilizes no physical concepts. For
some sets S we could get around the difficulty by eliminating free choice.
Thus, if S is the set of all ordinary fractions between 0 and 1 (“proper
fractions”), we could specify x; = 4, xo = 1, and, in general, having x,,
let x,,; = v, [ie,, (H)**']. But in the above proof we don’t know
enough about the nature of S to make any such specifications.

Very well, we may counter-object, don’t say ““select”; just say, let x, be
an element of S, then let x, be an element of S — x, and, in general, having
obtained x,, let x,,, be an element of S — x; — x — -+ — x,. The
word ‘“‘select” implies a selector, whereas the “let x, be...” formula
avoids such a connotation.

We can let the argument rest here; either let us admit that the “let
x, be...” formula solves the difficulty, or let us not admit it. There
seems to be no logical way of settling the matter. We encounter a question
of what might be called mathematical method or mathematical existence
(depending on the point of view), rather than something that can be
handled by appeal to the classical Aristotelian logic. Notice, however,
that except for this aspect of it, the above proof that an ordinary infinite
set is Dedekind infinite is evidently quite acceptable. Specifically, there is
evidently no objection to the proof, contained in the above, that

5.3.2 If a set S has a subset S,, such that between the elements of S, and
the elements of the set of natural numbers, N, there exists a (1-1)-corre-
spondence, then S is Dedekind infinite. (See Problem 21.)

6 The Choice Axiom

The difficulty that we encountered in the preceding section—the question
of the existence of the set S; of 5.3—may be handled by appeal to what is
ordinarily called the “Choice Axiom” (or the “Zermelo Postulate”;{
see 6.4 and 6.7). This statement must not be construed to mean that we
are going to eliminate the difficulty; far from it. From the point of view
of one who insists that generally no such set S, exists, we are only going to
attribute the difficulty to a ““principle” which will, as we shall see, serve as
a haven for all sorts of such difficulties. It is convenient to have a single
principle to which we can bring such matters and not be forced to leave a
lot of seemingly unrelated special problems lying about unattended!

t Although the eponymous term ‘‘Zermelo Postulate™ relates to E. Zermelo’s use
of the principle in the proof of his famous Well-Ordering Theorem in 1904 (V 3.1.2),
it is asserted by E. W. Beth [Be; 376] that ““As early as 1890, this axiom had been

stated and applied incidentally by Peano, but only in 1902 was it seen, by Beppo Levi,
to constitute an independent principle of proof.”
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6.1 To introduce the principle referred to, suppose that we consider
the set of fifty states of the United States, where each state is considered
not as a geographical entity, but as a collection of its individual citizens.
And, for convenience, let us assume that no person is a citizen of more
than one state. Question: Does there exist a set, R, consisting of one and
only one citizen from each state? This must seem like a trivial question,
for certainly such a set must exist. For instance, each state has two
senators, already selected, and all we need do is make up a set by selecting
one senator from each pair representing a state.

6.2 Now imagine that, instead of fifty states, we have an example of a
“nation” whose states are in (1-1)-correspondence with the elements of N;
denote the state that is paired with n ¢ N in this correspondence by S,.
Can we still assert the existence of the set R? If so, R consists of one and
only one person, p,, from each state S,. But how is p, to be selected ?
Even if, as in the case of the fifty states, there is a senate comprised of two
senators from each state, we would still have to select p, from the pair of
senators from state S,. If in every case one senator is definitely older
than the other, we could select p,, for all n, by the rule that he is to be the
older senator from S,. If the rule does not apply, some other character-
istic may serve; if not, we shall have to resort simply to asserting the
existence of R, and in this case we would be making an application of the
principle known as the Choice Axiom:

6.3 Choice Axiom. If & is a collection of disjoint non-empty sets S,,
then there exists a set R which has as its elements exactly one element x,
of each S,.

The element x, is called the representative element of S,; and R may be
called a representative set for ©.

On the basis of the Choice Axiom we can prove:

6.4 General Choice Axiom; or Choice Principle. If & is a collection
of non-empty sets S,, disjoint or not, then there exists a set & whose elements
are pairs (S,, x,) in which x, € S,, and such that each S, occurs in one and
only one pair.

(In functional terminology, R is a function whose domain is &, and
such that R(S,) € S,.)

6.5 Note that if in 6.4 the elements of & are disjoint, then the set
R = {x,| x, € (S,, x,)} is the same type of set as the set R of 6.3, each x,
being considered the representative element of S,. Thus 6.4 implies 6.3.
To see that 6.3 implies 6.4, we may form, for each », the set 11, of all pairs
(Sy, xv,), where now every element x,, of S, occurs in a pair. Then the
collection, I, of all sets 11,, is a collection of disjoint, non-empty sets, so
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that by 6.3 there exists a set ®, which has as its elements exactly one
element (S,, x,,) of each U,.

6.6 We may continue to call the elements x,, which occur in pairs
(Sy, xy) € R, the representative elements of the sets S,, except that we
realize that a given x, may be the representative element of more than one
S,. This might be the case, for example, if an S, and an S,., elements of
&, were such that S, < S,.; in such a case the element x, is necessarily an
element of S,, and it may happen that x, = x,..

Before discussing the Choice Axiom further, however, let us see how it
applies to Section 5.3:

6.7 Let S be a set which is not ordinary finite. We apply 6.4 as
follows: Let the sets S, be the non-empty subsets of S; that is, & is the
collection of all non-empty subsetsf of S. In the set R, whose existence
is asserted by 6.4, there is one and only one pair in which S (which is a
subset of itself, and hence an “S,”) occurs; denote it by (S, x,). Also,
since the set S — x; = S, is a subset of S, it occurs in a pair (S5, x,).
And having assigned symbols x;, x5, - -, X, for any n e N, denote by
(Sn+1, Xnt1) the pair in which S, ,; = § — x; — x; — -+ — X, occurs.

The set, 4, of all such elements x, is exactly of the type of the set S, in
5.3.2. Hence, the proof that an ordinary infinite set is Dedekind infinite
may be based on the Choice Axiom.

6.8 Comment on the Choice Axiom

As we shall have occasion later to comment on the further implications
of the Choice Axiom, we shall be content with a few general observations
at this point.

In the first place, why call it an axiom or postulate (as in “Zermelo
Postulate”)? As we have presented it, it is not part of an axiom system
involving undefined terms (and other axioms) subject to various inter-
pretations. Instead, it seems to be a basic principle, of a more absolute
character than an axiom system for geometry which can be applied to
certain models, perhaps, but about whose truth or falsity we would hardly
(at least today) argue. It is possible, to be sure, to devise axiom systems in
which the Choice Axiom occurs as one of the axioms (see VIII 8). But
the term “axiom” in this case is not due to such uses of the principle; it
seems to have derived from the ancient and traditional conception of an
axiom as a “universal truth,” or “a self-evident proposition, requiring no

1 As each S, occurs only once in a pair (S, x,) € R, we may drop the x used in the
Xy, of the proof.

t The use of this collection may be avoided by using the collection of all ordinary
finite subsets of S. See Sierpinski, [S,, 116-117] or [Ss;, 114].
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formal demonstration to prove its truth, but received and accepted as soon
as mentioned.”t The Choice Axiom must seem, at first sight, to fulfill
these qualifications. For what is more natural than to assume, if a
collection of disjoint non-empty sets be given, that there exists a set
containing one element of each set of the collection?

In particular, if we are given a single set S, we do not hesitate to think of
a set {e} consisting of a single, unique element e of S! And we probably
would not hesitate to assume the existence of a representative set for the
collection of fifty states, even if there were not senators all ready to be
named (cf. 6.2). As a matter of fact, commencing with the premise that it
is permissible to select an element from a given set, it is easy to show by
mathematical induction that, for every natural number n, the Choice
Axiom holds for any collection of # non-empty sets.

However, it would seem better to use the term “Choice Principle” than
“Choice Axiom” or “Choice Postulate.” We shall continue to use the
last two terms only because they seem to be sanctioned by usage.

It is perhaps clear from the discussion given previously (5.3.1.1, for
instance) that much of the objection to the Choice Axiom stems from the
lack of precise definition of the representative set. An oft-quoted (see
Sierpinski [S;; 125] for instance) example of Russell, modified to suit our
purposes, may throw further light on this aspect of the matter. Imagine a
world in which there exists an infinite collection of pairs of shoes! Does
there exist a set .S consisting of one shoe from each pair? We may say
that the answer is affirmative, since we can define S to consist of the left
shoe from each pair. But suppose that this imaginary world also contains
an infinite collection of pairs of socks; does a corresponding set .S exist for
this collection? Unfortunately, socks are manufactured in pairs of
identical form, it being impossible to distinguish a left sock from a right
sock, so that we have no way of defining a representative set S.} Despite
this lack, we may still feel justified in asserting that such a set exists; but
to do so is to employ the Choice Axiom, whereas in the case of the shoes
no appeal to such an “axiom” is necessary, what is called an effective
definition being possible.

This example brings out the fact that it is precisely in cases where there
is insufficient information regarding the character of the sets in question
that appeal must be made to the Choice Axiom. It suggests that as
mathematics has grown, reaching out to concepts of a greater degree of
abstraction, it has become necessary to add new principles that are not
available in the classical logic (which was not devised as a tool for dealing
with the infinite as we conceive of it today); and the Choice Axiom is one

T This quotation is from Huntington [a; footnote 1, p. 264].
I Someone has suggested that if each pair were being worn we would!
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of these new principles. (Compare the remark in II 4.2 regarding possible
inadequacy of the logical apparatus.)

This may all seem like a “tempest in a teapot™ at the present stage of our
discussion, but we shall ask the reader to suspend judgment until we have
been able to present more of the comsequences of the Choice Axiom.
After all, who pays any regard to the blaze of a match until it starts a
forest fire!

SUGGESTED READING

Cantor [C,] Peano [P3; II § 2, pp. 1-4]
Grelling [Gr; 1-15, 40-44) Sierpinski [S;; 1-12, 103-117]
Hobson [Ho; §§ 1-5] Suppes [Su; 98-108]
Kamke [Ka;; 1-5] Young [Y; VI]

PROBLEMS

1. In a given university, let € denote the set of all sections (mathematics
sections, history sections, etc.) in session at a given time, & the set of all
graduate sections, I the set of all sections in graduate mathematics, C a
section in graduate mathematics, and p a student in C. Set up the ‘¢’ and
“<” relations between €, &, M, C, and p. Explain the choice of symbols
(cf. 3.1.1).

2. Let 4 ={1,0,{0}}, B= {0}, C={1,2}. Show that Be A, B < A, and
that BN C = 0; but that neither A " B = 0 nor A < B U C holds.

3. Use the { | } symbol to define the following sets: (a) the set of all points in
the coordinate plane that lie interior to the unit circle with center at the origin;
(b) the set of points defined in (a) with those having negative abscissas deleted;
(c) the set (4 N B) U C where 4, B, and C are sets; (d) the set 4 N (BU C);
(e) theset A — (BuU C); (f) the set (4 — B) U C.

4. Prove the following ““distributive laws”:

AN(BUC)y=(ANBUANC),
AVUBNCYy=(AUB N4V O).

5. Let the complement of a set A relative to a set S be denoted by #.4, or,
briefly, by #4. Then prove:

(4N B) = ¢4 U %B,
%(4 U B) = ¥4 N €B.

6. In the notation of Problem 5, notice that €(#4) = A. Use this to
derive the second formula in Problem 5 from the first.

7. Show by mathematical induction (on the number, n, of set symbols,
counting repetitions) that, if M is an expression composed of set symbols
A, Az, - -+, A, and the symbols ¥, N, U, but containing no #( ), then ¢M
is the expression obtained by replacing, in M, each A4;, €4;,, N, and U by
€A, A;, Y, and N, respectively.
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8. If M = (AU ¥%B)N(4AV C), find ¢M.

9. Some have insisted that the only type of set allowable in mathematics is
one such that it is determinate of everything whether it is an element of the
set or not. Criticize this criterion.

10. The following problem is attributed to Tarski: Let N denote the set of
all natural numbers, and for any two natural numbers m and »n let “m = n”
mean “m is identical to n.”” Consider any set S; having only one natural
number as an element. Obviously, if m,ne S;, then m = n. Suppose it
has been shown that, for any set S, having exactly » natural numbers as
elements, the relation m,ne S, implies m = n. Consider any set S,.:
having exactly » + 1 natural numbers as elements; let us denote its elements
by X1, X2, ***, Xn, Xn+1. As the set Spi1 = Sp+1 — Xn+1 has exactly n
natural numbers as elements, the relation m,ne S,.; implies m = n; in
particular, x; = x,. Now consider the set S,+1 = Sp+1 — Xn. Since Sy 41
contains exactly »n natural numbers, the relation m,n € Sy, .1 implies m = n; in
particular, xy = x,+:. But, if x; = x, and x; = Xx,+1, then x, = x,,1, and
it follows that all elements of S, . are identical. Hence we have proved, in
particular, that all natural numbers are identical! What is wrong with this
“proof™?

11. A famous fable recounts that the barber in a certain town shaved
everyone who did not shave himself, and only those. To analyze this, use
the symbolism of 3.2 for defining sets. [Hint: Let “xsy” denote that
“x shaved y” and let ‘b denote the barber. Then equate the set of townsmen
who did not shave themselves with the set of townsmen that the barber shaved.
What results when the ““value” b is used for x?]

12. Analyze the Russell contradiction in the same manner as the barber
fable.

13. The following is due to Grelling (1908): Divide all adjectives into two
classes, calling those that describe themselves ‘“‘autological” and those that
do not ‘“‘heterological.” Thus “English” and “short” are autological, and
“French” and “long” are heterological. What is the result if we ask whether
the adjective “‘heterological® is either autological or heterological ?

14. Prove that N is not ordinary finite.

15. Prove by mathematical induction that if .S is ordinary infinite, then for
every natural number »n, S has a subset consisting of exactly n elements. Is
the Choice Axiom necessary for the proof ?

16. Show that if a set .S has a proper subset S; such that there exists a
(1-1)-correspondence between S and S;, then S has subsets S, n = 1,2,3,---,
such that for each natural number n, S,.; is a proper subset of S, and there
exists a (1-1)-correspondence between S, and S, 1.

17. Using the set N of natural numbers for S, and the set N — {1} for
S1, show that the sequence {S,|ne N} of the preceding problem is the
“longest” that can be generally proved to exist (under the hypothesis of
Problem 16), in that {)%.;.S, may be empty.

18. Prove Theorem 5.2.2 and its corollary (5.2.3).

19. Young [Y, 63] gives the following argument for 5.2.3: S has a proper
subset S’ such that there exists a (1-1)-correspondence 7T between the elements
of S and the elements of S’. Let x’ be the element of S’ paired with x in the
correspondence 7. The set S;" = S’ — {x’} is then a proper subset of
S1 (= S — {x}) such that there exists a (1-1)-correspondence between the
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elements of S; and the elements of S,". The set S, is, therefore, Dedekind
infinite. What is missing from this argument ?

20. In the same connection, Young states “an infinite class cannot be
exhausted by removing its elements one at a time.” But suppose that,
between 12:00 NooN and 12:30 p.M., 1 is deleted from N; between 12:30
and 12:45, 2 is deleted from N; during the next 4 hour 3 is deleted; during
the next v hour 4 is deleted; and so on. What is left of N at 1:00 p.M?
Discuss the statement of Young.

21. Prove the converse of 5.3.2. [Hint: Let S’ be a proper subset of S
and let {(x, f(x))} be a (1-1)-correspondence such that x ¢ S, f(x)eS’. Let
x1€8 — §’, and for each natural number n > 1 let x, = f(x,-1). Then
3 = {x,} is the desired subset of S.]

22. In an imaginary world W, a man starts from his home at 12:00 NOON
to walk to a post office. He walks at a uniform rate, reaching the post office
at 1:00 p.M. He leaves home with 1 cent, intending to buy a stamp. How-
ever, between 12:00 and 12:30 a friend offers him a brighter coin than the
one he has, and, intrigued by it, he trades his original coin for it. Between
12:30 and 12:45 a similar event occurs, so that at 12:45 he has a still different
coin. During the next 4 hour a similar exchange occurs; during the next
1 hour another occurs; and so on. Assuming that W allows such unlimited
possibilities, does the man have a coin at 1:00 p.m. to buy the stamp that he
set out to buy? [In case the pennies are all different, a logical conclusion
is possible; but, if the same two pennies are involved throughout, no conclusion
is possible.]

23. If the set S of Problem 16 is the set of all pennies involved in the anecdote
of Problem 22, and S, is the set of all pennies involved from the sth interval
on, show that the resulting collection of sets .S, satisfies the conditions of
Problem 17 and is a case where ()-S5, = 0 if the pennies are all different.

24. Prove that, if 4 is a non-empty subset of N (N the set of all natural
numbers), then A has an element a which precedes (<) every other element
of 4 in the natural order (4.1, footnote) of N.

25. Suppose we wish to define some concept D(n) for every natural number
n. We first define D(1) and D(2). Then we give a general definition of
D(n + 2) in terms of D(n) and D(n + 1). Show that we thus accomplish a
definition of D(x) for all a.

26. Suppose that T(n) is a theorem about the natural number » such that
we can prove T(1), and that if we had proved T(1), T(2), - --, T(n), then a
proof for T(n + 1) can be given. Show that T'(n) is thus proved for every
natural number #.

27. Consider the accompanying figure. It consists of:

(1) Two parallel line segments L, and L, of unit length one unit distance
apart. On L, p1, ps,* -+, pa, -+ are points such that p, is at a distance
1/(n + 1) from the base of L; and, on L, ¢1, g2, - -, qn, - - - are points such
that g, is at a distance 1/(n + 1) from the top of L,.

(2) The line segment p1q;, on which ry, g, - -, ry, - - - are points such that
r, is at a distance 1/(n + 1) from gq,.

(3) A broken line pys;rit:92 as shown.

(4) In general, a broken lin€ p,,iS.#ufngn+1 as shown. Let a path from
L; to L, consist of any broken line—psysirirstsqs for instance—made up of
segments of the given broken lines, but with only its endpoints, p, and g
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L]_ L2
tn % In+1
t 9,
rn ™
Py %
S1
pZ
Sn
pn+1

in the instance cited, on L, and L, respectively. Let two paths be called
disjoint if they have no point in common.

Show that, for every natural number #n, there exist n disjoint paths from L,
to L,. Show also that there does not exist an infinite number of disjoint
paths from L; to L, (even though there do exist infinitely many different but
intersecting paths). What general “moral” can be drawn from this example
in regard to existence theorems provable for every natural number n?

28. Carry out the mathematical induction argument to prove the Choice
Axiom for finite sets, as suggested in the third paragraph of 6.8.



Infinite Sets

In the preceding chapter we discussed the general notion of set and
noticed how certain debatable principles (Choice Axiom) and contra-
dictions (Russell antinomy) may be encountered in the theory of sets.

In the present chapter we set forth sufficient material regarding infinite
sets—especially with regard to the “numbers” that may be used in handling
them—to give us a basis for further definition of basic notions, as well as
to uncover other principles and possible contradictions. Some basic
mathematical entities, for example, the “real number continuum,” cannot
be fully appreciated without some knowledge of this sort. And we shall
encounter mathematical problems which, like that of showing that the
ordinary infinite implies the Dedekind infinite, cannot be solved without
appeal to principles that have never been encountered in the classical logic.

As the reader may know, until modern times the infinite was simply
“the infinite”; something represented by a symbol like a figure eight lying
on its side: co. The “number” of natural numbers was ‘“c0,”” the number
of real numbers “00,” the number of points in a coordinate xy-plane, co?
[since co x’s together with oo y’s can give 002 pairs (x, y)—although the
doubly ordered character of the pairs (x, y) was undoubtedly the inspiration
for the symbol 002}, Curious resuits followed from the use of this symbol
(such as attempts to include it in arithmetic—2 x oo = oo, for instance—
although any competent mathematician would warn of the dire conse-
quences of such attempts!).

With Cantor’s invention of the theory of transfinite numbers, a new
perspective opened up. Actually infinite numbers and an arithmetic for
them were developed. What might at first have seemed to be adventures
in fantasy turned out to have important applications in mathematics; as a
matter of fact, it was certain applications that led Cantor to his studies in
the infinite. Some of these we shall see in the sequel.}

1 Countable sets; the number X,
We saw in III 5.2 that N is ordinary infinite. As we shall presently see,
it represents the simplest type of infinite set—as a consequence of which,

t For an excellent discussion of Cantor’s work and of set theory in general, see
Fraenkel [Fz]. Attention is called to the comprehensive bibliography in that book.

80
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we might remark, we used its subsets N, as criteria for defining the ordinary
finite and infinite.

1.1 Let us consider another infinite set, i.e., the set F of all real
rational numbers, which we term briefly, rational numbers; that is, any
number which can be symbolized by a form p/g, where p is any integer
(positive or negative) and g any natural number. (Thus §, 17, 3%, —3%,

2 + k)
3 T 7, etc., represent rational numbers; and every natural number is a

rational number, since, for example, 2 = %))

As in the case of the natural numbers, we do not at present try to make any rigorous
distinction between a symbol and the concept which it denotes. We assume the
reader has studied “fractions” and their applications in grade school, and that
the question of the meaning of symbols like “4,” “3,” etc., may be deferred for
the present. To prevent confusion, we shall usually observe the convention that
by “fraction’ is meant the symbol, and by “rational number” is meant the concept
denoted by the symbol. Thus, 4, “2,” “3” ... are different fractions denoting
the same rational number. When we say “l is a rational number,” as we do in
ordinary discourse, what we really mean is that ““} is a fraction denoting a rational
number.” Analogous remarks hold for the use of the term ‘‘algebraic number” in
1.3 in this chapter.

Obviously, there are “more” elements in F than there are in N—
although a mathematician would at first be startled by such a statement;
it is all a matter of the meaning to be attributed to “more than.” And
anyone who has never heard of a “transfinite number”” will probably admit
that if to any set (such as N) we add new elements to obtain a new set
(such as F), the latter has more elements than the former. And this is
quite true, unless by “‘more than” we mean ““a greater cardinal number
than,” in which case it is quite false. Again we see the necessity of
making the conventions regarding the meanings of words clear, since to
one group of people they mean one thing and to another they mean
something else (as any traveler knows).

The reason for the above “misunderstanding” is that if 4 and B are
sets such that between the elements of 4 and the elements of B there exists a
(1-1)-correspondence, the mathematician thinks of 4 and B as having the
same number of elements; and that he is inclined to interpret the statement
“A has more elements than B> as meaning (in a sense to be made precise
below) that “the number of elements in A4 is greater than the number of
elements in B.” In the next breath, however, he will admit that if Bis a
proper subset of A, then A4 has more elements than B, since the new
connotation of “more” is implied by “B is a proper subset of 4. The
latter is exactly what was intended by the use of “more than” in the pre-
ceding paragraph. However, the mathematician should not be taken to

+ To be defined below.
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task for this inconsistency, since he never uses “more than” as a technical
term, and in his professional work would never be found guilty of this
inconsistency. He will be the first to admit, moreover, that the above is
simply an example of the necessity for precise definition of terms.

In the case of F and N, F does have more elements than N in the sense
that N is a proper subset of F. But, in the “number” sense, F does not
have “more” elements than N, since there does exist a (1-1)-correspondence
between the elements of N and the elements of F.

1.2 One-to-one correspondence between N and F

The easiest way to see that such a (1-1)-correspondence exists (although
perhaps not the most preferable) is to notice that the elements of F can be
arranged in an order like that (1,2, 3, -.) of the natural numbers when
these are placed in their “natural” order. To do this, we first split the
elements of F into finite sets, and then we arrange these finite sets in the
desired order.

For the first step, that of splitting F into finite sets, recall the definition
of the elements of F; a number is an element of F if it can be represented
by a form p/q, where p is any integer and ¢ is a natural number. Let us
imagine each element of F, then, as already represented by such a form and,
moreover, in its “lowest terms” (i.e., so that p and ¢ have no common

. . . 2 4
factor greater than 1 ; “two-thirds’ is then written as 3 not 4 for example);

the number zero will be represented by (T) only. Define the index of a
number represented by p/q as |p| + ¢ (where, as usual, |p| is the absolute
or numerical value of p); we call this the “index of p/g” for short. Thus
the index Of(T) isl;of ——2(: —_1-2) is 3; of3( = %) is4;etc. Then we place
in the same set all elements of F that have the same index.

Now the set of numbers with index 1 has only 0 as its element; the set of
numbers of index 2 has —1 and 1 as its elements; and so on. Let us
agree to order the elements of a set of given index in pairs according to
absolute value, each pair consisting of a negative and positive number of
equal absolute value, the relative order between pairs being determined by
numerical magnitude; for example, according to this rule, the set of index
5 will be ordered as follows:

—11 232 33 _44
4> 4> » 3> 25 2> 9 T
Next we arrange these finite sets according to the size of their indices.
The ordering of elements of F then turns out like this:

(F) 0’ —1’ 1, _%s %3 —2’ 23 _%’, %’ __3’ 39 _%’ %’ —%9 %" 0
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We call this “sequence” (F). Since every element of F has a definite
index and a uniquely determined position in the set of that index, it will
have a definite position in (F). And to get a (1-1)-correspondence between
N and F, let the nth number in (F), starting from the left, be denoted by
f», and make the pairing (n, f,), n€ N, f, € F.

1.2.1 Many ways have been given for defining a (1-1)-correspondence
between N and F. The one just given is not the best from the standpoint
of effectiveness. For example, if we ask, “What rational number corre-
sponds to 312,500 ?” the only apparent way of finding out is to run through
the first 312,500 terms of the sequence (F) to find out. However, it is
possible to set up correspondences in which for each number n the element
of F corresponding to N is directly calculable. Consider the following: ¥

Let f be a (1-1)-correspondence between N and the set of all non-zero
integers such that f(2n) = —n and f(2n — 1) = n. Now each natural
number greater than 1 is a unique product of powers of primes of the form
pli-ple - pie, where each r, = 1. If for each such number we define
g(pir-piz - - -pix) = p{"V-pf® - - p["¥, and g(1) = 1, then g is a (1-1)-
correspondence between N and the set F* of positive rational numbers.
In particular, g(312,500) = g(22.57) = 2-*.5* = 625/2. To extend this
method to a (1-1)-correspondence between N and all rational numbers,
positive, negative, and zero, is a simple matter. (See Problem 18.)

Other effective (See III 6.8, paragraph 4) enumerations may be found
in Faber [a] and Niven [a].

1.3 One-to-one correspondence between N and A

We can, as Cantor showed, go even further with the above process.
Specifically, let A be the class of all real roots of ordinary algebraic
equations of the type

(1a) A" + ax" '+ --- + a1 x + a, =0,

where n is a natural number, q; an integer, i = 0,1,---,n, and a, > 0.
The elements of A are called algebraic numbers. The elements of F all
belong to A—i.e., F < A—since p/q is a root of the equation

(1b) gx —p=0.
But Fis a proper subset of A since the equation
x*—-2=0

has roots + V2, and it is not difficult to show that V2 cannot be repre-
sented by the p/g form which elements of F can assume. So A4 is a

1 This was communicated to me by Professor Philip Obreanu.
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“larger” set than F. Yet, surprisingly enough, there still exists a (1-1)-
correspondence between the elements of N and the elements of A4.

To show this, we proceed as we did in Section 1.2 by first splitting the
elements of 4 into finite ordered sets, and then ordering these sets. To
get the finite sets, let us define the index of an equation such as (1a) as
the number

ao + |a| + -+ 4 |an_a| + |ay| + 1.

As the a’s and # are integers, the index is always a natural number. There
exists no equation of index 1, since both n and a, are at least 1. The
only equation of index 2 is x = 0, and the only root of equations of index 2
is the number zero. The only equations of index 3are2x = 0, x + 1 = 0,
x? = 0, yielding roots 0, —1, 1. Thus for each index there exists only
a finite number of equations and, hence, a finite number of roots corre-
sponding; of the latter, we reject the non-real roots (thus x2 + 1 = 0
affords no real numbers for us) and order the remainder by the same rule
that we used in the finite sets for F, except that we reject any number that
was a root of an equation of lower index.

As in the case of F, we may finally arrange the sets according to the size
of their indices. The sequence A then starts off like this:

(A) 07 _la ls _%a —219 _27 29 _%a %‘s _%\/zs %\/E’ —\/zy \/5’ _3’ 3, ]

1.4 Non-existence of (1-1)-correspondence between N and R

Now 4 is itself a subset of a still larger class, namely, the class of all
real numbers, which we shall denote by R. We have to be specific about
what we mean by a real number here, just as we were in regard to the
elements of Fand 4. For present purposes, then, a real numbert is any
number which can be represented by an unending decimal, in the ordinary
decimal system, of the form

(lo) thiky - kpayas---a,---

where each k and each a are one of the digits 0, 1, --,9; kiky - - - k, is
the “integral” part of the number; a,a;- - - a, - - - is the “decimal part,”
also called a decimal fraction; and no n exists such that all digits
G, Ay 41, - - are zero (with the single exception that the number zero
is represented by 0.a,a, - - - a, - - -, where all a, are zero). For instance, the
number 1221 is an element of R, since it is represented by k; = 1, k, = 2,
ks = 2 (m being 3 here), and all a’s are 3: thus, 122.33-..3 ..., Simi-
larly, V/2 is real, since here ki; = 1 (mbeing 1 in this case), a, = 4,a, = 1,

T As in the case of rational and algebraic numbers, we defer comment regarding
the concept ‘“‘real number.” A more complete discussion of the concept will be
given in Chapter VI.
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as = 4, etc.; and it is impossible that all a,, @, .1, - - - be zero for some n,

since this would imply that 4/2 is rational. ~Also, the natural numbers are
real numbers, since, for example, 2 can be represented by letting k; be 1
(m being 1), and letting all a’s be 9; thus, 1.99---9 ... (see Problem 8 at
end of this chapter).

Now Cantor discovered that there does not exist any (1-1)-correspond-
ence between the elements of N and the elements of R. For suppose
such a correspondence did exist. Let the real number paired with each
natural number » in this correspondence be denoted by “r,.”” Also,
denote the digit in the nth decimal place of r, by “a,*.” Then we can
define a real number r = 0.a,a; - - - a, - - - such that, for each n, a, = 1 if
a # 1,and a, = 2if a,® = 1. Since r € R, it must be an r, itself, say r;.
But 7, has a; as the ith decimal digit, whereas r has a different digit a;!
Because of this contradiction we must conclude that no (1-1)-corre-
spondence of the supposed type exists.f

1.4.1 The reader, if entirely unfamiliar with the above type of argu-
ment, may wish to explore some of the details more closely. For this
purpose, it may help to imagine the digits of the numbers r, arranged in a
square array, obtained by setting the numbers down in a vertical sequence
(omitting the integral parts since they do not influence the result) thus:

ry: 'allazl PR anl e
rg: _a12a22 .. an2 e
Tt atag" - a - -

To get the number r, follow the main diagonal of the array beginning at
the upper left-hand corner, and write down a digit @; # a,*, a; # a2, - - -,
a, # a,”, - - - according to the rule given above. For example, if the array
started like this:

ri: 4146 - - -
ry: 9999 . ..
rs: . .1019...
ra: 2682 - - -

then r would look like .1121 - - - ; and we already see that r will not be one
of the numbers ry, 7y, Fa, 74

1 Cantor’s proof is in Jahresb. der Deut. Math. Ver., 1 (1892), p. 75.
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1.5 The countable sets

It appears, then, in view of 1.4, that, by using the notion of (1-1)-
correspondence, we can make a distinction between certain infinite sets.
Thus we already see that N and R can be distinguished from one another in
this way. And, indeed, if & is any collection of sets whatsoever, we can
decompose & into disjoint classes, using the fact that (1-1)-correspondence
between elements of two sets is an equivalence relation (see I 8.5). If &
has as its elements just the sets N, F, 4, and R, for example, then the class
decomposition of & corresponding to (1-1)-correspondence consists of a
class &, whose elements are N, F, 4, and a class ©, whose single element
is R.

If & is any collection of finite sets and & contains a finite set, S, having,
say, exactly 15 elements, then the class containing S would contain all
the elements of & each of which has exactly 15 elements. And if there
were a set consisting of exactly 3 elements, the class containing this set
would also contain all elements of & each of which has exactly 3 elements,
and only these. That is, (1-1)-correspondence as an equivalence relation
induces a class decomposition of & such that each class consists of all sets
having a certain fixed number of elements. It is natural, therefore, to
think of any two sets whose elements can be put in (1-1)-correspondence
as “having the same number” of elements. Accordingly, Cantor made
the definition:

1.5.1 Definition. If 4 and B are two sets such that there exists a
(1-1)-correspondence between the elements of 4 and the elements of B,
then we shall say that 4 and B have the same cardinal number.

Cantor used the term “have the same power (Mdchtigkeit).” Notice, incidentally,
that we have nor defined “number” or “cardinal number,” but only the term “have
the same cardinal number.” A definition of ‘“cardinal number” follows later.

If two (ordinary) finite sets have the same cardinal number, they have
the same “number” of elements in the usual sense; if one has 15 elements,
then the other has 15 elements, etc. (cf. III 5.2.1). As we showed above,
the sets N, F, and 4 all have the same cardinal number, but N and R do
not; we say that N and R have “different cardinal numbers.” And,
although we have not yet defined “cardinal number,” we can introduce, by
analogy with the natural numbers, the numbers R, (“aleph-null’”) and c.

When we say that “a set S has R, elements,” or, alternatively, that “its
cardinal number is X,,”” we mean that between its elements and the elements
of N there exists a (1-1)-correspondence. In particular, N, F, and A each
has N, elements.

If there exists a (1-1)-correspondence between the elements of a set M
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and the elements of R, then we say *“M has c elements,” or alternatively, that
“its cardinal number is c.”

The symbols “X,” and “c”” would come, with practice, to have the same
significance for us as the number 15, for example; for we never have defined
the latter and we never define any of the natural numbers in the primary
schools, because by the time a child enters school he has usually been
introduced to the counting process and he “knows” what we mean if we
say, “You may have only two pieces of candy.”

The following terms will be useful in the sequel:

1.5.2 Definition. If a set has X, elements, we call it denumerable.
If a set is either (ordinary) finite or denumerable, we call it countable.

The reader should be warned that, although these ferms are standard, their
meanings vary in use. Thus ‘“‘denumerable” is sometimes used to mean *“count-
able,” as we have defined the latter (English authors commonly use the term
“enumerable,” incidentally). The only safe way, when these terms are encountered
in a mathematical work, is to ascertain explicitly the author’s use of the terms.
The usual German and French terms are ‘‘abzéhlbar” and ‘“‘dénombrable.” Bour-
baki, for example, uses the latter in the sense of “countable” as defined above, and
“infini dénombrable” in the sense of “‘denumerable’ as defined above; see Bourbaki
[B1; 40]. On the other hand, Sierpinski [S;; 41] (see also [Ss; 34]) uses “dénombrable”
in the sense of denumerable as defined above.

1.5.3 A set which is not countable is called uncountable. [Many
authors use the term “non-denumerable.” For example, Sierpinski
(loc. cit.) uses the French “non-dénombrable.”] Thus R is an uncountable
set. And we may, a priori, divide sets generally into two categories, the
countable and the uncountable. The proof (IIT 5.3) that an ordinary
infinite set is also Dedekind infinite devolved to showing that every
ordinary infinite set contains a denumerable subset; II 5.3.2 may be
restated: ““If a set has a denumerable subset, then it is Dedekind infinite.”
And if we grant the use of the Choice Axiom, we can state (as a result of
III 6.7):

1.54 Every infinitet set contains a denumerable set.

2 Uncountable sets

Thus far the only example of an uncountable set that we have introduced
istheset R. In this section we shall give other examples, although we shall
reserve some standard examples for later purposes. In particular, we give
first some examples of sets that have the same cardinal number as R.

t Since we make this statement on the basis of the Choice Axiom, we need not
specify “ordinary” or “Dedekind” here, the two being equivalent in this case (III 5).
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2.1 The simplest of these is the set, E, of all points on a euclidean straight
line. Anyone who has studied analytic geometry will recall that the basic
frame of reference was the “coordinate axes.” For plane analytic geom-
etry, these were the “x-axis” and “y-axis”: two straight lines usually
perpendicular to one another, on each of which were “marked off”
numbers starting from zero at the intersection of the axes (the “origin”),
with positive numbers in one direction, negative in the opposite. It was
assumed that to each point on the x-axis (and similarly on the y-axis) there
corresponded a “number” and, conversely, that to every “number” there
corresponded a point on the axis. In the terminology introduced above,
it was assumed that there exists a (1-1)-correspondence between the ele-
ments of R and the points of the axis; that is, the set of points on each
axis has the cardinal number ¢. No proof is given in the analytic geom-
etry, as a rule, that this assumption is valid. However, on the basis of a
complete set of axioms for euclidean geometry the assertion is provable}
in the sense that the set of all points on any straight line whatsoever has
the cardinal number ¢. Moreover, if L is such a line, and S a segment of
L, the set of points on S again has the cardinal number ¢ (see Problem 14
at the end of the chapter).

2.2 That two line segments (considered as collections of points) have the same
cardinal number may be demonstrated by construction: Let abc be any plane triangle,
and d a point between b and ¢. To show that the set of points on bc has the same
cardinal number as the set of points on de, let b’d be a segment parallel to ac with its
endpoint b’ on ab. Then let b’c’ be a segment parallel to bc with endpoint ¢’ between
a and c¢. Consider any point x of bc. The line ax meets b’¢’ in a point x’; and in
turn a line through x’ parallel to 4’d meets dc in a point x”. The collection
{(x, x") | x € bc} constitutes a (1-1)-correspondence between the points of bc and the
points of de.  Since be and dc can have arbitrary lengths, so long as dc is not longer
than bc, this construction is readily adapted to proving the desired theorem.

23 That the set of points on a euclidean straight line segment is uncountable is
frequently proved as follows: Let ab be a segment of a straight line L; we may take
the length of ab to be t unit. Then let us assume that the points of ab form a
countable—hence denumerable (since they do not form a finite set)—collection.
From the (1-1)-correspondence that exists between the points and the natural num-
bers, which follows from the assumption, we derive symbols x, just as in III 4.1.1,
so that each point of ab can be “named” x,,n = 1,2, 3,---, no two points being
assigned the same ‘“name.” Now, for each n, let I, be an interval of length ()" +?
with center x,. Then the intervals I, cover the segment ab; that is, every point of
the interval is in at least one I,. Consequently, their lengths should add up to 1,
at least, since gb has unit length. But the sum of the series whose general term

T In addition, it is assumed that this correspondence is ‘“‘order-preserving,” but
this does not concern us here. The assertion of this correspondence is sometimes
called the “Cantor axiom.”

1 We refer here to such a system as that of Hilbert [H.] (see H; 36-37). 'The
Birkhoff [a] system makes the assertion an axiom.
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is (3)**' is only 3. Thus the assumption that the points of ab form a countable
collection leads to contradiction.

[If we are familiar with the “Borel theorem,” according to which a finite number of

the segments I, must cover ab, then the justification (omitted above) for using the
infinite series + + --- is avoided. Note that the above type of argument shows
that any countable set of points on a line L can be covered by a set of intervals whose
total length is as small as we please; we merely use intervals I, of length c/2m+1,
where ¢ is whatever (fixed) length we please.]
2.4 The set of all points in the euclidean plane has the cardinal number c.
In the general remarks at the beginning of this chapter we recalled that
the symbol “c0?” was frequently used to designate the “doubly ordered”
array of points in a plane, with the unfortunate connotation that some-
how there is a “larger infinity” of points in the plane than on the line. It
is not surprising, then, that it was anticipated by some mathematicians that
the Cantor theory of cardinal numbers would provide a means of dis-
tinguishing two-dimensional space from one-dimensional space. ~Actually,
however, the set E2 of all points in a euclidean plane has the cardinal
number c; i.e., the sets R and E? have the same cardinal number.f

The proof is very simple.f It will be sufficient to show that the set E*
of real numbers x such that 0 < x £ 1 and the set E2 of all points in the
coordinate plane defined by

E*={»|0<x=DH&0<y=1)

have the same cardinal number (see Problem 14 at the end of the chapter).
As E! © R, each element of E* is representable in the form 0.a;a, - - -
a,--- as in 1.4. We divide the array a,a,-- -4, - - - into “blocks”; the
following example illustrates what we mean. Consider a number such as
0.32046008 - - -. The successive “‘blocks” are 3, then 2, then 04, then 6,
then 008, and so on; i.e., each “block” contains one digit different from 0,
and this its last digit. We then construct an ordered pair (0.a;'a;' - - -,
0.a,2a,%- - -) such that a,* = 3, a,% = 2, a,* = 04, a,® = 6, a;' = 008,
and so on—(0.304008 ---,0.26---). That is, we assign the blocks
alternately to the two coordinates of a point of E2.  Since this process can
be reversed, it provides a (1-1)-correspondence between the elements of E*!
and the elements of E2. (See Problems 9-11 at the end of the chapter.)

2.5 The set, I = R — F, of all irrational real numbers has the cardinal
number c¢. To prove this, we first prove:

+ The problem of distinguishing between different dimensions is satisfactorily
solved in that branch of mathematics known as Topology (cf. VII 3.5.2 and VII 4).

1 The proof given in Young [Y; 167ff] is not valid. The construction which
Young gives is that of Hilbert’s ‘“space-filling continuous curve,” which sets up a
many-one correspondence (see 3.2.3.1 below), not a (1-1)-correspondence (the latter
being impossible in the case where the elements of E? are to lie on a continuous
curve given by the correspondence).
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2.5.1 Lemma.t If A and B are countable sets, then A U B is countable;
and if either is denumerable, then A U B is denumerable.

Proof. We first consider the case where 4 and B are disjoint. If A4
and B are both finite, then 4 U B is finite (see 111 5, Theorem 5.2.2 for
example). If A4 is denumerable, and B is finite, then, as in III 4.1.1, let
the elements of 4 be assigned symbols x,. If Bis empty,then4 U B = 4;
otherwise its elements are representable by symbols Y1, Y2 * + *5 Vi, Where
ke N. Change the symbol x, to y,.; then all elements of 4 U B are
assigned symbols y,, me N. If both A and B are denumerable, let the
symbols for elements of 4 be x, as before, and for B let them be Vns
ne N. Change x, t0 z,,_; and y, to z,,.

The case where 4 and B are not disjoint may be handled by considering
the sets 4 and B — A; we leave this to the reader.

252 Theorem. If S is a Dedekind infinite set and S’ is a countable
set, then S U S’ has the same cardinal number as S.

Proof. We may assume S and S’ disjoint; otherwise, we may use sets
S and §' — S (cf. Problem 12). As S is Dedekind infinite, it has a
denumerable subset S; (cf. Problem III 21). Let S — S; = M; then
S = MU S§,, where M and S, are disjoint sets.

Now, SUS'=(MUSHUS' = MU (S, US’), and, by Lemma
2.5.1, $; U S’ is denumerable. As S, is also denumerable, there is a
(1-1)-correspondence T, between the elements of S; U S’ and the elements
of Sy ; let T}, be the identity correspondence (II 4.4.2) between the elements
of M and the elements of M. The union T; U T, gives a (1-1)-corre-
spondence between the elements of S U S’ and the elements of S.

253 Corollary. The set I of all irrational real numbers has the
cardinal number c.

[For R = I'U F, and I is Dedekind infinite (Problem 5); and by 1.2, Fis
denumerable. ]

2.5.4 The elements of R — A are called transcendental numbers. And
since, in 1.3, we showed 4 to be denumerable, we also have

2.5.5 Corollary. The set of all transcendental numbers has the cardinal c.

2.5.6 Remark. Lemma 2.5.1 is usually considered the basis of a proof
of the existence of transcendental numbers. For, if R — A were count-
able, then, in view of 1.3, (R — 4) U 4 = R would be countable, contra-

T As we use the term “lemma,” it is a statement which will be an aid in proving
theorems but is not of itself of sufficient importance to be called “theorem” (because
of its being a very special case of a later theorem, for instance, or not being of great
import for the general theory under development). Not infrequently, however, a
“lemma” proves to be more important than the theorem for whose proof it was
designed.
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dicting 1.4. It is to be noted that we thus have a proof of the existence of
an uncountable set of numbers, not one of which have we exhibited or
constructed in any way! (See 3.1.9, however.) We can, of course,
exhibit such numbers—we give an example below—but the above argu-
ment has the feature of revealing the uncountable character of their totality.
It was remarked by Sierpinski [S;; 64] that, in the same year (1873) in
which Cantor announced this result, Hermite demonstrated the trans-
cendence of e, the base of natural logarithms, and ten years later Linde-
mann demonstrated the transcendence of = (from which follows the
impossibility of “squaring the circle” with ruler and compass).

3 Diagonal procedures and their applications

The proof of the uncountability of R, given in 1.4 (see particularly
1.4.1), introduces a method commonly called “Cantor’s diagonal method”
or “diagonal procedure.” As we shall see later, some mathematicians do
not admit the existence of an uncountable set of real numbers as a legiti-
mate consequence of the argument given in 1.4. However, it is generally
admitted that the diagonal procedure itself, as it was used to construct the
number r from the numbers r, in 1.4, is a valid method for constructing
numbers. (See 3.1.1.) Now how many such numbers can be con-
structed by using the diagonal method?

3.1 Construction of irrational and transcendental numbers

We showed in 1.2 how to arrange the set F of all rational numbers in a
sequence:

(F) 0’ _1’ 1’ _%’ %a _'2) 2’ _%—’ %‘9 _3’ 31 _%, %’ —%’ %" T

From this sequence let us select the numbers which lie in order of magni-
tude between 0 and 1:

(Fv) Lhhdoo

If we now express these numbers in the decimal form prescribed for the
elements of R in 1.4, and imagine them forming a square array as in 1.4.1,
we get

0.4999 - ..

0.3333 - --
(Fy) 0.2499 - - -
0.6666 - - -



92 INFINITE SETS Ch. Iv

The application of the rule for obtaining 7 in 1.4 gives a number 0.1111 - - - ;
let us denote this number by r,. Evidently r, is a well-defined number
since the order of the terms in (F), and hence in (F,), was explicitly given
and the rule of 1.4 is quite explicit; we can calculate r,, to as many decimal
places as we wish.

3.1.1 It is sometimes protested that »,, cannot be well defined, since it is defined
in terms of an infinite set of numbers [the elements of (F;)], each of which is itself an
infinite decimal. This ignores the fact, however, that, so far as determining r, is
concerned, not a single element of (F) is needed in its infinite decimal form; all that
is needed of each number in (F;) is a knowledge of a single one of its digits, namely,
the digit on the main diagonal of the above array. The digits constituting r,, are

as well defined, for instance, as are those of V2, whose digits are obtainable only
by means of algorithms, such as the process taught in the grade schools for extracting
square roots. As a matter of fact, the digits of r, are better known than those of

v 2, if we use, instead of the rule given in 1.2, a rule (Section 1.2.1) which enables us
to find directly (without first setting down the preceding terms) the 100th term, for
instance, of the sequence, hence the 100th digit of r, without prior computation of

the preceding 99 digits of r,—something we cannot do for V2!

3.1.2 Let us now form a new array by placing r,, at the head of (F}):

0.1111 - - -
(F,) 0.4999 . . -
0.3333...

and again apply the diagonal procedure. This time we get a number
(whose first five significant digits we already know): 0.21111 - - - [since the
terms on the main diagonal of (F,) are 1,9,3,9,6,---]. Let us denote
this number by r,,,.T

We may repeat the above procedure for finding r,,, by placing 7, .,
at the head of (F;), thus forming a new array (F3); application of the
diagonal procedure to (F;) yields a number 0.121111 - - -, which we denote
by 764 2.

3.1.3 For every natural number n we can now define by induction a
number r, ., as follows: Having defined 7, ,,_; from an array (F,), we
place r, 4, -1, at the head of (F,) to form a new array (F, ;). Application
of the diagonal procedure to (F,.;) using the rule of 1.4, gives a new
number which we denote by r,.,. The number r, ., is different from all
numbers in the array (F,,,), since it differs in at least one digit from each

+ The origin of the subscripts that we are using will be clear when we introduce

the ordinal numbers; part of our present purpose is to introduce these (ordinal)
numbers in a natural fashion.
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of the numbers forming this array. In particular, then, r, ., is not an
element of F and is therefore an irrational number.

With the definition of r, (= r,.0) and the general rule for finding
Fu+n, fOr any natural number #, as given in the preceding paragraph, we
have given by induction a definition of an infinite sequence ry, ro415 " *»
Foin - -+ Of irrational numbers, all different from one another (3.1.2 is
actually superfluous, then, except as explanatory material introducing the
general definition of 3.1.3).

3.1.4 It is possible to go further, however. If we follow the device
used in the proof of Lemma 2.5.1 for the case where 4 and B are denumer-
able, we may form a single array (F,) from the elements of (F;) and the
elements of the collection {r, . ,}; the order from the top of the array down
will correspond to 4,74, 3, Foi1> 3 Fose - - -- And by the diagonal
procedure we obtain from (F,) a number that we denote by “‘r,..”
Then, from arrays (F, 1), (F, . ), etc., obtained by placing r,,., at the head
of (F,), etc., we can again set down a definition by induction of a set of
numbers {r,.o , »}, all different from those in (F,) and from one another.

3.1.5 It is not difficult to set down a definition by induction of a general

array, (F,.x+n), fOr every natural number pair k, n, and hence a number

Fos+ne1 Obtained from (F, . . ,) by the diagonal procedure (using the rule

of 1.4). Note that this defines a denumerable set of denumerable sets of

numbers: Fos* s Vosn " s Foas s Vw2+n " 5 s tok " s Tok+n " * 5
But we can go further! First, we prove:

3.1.6 Theorem.t If{S,} is a denumerable? collection of denumerable
sets S,, then the set {x | x € S, for some n} is denumerable.

Proof. For each n, denote the elements of S, by symbols x,,, k =
1,2,3,---. Assign the index j = n + k to each x,,. Then for a given
natural number j there exists only a finite number of elements X, (allowing
both n and k to vary) of index j. (Thus, for j = 3, only x;; and x5,
qualify.) We may now arrange the symbols x,, in groups according to
index, and order them within the group according to the first subscript n:

X115 X125 X215 X135 X225, X315 * * '+

Finally, we pair each x,, with the natural number that corresponds to its

+ Compare with Lemma 2.5.1. Unless a (1-1)-correspondence is given for each n,
between the elements of .S, and N, as is the case to which we shall apply this theorem
below, then we can maintain that the Choice Axiom is needed in order to assign
the correspondence to each S,. Cf. Sierpinski [Sy; 124ff], [Sa; 117fF].

1t We may say ‘‘countable” here if we wish, but we prefer to treat only one case;
the more general case will follow immediately as soon as we study the “‘order”
relations of cardinal numbers.
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position in the above linear order, thus: (x,y, 1), (x2, 2), (xa1, 3), - - .
The desired (1-1)-correspondence follows immediately.

It will be noticed that if we arranged the sets S, in a vertical array, the
elements corresponding to S, being in the nth row of the array, then the
group of a given index lies on a “cross-diagonal’; thus,

Ist group 2nd group 3rd group
—

/ :// het
Sp: / Xoq * -

Syt xu
Ss: X33 Xgg "

3.1.7 With the aid of Theorem 3.1.6, we may set up a (1-1)-corre-
spondence between N and the set formed by the union of (F;) and all
irrational numbers defined by induction above. Denoting the elements
of (F1) by ry, ry, r3,---, and using the symbols of 3.1.5, we may (as
suggested above for the proof of Theorem 3.1.6) arrange the sets (F,) in a
vertical array:

r ra rs
L Yo+ L)
Ve.2 Yo2+1 Fogea:

By following the respective cross-diagonals we get the ordering ry, ry,
Fos ¥3s Yo 11, Fongy - - From this follows the desired (1-1)-correspondence
with the elements of N, and we may begin all over again, as in 3.1, to
construct entirely new irrational numbers. (The first of these we could
denote by r,z2, the second by r,z2, 4, etc.)

3.1.8 Remarks. By this time the reader should have become rather
fatigued by the above procedures, and perhaps be inclined to ask: “How
long can this go on?” Analysis of Sections 3.1.1 to 3.1.7 suggests the
answer “Just so long as the numbers defined form a denumerable set.”
But here we need to use extreme care. In 3.1.1 we elaborated on the
“well-defined” character of the number r,, pointing out that we possess
an algorithm, i.e., a well-defined finite procedure, which enables us to
state exactly what any particular digit of r, is—whether it is 0, or 1, or
2,---,0r 9. In this sense, we are able to exhibit r,. And the same re-
mark holds for each and every one of the numbers defined above (even
ro2 = 0.112121 --- is quickly calculated to 6 decimal places from the
information given above). We have effectively or constructively defined,
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or given an effective definition of, each of these numbers. And the
definition involved effective definitions of the way in which the numbers
already defined at any stage can be put in (1-1)-correspondence with the
natural numbers; in the latter case, we say that the sets of these numbers
(previously defined) were effectively countable or effectively denumerable.
It is preferable, then, that we say in answer to the above question, “Just
so long as the set of numbers already defined forms an effectively denumer-
able collection.” For the very essence of what we have done above is
to give a definite process for obtaining the numbers. It will aid in under-
standing the significance of this if we interpolate the following:

3.1.8.1 Fallacious theorem. Any collection, H, of numbers definable
by continuing as far as possible the process commenced above in 3.1.1-3.1.7
is uncountable.

Proof. For suppose that such a collection H is countable. Then its
elements form a denumerable collection to which the diagonal procedure
may be applied to define a new number, r, which is different from all
numbers in H. But this implies that the process can be continued, and
the assumption that H is countable leads to a contradiction.

3.1.8.2 What is wrong here? The proof is entirely analogous to that
of 1.4; however, in that case we were discussing a set, R, of supposedly
already existing numbers. Very well, one may counter, why is not H a set
of already existing numbers? For one thing, we do not have a satis-
factory description of H. What do we mean by “‘continuing as far as
possible the process commenced in 3.1.1-3.1.7?° 1In 3.1.7 we had to
redefine the (1-1)-correspondence with the natural numbers before we could
carry on with the diagonal procedure; we had accumulated so many
numbers at this stage (“‘a denumerable set of denumerable sets™) that this
became necessary. Clearly, then, “continuing” the process “commenced
in 3.1.1-3.1.7” involves redefinition at successive critical points in the
process. And until the necessary definitions have been specifically given,
H is not itself really defined.

Thus the process may be continued as long as we are able to define new
ways (at the critical points of the process) of setting up (1-1)-correspond-
ences between the numbers already defined and the natural numbers; and
these definitions have to be, by the very nature of the process, effective
definitions which enable us to exhibit or calculate the number thereafter
defined. What we can say, then, is that, as long as the set of numbers
already defined at any point in the process is effectively denumerable, the
process may be continued.

3.1.8.3 The “we” at the beginning of the previous paragraph was
italicized in order to emphasize the contrast in the points of view which
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may be taken here.  Effective definition depends on someone effecting, i.e.,
giving, the definition. However, someone may take the point of view that
a definition may exist without anyone actually giving it. The “hard-
boiled realist” would ask “Where?” In justice to the idealist, however,
we may say that he could take the position that, given a dictionary D, he
may consider the set ®, of all possible finite arrangements, repetitions
allowed, of words from that dictionary. Some of these will form defini-
tions which, if “discovered” by someone, will become effective definitions
adaptable to continuing the (possibly heretofore stopped for lack of
effective definition) above process. For the sake of argument, we might
call these potential definitions. And then we could ask, what is the
character of a set H of potentially definable numbers obtained by continuing
the above process?

Unfortunately the question is still inexact, since at no stage of the process
is the manner of continuing wnigue. The diagonal procedure is itself
precisely defined, but the ways of setting up the (1-1)-correspondence with
the natural numbers at each stage are “unlimited.” [Even in 3.1.2, we
could begin by placing r,, after the first element of (F,) instead of at the
head of (£;).] To get rid of this difficulty, let us set up a (1-1)-correspond-
ence between the elements of N and the elements of D.

3.1.84 Ordering of all “sentences” using a dictionary D. This may
be done as follows: The elements (words and symbols) of D are already
(alphabetically) ordered. If each such element is considered an arrange-
ment of words, they form an ordered subset ®, of ®. Then the arrange-
ments of elements of D, two at a time, can be ordered in obvious ways to
form an ordered subset ®, of ®. In general, the arrangements of elements
of D, n at a time, can be ordered to form an ordered subset ®, of ®. And,
since each ®, is finite, ordering according to index (each element of ®,
being of index ») induces an ordering in one array of the elements of ®
(as in the treatment of F and 4 in 1.2 and 1.3 respectively).

With such a (1-1)-correspondence, we may stipulate that at any point
in the above process the new definition of ordering the numbers previously
defined shall be the first to occur in the ordered arrangement of ®. In
this way, we may conceive of H as a definite class of numbers. And we
may then state:

3.1.8.5 Theorem. The collection H as redefined is not effectively
countable.

The proof is like that of 3.1.8.1, except that we now have that, if H is
effectively countable, then there exists an element of © constituting a rule
for establishing a (1-1)-correspondence between the elements of H and the
elements of N and hence a new number definable by the diagonal process.
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3.1.8.6 The preceding remarks obviously suffer from inexactness, being
largely descriptive. We should be more precise about what dictionary, D,
we are using; for instance, it should contain the symbol “w” used so
frequently in 3.1.1-3.1.7, although the word “omega” would do.  Also, it
should contain other symbols, such as (, ), - - -, ., 0, etc.

Having specified D accurately, we could then define an effective definition
as a potential definition which has been observed and recorded so that it
has become available for use by anyone. [The “realist” would omit the
‘“potential definition” and say that “an effective definition is one that is
expressed (already recorded) in terms of D.”] And a collection would be
effectively countable if there existed an effective definition of a (1-1)-
correspondence between its elements and those of N.

As we shall see later, we come near, here, to the notion of a formal
system, and for the present we leave the matter where it stands.

3.1.9 We remarked in 2.5.6 that we had obtained, in Corollary 2.5.5, a
proof of the existence of an uncountable set of transcendental numbers
without even exhibiting a single such number! If, in 3.1, we commence
with the set A instead of F, then r, and all numbers later defined are
transcendental. Moreover, these numbers are effectively defined, since
in Sturm’s functionst{ we have an algorithm for isolating and calculating
(as closely as we wish) the real roots of a given algebraic equation. And,
if we accept the existence of a set H as subsequently defined, one then has a
non-effectively countable class of transcendental numbers, for some of
which we have effective definitions, and for the remainder only potential
definitions (relative to D).

3.2 The general diagonal procedure

We saw in 3.1 how, given an effectively denumerable set M of real
numbers, we may effectively define, in terms of M, a real number that is
not in M. From the standpoint of the complete totality, R, of real
numbers, this is (at least theoretically) possible because R is uncountable.

3.2.1 We are now going to show how, given (1) a set S, and (2) a
collection & of subsets S, of S, such that between the elements of S and the
elements of & there exists a (1-1)-correspondence, we can effectively define
a subset S’ of S that is not an element of &—i.e., not an S,. The method
we are going to describe constitutes what we may call a “general diagonal
procedure.”

3.2.1.1 First let us consider a very simple example. Let S be a set
having 3 elements, a, b, and ¢. Let & be the following set of three subsets:

T See any good book on the Theory of Equations.
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{{a, b};{b, c};{c}}. Both S and © have 3 elements, so that the stipulation
of a (1-1)-correspondence between the elements of S and the elements of &
is satisfied ; suppose that we denote the elements of &, in the order named
above, by S,, Sy, S, (thus S, = {a, b} for example). Now the method is
expressed in the following:

(3a) Rule. Form a set S’ which contains an element x of S if and only if
S, does not contain it.

In the present case, S’ will be, precisely, the set @, for S, contains a, S,
contains b, and S, has ¢ as its only element; so S’ does not contain a, b,
or c.

3.2.1.2 The general case presents no difference. The rule (3a) is
stated in sufficiently general terms if we agree that S, is to denote the
element of & that is paired with x € S in the given (I-1)-correspondence.
And we shall prove the basic theorem:

3.2.1.3 Theorem. If S is any set and & is the collection of all subsets
of S, then S and S do not have the same cardinal number.

Proof. Suppose there exists a (1-1)-correspondence T between the
elements of S and the elements of &. Let S, denote the element of &
that is paired with x € S in this (1-1)-correspondence. Form the set S’
according to (3a). Then S’ is a subset of S. But then S’ ¢ & and accord-
ingly must be an S,~—say S,. This is absurd, since, by (3a), S’ contains a
if and only if S, does not contain a. We must conclude, then, that T
does not exist.

3214 A corollary of 3.2.1.3 is the well-known elementary formula of
arithmetic: n < 2" for every natural number n. For, if a set .S has n
elements, then S has 2" subsetst (counting the null subset); and clearly
2" 4« n, since each element x of S constitutes the element {x} of &. As
soon as we have defined “ < for cardinal numbers, we shall have a similar
inequality for them (Theorem 4.2.3.1).

3.2.2 Cantor’s diagonal procedure as a special case

To see the relation between the above and Cantor’s diagonal procedure,
we shall represent real numbers, the elements of R, in the binary scale
instead of the decimal.

3.2.21 For theoretical work in analysis and function theory, the binary repre-
sentation has long been used. In recent years, in the development of high-speed

T In elementary texts, these are called “selections” instead of ‘“‘subsets’; thus
from a set of 3 things, 2° = 8 selections may be made. In view of the discussion of
III 6, we avoid the use of the term ‘‘selection” for obvious reasons when dealing with
infinite sets.
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computing machines and even in the study of the human nervous system, the binary
scale has assumed great importance.

By the binary scale we mean the representation of real numbers on the base 2,
using only the digits 0 and 1. Thus, whereas 101.01 is the number 102 + 1 + 10-2
in the decimal scale, in the binary scale it becomes 22 + 1 + 22 =4+ 1+ % =
5}. Other bases may be used, of course; thus, in the trernary scale, whose base is 3,
the above number denotes 32 + 1 + 3-2 = 10} (there exists, incidentally, a society
for the propagation of the duodecimal scale, whose base is 12). When more than
one base is being used to represent numbers, the base used to represent a number
may be indicated by enclosing the number in parentheses followed by a subscript
denoting the base. Thus, (101.01); = 5% and (101.01); = 105. In short, the actual
value of a number is computed in powers of the base, the powers being determined
by the positions of the digits just as in the decimal system.t Note that 10. always
denotes the base number.

3222 In a manner similar to that given in 1.4, we represent each real
number by a form (Ic) (Section 1.4), where now, however, each k and each
a are either 0 or 1. Since the set

E'={x|(xeR) &0 < x = 1)}

has the cardinal number ¢ (see Problem 14), we may restrict ourselves to
the case where all k’s are zero, i.e., to binary fractions. And this time we
allow finite binary fractions; indeed, such numbers will be represented by
both their finite and infinite binary fractions (thus, 0.1 and 0.011-.-1- .,
although both representing 1, will be present). Since the number of finite
binary fractions is countable (see Problem 2), it follows from Theorem 2.5.2
that the set R’ of all such finite and infinite fractions still has the cardinal
number c.

Instead of the argument as phrased in 1.4, we proceed as follows: Each
binary fraction .a;a,a;- - - a,--- determines a subset of N, namely, the
subset which contains a natural number » if and only if @, = 1. Thus the
number 0.11---1--- in which every a, is 1 determines the set N itself;
the number 0.1011 --- 1. .- in which only a, is zero determines the subset
consisting of all elements of N except the natural number 2; the subset of
N consisting of all odd numbers is determined by the number 0.1010- - -
in which only a,’s with odd subscripts are 1’s; etc. Conversely, every
subset N’ of N determines a binary fraction 0.a;a,---a,---, in which
a, = 1ifand only if n € N'. Thus the cardinal number of R’ is the same
as that of the set, :, of all subsets of N.

By Theorem 3.2.1.3, !¢ and N do not have the same cardinal number.
Hence R’ and N do not have the same cardinal number.

T The arithmetic of the binary scale is extremely simple, and the elementary school
child would certainly welcome the adoption of the scale. For example, the only
“multiplication table”” he would need to learn would be 0 x 0 =0, 1 x 0 = 0,
and1 x 1 = 1!
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3.2.2.3 The appeal to Theorem 3.2.1.3 has concealed the use of the
diagonal procedure in the above argument. If we recall the proof of
3.2.1.3, however, we see that the argument depends, as in 1.4, on supposing
that there does exist a (1-1)-correspondence between the elements of R’
and the elements of N, and, if r,’ is the element of R’ paired with # in this
correspondence, on choosing 0 or 1 for the nth digit of a new number r
according as the nth digit of r,” is 1 or O respectively; the latter is the exact
analogue, as explained in 3.2.2.2, of defining a subset N’ of N which con-
tains n or does not contain n according as the nth digit of r," is 0 or 1,
respectively.

3.2.3 An alternative procedure

The use of the binary scale in 3.2.2 suggests an alternative way of
presenting the general diagonal procedure. First, however, we introduce
the following definitions:

3.2.3.1 If S and A are sets (not necessarily disjoint), then a mapping of
S into A is a function f: S — A4; however, if the range of fis A itself, then
we call fa mapping of S onto A. The set of all mappings of a set Sinto a
set A4 is usually denoted by the symbol “A5.”

In the case of the so-called functions of a real variable, both S and 4 are
identical with R (or, more generally, subsets of R); in the case of complex
functions, S and A are subsets of the complex number system. For
example, using the equations of plane analytic geometry, the function
»y = x gives a mapping of R ontfo R; the function y = e~** gives a mapping
of R into R and onto the set{y |0 < y £ 1}.

3.2.3.2 Now, if S is any set, then a subset S’ of S determines, uniquely,
a function f(x), x € S, whose values are in the set S, consisting of the
numbers O and 1. This function is defined as follows: If x ¢ S’, we let
f(x) = 0; otherwise f(x) = 1. (That is, in the “mapping” terminology, a
subset S’ determines a mapping of S into Sy ; this is a mapping of S onto
S, in every case except when S' = Q@ or S’ = S.) If ¥ is the set of all
such functions (i.e., § = S,5), and & the set of all subsets of S, then
between the elements of & and the elements of & there exists a (1-1)-
correspondence, in which to each S’ corresponds the function f(x)
defined above, and conversely.

3233 Alternative proof of Theorem 3.2.1.3. Supposing that T
exists as in the earlier proof of Theorem 3.2.1.3, it follows that there exists a
(1-1)-correspondence T’ between the elements of S and the elements of .
Denote the element of & that is paired with a given element a of S by
“f.(x).” But we can now define (diagonal procedure!) a function f(x) such
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that, for each element a of S, f(a) # f.(e).T But, as a mapping of S into
S; = {0, 1}, f(x) is an element of $; it therefore is some f,(x), where
m e S. But this is impossible, since f(m) # f.(m) by definition.

3234 Remark. The substitution of the set & for the set & as in
3.2.3.2 has led to the use of the symbol 2° for the set of all subsets of a set
S; here the “2” denotes the set {0, 1}.

4 Cardinal numbers and their ordering

In 1.5.1 we defined what we mean by saying that two sets have the same
cardinal number. We did not, however, define cardinal number. In
introducing the symbols X, and ¢ we remarked that they would come, with
practice, to have “the same significance for us as the number 15 for
example; for we never have defined the latter and we never define any of
the natural numbers in the primary schools,” since by the time a child
enters school he has usually learned to count and knows (we sometimes
say “knows intuitively”’) the meaning of the numbers used in counting.
That is, the natural numbers already have an “intuitive meaning” for him,
and to attempt a definition of them would seem senseless to him.

41 It is possible, however, to define these numbers as special cases of
what we call cardinal numbers. If we analyze the psychology of the
“intuitive meaning” of the number 2, we shall probably conclude that
2 apples” brings up to the mind of the hearer an image of a pair, here a
pair of apples. A similar remark might hold for the phrase “20 apples™;
but it would hardly hold for “200 apples,” From the psychological
viewpoint, it seems probable that 200 is simply one of the numbers one
ultimately gets by starting with the numbers whose mental images are
distinct—1, 2, 3—and applying consecutively the operation of adding 1,
as taught in the elementary schools. (This is certainly the case with a
number like 3,762,147; it is conceivable that, owing to some special
circumstances of our occupation, our experience with 200 may induce a
special intuitive knowledge of 200.) But numbers such as X, and c are
hardly to be attained in any such manner (by adding 1, that is).

If we return to the mental image brought up by “2,” we may recognize
that it constitutes a sort of abstract norm—a pair of not any special
objects, but what we might call a “pair in the abstract.” It was this that
we had in mind when we remarked that, through frequent use, the number
N, would come to have a similar significance for us, possibly like the
abstract image of the natural numbers in their natural order—which is

1 That is, f(a) = 0 if fo(x) has the value 1 at x = a; otherwise f(a) = 1.



102 INFINITE SETS Ch. IV

probably our usual concept of N (it being difficult to dissociate the
individual numbers from the order induced by the counting process).
Similar remarks might be made about the number c.

4.1.1 In 1879, G. Frege proposed a definition of “cardinal number”
which was later (1901) and independently proposed by B. Russell. This
so-called Frege—Russell definition is usually stated as follows: The cardinal
number of a set S is the set of all sets that have the same cardinal number
(in the sense of this relation as given in 1.5.1) as the set S.

Another way of putting this is to observe that the relation “have the
same cardinal number as” is an equivalence relation (II 8.1) in the set U
of all sets, and cardinal numbers are the classes of the corresponding class
decomposition of U (IT 8.5). Thus 2, as a cardinal number, would be the
class of all pairs; and to say that a given set 4 ‘“has 2 elements” is simply
saying that 4 is an element of this class. Similarly, 1 would be the class
of all sets having a single element (the class of all ‘‘singletons”).

Unfortunately, unless we restrict the manner in which we operate with
sets, or the set notion itself, these notions involve contradiction. For
example (see Problem 28), the set of all sets is self-contradictory; and
similarly the set of all sets having a single element (which, according to the
Frege-Russell definition is the number 1) and the set of all pairs (the
number 2) and so on, can be shown to be self-contradictory. Unless we
are prepared, then, either to give up the idea of adopting some definition of
cardinal number, or to pause to set up a formal set theory which will be
restricted sufficiently to avoid known contradictions, we must get along
tentatively with a provisional definition. For this we shall use the
“genetic method”—i.e., we shall give a definition which simulates the
actual historical evolution of the number concept. In 1.5.1 we defined
X, and ¢ by means of the sets N and R, respectively. These sets we might
call the norms for X, and ¢; for these “numbers” they serve the same pur-
pose that the standard yard in Washington, D.C., serves for the yard
length of measure. The test for whether a given set has the number X, is,
does it have the same cardinal number as N? We might, then, adopt the
device of establishing a norm for each cardinal number. Then a cardinal
number, «, would always be associated with a set, 4, which would serve as
a criterion as to whether any given set B has cardinal number « or not.
This would serve to define the symbol «; thus in Section 1.5.1 what we
really defined was the symbols X, and c.

Some authors consider cardinal numbers purely as symbols (Sierpinski,
for instance; [S;; 20], [Ss; 132]). It is doubtful whether mathematicians
in general take this point of view, although number symbols preceded the
formation of number concepts (cf. Wilder [Wi]). Most mathematicians
consider numbers as concepts, relating to the “size” of sets. The most
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basic aspect of the form of a set—disregarding all other aspects such as
color, shape, substance and the like if the set be a collection of physical
objects; and disregarding order and other relations, operations and the like
if the set be a collection of mathematical entities—is the “number” of its
elements. Consequently, some have proposed that “number” be defined
as the only property of a set that remains after rejecting all such properties
as were just outlined. There results a negative definition which leaves
one feeling that after rejecting all such properties there is possibly nothing
left!

It is easy to set up norms for natural numbers, if we first define @ to be
the norm for 0. For the first natural number, 1, the set {#}, whose single
element is the set @, may serve as a norm. In particular, then, a set A
would be said to “have 1 element” or, equivalently, “the number of
elements in 4 is 1” if 4 has the same cardinal number as {@}. Similarly,
the norm for 2 would be the set {0, 1} whose elements are § and 1; the
norm for 3 would be {0, 1, 2}; and so on. In the ordinary affairs of life,
this corresponds closely to our counting practices. True, when we wish
to ascertain the number of elements in a set S of three elements, say, we
don’t precisely use the norm {9, 1, 2}, counting “null set, one, two,” but
we do say ‘“‘one, two, three,” assigning these words one at a time to the
elements of S; so, except for change of words, we do virtually the same
thing. And if we were interested in only defining natural numbers we
would proceed in this fashion, perhaps. However, since we want to
define ““transfinite” cardinal numbers like 8, and ¢ as well, this would
necessitate taking up ordinal numbers first. So we shall content ourselves
at present with an even more “naive” approach, the genetic.

4.1.2 If we study extant records of the evolution of the natural number
concept, it becomes clear that measurement of the size of a collection was
the prime motive (cf. Wilder [Wi]). Tally sticks from paleolithic times
have been found; tablets from the ancient Egyptian culture recording
large numbers raise suspicions that the sizes of armies, groups of captives,
and the like, have been magnified for purposes of glorification of the ruling
class—thus taking advantage of the degree of symbolism which had been
attained. Not until symbols for numbers—e.g., the remarkable Baby-
lonian numerals—were devised, did a concept of number develop. It is
typical of cultural evolution that the origins of symbols become obscured,
and that they take on meanings that they did not originally have. And
the symbols for numbers seem to have passed from a descriptive (adjective)
character to a nominal (noun) status. The symbols persisted from one
culture to another and ultimately grew to stand for “something,” viz., the
number concept.
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Concepts, once formed, as products of our interactions with the
physical and social environments, are just as “real” as the objects in the
physical world. And this applies to the number concept. Analysis of
the concept leads inevitably to the conclusion that it consists of an
idealization of the elementary notion of ‘“size.” So instead of trying to
give the concept an illusory “reality”” by identifying it with the “class of
all sets” having the same size, we may prefer to let the symbol be a name
for the concept itself. The viewpoint of the working mathematician and
the scientist occupied with the applications of mathematics is precisely
this, so far as the uses of the natural numbers are concerned. For some
purposes, we may formalize the notion in an axiomatic framework just as
the early conception of physical space was formalized in Euclidean geom-
etry. But a satisfactory formalization is not as easily achieved as in the
case of geometry. And now that we wish to extend the notion to infinite
collections, it appears advisable to make the initial definitions as “natural”
as possible. Formalization can (and has) come later.

Consequently, we shall assume that with each set we associate the
concept of its size and call this the cardinal number of the set. This
concept will be denoted by a symbol; in case more than one symbol is
assigned to a cardinal number (for instance, the Arabic “2” and the
Roman “II”), we consider these equivalent; this equivalence will be
expressed by the ““="" sign, and is to be interpreted as logical identification
of the conceptsdenoted. Thus “2 = II”” means that the same cardinal num-
berisdenoted by “2” and “II”’. And if between the elements of a set 4 and
those of a set B there exists a (1-1)-correspondence, we shall say that they
have the same “‘size”’—i.e., that their cardinal numbers are the same. For
finite sets, this is precisely the situation with the natural numbers. Thus
the natural numbers become cardinal numbers in this context; i.e., insofar
as they measure size alone (their role as ordinal numbers will be discussed
in Chapter VI). And the natural number symbols 1,2, 3,---, will be
used as symbols for cardinal numbers of finite sets; to them we add 0 as
the cardinal number of (.t Notice that our convention regarding the
meaning of ‘“‘cardinal number” conforms to the expression “‘has the same
cardinal number as.” For we may now ‘“dissect” the latter phrase,
interpreting “‘cardinal number” as having the new meaning, and the result
is the same as before. Thus, as shown in 1.2, N and F have the same
cardinal number, and the standard symbol for this cardinal number is X,.

For individual sets it is convenient to use a symbolism introduced by
Cantor; if 4 is a set, the symbol 4 denotes its cardinal number. And if

A and B are sets having the same cardinal number, the expression “q =

1 Thus the symbols for “finite cardinals” are 0, 1, 2,---.
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B” symbolizes the fact (in conformity with the convention regarding

“="" stated above). In particular N = F = X,.

It should be noticed, regarding our convention, that three distinct
entities are involved in the notion of a particular cardinal number; (1)
certain sets, (2) the common size of these sets (the actual cardinal number),
and (3) a symbol (or equivalent symbols). In practice, (2) and (3) are
commonly employed as though they were the same; thus we speak of
“the number 2” without mentally differentiating between the symbol “2”
and the cardinal number 2. If no inconsistency results from such
confusion, it is not serious, and we shall frequently conform to this
practice. As a matter of fact, in applications this confusion of symbol
and thing symbolized is well known to be the rule rather than the excep-
tion. (In our daily life, it is one of the functions of symbols to substitute
for the things symbolized.) Thus, in balancing accounts, we use symbols
in reckoning without regard for their meanings, only returning to the
things symbolized (such as the state of our finances) in the final act of
interpreting the results of the reckoning.

In theoretical considerations, such as in the proving of theorems, a
consideration of cardinal numbers may start with either (1) or (2). In
case we commence with (3), we may wish to transfer attention to (1). For
example, if « is a cardinal number (precisely, “«” is the symbol associated
with a cardinal number), then we may wish to consider a set 4 having this
cardinal number; in this case we may call 4 a representative set for (or set
representative of) «; in symbols, 4 = «. If « is frequently used, we may

wish to fix upon a representative set as a norm, such as the set N for X,
and R for c.

4.2 “Size” is relative, and the reason we consider cardinal numbers at
all is that we wish to compare the sizes of sets. So what shall we mean
by saying that 4 is of smaller size than B or, in cardinal number symbols,

what shall we mean by A< B”? We define this relation as follows:

(4a) Definition. If « and B are cardinal numbers, then o < g if, for

arbitrary sets 4, B such that 4 = o, B = B, A has the same cardinal
number as a subset of B but the converse fails.

4.2.1 That 2 < 5 by Definition (4a) is clear (take 4 as a set of two
coins and B as a set of five books, for example). That is, (4a) corre-
sponds exactly to the “<” indicated for the natural numbers when we
speak of their “natural order” (sometimes called “order of magnitude”;
see I1I 4.1f).

Consider X, and ¢. Here we may use N and R as the representative
sets 4 and Bof (4a). As N is a subset of R, the identity correspondence of
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N with N as a subset of R shows that N has the same cardinal number as a
subset of R. However, R cannot have the same cardinal number as a sub-
set of W, since this would imply that R is denumerable (see Problem 12).
Hence, by definition (4a), X, < c.

422 The cardinal number f

Let E denote the set of all mappings (3.2.3.1) of Rinto {0, 1}. Then, if
E, denotes the set of all subsets of R, E = E, (by 3.2.3.2). Let us denote
E by f. By Theorem 3.2.1.3, ¢ # f. Also, R, # f since the contrary
would imply R, = ¢.t Hence fis a new cardinal number. Isc¢ < f?

For each r € R, let f, be the mapping of R into {0, 1} obtained by pairing
each x € R with 0 if x # r, and by pairing r with 1. For r, ¥’ € R and
r # r', f, and f,. are different mappings, and the collection {(, f;)} consti-
tutes a (1-1)-correspondence between the elements of R and the elements of
a subset £’ = {y|(yeE)&(y is an f;)} of E. Thus R has the same
cardinal number as a subset of E. To show that ¢ < f, we may repeat the
type of argument used in the proof of Theorem 3.2.1.3. But, this time, if
T represents a (1-1)-correspondence between E; and a subset R; of R, and
for each x ¢ R, we denote the element of E; corresponding to x by “S,,”
then the set

S’ ' ={x|xeR &x¢S,}

is a subset of R leading to the same absurdity as in 3.2.1.3.

423 We remarked in 3.2.3.1 that the set of all mappings of a set S
into a set A4 is usually denoted by the symbol 45. When A is the set
{0, 1}, we usually use the symbol 25 (3.2.3.4); and the cardinal number of
2% is denoted by 25 Thus the cardinal number of the set of all map-
pings of N into {0, 1} is denoted by *“2%”; this is also the cardinal number
of the set of all subsets of N. Since we showed in 3.2.2.2 that this cardinal
number is ¢, we have the classical relation

(4.2.32) 2% = ¢
And, since we showed in 4.2.1 that X, < ¢, we have
(4.2.3b) R, < 2%.

Similarly, since f = 2°, by 4.2.2, and ¢ < f, we derive the relation

(4.2.3¢) c <2

1 As shown below, E has a subset E’ which has the cardinal number ¢. Hence, a
(1-1)-correspondence between the elements of N and the elements of E would induce
a (1-1)-correspondence between the elements of an infinite subset N’ of N and the
elements of E’; the latter would then have cardinal number R, (cf. Problem 12).
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Relations (4.2.3b) and (4.2.3¢) suggest that, perhaps for every cardinal
number o, a < 2%,

42.3.1 Theorem. For every cardinal number o,
a < 2%

Proof. Let 4 be a set having cardinal number «. We need only show
that (i) A has the same cardinal number as a subset of 24, and (ii) no
subset of 4 has the same cardinal number as 24. The (1-1)-correspondence
in which, for each fixed a € A, a is paired with the element of 24 which
maps « into 1 and all other elements into 0, shows that (i) holds. That
(ii) holds may be shown by the same type of argument as that used in
proving 3.2.1.3 (as adapted to the proof of “c < f in 4.2.2 for instance).

4.2.3.2 A special case of Theorem 4.2.3.1 is the well-known formula
n < 2" of arithmetic (see 3.2.1.4).

423 Lemma. The relation < defined in (4a) is tranmsitive; i.e.,

a<B,B<yimplya <y. And, ifoa < B, then o + B.
[We leave the proof to the reader.]

4.2.4 Existence of infinitely many transfinite cardinal numbers

Cardinal numbers of infinite sets, such as the numbers R, ¢, and f, are
called transfinite cardinal numbers. The finite cardinal numbers are 0 and
the natural numbers 1,2,---,n,---.

Theorem 4.2.3.1 gives a means of demonstrating the existence of infinitely
many transfinite cardinal numbers. Starting with R,, we get ¢ = 2%
and f= 2°. And, in addition, we may now consider 2. By virtue of
Lemma 4.2.3, this is not one of the numbers X, c, f, since f < 2/. And
evidently by this process of “exponentiation” we exhibit an infinite collec-
tion of different transfinite cardinal numbers (which would not necessarily
constitute a// the transfinite cardinals, however).

It may be argued that we can go even further. Let «y, ay,---, a,, - -+ be

cardinal numbers, such that «, < a,,, for all #, and let 4, = «,. Then
the cardinal number « of the set 4 = | J;-.4, satisfies the relation
«, < « for all n (Problem 26).

Inasmuch as the set N of finite cardinals is simply ordered (I 7) relative
to its natural order, and we can now extend N by adding R, ¢, £, 2/, - - -,
and obtain a larger simply ordered collection, we can ask: Do the cardinal
numbers (finite and transfinite) form a simply ordered collection relative

to the order relation defined in (4a)?

4.2.5 By Lemma 4.2.3, the relation < for cardinal numbers satisfies
axioms (2) and (3) of simple order (I1 7) for any collection C of cardinal
numbers. We cannot conclude, however, that axiom (1) of simple order
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holds, for there is no guarantee, a priori, that, given two sets 4 and B,
there will exist a (1-1)-correspondence between one of these sets and a
subset of the other.t¥ A priori, given two sets 4 and B, there are four
possibilities. Let us use the arrow “— to denote the existence of a
(1-1)-correspondence; i.e., 4 — B or B < A will denote that there exists a
(I1-1)-correspondence between 4 and a subset of B. Non-existence of
such a correspondence will be denoted by 4. Then the four possibilities
are:

(4.2.52) P
(4.2.5b) j :; g
(4.2.50) j r
(4.2.5d) j j: g

Cases (4.2.5b) and (4.2.5¢) correspond, respectively, to 4 < B and
B < 4. 1In the case of two finite sets 4 and B, (4.2.5a) would certainly

imply that = B; for the only way (4.2.5a) could hold in this case would
be for the correspondences indicated to be a (1-1)-correspondence between
the elements of 4 and the elements of B (see IIl 5.2.1). Therefore, it
seems reasonable to ask if the same conclusion holds when A and B are
infinite sets.

This was one of the earliest questions to arise (and to be answered)
after the Cantor theory of sets was announced, and below we shall give
the theorem constituting the affirmative answer. Consequently, if we can
show that case (4.2.5d) cannot occur, no matter what the sets 4 and B
may be, we shall then be able to conclude that the cardinal numbers
(finite and transfinite) do form a simply ordered set relative to the “<”
defined in (4a) and the “="" defined in 4.1.2. As we shall see in the next
chapter, non-occurrence of (4.2.5d) is equivalent to acceptance of the
Choice Axiom (II1 6.3). Thus, without assumption of the Choice Axiom,
the most we could assert is that the cardinal numbers form a partially
ordered collection relative to the relation ““<” formed from combination
of the above “<” and “="" (see Problem II 16). The central importance
of the Choice Axiom in the theory of infinite sets becomes clearer as we
proceed.

We now state and prove the theorem referred to above. First, let us

T Contrary to the assertion in Young [Y; 80].
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note that (4.2.5a) implies that 4 has the same cardinal number as some
subset B; of B, and B has the same cardinal number as some subset 4;’ of
A. From this as hypothesis we shall show that it follows that 4 and B
have the same cardinal number. Second, it should be pointed out that,
from the correspondences given to satisfy (4.2.5a), the (1-1)-correspondence
establishing the equal cardinality of 4 and B will be effectively given by the
proof of the theorem. As we point out later, this fact may be used to give
a new enumeration of the rational numbers, for instance.

4.2.6 Bernstein equivalence theorem.t If 4 and B are sets such that
A has the same cardinal number as a subset B, of B, and B has the same
cardinal number as a subset A, of A, then A and B have the same cardinal
number.

Proof of 4.2.6. Let fdenote a (1-1)-correspondence between 4 and B,
and g a (1-1)-correspondence between B and 4,’. In the figure, which is
purely schematic, we have represented 4 and B as the sets of all points in
two vertical rectangular bands which run off at the bottom of the figure.
Each symbol denotes the set of all points of the band below the line (solid
or broken) on which it rests. Thus A4’ denotes the set of all points below
the first cross-hatched rectangle.)

If we think of f'as a mapping of 4 onto By, and g as a mapping of B
onto A4;’, then in the notation of II 4.4.1, the expression

y = g(f(x)

denotes a (I-1)-correspondence T between 4 and some subset A; of A4,’.
(For if x& A, then f(x)e B,; and, consequently, g(f(x))& 4," since g
maps B onto A4;".) Now T is also a (1-1)-correspondence between the
elements of 4, (as a subset of 4) and a subset 4, (of 4,) (see figure); and,
for general ne N, we have in T a (1-1)-correspondence between the ele-
ments of a set 4, (as a subset of 4) and a subset 4, ; of 4, (definition by
induction). If, then, we let A = A,, and for each n let 4, ., be the subset
of 4, that corresponds to 4, in T, we can define a (1-1)-correspondence
T’ between the elements of A4 and the elements of A,’ as follows:

(a) For each n, T’ agrees with T for elements of A,_; — A, (cross-
hatched in figure); i.e., between the elements of 4,_, — A,’ as a subset of
A, and the elements of 4, — A;,, as a subset of 4,’, the (1-1)-correspond-
ence T’ is the same as T.

T Sometimes called “Cantor-Bernstein theorem,” since it was conjectured by
Cantor (it was proved by F. Bernstein in Cantor’s seminar); also called “‘Schréder-
Bernstein theorem,” since it was independently proved by E. Schroder (on the basis
of a logical calculus). This theorem is a special case of a theorem of Banach; see
Sierpinski [S;; 90ff]. (An interesting and simple proof of Banach’s theorem may
be obtained if we are familiar with the theory of linear graphs; see Konig [Ko; 851.)
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A(= 4y B
// 7
Ay B,
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Y
A,
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7 A',;W%/

Nr=14n

(b) T’ is the identity correspondence for elements of 4," — A4, (all n),
and for elements of [)?-,4,. In the figure, 7' makes each cross-hatched
portion correspond to the next cross-hatched portion below it, and leaves
the other portions fixed.

Finally, the combination of 7" and g~' gives a (l-1)-correspondence
between the elements of A and the elements of B. In symbols, A(x) =
g~ YT’ (x)) for each x & A.

4.2.6.1 It should be noted, as predicted above, that the (1-1)-corre-
spondence established in the above proof between the elements of 4 and
the elements of B is effectively defined (3.1.8) if the given correspondences
fand g are effectively defined.

4.2.6.2 Note, too, that from 4.2.6 it follows that, if 4 has the same
cardinal number as a subset of B, then either A=DRBord< B inasmuch
as the first half of the condition for 4 < B (4a) is already fulfilled. We
shall express this relation by 4A<B
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427 In concluding this chapter we raise another question—one which,
unfortunately, we shall not be able to answer: Consider the natural
numbers. Between 1 and 2, in the natural order, there is no cardinal
number; 2 is the “immediate successor” of 1. And, in general, for any
ne N, n + 1 is the immediate successor of n.

4.2.7.1 Question. Is there any cardinal number « such that X, <
« < ¢? Oris c the immediate successor of X,?

4272 In a way, this is not a good question to ask unless we rule out
(4.2.5d). However, it is legitimate, even though we do not know that the
cardinal numbers are simply ordered. If we grant the simple ordering, it
will be noted that 4.2.7.1 is equivalent to asking: Does every infinite
subset of R have either the cardinal number X, or the cardinal number ¢?
We shall return to this question in V 3.6.3.

SUGGESTED READING

Cantor [C,] Kamke [Ka,; I-II]

Fraenkel [Fs; I, IT] Richardson [R; XV]

Grelling [Gr; 16-25] Sierpinski [S;; II-V], [S3; 1I-V]

Hobson [Ho; §§ 6, 58-62] Young [Y; VI, VIII]
PROBLEMS

1. If S = 0, why does 3.2.1.3 hold?

2. Show that the set of all finite subsets of N is countable.

3. Show that in the coordinate plane the set K = {(x, ») | (x ¢ F) & (y € F)}
is denumerable. Then use Theorem 3.1.6 to show that the set of all circles
with radii elements of Fand centers in K is denumerable. Work the analogous
problem for three-dimensional space.

4. Use the results of Problem 3 to show that, if physical space is assumed to
be euclidean, then the set of all physical objects (assuming some kind of a
division of the material universe into things called “objects’”) is countable.

5. That 2.5.3 is stated as a corollary of Theorem 2.5.2 implies that the set /
must be Dedekind infinite. Justify this by showing I is Dedekind infinite;
base your proof on III 5.3.2, thus avoiding use of the Choice Axiom.

6. To carry out the proof implied for Corollary 2.5.5, it is necessary to
know that the set of transcendental numbers is Dedekind infinite. Prove
this.

7. Show that if B is a Dedekind infinite set, and A a set such that 4 > B,
then A is Dedekind infinite.

8. Show that F may also be defined as the set of all elements of R whose
decimal representations ultimately begin to repeat (such as + = .19999 - .-,
1 = 142857142857142857 - - -).

9. Show that if in the proof of 2.4 we made each block a single digit, there
would not result a (1-1)-correspondence of the type desired.
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10. Modify the proof of 2.4 to show that the subset E? = {(x, 5, 2) ]
O<x=1) & O0O<y=1) & (0 <z= 1)} of coordinate 3-dimensional
space has the cardinal number ¢. How about space of four dimensions, in
which each point has four coordinates (x, y, z, w); five dimensions; etc. ?

11. In a Hilbert space, each point is represented by an infinite sequence of
coordinates (X1, Xa, * -, xn, - - ), where x, is a real number. Show that the
set E€ = {(xy, X2, * -, Xn, ) |0 < x, = 1for all n} has the cardinal number c.

12. Show that every infinite subset of N has the cardinal number Ry (cf.
Problem 24 of Chapter III).

13. Show that the set of positive real numbers has the cardinal number c.
As a corollary, the set of non-negative real numbers has the cardinal number c.

14. Show that the set of all real numbers between 0 and 1 has the cardinal
number c. As a corollary, the subset R® = {x |0 < x = 1} of R has the
cardinal number c.

15. Intheset R = {x| (x e R) & (0 =< x < 1)}, let x ~ y, where x,ye R,
mean that x — y ¢ F. Show that ~ is an equivalence relation in R. How
many elements are there in each class of the class decomposition of R! corre-
sponding to & ? What would you guess is the cardinal number of the set of
all classes in this class decomposition ?

16. Contrast (especially as regards effectiveness) the decomposition of R!
defined in Problem 15 with the following (due to Sierpinski): We define a
function f(x), x ¢ R*, as follows: First express x as a “non-finite decimal’
in the ternary scale, x = (0.a1az---a,- )3, such that for no » are all a,,
Gn+1, dnyo, - - zeros unless x = 0. Then, if x = 0, or infinitely many of the
digits a, are 2’s, let f(x) = 0. Otherwise, let #n be the smallest (Problem 24
of Chapter III) natural number such that all digits a,, Qny1y Anyo, -, are all
0 or 1; then let f(x) = (0.@.an+1an+2- - )2. Finally, for every ¢ such that
O0=sr=1,let R = {x]| f(x) = t}.

17. Show that if a set .S has a proper subset S,, such that there exists a 1-1)-
correspondence between the elements of S and the elements of S;, then S
is Dedekind infinite.

18. Make the extension of the mapping defined in 1.2.1 to define a (1-1)-
correspondence between N and F.

19. Denote the ith prime by p;_;; thus po = 2, p; = 3, etc. Show that
if we express each rational number (in its lowest terms) in the form
pe° . pit .- . pin where p, is the largest prime for which a, # 0, then we can
effectively define a (1-1)-correspondence between F and the set P of all poly-
nomials in x with integral coefficients. T

20. Convert the mapping defined in Problem 19 to a (1-1)-correspondence
between N and the set P.

21. Show that the set of all rational powers of rational numbers is countable.
Note that we can conclude that not all irrational numbers are rational powers
of rationals (such as V2, for instance).

22. Show that the class of all numbers x of the form a?, where a is a rational
number and b a rational power of a rational, is countable.

23. It is known that all numbers of the form «°, where a is an algebraic
number different from 0 or 1, and 4 is an irrational algebraic number, are
transcendental. Show that not all transcendental numbers are of this form.
(Give a constructive definition of one such.)

I am indebted to Professor Philip Obreanu for this problem.
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24. Let f map N into F by the formula f(n) = n. Let g map F into N
by the formula g(p/g) = 2?.3% if p = 0 and g(p/g) = 2'"'.3?.5if p <O,
where it is assumed that ¢ > 0 and p and g are integers prime to one another.
If 4 is the resulting (1-1)-mapping of N onto F worked out in the proof of the
Bernstein equivalence theorem (4.2.6), find (24), h(360) and A~*(33/49).

25. Apply the Bernstein equivalence theorem to prove: If A < B, then

A = B. Conversely, show that this theorem has the Bernstein equivalence
theorem as a consequence.

26. Prove that, if oy, «g, - -+, an, - -+ are cardinal numbers such that «, <
&, +1 for all n, then the cardinal number « of the set J7-14,, where 4, = ay,
satisfies the relation «, < « for all a.

27. Show that, if E’ is the set of all single-valued functions defined over R*
with values restricted to O and 1, then the cardinal number of E’ is f.

28. Show that, if we assume that there exists a “‘set of all sets’” U and that
« is its cardinal number, we can apply Theorem 4.2.3.1 to show that our
assumption leads to contradiction.

29. Suppose we assume that there exists a set, U, whose elements are all
those sets having exactly one element (i.e., U is the set of all “‘singletons™).
Then if S is a subset of U, the set {§} having the single element S must be
an element of U. Show that we can apply Theorem 4.2.3.1 to arrive at a
contradiction.

30. Is the set of all sets each of which has exactly two elements self-contra-
dictory ?

31. Compare the material in 3.1, especially 3.1.8.1, with the following
(“Richard paradox’): If a specific English dictionary, D, is used to form
sentences, some of them may designate natural numbers; e.g., “Let N be the
number of moons of the earth” would designate the number 1. However,
consider the sentence, ‘““Let N be the smallest natural number not definable
in twenty words or less from the dictionary D.”

32. Let r be any real number. In the sequence (F) of 1.2 (any other such
ordering of the rational numbers, for instance, that of 1.2.1, would do as well,
however), let f; be the first rational number in the sequence such that fi < r;
let /> be the first rational number in the sequence such that f; < fo < r; and,
in general, having defined f,, let f,.1 be the first rational number in (F)
such that f, < f,+1 < r. Show that the limit of the sequence fi, fo,- ',
fn, -+ - In the real numbers is r.

33. Is the set of all cardinal numbers a self-contradictory notion ?



Well-Ordered Sets:
Ordinal Numbers

In Chapter IT we defined, incidental to exemplifying the use of the axio-
matic method, two kinds of order: simple order (II 7) and partial order
(I, Problem 16). In the present chapter we are mainly concerned with a
special kind of simple order, called “well-ordering.” To obtain it, we
shall augment the three axioms given in IT 7 by a fourth axiom. Before
doing so, however, we consider some special examples of simply ordered
sets, by way of introduction to the new notion.

1 Order types

Although there are rwo ways of simply ordering the elements of a set
{a, b} which has only two elements—a < b or b < a—the result in either
case is just an ordered pair. Similarly, although a set having three
elements can be simply ordered in six ways, the result in any case is an
ordered triple. And, in general, although a set having n elements, n g N,
can be simply ordered in !t ways, the result is always an ordered n-tuple.

1.1 Let us make this precise; we haven’t even defined the italicized
terms. In the terminology of II 4.4.4, all that we have said in the pre-
ceding paragraph is that every two simply ordered sets of n elements are
isomorphic with respect to the simple order axioms. Another way of
putting this is to say that, if we add to the simple order axioms (II 7) the
axiom, The set C has exactly n elements, n € N, then the resulting system
of axioms is categorical (II 4.5.1).

1.11 The analogous statements do not hold for infinite sets. In
particular, to add to the simple order axioms the axiom, The set C has
exactly R, elements, does not render the axiom system categorical; for
consider the set N. It can be assigned its natural order: n < n + 1 for
all n. Let us call this ordered set ON. Another simple ordering of N
is obtained as follows: (i) if @, b € N, and a is odd, b is even, then a < b;
(i) if @ and b are both odd, then a < b denotes the natural order (1 <3,

T Where n! denotes n factorial ; ie., 1:2.3- ... -n.
114
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etc.); (iii) if @ and b are both even, then a < b means that b < a in the
natural order (i.e., 4 < 2, 6 < 4, etc.). Schematically, the order just
defined is

1,3,5 -, 2n+ 1, o5, 2n -, 6,4 2.

Let us call this ordered set ON;. The sets ON and ON, are notisomorphic
with respect to the simple order axioms (Problem 1). Generally, we
abbreviate this statement to: ON and ON; do not have the same order
type.

(1a) Definition. If 4 and B are two simply orderedt sets which
are isomorphic relative to the simple order axioms, then we say that
A and B have the same order type.

1.1.2 We are now in a position similar to that in which we were when
we had defined the relation “have the same cardinal number,” where we
had no definition of the term ‘“‘cardinal number”’; for now we have the
relation “have the same order type” between simply ordered sets, but no
definition of “order type.” With a sufficiently restricted set theory we
might give the analogue of the Frege-Russell definition of cardinal number
(IV 4.1.1), and define the order type of a simply ordered set S as the
collection of all simply ordered sets which have the same order type as S.
But, again, contradiction would result unless we do incorporate the
definition in such a set theory. So, lacking the latter at the present stage
of our discussion, we ask: What is it that we compare in two simply
ordered sets when we set up this relation ‘“have the same order type”
between them ?

Evidently, we again measure “size,” since the isomorphism relation is a
(1-1)-relation and hence we are certainly comparing the cardinal numbers
of the sets. But we obviously compare something in addition to “‘size,”
since “size” has nothing, per se, to do with order. We should recall
here Definition II 4.4.4, according to which isomorphism with respect to
an axiom system X means (1-1)-correspondence with preservation of
Z-statements. Here we are dealing with isomorphism with respect to
the simple order axioms, and the Z-statements preserved are concerned
with order. However, it is of importance to notice that “order” can be
conceived of in two senses. In one sense the individuality of elements is
taken into account; thus a b ¢ and b a ¢ are different orders (‘“‘permuta-
tions”) of the three letters a, b, c. In another sense—and it is this, along
with the “size,” which is designated by the term order type—the individu-
ality of elements is ignored ; more precisely, if two elements are exchanged,
the order type remains unchanged. Another way of putting this is to

T Obviously we could say “partially ordered” (Problem 16 of Chapter II) here in-
stead of “simply ordered.” The latter is more significant for our purposes, however.
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state that the order type is that aspect of the arrangement of the elements
of a simply ordered set, which remains unchanged when any two elements
are exchanged. Thus @ b ¢ and b a ¢ are both instances of the same
order type, the ordered triple. And it is this that is preserved by those
mappings which are isomorphisms with respect to the simple order axioms.

As in the case of cardinal numbers, order types may be denoted by
suitable symbols called ordinal numerals. Symbols for the same order
type are considered equivalent, and this equivalence is again denoted by
“=,” thereby symbolically signifying the logical identity of the concepts
denoted by the symbols. Since, as observed in 1.1, a simply ordered set
of n elements has a unique order type, it is customary to use the natural
number numerals as ordinal numerals for order types of finite sets.
Thus a simply ordered set having n elements will be said to be of, or to
have, order type n or, alternatively, to be an n-tuple. (By convention,
“ordered pair” is used as synonymous with “order type 2,” and “ordered
triple” as synonymous with “order type 3”.) The order type of § may
be denoted by “0.”

Finally, we note that our convention regarding an individual order
type involves the three distinct entities: (1) certain simply ordered sets;
(2) the common order type of these sets; and (3) a symbol (or equivalent
symbols). Remarks concerning these, similar to those made above re-
garding cardinal numbers, may be made here. In particular, (2) and (3)
are commonly employed as though they were the same, so that in arith-
metic we speak of “the cardinal number 2 and “‘the ordinal number 2”’;
in the latter case, what we actually mean is “the order type denoted by “2°”.
[“Ordinal number” is a term that denotes a special kind of order type,
to which the order type n happens to belong; it will be defined later (3.5)].

For an individual simply ordered set A, we can use the bar symbol,
“4,” to denote the order type so that, if two simply ordered sets 4 and
B have the same order type, this fact may be expressed by the symbols
“4 = B” Andif « is a given order type, any set 4 such that 4 = «
may be called a set representative of the order type «. An alternative
symbolism, “4 € «,” is frequently used to denote that 4 = «; it derives
from the concept of an order type as a collection of sets all of the same
order type (analogue of the Frege-Russell definition).

1.1.3 We have observed above that a simply ordered set of n ele-
ments has only one order type, i.e., the order type n. But an infinite
set, such as V, may have many order types. Not all of these are sufficiently
important to have been assigned special symbols. However, the order
type of the set ON of 1.1.1 is denoted by “w.” The symbol *“*w” was
used by Cantor to indicate the order type of the negative integers in their
“natural order” (—2 < —1, etc.); this order type is the same as that of
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the ordered set of natural numbers with ¢ < meaning the reverse of the
natural order. The order type ON, may then be denoted by “w + *w”;
the use of “4 here is in accord with the following:

1.1.4 Addition (+) of order types is defined as follows: If Q, and
Q, are order types, 4, and A, are disjoint sets of order types €2; and €,
respectively, then Q, + Q, is the order type determined by 4 = Ui 14,
ordered so that < is the same as originally for each 4;, i = 1, 2, but if
a; € A, and a, € A,, then a@; < a,. Note that *o + o would not be the
same as w + *w, so that this addition is not commutative. See Sierpinski
[S; VI, [Ss; XII].

We shall not go into the ‘““arithmetic” of order types, but the addition
of order types is an aid to the understanding of the ordinal number
symbols to be introduced in the sequel. If # is used to denote the order
type n, notice that n + w is the same as w; however, this is not the case
with o + n.

2 The order type w

The order type w, because of its central importance, has been subjected
to axiomatic treatment. (When we speak of “infinite sequence” in
elementary algebra, we mean an ordered set having the order type w.)

2.1 An axiomatic definition of order type w

Let N be a non-empty set and < a binary relation between elements
of N. Then N is called of order type w if

(a) N is simply ordered with respect to the binary relation <.t

(b) If a & N, then the set {x | x < a} is finite.

(c) N has no last} element.

Any set of order type w obviously satisfies these axioms. They can
be shown to form a categorical system. (We leave this to the reader as
an exercise.)

2.2 An axiomatic definition of w in terms of cuts

The notion of “cut” is widely used for defining certain basic order
types.

+ This means, of course, that the single axiom (a) implies all three axioms of
simple order as given in II 7.

1 In a simply (or partially) ordered set, an element x is called the /ast element of a
set Aif x € Aandif, foreveryy € A,y = x. “First” is defined analogously. Unique-
ness of first and last elements (when such exist) follows from the simple (or partial)
order axioms.
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(2a) Definition. If 4 and B are subsets of an ordered set S, then
A < B means that 4 # @ # B, and that ag 4, be B imply a < b. If
S =AU B and 4 < B, then we say that 4 and B form a cutt of S;
we shall denote such a cut by the symbol [4, B] (always implying 4 < B).

We can then define a set N to be of order type w if

(a) N is simply ordered with respect to the binary relation <.

(b) N has a first element.

(c) N has no last element.

(d) If [A4, B]is a cut of N, then A has a last element and B has a first

element.

2.2.1 Incidentally, it is interesting to note that the sets which are
of the same order type as the elements of the set F of rational numbers
(IV 1.1) in their natural order (order of magnitude) may be characterized,
as to their order relations, by the assumption of (1) denumerability,
(2) axioms (a) and (c), (3) denial of (b), and (4) the assertion that (d) fails
for every cut [4, B].§

2.3 An axiomatic definition of w in terms of spanning sets

A very useful notion, in dealing with ordered sets, is that of spanning
set.

2.3.1 Definition. If S is a simply ordered set, then a subset X of
S will be said to span S, or to be cofinal with S, if s& S implies the
existence of an x & X such that s £ x. We also call X a spanning set or
cofinal sybset of S.

2.3.1.1 Evidently, if a simply ordered set S has a last element x,
then the set X = {x} is a spanning set of S. Also, S spans itself. In
the case where S is N and < is the natural order, the set X of all odd
numbers is a spanning set. In the case where S is the set R of all real
numbers with < meaning the order of magnitude, the set N as a subset
of R is a spanning set.

2.3.2 In terms of spanning sets, we can define a non-empty set N to
be of order type w if

(a) N is simply ordered with respect to the binary relation <.

(b) Every infinite subset of N is a spanning set of &.

(c) N has no last element.

T Frequently called “Dedekind cut™ because of its use by Dedekind in the study
of irrational numbers. See Dedekind [D;,].

1t See Sierpinski [S;; 143ff), [Ss; 208, Exercise 3].

§ See Sierpinski [S; 145ff], [Ss; 209, Th. 1]; Sierpinski denotes this order type by 7.
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2.4 Recognition of type w among the well-ordered sets

We shall now define the fundamental notion of well-ordered set upon
which the concept of ordinal number depends.

(2b) Definition. A simply ordered set is called well-ordered T if
every non-empty subset of it has a first element.

Well-ordered sets are frequently called “sequences” or “well-ordered
sequences.”

An axiomatic definition of well-ordered set is obtained by adding, to
the simple order axioms of II 7, the axiom (4): “Every non-empty subset
of C has a first point.”

24.1 A well-ordering of a set S is the result of an assignment of a
binary relation < between the elements of S in such a way that the set S
becomes simply ordered with respect to < and satisfies Definition (2b).
A well-ordering type is an order type which forms a well-ordering.

242 Every finite simply ordered set is well-ordered (with respect to the
order relation < defining the simple order).

243 The set N, ordered so as to be of order type w (the natural
order; ON of 1.1.1) is well-ordered. However, when ordered so as to
be of order type *w, it is not well-ordered, since a well-ordered set has a
first element (as a subset of itself). Thus an infinite set, when simply
ordered, may or may not be well-ordered (with respect to the order defining
the simple order). The set ON; of 1.1.1 is not well-ordered. The set F,
ordered according to magnitude, is not well-ordered; the subset consisting
of its positive elements has no first element. The null set, @, is well-
ordered since it satisfies Definition (2b) vacuously.

2.4.4 Consider the following example: The order type o + 1, as
defined in 1.1.4, is a well-ordering type. One of its representations is ob-
tajined by adding to ON a new element, p, such that, for allx e ON, x < p
by definition. (It can, of course, be exemplified by redefining < for
N so that, for all x € N for which x # 1, x < 1; and, for x,y ¢ N — {1},
x < yis the natural order.)

t It may sometimes be necessary to say ‘“well-ordered with respect to <,” where
< is the binary relation with respect to which the set is simply ordered. This will
always be the case when more than one ordering of a set is under consideration.
English writers frequently use the term ‘“‘normally ordered.” This has the ad-
vantage of allowing the noun *“normal ordering,” whereas the (universally used in
the United States) term ‘“‘well-ordered” leads to ‘‘well-ordering,” which sounds
suspiciously like a grammatical error.
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2.4.5 If S is a well-ordered set, and s € S, then the set {x|s < x}, if
not empty, has a first element s'.  We call s’ the immediate successor of s.

2.4.6 We can now define a non-empty set N to be of order type w
if the following axioms hold:

(a) N is well-ordered.

(b) N has no last element.

(c) If Ny is a subset of N such that the first element of N is in N,

and such that, if s € N is in N, then the immediate successor s’ of s
is in Ny, then N; = N.

Axiom (c) is, of course, the mathematical induction principle discussed
in III' 5. As we shall see below, (c) is intimately related to well-ordering,
through a weakenedt type of induction principle called “transfinite
induction.” Its necessity in the above axiom system is shown by the
order type w + w, which satisfies (a) and (b) but not (c).

3 The general well-ordered set

In Section 2 we studied some of the properties of sets of type w, which is
the most important, from the viewpoint of its wide variety of applications,
of the types of well-ordered sets. In this section we turn to the general
types of well-ordered sets. That they must constitute a wide class is
probably already apparent from the above discussion; for example,
each w + nis a well-ordering type. So also is w + @. And, in general,
if Wy and W, are well-ordering types, then W, + W, (see 1.1.4) is a
well-ordering type. Thus we can generate new well-ordering types from
old by the process of addition.

The importance of the notion of well-ordered set is chiefly due to the
fact that (1) it represents an extension of the order types 0, 1,2,---,n, - - -
and w; (2) a method—transfinite induction—is applicable to every well-
ordered set in a manner similar to the application of mathematical
induction to order types n and w; and (3) by virtue of (1), numbers called
“ordinal numbers” can be introduced that represent a natural extension
of the natural numbers.

However, if these attributes of well-ordered sets are to be of advantage,
particularly in the case of infinite sets which may come to our attention
with no order assigned at all (or perhaps with an order which is not a
well-ordering, as in the case of the rational numbers in their natural
order), it would be advantageous to know when and how sets may be
well-ordered.

1 1In the sense that its hypothetical “if” requires more than the corresponding
part of (c).
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In the case of some sets we have already shown how they may be well-
ordered. In particular, we showed in IV 1.2 and IV 1.3 how to well-order
the sets F (rational numbers) and A4 (algebraic numbers); in both cases
we set up an ordering of type w. However, we did not well-order the
set R of all real numbers. We showed in IV 1.4 that R is uncountable,
and hence could not be given a well-ordering of type w. This poses the
question: Does there exist a well-ordering of the set R of all real numbers ?

If we tried to well-order the set R, we might commence by a method
like that which we used in IV 3.1, where we first arranged a type » sequence
of real numbers and then, by using diagonal methods, rearrangement
rules, etc., constructed new numbers. And if we ordered them (as we
did) as they were constructed, they formed, at each stage of the con-
struction, a well-ordered set. However, aside from the fact that we ran
into such difficulties as exhaustion of possible rearrangement rules, we
would have no guarantee that all numbers in R would be obtained by
the process even if such difficulties could be overcome. In view of such
considerations, we would have to look for another method. And since
the process used in IV 3.1 leads to a collection not effectively countable,
we might suspect that any process of construction would lead to a similar
result, before all numbers in R had been accounted for. Of course, we
might give up the task as hopeless, concluding that there cannot exist any
well-ordering of R.

It is not improbable that most mathematicians who had given thought
to the problem had arrived at this conclusion when the German mathe-
matician Ernst Zermelo published his famous Well-Ordering Theorem in
1904 (Zermelo [a]). We state this theorem now, but at present we give
only an indication of the proof, since we are chiefly interested in showing
how the Choice Axiom enters into it.

3.1.1 Definition. If S is a simply ordered set and se S, then by
S/s we denote the set {x | x < s}, and by s/S the set S — S/s; each of
these being considered sets ordered relative to the same binary relation
< with respect to which S is simply ordered. We call S/s the section of
S determined by s.

Axiom (b) of 2.1 stipulates that all sections of the set N are finite.

If the set S of the above definition has a first element a, then evidently
S/a = 0 and a/S = S. And if S is well-ordered, then both S/a and a/S
are well-ordered sets. The latter statement is a particular case of “If
W is a well-ordered set with respect to some binary relation <, then every
subset W' of W is well-ordered with respect to the same relation <.”

In the sequel, when we speak of a well-ordered subset W' of a well-
ordered set W, we shall mean the above set W' unless another ordering
is specified.
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3.1.2  Well-Ordering Theorem (Theorem of Zermelo). If S is any set
whatsoever, then there exists a well-orderingt of S.

Indication of proof. Let © = 25 — {@}; then, as the elements S, of
© are non-empty sets, there exists by the General Choice Axiom (III 6.4)
a set N whose elements are pairs (S,, x,) in which x, € S,, and such that
each S, € © occurs in one and only one pair. Denote each x, by x(S,);
thus x(S) is the representative element of S itself.

Now let us call a non-empty well-ordered set W, whose elements are
also elements of S, a “WS-sequence,” if, for every element w of W,
x(S — Wiw) = w.i In particular, w, = x(S) is a WS-sequence and,
moreover, the first element of every WS-sequence is w,; [since, for the
first element w of a WS-sequence, W/w = @ and hence x(S — W/w) =
x(S) = w;]. Furthermore, of two different WS-sequences, one is always
a section of the other, so that, if x,y € S that lie in some WS-sequence W,
we can define x < y to mean that x < y in W. Then it can be shown
that the collection of all elements of S that lie in WS-sequences is well-
ordered with respect to this binary relation <, and, finally, that every
element of S lies in a WS-sequence, thus giving a well-ordering of S.

3.1.3 Comment. Note how strongly the Choice Axiom dominates the
proof of the Well-Ordering Theorem. And if we have convinced our-
selves that there exists no well-ordering of R, then certainly the Well-
Ordering Theorem, which asserts the existence of well-orderings for all
sets, even sets of inconceivably higher cardinality than R, must raise
doubts in our mind regarding the validity of its proof. But there seems to
be no element of uncertainty regarding the proof except for the use of the
Choice Axiom. Consequently, if we would reject the Well-Ordering
Theorem, we would also feel compelled to reject the Choice Axiom.
(As we shall see later (Section 5), the two—Choice Axiom and Well-
Ordering Theorem—are actually equivalent.)

With few exceptions, the feeling today regarding the principle in
mathematical circles may be summarized by the statement: It is all right
to use the principle, provided prominent mention is made of the fact.
Then anyone interested enough to do so may seek ways of avoiding use
of the principle. Of many theorems, it is known that they cannot be
proved without use of the principle, or are equivalent to it; we shall see

T Notice that we do not say ‘‘one can well-order S,” which might be taken to imply
that there exists an effective procedure for the well-ordering; since the latter does not
at present exist in the literature, we use the ‘“‘non-committal’’ “‘there exists . ..”

1 Cf. 3.1.1. Although W/w is more than just a set—namely, a set together with
an order relation—we shall use it as though it were just a set in set operations such
as S — W/w, rather than to introduce a new symbol to denote the collection of its
elements.
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cases of this later in the equivalences of Choice Axiom, Well-Ordering
Theorem, and Comparability (Section 5). In other cases, it remains an
open question whether a theorem proved by using the Axiom can be
proved without it. In such cases, the finding of a proof which does not
use the Axiom merits publication of the fact.

Generally speaking, it would be impossible to do mathematics in the
modern sense without using the Axiom. This is undoubtedly due to the
great generality of much modern mathematics, necessitating the use of
sets that do not permit statement of specific rules of selection. Much
work has been done to find ways of avoiding use of the Axiom. Therefore,
it is not surprising that many equivalent “principles” have been found,
some of which have turned out to be easier of application in some situa-
tions than the Well-Ordering Theorem.

First, however, let us see what use can be made of the Well-Ordering
Theorem. If it should turn out that the Theorem leads to many fruitful
results, and yet never leads to contradiction, we may choose to overcome
any prejudices that we harbor and admit it to the society of respectable
mathematics. After all, the real power of the Theorem is in its application
to uncountable sets, and in dealing with these, new methods that were not

necessary for handling problems involving finite and denumerable sets may
be needed.

3.2 The transfinite induction principle

One of these new methods is that of transfinite induction, already men-
tioned above as bearing a relation to well-ordered sets analogous to the
relation that mathematical induction bears to the well-ordered set N of
natural numbers.

(3a) Transfinite induction principle. Let W be a simply ordered set
and let us, in analogy to III 5.1, call a subset W, of W “inductive,”
provided that, if it contains (as subset) a section W/w, it contains w.
Then W is said to satisfy the transfinite induction principle if (1) W has a
first element w, and (2) if W; is an inductive subset of W containing wy
then W, = W. The property (2)is called the transfinite induction principle.
When W is of order w, the transfinite induction principle becomes identical
with the mathematical induction principle.

3.2.1 Theorem. In order that a non-empty simply ordered set W
should be well-ordered, it is necessary and sufficient that W satisfy the
transfinite induction principle.

Proof of necessity. That W has a first element, w;, follows from
Definition (2b). Let W, be a subset of W satisfying the “if”” part of
(2) in (3a). Suppose W — W, # 0. Then by Definition (2b), W — W,
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has a first element, w. As w is the first element not in Wy, Wjw < W,.
But then w e W1, since W; is inductive, which contradicts the definition
of w. We conclude, then, that W = W,.

Proof of sufficiency. Let W be a non-empty simply ordered set
satisfying the transfinite induction principle. To show W well-ordered,
we have to show that, if W' is a non-empty subset of W, then W’ has a
first element. Suppose not. Then let us define a subset W, of W as
follows: W) = {x|(xe W) & (x < W')}. Then W, contains w,, the
first element of W, else w is the first element of W’. And, if we W is
such that W/w < W,, then w e W, since otherwise w would be the first
element of W’. But then W, is inductive and W, = W. But this implies
W' = 0, contradicting the non-empty character of W’. We conclude,
then, that W' has a first element.

3.2.2 Proof by transfinite induction

Just as the mathematical induction principle is used to demonstrate
that all elements of a type » sequence have a certain property (see III
5.2.1, for instance), so is the transfinite induction principle used to show
that all elements of a well-ordered set possess a given property.

If it is desired to prove that all elements of a given denumerable set
S have a certain property P, then the proof may take the following form:
As S is denumerable, its elements may be put in the form of a type w
sequence:

X1y Xgyt vy Xpy o o -

We then prove that x, has property P, and that if, for any n, an x, has
property P, so has x,,;. That all elements of S have property P then
follows from the mathematical induction principle; we called this proof
by mathematical induction in 111 5.1.

Now suppose that W is any set whatsoever, and we wish to prove
that all its elements have a certain property P. Even though W may
be uncountable, it may be that for certain reasons (which we do not go
into at present) W can be assigned a well-ordering (2.4.1). And then,
with W well-ordered, it may be that we can prove that: (1) the first
element, w;, of W has property P; (2) if for any element w of W, all
elements of W/w in the well-ordering have property P, then w has property
P. We may then conclude that all elements of W have property P.
For, by Theorem 3.2.1, the well-ordering of W satisfies the transfinite
induction principle, and hence, if we form a set W, by placing an element
of Win W if it has property P, it will follow from the transfinite induction
principle that W, = W. This type of proof is called proof by transfinite
induction, and it evidently has proof by mathematical induction for type
w sequences as a special case. (See Problem 17.)
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3.2.3 Definition by transfinite induction

If for every ne N we wish to define a mathematical entity E,, we
frequently (1) define E;, and (2) define E, ., in terms of E, (see 11T 5.1);
often E, ., is defined in terms of several or all of the terms E,, F,, - - -, E,
[as for example in sequences {u,} where u,,; = (U, + u,_;)/2]. We used
this type of definition in III 5.3, for instance; it is called definition by
induction.

More generally, we can use the transfinite induction principle to justify
definition by transfinite induction. Let W be a well-ordered collection, and
suppose that we define some mathematical entity £(w,), w, being the first
element of W; if we then give, for each w ¢ W, a definition E(w) in terms
of the section W/w or its elements, we may conclude from the transfinite
induction principle that we have defined an E(w) corresponding to every
we W. This procedure is called definition by transfinite induction, and
again definition by induction for sequences of type w is a special case.

3.3 Example of an existence proof based on the Well-Ordering Theorem

Let us consider the set, R, of all real numbers. We have already shown
(IV 1.2) that the set, F, of all rational numbers is a denumerable subset
of R. We shall now show that every real number can be expressed in a
unique way as a linear polynomial with coefficients in F. For this
purpose we ask: Does there exist a subset B of R having the following
property: Every real number r # 0 is uniquely expressible in the form

(3.32) r=fiby + fobs +- - + fub,

where f1, fo, - -+, fu are all non-zero numbers in B (it is expected that
different numbers “r”’ may require different values of “n,” of course)?

If such a set B exists, we can show that it does not contain O; for if it
did, then a term f, , b, ,, where f, ., = 1 and b,,, = 0, could always be
added to the expression (3.3a) so that (3.3a) would not be unique. Also,
B will not contain more than one rational number; for suppose f; and f,
were two different rational numbers in B. As neither can be 0, we can
express f; in the form mf, (where m = f,/f,). Then if r is a third rational,
r = pf, and r = pmf, (where p = r/f;), and r is not uniquely expressible
in terms of the elements of B. So if we were to try to construct B, we
might decide to put the number 1 in B and no other rational number;
every rational number f would then be expressible in the form f = f-1.
In particular, if we asked for a set B which would do for F what we have
asked that it do for R, then not only would such a B exist, but would
contain exactly one element.

A set B, as defined above for the real numbers, is called a “Hamel
basis,” being named after G. Hamel who first proved its existence (see
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Hamel [a]), or simply a “‘basis.”” The existence of a Hamel basis leads
to important consequences in the study of real functions and their
applications.

3.3.1 Theorem (Hamel). There exists a basis for the set, R, of all
real numbers.

Proof. By Theorem 3.1.2 there exists a well-ordering, W, of R. We
then define a subset B of R as follows: Using the method of transfinite
induction, we first define for each element w of W a set B(w) as follows:
(1) if the first element of W is the number zero, we delete it from W;
then, for the first element, w,, of (the new) W, we define B(w,) = {w,};
(2) having defined B(w) for all elements of a section W/w,, let B'(w,) =
Uw<w,B(w); then we define B(w,) = @ or {w,) according as there does or
does not exist a relation of the type

2?=1fibi =0

between elements b; of the set B'(w,) U {w,} in which not all f; = 0.
This defines B(w) for all elements of W. Finally, let B = [JuewB(W).
We assert that B is a basis for R. The proof of this will be left to the reader
(Problem 16).

3.3.2 Theorem 3.3.1 was introduced by Hamel in order to show the existence of
discontinuous solutions f(x) of the functional equation

(3.3.22) fx +y) =fx) +f»

where f(x) is a single-valued real function of a real variable (i.e., a mapping of R
into R in the sense of IV 3.2.3.1). Cauchy had noted that the only continuous
functions satisfying (3.3.2a) are the functions f(x) = cx, where c is a constant. How-
ever, without the continuity restriction, Hamel showed that the equation has infinitely
many other solutions. For example, we may define f(x) quite arbitrarily for the
elements of the basis B, and let f(0) = 0. Then, for an r € R not in B, there is a
relation of type (3.3a) which is unique because of the properties of a basis. By
placing f(r) = Z.1 fif(b), the function f(x) is defined for all x € R and is easily
shown to satisfy the required condition (3.3.2a).1

3.4 Application to comparability of well-ordered sets

We shall next show, by transfinite induction, that, given two well-
ordered sets, either there exists a (1-1)-correspondence between their
elements that preserves order, or there exists an order-preserving (1-1)-
correspondence between the elements of one and the elements of a
section of the other; and, moreover, that this correspondence is unique.

1 This result has interesting applications in topology, showing the existence of
certain “‘pathological’” configurations; see Jones [a], for instance.
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34.1 Theorem. Let W and W' be well-ordered sets. Then either
W and W' are of the same order type, or one is of the same order type as a
section of the other.

If W is empty, the theorem holds trivially. Otherwise, let w, be the
first element of W; then either all elements of W’ are already in order-
preserving (1-1)-correspondence with elements of W/w, (meaning W' = 0)
or not; if they are not, pair w, with the first element w,’ of W'. 1In general,
if we W and each element of W/w is already paired with some element
of W, then either all elements of W’ are already in order-preserving
(1-1)-correspondence with elements of W/w or not; if they are not, we
pair w with the first element of W’ not already paired with elements of
W. By the transfinite induction principle, either all elements of W’
are paired in this manner with elements of W, or conversely. We leave
the details of the proof to the reader.

342 Theorem. If W/w, and W/w, are different sections of a well-
ordered set W, then they are of different order types.

Proof. Suppose w; < w,. If w, is the first element of W, the theorem
follows trivially. Otherwise, suppose that it holds for each element, w;,
of a section W/w', where w’ is not the first element of W. Then it holds
for w'.  For suppose not, and hence that there exists a (1-1)-correspond-
ence T, preserving order, between the elements of W/w' and the elements
of some section W/w, such that w’ < w,. Let the element of W/w’ that
is paired with w’ (as an element of W/w,) in T be denoted by v'. But
then W/v" and W/n' are of the same order type (according to T), in
contradiction of the supposition that the theorem holds for all elements
of Wjw'. The theorem now follows by the transfinite induction principle.

3.4.3 Corollary. No well-ordered set W is of the same order type
as one of its sections.

Proof. Augment W by a new element e, and define w < e for all
we W;apply 3.4.2,

3.4.4 Theorem. [f W and W' are non-empty well-ordered sets, then
the order-preserving (1-1)-correspondence implied by Theorem 3.4.1 is
unique.

3.5 Ordinal numbers

(3.2b) Definition. The order types of well-ordered sets are called
ordinal numbers. The ordinal number of a well-ordered set W is the
order type of which W is a representation, and may be denoted, following
Cantor, by W (cf. the last paragraph of 1.1.2).
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3.5.1 Symbols for ordinal nusibers

Since a finite set, when simply ordered, is of a unique order type,
and this is a well-ordering type, we may use the symbols for the cardinal
numbers of the finite sets as ordinal numbers also. Thus, to say that the
ordinal number of a set is n, n € N, is to imply that it is of order type n
(1.1.2) (hence the term n-fuple). The ordinal number of the null set is
denoted by “0.”

However, in view of the fact that an infinite set may be so ordered
as to belong to more than one well-ordering type (cf. 1.1.1 and 2.4.4
for example), the cardinal number symbols for infinite sets cannot be
used to denote ordinal numbers. It would be meaningless, for instance,
to speak of a set “having the ordinal number X,.” It was in recognition
of this fact that a special symbol, w, was introduced above for the order
type of the natural numbers in their natural order. Order types w + n,
n e N, have also been mentioned above (Section 3), as well as w + w.
The latter may be denoted by “w-2,” however, since, if 2 is understood
as the ordinal number 2, w-2 becomes w + w in accordance with the
following definition:

3.5.1.1 Definition. If w; and w, are ordinal numbers, then the
product w;-w, is the order type of the (well-ordered) set obtained by
replacing each element of a well-ordered set O, of ordinal number w,
by a well-ordered set O, of ordinal number w, ; the order in the new set
agreeing with the original order between elements of the replacement sets
0,, and with that of O, between elements of different replacement sets.}

Hence, 2-w would be w, since by the above definition it is the order
type obtained by replacing each element » of N by an ordered pair (n,, ns).
Likewise, n- w is the same as w, but w-# is the order type obtained from »
successive sequences of type w. The symbols w-w, w-w-w,---, are
usually replaced respectively by w?, w®, ---.1

3.5.1.2 A simple example of order type w? is obtained by ordering
the natural numbers in the following manner: (1) Arrange the num-
bers that are not positive integral powers of primes in their natural order;
thus, 1, 6, 10, 12, --. Call this sequence S;. (2) Arrange the powers of
2 in their natural order; thus, 2,4, 8, .- .. Call this sequence S,. (n + 1)
In general, arrange the powers of the nth prime, p,, in their natural order,§

T Thus, if x < y in O, then, for every element x, of the O; replacing x and every
element y, of the O, replacing y, x; < yi.

I We shall not go into the complete arithmetic of ordinal numbers, however; as
in the case of cardinal numbers, the reader is referred to Sierpinski [S,; VIII, X],
[Sa; XIV].

§ We assume the fundamental number-theoretic theorem that the number of primes
is infinite; see Courant and Robbins [C-R; 22-23].
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and call the resulting sequence S,.;. Retaining the natural order in
each S,,if n,n e Nsuchthatn < n’, welet S, < S, ;thus 12 < 4,4 < 3,
etc.

3.5.2 Ordering of the ordinal numbers

Suppose w, and w, are ordinal numbers, and let O; € w;, O, € w,.
By w; = w, we mean “=" as defined in 1.1.2. If w; # w,, then O,
and O, are not of the same order type, so that (Theorem 3.4.1) O,, say,
is of the same order type as a section of O,. Then we write w; < w,.
That this definition of < for any set of ordinal numbers satisfies the
simple order axioms (I 7) follows from the results stated in 3.4.

Furthermore, if ® is any collection of ordinal numbers, then there
exists a smallest element in ®. For let W ¢ ®, and suppose W not the
smallest element of ®. Then, with W e W, every element W’ of @ such
that W’ < W is represented by a section W/w’ of W. But, as W is well-
ordered, the elements w’ appearing in such sections W/w' have a first
element w,” in W and the corresponding W/w,’ is of an order type W,
which is the smallest in ®. And we can state

3.5.2.1 Every collection of ordinal numbers is well-ordered by the
above definition of <.

We may glimpse the “march of the ordinal numbers” by considering
them in the order defined above:

(352a) 0,1,2,---,n,- ;0,0 +1, -, w+n ;02 02+]1,
sy w2+n”; WA, w2’ w2+1’...; w2+w,
w2+w+l’;;w"’w"+],;.

If the reader will refer to IV 3, he will now see the origin of the subscripts
that were used to differentiate the various sequences of irrational numbers
constructed there. Notice that each ordinal number is the order type of
the well-ordered set of ordinal numbers that precede it.

3.5.2.2 Every ordinal number o« is the order type of the well-ordered
set of all ordinal numbers 8 such that 8 < .

Proof. Let Wea. Consider any ordinal number 8 < «, and let
BepB. Then, by definition, B is of the same order type as a section
Wb of W. Conversely, an element b of W determines a section W/b
having an ordinal number 8 such that B # « (by Corollary 3.4.3) and
hence such that B < «.

The pairs (B, b) constitute a (1-1)-correspondence between the ele-
ments of B and the elements of W. This correspondence is order-
preserving. For example, if 8° < 8 < «, then, since W/b as defined
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above is of order type B, for any B’ &’ there is a section of W/b de-
termined by an element &’ that is of order type 8’; this section is also a
section of W and b’ < b. That conversely a relation & < b implies a
corresponding relation 8 < g will follow from the fact that W/b' is
a section of W/b,

It should also be noticed that the procedure followed in IV 3 virtually
forced the generation of a well-ordered collection of numbers. As a
matter of fact, this was the type of procedure which led Cantor to the
study of well-orderings,t and it is a common form of application of the
well-ordering idea and ordinal number symbols.

Notice, too, that all the symbols actually set forth in (3.5.2a) designate
order types of countable representative sets (cf. Theorem IV 3.1.6).
Indeed, we derive the feeling, as we study the “march of the ordinal
numbers,” that they never seem to reach the “uncountable stage.” Yet
we have shown that R is uncountable (IV 1.4) and that there exists a
well-ordering of R (3.1.2—the Well-Ordering Theorem). Hence the
“march” must continue to ordinal numbers representing uncountable
sets! Furthermore, by 3.5.2.1 there must be a first such ordinal, which we
may designate by w;. Does w; correspond to a well-ordering of R?
We return to this question below.

3.5.3 The Burali-Forti antinomy

In IIT 1.1 we mentioned the announcement by Burali-Forti in 1897
of the existence of contradiction in the ‘“unrestricted” theory of sets.}
As usually formulated, the Burali-Forti antinomy consists of the argu-
ment that, if we allow a “set T of all ordinal numbers,” then I' must
be well-ordered by 3.5.2.1 and hence itself have an order type; but this is
impossible, since, if o’ is any order type, then there is an order type
o’ + 1 (obtained by adding a new element to any set of order type ',
as in 2.4.4 for instance). Thus if y is the ordinal number of T, then,
since y + 1T, we should have y + 1 < y!

3.6 The alephs; the continuum problem

Because of the Well-Ordering Theorem (3.1.2), and because of the
existence of uncountable infinite sets (R, 2%, -..) of various cardinal

+ The procedure referred to here was the generation of successive derived sets or
derivatives of point sets; the derivative of a point set is the set of all its limit points
(see VII 3.5.2 and VII 4). An w-type sequence of such derivatives generally does not
exhaust the set of different derivatives, so that it is necessary to go on to “transfinite
derivatives.” The successive derivatives, in any case, form a well-ordered collection.
See Hobson [Ho; §§ 52-54, 57, 68].

1 In [a], Bernstein stated that Cantor was already aware of this contradiction in
1895 and communicated it by letter to Hilbert in 1896.
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numbers, the ordinal numbers are divided into distinct categories according
to the “cardinality” of the sets occurring as representative of the various
order types. The cardinal numbers corresponding to these categories are
called ““alephs,” aleph being the Hebrew ‘“‘capital A”—X. We have al-
ready used the symbol X, to designate the cardinal number of denumerable
sets; and, since all the transfinite (meaning = w) ordinal numbers specif-
ically set forth in (3.5.2a) correspond to denumerable sets, the latter
numbers must all be in the X, category, or class (which is the term usually
employed in this connection).

By convention, the so-called finite ordinals, 0, 1, 2,---, n, - - -, are put
into one class called the first class of ordinals; this is the only class con-
taining ordinals corresponding to sets of different cardinality. The
second class of ordinals consists of all those ordinals that correspond
to sets containing X, elements, namely, w, w + 1, -; w-2,---;---; that
is, if w’ is an ordinal in the second class, and W € ', then W = X,.

Now (cf. 3.5.2.1) let w, denote the first (in the order defined in 3.5.2)
ordinal such that, if We w,, then W is uncountable. Let R, denote
the cardinal number of such a W. Then all ordinal numbers «’ such

that, for Weo’', W = R, constitute the third class of ordinals. We
call R, the cardinal number corresponding to the third class of ordinals
(and X, the cardinal number corresponding to the second class of ordinals).
Continuing in this manner, we obtain a series of alephs, X;, 8, R,, - -
corresponding to distinct classes of ordinal numbers.

We shall not go into all the ramifications of this theory and its relation
to the ordinal numbers,} but shall be content to point out some of its
consequences that are of greatest significance for our purposes.

Not all mathematicians, as for instance the intuitionists (cf. Chapter
X), admit the existence of ordinal numbers of arbitrarily large class;
not even, indeed, the set of all ordinals of the second class. See Lusin
[L; 27], and Borel’s preface to Sierpinski [S;], for example.

3.6.1 In the first place, because of the Well-Ordering Theorem every
infinite cardinal number is an aleph. For, if S is any set, then by the Well-
Ordering Theorem there exists a well-ordered set W whose elements are
the elements of S. Hence the cardinal number of W, which is an aleph,
is the same as the cardinal number of S.

3.6.2 In the second place, the possibility (4.2.5d) of Chapter IV
cannot occur, since, of two alephs, one must be < the other (this follows
directly, of course, from the Well-Ordering Theorem and Theorem 3.4.1,
with the 4 and B of IV (4.2.5d) forming the W and W’ of the latter

T See, however, Sierpinski [S;; XIJ, [Ss; XV].
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theorem). We express this fact by saying that every two sets are com-
parable; and that the principle involved, namely that IV (4.2.5d) is im-
possible, is comparability. Tt should be noticed that, if we use = for
implication—*“A4 = B” meaning “A implies B”—then we have

(3.6.2a) Choice Axiom = Well-Ordering Theorem = Comparability.
The power of the choice axiom becomes more and more evident!

3.6.3 The continuum problem; continuum hypothesis

Thirdly (recalling the question raised in IV 4.2.7.1), where, in relation
to the other cardinal numbers, does the cardinal number c stand, from the
standpoint of < (IV 4a)? In particular, is ¢ = 8;? This is known as
the “continuum problem,” and may also be formulated as the query:
Has every infinite subset of R either the cardinal number X, or the cardinal
number ¢? Two types of proof that the answer is affirmative were pro-
posed,T but were not generally accepted.}

Cantor, himself, conjectured that ¢ = X;, and it has been found that a
considerable number of theorems can be based on the hypothesis that the
conjecture holds. It has become customary to call the conjecture “‘the
continuum hypothesis.” Some theorems turned out to be equivalent to
the continuum hypothesis;§ others which originally were proved on the
basis of the hypothesis have subsequently been proved without it. In no
case has a theorem based upon it ever been shown to be false. In spite
of this, it was considered by some mathematicians that the hypothesis is
probably false.|| Others deemed it impossible to prove it or disprove
it on the basis of ordinary set theory; that it constituted an independent
axiom.

Since ¢ = 2% (IV (4.2.3a)), the continuum hypothesis may be stated
in the form X; = 2%. One may, then, state a generalized continuum
hypothesis in the form of the assumption that X, ,; = 2% for all cardinal
numbers N, Without the Well-Ordering Theorem, the hypothesis
would of course take the form: If e is a cardinal number > RX,, then there
exists no cardinal number m such that e < m < 2¢.

1 D. Hilbert [a] and F. Bernstein [b].

} In the reprinting of Hilbert [a] as Anhang VIII of [H.], it is significant that the
proposed plan of proof is omitted. For a critique of Bernstein [b], see Rosser [e].

§ For a discussion of relations to other mathematical principles and theorems,
the reader is referred to Sierpinski [Sz]. For a hypothesis alternative to the continuum
hypothesis, namely 28 = 2%1, see Lusin [a] and Sierpinski [a].

Il See Gédel [a] for comment and references. On p. 524, loc. cit., Gddel remarks
‘... one may on good reason suspect that the role of the continuum problem in set
theory will be this, that it will finally lead to the discovery of new axioms which will
make it possible to disprove Cantor’s conjecture.”

3
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In 1940 Godel showedt that, if the generalized continuum hypothesis
be added to the well-known axiom system given by Zermelo for set theory
(to be discussed in VIII 8), along with the choice axiom, then any contra-
diction that might be implied by these axioms could be transformed into
a contradiction implied by the axioms for set theory alone. This took
the form of a relative consistency proof; a model for the extended system
was found within the Zermelo system, so that if the latter is consistent,
so must the former also be consistent. In 1947, it was shown by Sierpinski
[b] that the generalized continuum hypothesis implies the choice axiom.}

Finally, in 1963, Paul Cohen announced (see Cohen [a], [b]) that
denials of both Choice Axiom and generalized continuum hypothesis are
consistent with the axioms of a set theory such as those of Zermelo cited
above. In conjunction with Godel’s 1940 result, then, it appears that
these principles have an independence in an axiomatic set theory which
makes their use, or rejection, just as much a matter of arbitrary selection
as that between a euclidean or non-euclidean geometry. But it seems
highly probable that the fruitfulness resulting from the choice axiom,
already frequently pointed out above, will dictate its acceptance wherever
needed in applications of the theory of sets. The situation regarding
the continuum hypothesis seems not so clear; a decision will perhaps
have to wait upon further investigation of its consequences beyond what
is already known.

4 The second class of ordinals

If the order type w is the most important of the order types of well-
ordered infinite sets, then it is probably true that the order type w, is the
second most important.§ For instance, it is a fruitful source of examples,
such as models for axiom systems (we see an instance of this below in
VI 1.2.6.2). And it may be expected that, in any method of proof which
makes use of the continuum hypothesis, the collection of all ordinals
of the first and second classes may be involved. For, inasmuch as the
order type of this set is w,, the set R may (using the continuum hypothesis)
be well-ordered so as to be of type w,.||

It is useful, therefore, to know some of its chief properties. One of
these is expressed in the following:

1 K. Godel, [G].

 Sierpinski remarks that this result was previously announced, without proof,
by A. Lindenbaum and A. Tarski, in 1926.

§ That is, important from the standpoint of frequency of application, number
and importance of theorems dependent thereon, etc.

|| Just as, for example, when we wish a well-ordering of a denumerable set (such

as F), we usually select a type » sequence for it, rather than an » + 1, w-2, or w?
sequence.
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4.1 Theorem. No well-ordered set of type w, is spanned (2.3.1) by
a countable subset.

Proof. Suppose that W is a well-ordered set of type w;, and that
W, is a countable subset of W that spans the latter. As W, is countable,
we may order its elements in a type w sequence

(4.13) X1, Xgy =t 0y Xny 0y

although this is of course not necessarily the order in which these elements
occur in W.

Now, for each n, the set W(x,) = {x,} U W/x, (3.1.1) is countable
since the order type is less than w;. Also, the W’s satisfy the relation
W = Jr-1W(x,). But this implies, by virtue of Theorem IV 3.1.6,
that W is denumerable. As W is of type w,, however, it is uncountable.

4.2 An axiomatic characterization of type w,

The result of the preceding section can be used to give an axiomatic
characterization of sets of type w,:

Let W, be any set and < a binary relation between elements of W, such
that:

(a) W1y is well ordered with respect to the relation <.

(b) If a € W1, then the section W,/a is countable.

(c) No countable subset of W, spans W.
(Compare this with the characterization of type w in 2.1) We leave to
the reader (Problem 23) the proof that this is a categorical axiom system
characterizing sets of type w;.

4.3 We can define limits for ordinal numbers as follows:
43.1 Definition. A (type w) sequence of ordinal numbers,
(4.3.1a) 0, gyt v vy gy

is called an increasing sequence if «, < «,,, for all n.

4.3.2 Definition. An ordinal number o is called the /limit of an
increasing sequence (4.3.1a) if, for every ordinal number 8 < «, all but a
finite number of the o, satisfy the relation 8 < «, < o.

And we can then state:

433 Theorem. Every increasing sequence of ordinals of the first
and second class has a limit of the second class.

Proof. Consider any increasing sequence (4.3.1a). By Theorem
3.5.2.2, the ordinals of the first and second classes form a well-ordered
set of type w,, and, by Theorem 4.1, there exist ordinals of the first or
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second class which are preceded by all elements of (4.3.1a). Of these
there is a first in the order defined in 3.5.2; denote it by «. Evidently
w = o [cf. axiom (b) of 2.1}, so that « is of the second class.

If 8 is an ordinal number such that 8 < «, then there exists an «, such
that 8 < «,; for otherwise « would not fulfill the condition stated in its
definition. Then, forallm > n, 8 < o, < «.

434 Definition. If an ordinal number has an immediate prede-
cessor, we call it an ordinal number of the first kind; by convention we
also term the number O of the first kind. All numbers not of the first
kind we call of the second kind.

4.3.5 Theorem. Every ordinal number « of the second class which is
of the second kind is the limit of an increasing sequence of type (4.3.1a).

Proof. The number «, being of the second class, designates the order
type of a well-ordered set of cardinal number ®,; in particular, the
ordinals 8 such that 8 < « form a denumerable set, and may be rearranged
in a sequence

(43.58) /319 BZ; Tt an e

of type w (the order in this sequence being not necessarily that of the
numbers in the sense of 3.5.2).

Form a sequence {«,} as follows: Let a; be 8;. As « has no immediate
predecessor, there is an ordinal o’ such that «; < &’ < «; and, as o’ is in
the sequence (4.3.5a), we can define a number «, as the 8, say By, Oof
smallest subscript n(1), which satisfies the relation «; < B4, < o

In general, having defined «;, we let «;, ,; be the B;, say B, of smallest
subscript n(k), such that o, < B, < «. This defines, by induction, a
sequence {c,} of type (4.3.1a).

We assert that « is the limit of this sequence. For suppose not. Then
there is an ordinal number B < « such that, for all #, «, < 8. Now B
is an element of (4.3.5a), say B,.. Let «, be the last B, that precedes S,
in the sequence (4.3.5a)—then o, = B, _1), and the number a,, ,, = Baw
comes after B, in the sequence (4.3.5a). However, since a, < B, < «,
the choice of B, for «, ., is contrary to the rule that it have the
smallest subscript satisfying the required relation to «, and «. Hence
the supposition that « is not the limit of the sequence {c,} leads to contra-
diction.

5 Equivalence of Choice Axiom, Well-Ordering Theorem,
and Comparability; other equivalent principles

In 3.1.2 we gave an outline of a proof that the Choice Axiom implies
the Well-Ordering Theorem. And in 3.6.2 we saw that the latter implies
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comparability; i.e., of two arbitrary sets 4 and B, one at least has the
same cardinal number as a subset of the other. In this section we show
the actual equivalence of all three of these properties of sets.

5.1 Let us first notice the more obvious implications. Thus in 3.6.2
we observed that comparability is a direct result of the Well-Ordering
Theorem, since, if we take the two given sets 4 and B in well-ordered
form and apply Theorem 3.4.1 (which states that one of these sets is then
of the same order type as the other or as a section of the other), we obtain
immediately a (1-1)-correspondence between the elements of one and the
elements of a subset of the other.

S.1.1 Similarly, the implication
Well-Ordering Theorem = Choice Axiom

is virtually immediate.t For (using the symbols of III 6.3), if € is a
collection of disjoint non-empty sets S,, let S = |J,S,. By the Well-
Ordering Theorem there exists a well-ordered set W whose elements are
the elements of S. Since W is well-ordered, every non-empty subset
of W has a first element, so that now we can define the representative
element of S, to be the first element of S, in the well-ordered set W.

5.1.2 We already have, then, the implications
(5.1.2a) Choice Axiom < Well-Ordering Theorem = Comparability.

And in order to complete the proof of the equivalence of all three properties
we have to show that the implication arrows in (5.1.2a) can be reversed.

5.1.3 Comparability = Well-Ordering Theorem.f We let the reader
prove the following lemmas, which follow quickly from the definition of
well-ordering.

5.1.3.1 Lemma. If W is a simply ordered set such that for every
w e W the set Wiw is a well-ordered subset of W, then W is well-ordered.

5.1.3.2 Lemma. If W and W’ are well-ordered sets such that there
exists an order-preserving (1-1)-correspondence between the elements of W
and the sections of W' (where W'|w, < W'[wy if wy < wy), then W and
W’ are of the same order type.

+ This was pointed out by E. Borel [a] upon the appearance of Zermelo’s first
paper [a]. And as a consequence Borel expressed the opinion that Zermelo’s Well-
Ordering Theorem was therefore only to be considered as part of the proof of the
equivalence of the two properties, not as a proof establishing the possibility of well-
ordering every set; the latter would demand, in Borel’s opinion, an effective procedure
for well-ordering.

I The proof given in this section is due to Hartogs [a].
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5.1.3.3 Let .S be any non-empty set, and let us consider all the possible
well-orderings of subsets W of S. These form a collection 28, non-empty,
since, if s € S, then {s} is a well-ordered subset of S. In 28, order-preserving
(I1-1)-correspondence is an equivalence relation &~ (II 8). Let K be the
collection of classes which are elements of the class decomposition (II 8.5)
of 28 corresponding to this .

The collection K becomes a well-ordered set (which we shall continue
to call K) if, for t,,f, e K we let ¥, < t, if and only if, for W, e¥f,, W, e,
there is a section W,/x, such that W, x~ W,/x,; that is, if there is a
Walxz €t For consider any t, e K. If f; < f,, and W, e¥,, the Wy/x,
defined above is unique by virtue of Theorem 3.4.2. Conversely, a
W,/x, determines a unique class ¥, such that W,/x,e¥f,. Hence the
collection {f, | f; < t,} is of the same order type as W,, hence well-ordered.
Then since f, was arbitrary, the collection K is well-ordered by Lemma
5.1.3.1.

Each W, e, € K is of the same order type as the section K/f,. For,
as we have just shown, for any f; < %, there is a corresponding section
Walx, € £y, etc., and that K/f, and W, are of the same order type follows
from Lemma 5.1.3.2. It follows that K cannot be of the same cardinal
number as S or as any subset of S. For, if K did have the same cardinal
number as a subset S; of S, then S; would have a well-ordering which we
denote by Wy, and hence there would exist a ¥, ¢ K such that W, e¥t,.
But W, as just shown, is of the same order type as the section K/f,. It
would then follow, from the transitivity of the relation of having the same
order type, that K and K/t, have the same order type, violating Corollary
3.4.3. 1n symbols, then

K#Sand K « S
5.1.34 However, if we now assume the comparability property of
sets, it follows that
K>3
This implies that, between the elements of S and the elements of a subset

of K, there exists a (1-1)-correspondence; and this induces a well-ordering
of S.

5.1.3.5 It is worthy of note that in 5.1.3.3, without any use of either

the Choice Axiom or the comparability property, it was shown that:
Theorem. If S is any set, then there exists a well-ordered set K such

that neither of the relations K = S, K < § holds.

5.1.4 Choice Axiom = Well-Ordering Theorem.¥ Continuing with

the symbols used in 5.1.3, let us denote the order type of K by B, and
T Cf. Sierpinski [S;; 230fF], [Ss; XVI].
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suppose that, for every ordinal number « < B8, S # &, where & is the
cardinal number of a set of order type «.

Now, as we saw in 11l 6.4, the choice axiom implies that for every
subset S’ of S there may be assumed to exist a definite representative
element which we denote by x(S’). Let x, = x(S). Then, for any
ordinal « < B, if we have defined an x, for all y < o, we may define
X, to be x(S — S,), where S, = [J,<«x, (We may assume S — S, # 0,
since by our supposition S, # Sand S, = S). Then by the transfinite
induction principle [which is applicable (3.2.1) to all ordinals of the well-
ordered set of ordinals representing sections of K] we have defined for
every ¢ < B an element x, of S, and, for ¢’ < « < 8, x,r # X,. But this

implies that 8 = K £ S, which we showed above not to be the case.
Hence the supposition that, for all « < B, a # § leads to contradiction.

We conclude, then, that, for some « < 8, « = 5, and since « is an
ordinal number this implies that there is a well-ordered set 4 whose
elements are in (1-1)-correspondence 7T with the elements of S. The
correspondence 7 induces a well-ordering of S.

5.2 Zorn’s Lemma

During the years since Zermelo’s proof brought out the equivalence
of the Choice Axiom and the Well-Ordering Theorem, various alternative
principles have been proposed. Some of these were motivated by a
desire to avoid the direct use of transfinite numbers and transfinite
induction, while others were conceived in connection with proofs which
seemed more easily and naturally carried out by means of the alternatives.

One of these, which evolved in various forms and came finally to be
called “Zorn’s Lemma” may be stated as follows:

5.2.1 Zorn's Lemma. If every simply ordered subset of a partially
ordered set S has an upper bound, then S has at least one maximal element.

(The notion of partially ordered set S was defined in Problem 16 of
Chapter 1I.  An element # of S is called an upper bound of a simply
ordered set Tif, forall x € T, x < u. An element m of a partially ordered
set S is called a maximal element of S if for no element y of S distinct
from yis m < y.)

To illustrate the use of Zorn’s Lemma, we give the proof of Hamel’s
Theorem (3.3.1) as based upon it, so that contrast with the proof given
previously may be brought out. We shall call a set 4 of real numbers
independent if there exists no relation of the form

(5.2.1a) fiay + faas 4+ -+ fra, =0
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where the a’s are elements of 4 and the f’s are rational numbers not all
zero.

5.2.2 Proof of Hamel’s Theorem on the basis of Zorn’s Lemma

Let 2 be the collection of all sets of independent elements of R; % # 0,
since {1} and {I, V/2} are elements of 9. Order (partially) the elements of
9 by inclusion; thus {1} < {lI, V2}, since {1} = {I, V2}. Then every
simply ordered subset B of 2 will have an upper bound in 2; one such
will consist of the union of all elements of B (inasmuch as every finite
collection of the elements of such a union will be in some element of 9B).
Applying Zorn’s Lemma, there is a maximal element 4 of , and A will
be a basis for R.  For if r is a real number not in 4, 4 U {r} cannot form

an independent set of real numbers (since 4 is maximal), and therefore
there will exist a relation

fr +flal +"'+fnan =0

in which the f’s are rational, f # 0, and the a’s are in A. This yields a
relation of the form (3.3a).

SUGGESTED READING

Beth [Be; § 117] Halmos [Hal; 59-80]
Birkhoff, G. [Bi; III] Hobson [Ho; §§ 64-66]
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Godel [G], [a] Kamke [Ka;; IV]
Grelling [Gr; 35-40] Rosser [Ross; XIV]

Sierpinski [S;; IX], [Se; I1; [Ss; XI-XV]

PROBLEMS

1. Show that the sets ON, ON; of 1.1.1 are not isomorphic with respect to
the simple order axioms.

2. Show that the set ON, and the set OF which consists of the elements of
F ordered in their natural order of magnitude, are not isomorphic with respect
to the simple order axioms.

3. Show that the order types of R, R* = {x| x& R,0 < x}, and the set
R*'={x|xegR & 0 < x < 1}, each arranged in the natural order of the
real numbers, are the same. [Compare Problem 14 of Chapter IV.]

4. Show that the set of all points in the coordinate plane can be so ordered
as to be of the same order type as the set R (the latter ordered in its natural
order of magnitude).

5. Show that if & is a collection of disjoint, non-empty sets S, of rational
numbers, then the choice axiom is not needed to assert the exist of a repre-
sentative set (II1 6.3) for S.

6. Show that, if we assume the Choice Axiom, then a simply ordered set .S
is well-ordered if and only if it has no subset 4 of order type *w (the order
relations between elements of A4 being the same as in S).
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7. Let A be a well-ordered set and B a simply ordered set that is not well-

ordered. If 4 = B, and f: A— B is a (I-1)-correspondence between A
and B, show that there exist x, y € 4 such that x < yin 4 but f(») < f(x)in B.
8. Let f be a mapping (IV 3.2.3.1) of a set S onto a set 7. Prove that
S = T, and indicate how the choice axiom comes into the proof.
9. Let A = {A4,}, where the A, are disjoint, non-empty sets. Prove that

9 is less than or equal to the cardinal number of J,4,. Is the choice axiom
used in the proof ?

10. Show that a partially ordered set in which every non-empty subset
has a first element is well-ordered.

11. On the basis of the axioms of 2.1, show that (1) N is well-ordered,
(2) if A is a non-empty subset of N containing the first element of N and such
that if a € A then the immediate successor of @ in N is in A, then 4 = N
(““mathematical induction principle’’).

12. Show that the finite well-ordered sets are characterized by the properties
of having a last element and of satisfying the mathematical induction axiom
(c) of 2.4.6.

13. Given a set N and binary relation < between elements of N, show that
N is of order type w with respect to this < if and only if

(a) N is simply ordered with respect to <.

(b) N has a first element.

(c) Betweent any two elements of N there exist at most a finite number of

elements of M.

(d) N is Dedekind infinite.

14. Given N, <, as in Problem 13, show that N is of order type w if and
only if

(a) N is well-ordered.

(b) Every element of N except the first has an immediate predecessor.

(c) N is infinite.

15. Prove directly from the axioms for a well-ordered set (2.4) the validity
of the transfinite induction method of showing that all elements of a well-
ordered set have a certain property.

16. Show that the set B defined in the proof of 3.3.1 is a basis for R.

17. Show that when a well-ordered set is of type w, then the mathematical
induction principle (II1 5) follows from the transfinite induction principle (3a).

18. If S is a given set, show that by assuming Zorn’s Lemma we may prove
that there exists a well-ordering of S. [Hint: Let A be the collection of all
well-ordered sets of elements of .S; order these by inclusion as in 5.2.2.]

19. Show that a set W and binary relation < between elements of W form a
set of order type w; if and only if

(a) W is well-ordered with respect to <.

(b) W is uncountable.

(c) Between any two elements of W there exist only a countable set of

elements of W.

20. Show that a set of order type w; w; as defined in Definition 3.5.1.1 is
well-ordered.

21. A well-ordering W of a set .S is a minimal well-ordering of S if no well-
ordering of S is of the same order-type as a section W/w of W. For example,

T In any simply ordered set, if x < y and y < z, then yis said to be between x and z.
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a type w ordering of N (its natural order) is a minimal well-ordering of N.
Show that every set has a minimal well-ordering.

22. Show that if S is any set and « is the order-type of its minimal well-
ordering, then « is the smallest ordinal number in its class.

23. Prove that the axiom system of 4.2 is a categorical system characterizing
the sets of order type w;.



VI

The Linear Continuum
and the Real Number System

Our discussion of the axiomatic method in Chapters I and 1I led to a
consideration of sets and the theory of the infinite. In the latter connection
we generalized the number concept as it is represented by the natural
numbers, finding two complementary types—the cardinal and the ordinal
numbers.

In the present chapter we use the notions thus developed to study the
concepts which form the foundation of modern mathematical analysis,
namely, the linear continuum and the real number system. We defer
to Part II our discussion of the philosophical and technical criticisms that
have of late been directed at these concepts.

In IV 1.4-1.5, we discussed the cardinality of the set R of real numbers,
using their decimal representation. Of course, a real number may be

represented by other symbols; thus, “V/2,” “z,”* “¢,” are commonly used
symbols since they identify the (frequently used) numbers concerned, while
their decimal representations can only be observed to a finite number
of digits and do not, therefore, serve to completely identify them. General-
ly, however, we do not have a special symbol for a real number, and in
discussing the general real number we must ultimately resort to some kind
of infinite symbol like the decimal representation.

Another mode of representing real numbers is by geometric segments.
This was the only mode of representation used by the Greeks, who called
real numbers ‘“magnitudes.” Operations with these ‘“‘magnitudes,” all
done geometrically, are described in Euclid’s Elements. It was not until
the publication of a detailed discussion of the decimal representation of
“fractions” by Stevin in 1585 that this mode of representation began to
find favor (it was known to earlier scientists, however). The Babylonian
astronomers used finite sexagesimals similar to what we call “finite deci-
mals” like 0.25, and these were known to the Greeks. But although they
were used by Greek astronomers, their possibilities were never realized
by the Greek mathematicians. On the other hand, the conception of
“magnitude” formed a satisfactory substitute for the abstractions of Greek
mathematics, and we continue to use it today in the manner in which we
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frequently develop elementary Calculus from Analytic Geometry. It is
not until we proceed to more advanced subjects such as Function Theory
that we attempt to acquaint the student with “arithmetic” modes of sym-
bolizing and conceptualizing real numbers.

Before describing the manner in which the nineteenth century analysts
“arithmetized” the real numbers on the basis of the natural numbers, we
shall give a somewhat analogous but simpler presentation which should
not only serve to bring out the nature of the real number system, but
furnish a means of axiomatizing its structure. We shall confine our
discussion to the set R* of positive real numbers for the present; extension
to the negative numbers and zero offers no difficulty.

We suggested in IV 4.1.2 that we can use the intuitive notion *‘size”
of a set as a means of conceptualizing the natural numbers. Now, once
we have the natural numbers, we can conceptualize the (positive) fractions
p/q in which p and g are prime to one another, as ordered pairs of natural
numbers, as an alternative to the Greek concept of length. We can go
further: 2, for example, can be associated with a set of 5 elements and one
of its subsets having 3 elements. In the case of “improper” fractions
like $, we may consider different sets of 3 elements, associating therewith
all the elements of one and only two from another. This is, indeed,
the concept behind the use of fractions as applied to collections instead
of linear magnitudes. To complete this line of thought, we then make
the convention that we will associate the same concept with a fraction
p/q in which p and g are not prime to one another, as one does with the
equivalent fraction in its “lowest terms”; thus 1% and £ are different sym-
bols for the same concept. Moreover, since finite decimals reduce to
fractions in the usual manner—0.37 represents the same rational number as
%—one has a mode of conceptualizing these also. It should be pointed
out, however, that the additional step of reduction to the set concept
is not necessary to conceptualize fractions, since the concept of an ordered
pair of natural numbers is already sufficient; the further step in terms of
sets may or may not be made, as one prefers.

The (positive) real number, then, can be conceived as an infinite sequence
(type w) of finite decimals; thus = — 3 may be conceived as the sequence

0 1, .14, .141, .1415, .14159, - - - ;

that is, the sequence of “decimal approximations.” And of course any
such sequence may, conversely, be conceived as a real number. Finally,
if we agree that the symbol .14159. - - is only an abbreviation of (1), we
arrive at the symbols used in TV 1.4—with the additional feature that we
now have a concept which these symbols denote. As in IV 1.4, we make
the convention that each element of R is to have a unique representation,
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and we achieve this by replacing each finite decimal by a decimal ending in
an infinite sequence of 9’s as before.

Let us recapitulate, both for clarity and additional comment. First,
we had the set N of natural numbers. On the basis of N we formed the
set, F'*, of (positive) rational numbers which we considered as ordered
pairs of natural numbers. Now, to avoid logical difficulties, we should
keep N and F* distinct, recognizing, however, that each element n of N
has a representative of form n/l in F*, a representative of the same
concept as for n.  Then on the basis of F* we form the set R* of positive
real numbers, each of which is an infinite sequence of elements of F*
of the form

@ kikye kn-ayag- - -a,

where kiky-- -k, is the integral part of the element and a,a,- - -a, its
decimal part. We call this infinite sequence an ““infinite decimal” and
abbreviate it to the usual form:

3 kikg: ky-ayag---ay- - -

And again we recognize that F* and R* must be kept distinct, although
each element p/g of F* has a representative in R* which is an infinite
decimal. In particular, we notice that we now have three concepts of a
natural number n: (1) as a cardinal number, (2) as an ordered pair of
natural numbers (i.e., cardinal numbers), and (3) as an infinite decimal.
In practice, we may, and usually do, think of it in its simplest form (1),
but in theoretical work with R* we should adhere to (3).

Remark. The reader should be reminded that the above discussion is
intended only to provide a conceptual model for what follows, namely,
the search for an axiom system which will characterize the order type which
we now proceed to set up in R*. In addition, it will make the process
to be described in Section 3 (the building up of the real numbers on the
basis of the Peano axioms) seem more natural.

1 Analysis of the structure of the real numbers as an ordered
system

In several instances we have referred, in the past, to the ‘“natural
order” of the collection R, with the remark that we meant the order
according to magnitude. Here we shall be more explicit about this,
since the type of order with which we are dealing has some very sur-
prising aspects which can be appreciated only by a more careful ex-
amination of the order relation itself. Since we do not at present consider
operations in R, being interested only in its ordering, we restrict our
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discussion to R*, the set of all positive real numbers (cf. Chapter V,
Problem 3).

1.1 Definition of < for R*

Given two positive real numbers r and r’, just how can we give an
explicit definition of what we mean by the relation r < r'? Suppose
that we use the form (3) to represent r, with a similar form to represent r’,
but with primes on the k’s, a’s, and m in the latter case. Since the integral
parts of these numbers are natural numbers, we can first specify that, if

(1a) kg km < ki'ks -+ k!

where the < in (la) is that of the natural order in N, then r < r’. 1If
the converse of (la) holds—k,'ky -« -kp' < kikg---ky—then r" <r.
But, in case these numbers are equal, we then consider the decimal parts
of r. The first inequality (in the order of the subscripts), a, < a,” (or
a, < a,), will now determine the order. Thus, if a; < a,/, then r < r'.
Or,ifa, = a,’,a; = a,’,and a; < ag’, thenr < r'. If, however, a, = a,’
for every n, then the relation » = r’ holds.

1.2 Separability property of R*

There is little difficulty in showing that the order relation defined in
1.1 satisfies the simple order axioms (II 7), and we leave this to the reader.
What we should like to do next is to consider the relation of the set F'*
of positive rational numbers to the set R* in terms of this order. We shall
use the symbols for elements of F* which represent them as elements of
R*, i.e., infinite decimals.

1.2.1 Theorem. If r and r' are (positive) real numbers, and r < r’,
then there exists fe F* such thatr < f < r'.

Proof. Let r and r’ be represented as in 1.1, and suppose that r < r'.
If kikg - kp < ki'ky -+ -kn', let @, be the first non-zero digit in the
sequence a,’, @', -+, @,’,---. Let f be the number k;'ky’- - k' oaay

--(ay — 1)99---, which has integral part ki'ky’---k,’ and digits
aay - - -a,_,', the same as in 7/, but with a,’ replaced by @, — 1 and all
a,’ for n > k replaced by the digit 9. Then fe Fand r < f < r’ by the
rule given in 1.1.

If the integral parts of r and r’ are the same, let i be the first value of
n such that a, < a,’. Then let k be the first subscript greater than i such
that a,’ is not zero. Let f = ki'ky' - kp'.a)'---a’- -+ (&' — 1)999- - -,
a number which agrees with r’ in its integral part and in the first k — 1
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digits of its decimal part, but replaces a,” by a,” — 1 and all successive
digits by 9. Then fe F* and r < f < r'.

If in a simply ordered set we say that an element y separates elements
x and z if y is between x and z, then we can state:

1.2.2 Corollary. Fuvery two elements of R* are separated by an element
of R*.

1.2.2.1 The property of R* stated in 1.2.2 is frequently called the den-
sity property of R*. A simply ordered set satisfying 1.2.2 is called dense.

1.2.3 If a real number can also be represented in the decimal system in
the form kiky- - -k,.a1ay---a,---, where all a, from some subscript »
on are all zero, then we call it a finite decimal. (Thus, 2.499---9...isa
finite decimal since it can be represented in the form 2.5. On the other
hand, % is not a finite decimal, nor is any irrational real number.)

Now the numbers f defined in the proof of 1.2.1 are finite decimals;
hence we can state:

1.2.4 Theorem. Ifr and r' are real numbers, r < r’, then there exists
a finite decimal d such that r < d < r'.

1.2.5 We showed in 1V 1.2 that F has the cardinal number X;; in
1V 1.4 that the cardinal number of R is a number ¢ different from ,;
and in IV 4.2.1 that &, < ¢. Thus, although the number of elements
in R is greater than the number of elements in F, it turns out that between
every two elements of R there is an element of F. For finite sets there is
nothing surprising about such a property, but in the present case we might
erroneously reason that, since each two elements of R are separated by
one element of F, the number of elements in R is at most fwice as great
as that in F, ie., X, + 8,, which, we showed in IV 2.5.1, is ;. The
“paradox’ is explained if we notice that the same element of F separates
many different pairs of elements of R.

1.2.6 The set F* is called a countable separating set for R*, and the
existence of such a set is designated the separability property of R*.
In general, if O is a simply ordered set, then O is called separable if it has a
countable subset .S such that between each two elements of O there exists
an element of S; and S'is called a countable separating set for O. Although
the separability property implies density, not all simply ordered sets having
the density property have the separability property ; not even if, in addition,
they have cardinal number ¢. For consider the following examples:

t We did not define addition or multiplication in Chapter IV for cardinal numbers;

but, as the reader would probably surmise, 2- X, = X, + Ny, and to obtain the latter
we would select disjoint sets 4, B & X, and find the cardinal number of 4 U B.
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1.2.6.1 Example (Huntington [Hu; 45]). In the coordinate plane,
let S denote the set {(x, )| (0O = x = 1) & (0 £y £ 1)}. Define <
for S as follows: If p = (x, ), ¢ = (x', »"), let p < g mean that either
(1) x<x',or (2 x=x"and y <y. That p =g means x = x" and
y =y'. Then S is simply ordered with respect to this <. Also, S has
the density property (1.2.2.1). We proved in IV 2.4 that the cardinal
number of S'is c. But S does not have the separability property.

For consider any real number » such that 0 £ r £ 1. Let I, =
{(r,y)]0 =y <1}. Alsolet p, = (r,0), g, = (r,1). Then p, < g,, and
a point x, between p, and ¢, would have to be an element of /.. Since
the cardinal number of the collection of sets I, is ¢, any set M < .S having
the property that M NI, # © for all r would have to have cardinal
number equal to c. Hence, any set M < S having the property that,
for every p, q € S there exists x ¢ M such that x is between p and g must
have the cardinal number ¢!

1.2.6.2 Example. Let Q denote the collection of all ordinal numbers of
the first and second classes (V 3.6). For each successive pair ¢, « + 1€ £,
introduce a set R, of the same order type as the set of real numbers
{r]0 < r <1}, defininga < x, < « + 1 for all x, &€ R,. And, if « < B,
where o,8€Q, let x, < x5, for all x,&R,, x;€R;. And finally, if
o < B <y, where o,8,ye €, let « < x; <y for all x;e Rs. The set
I' = QU R, is then a simply ordered set having the density property.

The set I' does not have the separability property. For, if IV were a
countable separating set for T, then for every « € Q there would exist a
yeT” such that « < y. Then I'" would be a countable spanning set
(V 2.3.1) of I'.  However, this would imply the existence of a countable
spanning set of Q, which is impossible by Theorem V 4.1 (cf. Problem 5).

It is easy to prove that T = ¢ by using the Bernstein equivalence theorem.
In the symbols of IV 4.2.5, it is trivial that there exists a mapping R* — T,
where R' = {x | xe R, 0 < x £ 1}. To show that there is a mapping
I' — R, we may first appeal to the relation X, =< cto assert the existence
of a mapping f: Q — R*. Then with S as in 1.2.6.1, and R! as its subset
{(x,»)|0 £ x £ 1, y = 0}, we may extend f to a mapping I' — § simply
by mapping each R, into I;,. Hence ' = § =c.

Note that the ordered sets S (1.2.6.1) and I" are not of the same order
type (Problem 6).

1.3 The possible types of cuts of R*

Our investigation of the order type of R* would not be complete
without a study of the cuts of R*. The notion of a cut of a simply
ordered system was introduced in V 2.2, Definition (2a), and used there
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to characterize sets of order type w. In a set of order type w, every cut
[4, B] is of a single type, viz., the type in which 4 has a last element and
B has a first element.

Cuts of R are of two types: that in which 4 has a last element and B no
first element, and that in which 4 has no last element and B has a first
element. The former is exemplified in the case where 4 = {x | (x < 1},
B ={x|1 < x}; the latter by 4 ={x|x < 1}, B={x|1 < x}. The
type of cut found in sets of order type w is never found in R*, in view of
Corollary 1.2.2.

1.3.1 Theorem. If [4, B) is a cut of the collection R*, ordered as in
1.1, then either A has a last element ort B has a first element.

Proof. It will be sufficient to prove the theorem for the set R® —
{r|(re R) & (0 < r < 1)} instead of R*, since R* and R are of the same
order type (Chapter V, Problem 3). Hence we assume that [4, B] is a
cut of R*.

Suppose that 4 has no last element and that B has no first element.
By Theorem 1.2.4, the set, F’, of all positive finite decimals, with integral
part zero, is a countable separating set (1.2.6) for R!. The set F’ is
denumerable, and its elements can therefore be represented by symbols

(1.3.1a) di,do,---,dy, -, neN,

where the order in (1.3.1a) is, of course, not that in R!. Since the d’s
do occur in two orders, let us agree that “ < denotes the order relation
in R', and that “ <" denotes the order in (1.3.1a)—thus d, <'d, ., for
all n, although, for some values of n, d,,; < d, may hold.

Let d,, denote the first{ (in terms of <) element of (1.3.1a) that is an
element of 4. Having defined d,, for a k€ N, let dy:+1, be the first
(in terms of <) element of (1.3.1a) such that d, , ;, € A and Aoy < Angie 41y
That such an element exists for all k& follows from the supposition that 4
has no last element. We have defined, then, by induction a sequence

(1.3.1b) dn(l)’ dn(z), s dn(k)a' o

of distinct elements of A4 such that (1) duyy < dops1, for all k € N and
(2) if a € A, then there exists k such that a < d,,.
That (2) holds may be shown as follows: Suppose that there exists
an ae A such that for no k is a < d,,,. Let be A such that a < b.
tAs stated before [II 7f], we always use “or” in the sense of “and/or,” not as a
complete disjunction. The complete disjunction actually holds here, however, as
stated in the preliminary remarks above. Incidentally, “or” is another of our

logical “universals” which we constantly find ourselves explaining. Cf. I 3.4.
1V 2.1, second footnote.
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Then since the finite decimals form a countable separating set, there
exists a d, of the sequence (1.3.1a) such that a < d, < b; let n’ be the
smallest value of n satisfying these inequalities. Now d,,, <’ d, since
otherwise d, would have been the first element of (1.3.1a) in A. Let
n(i) be the largest subscript in (1.3.1b) such that d,, <’d,. Then
d, <'d,i.1 But this is impossible, since dpy < d,- and d, .1, was sup-
posed, by the induction definition, to be the first element of (1.3.1a) to
lie in A and satisfy the relation d,;, < d,;+1,! We must conclude, then,
that (2) holds.

To simplify symbols, let us denote d,, by d,’. Sequence (1.3.1b)
then becomes

(1.3.1b) d’,dy, -, 4y

And since each d,’ is a finite decimal, we may exhibit the elements of
(1.3.1b) in a vertical array:

r _ 1 1 1
d,’ = .a'ax'ast- - -
(1.3.1¢) d, = .a)%akas*- -
! — k+1,k+1,k+1
diry = afttag a3t -

there being only finitely many a’s in each row.

Since d,,/ < dy,,, for every k, a;* £ a¥*'. And since the vertical array
(1.3.1¢) is infinitely long, from some point on (as k increases), it must be
the case that a,* = a¥*'; designate this common value by a;. Then for
the numbers in (1.3.1c) that begin with this a;, there will be a point
reached as k increases where always a,* = a§*!; designate this common
value by a,. Continuing in this way, we may define (by induction) a

sequence a;, dg, 43, --- which we may use as the digits of an infinite
decimal
(1.3.1d) d= .aia, --a; -

The digit g; is the ultimate common ith digit of the d;,". Evidently d € R.

We assert that d ¢ A. To see this, let a € 4 and recall that we showed
above that there is a k such that a < d,’; also notice that as d is defined,
d, < d for every k. We therefore conclude that d¢ B. But B has no
first element, so there must be b e B such that b < d. Let the decimal
denoting b be .b1b,- - -b,---. Now b < dimplies that there is a smallest
subscript 4 such that b, < a,. But this also implies that b, < a,* for k
large enough and therefore that b < d,’. But this is impossible, because
beB,d'cA,and A < B.
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Thus the supposition that 4 has no last element and B has no first
element leads to contradiction.

1.3.2 Remarks. We pointed out in IV 2.1 that, on the basis of an
axiom system for ordinary euclidean geometry, such as that of Hilbert,
it can be shown that the “Cantor axiom” holds. In the terminology
that we have since introduced, this “axiom” states that, if L is the set
of all points on any euclidean straight line, and < is introduced in the
usual manner for points of L, then L and the set R of all real numbers are
of the same order type.

It follows that the theorems proved above concerning order in R*
(which hold, of course, in R also) can also be stated for L. So far as
Theorem 1.2.1 is concerned, this results independently from the fact that
on L every finite interval has a midpoint and it is not difficult to set up a
process of “bisecting” intervals on L so as to define, by induction, a set
of points on L analogous to the countable separating set F (see Problem 7).
However, to obtain the analogue of Theorem 1.3.1 requires a continuity
axiom of some kind, which may well take the form of 1.3.1 itself. Indeed,
as we shall see directly, these properties (separability, and the “cut
property” stated in 1.3.1) virtually characterize the structure of the
euclidean line.

1.3.2.1 An interesting by-product of the proof of Theorem 1.3.1
is a constructive procedure by which, given any real number d, and the
sequence (1.3.1a), we may set up a sequence (1.3.1b) of finite decimals
“approximating” d in a sense easily defined. However, if 0.a,a5- - -a,- -
is any given infinite decimal, the finite decimals 0.a,, 0.4,a,, - - -, 0.a,a,- - -
ay, - - - are the most obvious candidates for such a sequence. Of course,
in the proof of 1.3.1 the number d had to be constructed from the sequence,
rather than the reverse!

1.4 Axiomatic definition of the order type of R

We can use the properties of R which we have found above to give a
categorical system of axioms which characterize the order type of R.}
1.4.1 Let C be a set of undefined elements and < an undefined binary
relation between elements of C such that

(1) C is simply ordered with respect to <.

(2) If [A, Bl is a cut of C, then either A has a last element or B has a
first element.

(3) There exists a non-empty, countable subset S of C such that, if
x,y € C such that x < y, then there exists z € S such that x < z < y.

(4) C has no first element and no last element.

T Compare Huntington [Hu; V], Sierpinski [S,; 151], [Ss; 217, Th. 1].
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These axioms can be briefly designated as, respectively,

(1) Simple order axiom.
(2) Dedekind cut axiom.
(3) Separability axiom.
(4) Unboundedness axiom.

1.4.1.1 Definition. Any set C with relation < satisfying the axioms
(1) to (4) of 1.4.1 will be called a linear continuum with respect to this <.
We shall designate the above axiom system by A.

1.4.2 Consistency of the axiom system A

Is it possible to show the axiom system A consistent? Here is a case
where we cannot, for a model, exhibit any finite collection of physical
objects, such as we did for the system I of I 2.2. As a matter of fact,
for our consistency proof we resort to the concept which underlies the
axioms (see I 5, IT 6)! The collection R* and < defined as in 1.1 form
a model of the system A. (Cf. Problem 8.)

1.4.3 Independence of the axioms of A

The following interpretations, together with the system (R, <), show
the independence of the axioms of A (cf. IT 3, Definition 3.1.1).

1.4.3.1 Interpretation of [A — (1)] + ~(1). Let M; be an ordered
set defined as follows: The elements of M, are the points in the coordinate
plane of the sets S; = {(x,)) | (x £ 0) & (y = 0)}, Sz = {(x, ») | (x > 0)
& (x =}, Sz ={(x,»)| (x > 0) & (x = —y)}. Definition of <: For
p,qeS;,i=1,23 wherep = (x1, ¥1),4 = (Xg, o), p < gmeansx; < X.
Forall pe Sy,qeS;, i=2,3,p<q. ForpeS,, qeS,, there is no <
relation. For M,, axiom (1) fails, axioms (2) to (4) are satisfied.

1.4.3.2 Interpretation of [A — (2)] + ~(2). Let M, consist of the
elements of F with < defined as in 1.1.

1.4.3.3 Interpretation of [A — (3)] + ~(3). Let M; be the set S
and relation < of 1.2.6.1, with the points (0, 0) and (1, 1) deleted. Or let
M be the set I' and relation < of 1.2.6.2, with the first element of I'
deleted. (Cf. Problems 9 and 10.)

These interpretations also show, incidentally, that the assumption of
density (1.2.2.1) alone in axiom (3) would not have been sufficient to
characterize the order type of R. (The integers in their usual order
suffice as a model of [A — (3)] + ~(3), but they do not have the density
property.) For both S and I' have the density property, yet neither is
of the same order type as R, nor is either of the same order type as the
other (cf. Problem 6).f The “lines” S and I" are “too long” to put in

t The example .S was also used by Young [Y; 84ff] for the same purpose.
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euclidean spaces (to ‘“‘straighten out™ S, imagine that the position of S
in the plane is the result of a folding process, accordion fashion, and
perform the unfolding process on it).

1.4.3.4 Interpretation of [A — (4)] + ~(4). Let M, be any one of
the following ordered subsets of R: {x |0 = x <1}, {x|0=x < 1},
{x]0<x =1}

1.43.5 Remark. It is of some interest to observe that the system
A — (4) has only four possible types of interpretations. That is, with
isomorphism with respect to A — (4) as an equivalence relation ~ in
the set K of all interpretations of A — (4), there are exactly four classes
in the class decomposition of K corresponding to = (II 8.4, 8.5).

1.4.4 Categoricalness of the system A

To show that A is a categorical system, we first show that, if M is
any model of A, then M and R are isomorphic with respect to A. Then,
if M, and M, are any two models of A, the transitivity of isomorphism
renders M, and M, isomorphic with respect to A, and consequently A
is a categorical system.

Let M, then, be any model of A. Denote elements of M by the letter
x with or without suitable indices, and the order relation in M by <’.
Denote elements of R by the letter r with or without suitable indices,
and the order relation in R by < (as defined in 1.1).

Let us denote the subset of M whose existence is asserted in axiom
(3) by S, and the elements of S$’ by x;, X, ---, Xn---. And let us
denote the elements of F by ry, rg, -+, 1y, - - -. 1t will 2id our exposition
if we let the latter sequence be the sequence (F) of IV 1.2; then r;, = 0,
ro =—1,r; = 1, etc.

The set S’ is non-empty, hence contains at least the element x;. We
shall set up an order-preserving (l-1)-correspondence T between the
elements of R and the elements of M in which we have the pair (ry, x;).
Let Ty = {(r1, x;)}. Now ry (= —1) satisfies the relation r, < r; (since
r; = 0). We shall pair with r,, then, the element x,, of S’, whose sub-
script n(2) is the smallest natural number n such that x, <’ x;. That such
an element x,, exists follows from the reasoning: By axiom (4), M has no
first element, hence there exists x such that x <’ x;. By axiom (3) there
is an element x, of S’ such that x <’ x, <’ x;; and, since N in its natural
order is a well-ordered (type w) set, there exists a smallest such natural
number n(2) as desired above. Let Ty = {(ry, x1), (2, Xn)}

Having defined a collection T, of pairs (r1, x1), (F2, Xn@)s * * *» (Fes Xnoer)s
such that the resulting (1-1)-correspondence 7} is order-preserving, we
consider r,,;. We determine the element x, ., of S” whose subscript
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n(k + 1) is the smallest natural number » such that, if we augment 7}
by the pair (ri.1, Xnw+1), then the new (1-1)-correspondence 7)., is
order-preserving. That such an x,4.;, exists follows from reasoning
similar to that used in showing the existence of x,o, In this manner,
we arrive at a denumerable collection T, of pairs such that the corre-
spondence T, is an order-preserving (1-1)-correspondence between the
elements of F and the elements of a subset S” of S’ consisting of xy,
X2y © " "> Xngeps ** "

We assert S” = S’. For suppose not. Then there exists x, with
smallest subscript 4 such that x, € S’ — S”. Evidently x; # x,, so that
there exists a k, say k', such that n(k") < A, and x,4’, is the last (in the
process of selecting elements of S’) one of the elements x;, Xg, - - -, X5_1
to be selected for the sequence S”. (That is, xy, Xn), -+ +» Xuae, IS the
“shortest’ section of the sequence S” to contain a// the elements x;, x,,
-+, X,—1.) And, as soon as x,, is selected, x;, becomes the first candi-
date, in all selections thereafter, for any of the elements x,u 4 1 Xnw' + 29

And ultimately it will certainly be chosen; for suppose, for instance,
that x,, <’ X, <’ Xx;, and that none of the elements x,ag, - - -, Xpu IS
between X,., and x; in M. Then, as soon as we come, in F, to the first
r, such that r, < r, < ry, x, will be selected for S”. Other possibilities
as to the relative order between x, and the elements X, Xy@), -+ +, Xnw'
yield the same conclusion.

Then T, constitutes an order-preserving (1-1)-correspondence between
the elements of F and the elements of S’. To extend this to an order-
preserving (1-1)-correspondence T between the elements of R and the
elements of M, consider any '€ R — F. Define a cut [4,, B,] of F
as follows: Let 4, = {r, | r, < r}}, B, = {r, | r* < r,}. Neither 4, nor
B, is empty. Then let 4," be the set of all elements of S’ paired with
elements of 4, in T, and B," = S’ — 4;". Andlet 4' = {x|x <’ B},
B'= M — A’. Then [4', B']is a cut of M in which 4’ has a last element
x!, and we place the pair (r, x*) in 7.

That this defines 7" as an order-preserving (1-1)-correspondence between
R and M we shall leave to the reader to show.

1.44.1 The proof of Theorem 1.4.4 was carried through in such
detail partly to show the manner in which the irrational numbers, that is,
the elements of R — F, may be determined by cuts of F (as in the case of r!
and [A4;, B;] above). The reader may notice for himself that these corre-
spond precisely to those cuts [A4;, B;] of Fin which 4; has no last element
and B; has no first element. It should be noted also that, by virtue of
Theorem 1.2.4, cuts of the set, D, of all finite decimals could have been
used above; although a cut [4,, B;] for which A4; has no last and B, no
first element may then determine a rational number.
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1.4.5 A notable unsolved problem

Regarding the axiomatization of the order type of R, there is a well-
known unsolved problem. Because of its seeming simplicity, and the
failure of all attempts at solving it, it has received widespread attention.
In order to state the problem, we need the notion of interval:

1.4.5.1 Definition. If (C, <) is a simply ordered system (II 7.1)
and a,b £ C, then the subset {x | @ £ x =< b} of C is called a closed interval,
or simply interval, of C. 1f we wish to designate the determining points
a and b, we say “the interval ab.”” The subset {x |a < x < b} of C'is
called an open interval; to designate the determining points, we say “the
open interval ab.”

1.4.5.2 Theorem. Every set of disjoint open intervals of a linear
continuum (C, <) is countable.

Proof. 1f {/,} is a collection of disjoint open intervals, then by axiom
(3) of 1.4.1 there exists, for each », an x, € S (where S is the countable
set .S specified in this axiom) such that x, € I,. As no two open intervals
I, have a common element, and S = R, it follows that the collection {I,}
is countable.

1.4.5.3 Problem of Souslin. Because Theorem 1.4.5.2 is virtually a
direct corollary of axiom (3), it is natural to ask whether it is not equiva-
lent to axiom (3) in the presence of the other axioms. Specifically, if
we temporarily designate by axiom (3’) the statement “Every collection
of disjoint open intervals is countable,” then are the system of 1.4.1, and
the system of 1.4.1 with C assumed non-empty, dense, and (3) replaced by
(3"), equivalent? (Cf. Problems 26, 27 of Chapter I1.)

This question was propounded in 19201 by the Russian mathematician
Souslin, and, although many attempts have been made to answer it and
numerous papers have been published relating to it,} it remains unanswered
to this day.

2 Operations in R

Throughout Section 1 we have not once considered the possibility of
adding or muitiplying elements of R. Our attention was focused entirely
on the order type of R. However, as a real number system, R is something
more than an order type. Its elements are added, subtracted, etc.

T See Fund. Math., vol. 1 (1920), p. 223, Problem 3; also see Sierpinski [S;; 152—
153].

1 See, for instance, Miller [a], Dushnik and Miller [a], Sierpinski [c], [Sa; 219f].
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2.1 Definitions of operations

It will be assumed that the reader is familiar with the arithmetic com-
monly taught in the elementary schools, at least to the extent of knowing
how to add, subtract, multiply, and divide finite decimals,} and of famili-
arity with the Laws of Signs (“‘the product of two negative numbers is
positive,” etc.; cf. VII 2.2.5, VII 2.7.2). We must, of course, revert
now to the complete set R of real numbers.

2.1.1 To add two positive real numbers r; = k ko - -kp.aiag- - -
a,--- and ry = tyty- - tobiby- - by -, we let 1 = kik,- - -k, and (for
every ne N) r® = kiky - kp.aias---a,; and r° = t1t,- - -1, and ry* =
tity- - -tubiby- - -b,; and finally let r,™ + r,® = 5,. Then, since r;® £
ritl " S 3t we have s, S Sp.q-

Now r;™ never exceeds r,° + 1 and r," never exceeds r,° + 1; hence
s, never exceeds r,® + r;,° + 2. Ultimately, then, the integral part of
s, stays fixed; i.e., there exists an integer N such that, forn > N, n’ > N,
s, and s,° have the same integral parts. There will also exist an integer
iy > N such that, for n > i, n’ > i, 5, and s, have the same digit in the
first place after the decimal point. Pursuing the same type of reasoning
as was used in the proof of Theorem 1.3.1 to show the existence of the
number d, we can show here the existence of an s & R such that for any
k € N there exists an i, such that, for n > i,, s, and s have the same
integral parts and the same digits in their first & decimal places.

We now define ry + ry to be s and write ry + ro = 5 = ry + ry.

21.2 Obviously all the above operation amounts to is the usual “approximating”
process used by everyone who computes. If we wish to find the digits representing

the sum V2 + =, we use i.4 + 3.1 = 4.5; or 1.41 + 3.14 = 4.55; or 1.414 + 3.141
= 4.555; or - - -, depending upon how good an approximation we wish to the actual

decimal representation of V2 + « (which is actually an infinite decimal, of course).}
The above description of the process, however, shows that there actually exists an
s € R which is being “approximated,” so that we can give a definition of what we
mean by the “sum” r; + rs.

When r, and r, are both negative, then if |r;| + |re] = s, ry + £y is of
course —s. If one is negative and the other positive, we find the difference
d of their numerical values and attach the sign of the numerically greater
of the numbers r,, 5, to d. For this purpose, however, we have to define,
for positive ry, rg, and r; > r,, what we mean by r; — r,.

2.13 For the latter operation we do the obvious thing: For each
neN, let d, = r,® — 1", where r,™ and r," are as defined above. We

+ For a general discussion of arithmetic, Klein [Kl; Part I] is strongly recom-
mended.

I However, in practice one usually “smooths off” these figures, as in the case of
the third sum, where 3.142 would probably be used instead of 3.141.
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leave to the reader (Problem 11) to show that there exists a d € R such that
for any k & N there exists an integer i, such that, for n > i,, d, and d
have the same integral parts and the same digits in their first & decimal
places. We define r;, — ryto be d and write r; — ry, = d.

If r, < ry, and r; and r, are both positive, then r, — r, is, of course,
—(rqg — r1). The usual elementary rules governing signs for subtraction of
integers will carry over to the cases where not both r; and r, are positive.

(Thus V2 — 7 = — (7 — V2); V2 — (=m) = V2 + =; etc.)

2.1.4 Multiplication and division are handled along similar lines, by
performing the operations with the “approximations” r,", ry", observing
the usual Laws of Signs in F. FExistence of the corresponding elements
of Ris proved by the same type of argument as used in the case of addition.
For our purposes we are more interested, however, in finding what general
characteristics of these operations may serve as axioms for an axiomatiza-
tion of the real number system.

2.2 Arithmetical “laws”

Certain “laws” commonly used in computation with integers and finite
decimals, and usually taken for granted, should be noted here.

2.2.1 Commutative laws

In defining addition for elements of R, we remarked that r, + r, =
rg + r;. Similarly, we would have for multiplication that r; x r, =
ro x r;. These are respectively called the commutative laws of addition
and multiplication. The corresponding laws do not hold for subtraction
and division, of course. Later we shall see examples of “number systems”
in which the commutative law of multiplication does not hold; these laws
are not trivial, then, and they have to be specifically stated or implied in
any axiomatic characterization of the real number system.

2.2.2 Associative laws

Everyone is familiar with the common device of adding a column of
integers “down” and then “up” to check the sum. Involved here is not
only the commutative law but also (assuming at least three integers are
being added) the associative law of addition:

(2.2.2a) (ry 4 19) + 13 =ry + (ry + ra).

For any three finite decimals r,, ry, and r,, it makes no difference in what
order we carry out the addition. We can show from this fact that, if
ry, g, ¥3 € R, then in order to find a “sum,” r; + r; + rz, we may first
find r; + r, = r’ and then r’ + r; = r; and then we can prove that, if
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instead we first find r, + r3 = r”, it will follow that r = r; + r”. The
associative law (2.2.2a) holds for any elements of R, then.

2.2.2.1 Notice, incidentally, that the definition of addition in 2.1.1 above
does not tell us how to find a sum of three real numbers. Now that we
have defined such a sum, and have the associative law (2.2.2a), we can in
an obvious manner define by induction the sum of any finite number of
real numbers and show that the order of addition is immaterial. Thus
ittt raer = (rpFrg o+ ) + raggs et

For multiplication analogous statements may be made; in particular,
the associative law of multiplication of real numbers is (r; x ry) x rg =
ry X (rg X rg).

2.2.3 The distributive law

In elementary algebra the reader probably first encountered the rule:
(2.2.3a) ax b+ c)=(axb)+ (ax o),

and subsequently spent hours of labor in exercises illustrating “‘removal
of parentheses.” Relation (2.2.3a) is called the distributive law, and from
its validity for integers and finite decimals may be proved its validity
for any elements a, b, ¢ (positive or not) of R (using + and x as they have
been defined above).

The distributive law, stated here chiefly for its theoretical importance, is not
just an abstract principle useful for tormenting unwilling students of elementary
algebra. Unfortunately the latter are all too frequently left with no understanding
of its importance in ordinary calculations. No experienced computer, for example,

would calculate the cost of 3 articles costing 98 cents apiece by multiplying 3 by
.98; he would automatically use the distributive law:

3 x (1.00 — .02) = 3.00 — .06 = 2.94

2.2.4 The monotonic law

Probably least manifest of all the rules of common arithmetic is the
monotonic law:

(2.2.42) x<y=x+a<y+al

Interpreted, this means that, if x, y, and a are any three integers or finite
decimals, and x < y, then (x + @) < (y + a). Its validity for all real
numbers easily follows from its validity for finite decimals.

2.2.5 The Laws of Signs we have already mentioned above (2.1, 2.1.4)
and extended by definition to elements of R.

2.2.6 This completes our discussion of the order type of R and opera-
tions with elements of R. Further light will be thrown on these matters
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in the sequel, not only by the frequently used alternative approach to the
real number system which is described below, but also by the axiomatic
characterization which will be given (VII 2.7.1). From the latter we shall
see how fundamental properties of R may be proved as theorems.

It will be noted that we have not considered infinite sums (‘‘series’)
or infinite products of elements of R. To do so would take us into the
proper domain of mathematical analysis, and from this we have to abstain,
although it is a natural continuation of what we have started above.

3 The real number system as based on the Peano axioms

Because it is one of the most commonly used methods of introducing
the real number system, we sketch (leaving out many details) in this
section the definition of real numbers, and operations with them, on the
basis of the “Peano axioms.” An interesting feature of this approach
is that it simulates, in many respects, the development above. However,
instead of commencing with the rational numbers (assumed already known),
it is based on the famous system of axioms due to Dedekind and Peano.t

3.1 The positive integers and operations with them

The Peano axioms deal with a set 4" of undefined elements called
numbers and an undefined binary relation, s, between numbers: x sy
is read “x is a successor of y.”” The axioms are:

(1) A contains a number, 1, such that 1 s x holds for no x g A",

(2) If x € A7, there exists a unique y € A4 such that y s x; y is called the

successor of x.

(3) If ys x and y’ s x’, and y is the same number as y’, then x and x’

are the same number.

(4) (Mathematical induction principle.) If G is a subset of A~ such

that: (i) 1€ G and (ii) if x€ G and y s x then y € G; then G = A",

Since the successor of a given number is unique, we can define a symbol
S(x) to denote the successor of x; S(x) is a single-valued function over A~
with values in .4, or a mapping of A" into A" [not onto A" because of axiom
()] in the sense of IV 3.2.3.1.

3.1.1 Definition of addition. To define addition, we first define, for
all x, x + 1 to be S(x):

(3.1.1a) ; x4+ 1= Sk), xeN.
Then, for all y, we define:
(3.1.1b) x + S(») = Sx + ).

t See Peano [P.]; also arithmetical portions of Peano [P;], as for instance [Ps; 11,
§ 2, 11. Also compare Dedekind [D;; § 6].
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Definitions (3.1.1a) and (3.1.1b) induce a definition, by the mathematical
induction principle, of x + y for all x, y e #".F

3.1.2 Definition of multiplication. With addition defined, multiplica-
tion may now be defined in terms of addition: We first define 1 x y =y
for all y £ A", and then for all x € A" we define S(x) x ytobe(x x y) + y.
This defines x x y for all x, y € #” by the mathematical induction principle.

3.1.3 If we set up a (1-1)-correspondence between the elements of
the set A" of Peano’s axioms and the natural numbers, in which the “1”
of axiom (1) is paired with the natural number 1; and, having paired a
number x of the set A4~ of Peano’s axioms with a natural number n, we
then pair S(x) with the natural number n + 1; it will then be seen that
we have an isomorphism between any collection 4" satisfying the Peano
axioms and the set N of natural numbers not only with respect to the
axioms, but with respect to + and x, where for the natural numbers
these operations have their usual meanings. This was obviously the
motivation of the definitions in 3.1.1 and 3.1.2. For every number x we
now define x < S(x); stipulating transitivity for this relation, we extend
it to all pairs of numbers in such a way as to satisfy the simple order axioms.
The set A4 of Peano’s axioms then becomes of order type w, and we could
use the usual symbols 1, 2, 3,---, to denote the elements of A4". This
is the order which is induced by the correspondence indicated above
between the numbers and the natural numbers, and corresponds to what
we call the “natural order” of the natural numbers.

3.2 Positive rationals and operations with them

To define a set # * of positive rationals on the basis of the set A~ of
numbers postulated by the Peano axioms, we may proceed as follows:
Let M be the collection of all ordered pairs (a, b), a, b € A#". Since we have
defined multiplication for elements of A" (3.1.2), we may set up an equiva-
lence relation ~ between the elements of M as follows: (a, b) = (¢, d)
if and only if a x d = b x ¢. Then & * is defined to be the set of all
equivalence classes of M with respect to X ; i.e., the elements of the class
decomposition of M corresponding to = (see Il 8.5). We call each ele-
ment of # * a positive rational number.

+ As pointed out in Landau [La,], this definition must be justified by (1) showing
that for a fixed x there is at most one possibility of defining + for all y so as to satisfy
(3.1.1a) and (3.1.1b); and (2) showing that for every x such a possibility does in fact
exist. The reader may do this as an exercise, or consult the proof of Theorem 4 in
Landau’s book, loc. cit. For a revealing and penetrating discussion of addition,

multiplication, etc., as well as justification of the mode of definition by mathematical
induction, see Henkin [c].
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3.2.1 It is instructive to compare & * with the model F* described
in the Introductory Remarks. In the latter case, a positive rational
number was a pair p/q of natural numbers prime to one another; alternative
symbols were of the form np/ng. In F*, however, the positive rationals
are equivalence classes, each of the form {(x,y) x (a,b) | a, b fixed,
xxb=axy}

3.2.2 We must define addition and multiplication in # * as well as a
simple order. Let {(a, b)} and {(c, d)} be elements of #*. Then we
define {(a, b)} + {(c, d)} to be {[(a x d) + (b x ¢), (b x d)]}; of course,
it should be checked that this is independent of the choice of the repre-
sentative elementst (a, b), (¢, d) in the two given equivalence classes.
Multiplication is defined by letting {(a, b)} x {(c,d)} = {(a x ¢, b x d)}
—again checking to see that the definition is independent of the choice
of the representative elements (a, b), (¢, d). To define the simple order,
let {(a, b)} < {(c,d)} mean that a x d < b x ¢ (where in the latter
relation ““ x”* and *“ < are as defined in A").

3.23 The reader will note that our guide in making these definitions
is the model F* of the Introductory Remarks; in arithmetic we learned
that a/b + c/d = (ad + bc)/bd and a/b x c/d = ac/bd; and a/b < c/d if
and only if ad < bc.

324 In the set #* with operations and order as just defined, it will
be noted that if for each natural number #, one maps the number #n into
the element {(n, 1)} of #*, then the image of N so obtained in F* is
isomorphic to N in the sense that the mapping preserves +, x, and <.
Moreover, we can go further, in that if p/q is a positive rational of the model
F* of the Introductory Remarks, we may map p/q into {(p, ¢)} (where the
“p” and “g” of the latter are the images defined by the above mapping
of N), and obtain in this fashion an isomorphism between F* and & *
preserving +, x, and <.

3.3 The positive real numbers and operations

We next describe how we can go from Z * to a set Z* of “positive real
numbers.”  Several methods for doing this were developed by the nine-
teenth century pioneers Dedekind, Weierstrass, Cantor, and Meray. The
simplest for our purposes is a slight modification of the “Dedekind Cut”’
(see V 2.2). Define a half-cut of #* to be a non-empty proper subset
F, of F7* such that (1) #, has no last element and (2) every section
(V 3.2.1) of #* determined by an element of #, is a subset of #,. (It
follows from this definition that if #, = #* — &%, then [#,, F,]is a

T See the remark following the Corollary to Theorem 2 in II 8.5.
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cut of F* as defined in V 2.2). Each such half-cut of #* is called a
positive real number; denote the collection of all such by “%2*.”

If #, and &’ are two elements of Z*, then %, + %’ is defined to be
the set {x + x' | xeF, x e F,'} and F,; x F, the set {x x x|
xe.F,, xeF,'}; it can be shown that each of these sets is a half-cut of
Z* and hence a positive real number, element of Z*. It may be shown
that of two half-cuts, one is always a subset of the other. We define
F, < F, to mean that #," — F; # 0. The set Z* becomes simply
ordered by this definition.

3.3.1 If kikg- - ky.aiay---a,--- is a fixed element r of the set R* of
the Introductory Remarks, and we make a half-cut F, in the set F* by
assigning to it every positive rational number which is less than some
kikg- - -knp.aias- - -a,, then we can extend the isomorphism between F*
and F* described in 3.2.4 to an isomorphism between R* and £*.
This is accomplished by letting r correspond to the half-cut in % * whose
elements were made to correspond to the elements of F, in 3.2.4.  Actually,
the model so obtained furnishes the motive for the definitions of +, x,
and < just given above.

3.4 The real number system

The final step to the real number system, as based on the Peano axioms,
may be made by a “pairing and equivalence” method analogous to that
used in passing from A" to#*. We have defined addition and multi-
plication of elements of #*. Let us define an equivalence relation =
between ordered pairs (r, s) of elements of #* as follows: (ry,s;) X
(P2, So) if ry + 53 = ry + s5;. The elements of the corresponding class
decomposition of the ordered pairs of elements of Z* will be called real
numbers, and their totality denoted by “#£.” A real number {(r, s)} for
which a representative element (r, s) satisfies (1) r = s, is called zero;
(2) r < s, is called negative; and (3) s < r, is called positive. The collec-
tion of these new “positive real numbers” of (3) form a system isomorphic
with #*, and the entire collection % forms a system isomorphic with
the model R of Sections 1 and 2.

We leave to the reader the definitions of +, x, and < for # which
justify these assertions.

3.5 Remarks

This is as far as we shall go with the foundation of the real number
system on the basis of the Peano postulates. The subject and the litera-
ture concerning it are large, and we have by no means exhausted the
variety of methods that can be used. The methods that we have chosen
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to discuss are a fair sample, however, and probably the ones most com-
monly employed in teaching and in books on function theory. For
supplementary material, as well as details that space limitations have
forced us to omit, the reader is referred to such function theory classics
as Hobson [Ho] and Pierpont [Pi]. The more elementary accounts in
Klein [K1] and Young [Y; X] are also recommended.

3.51 For one who reads German, an excellent summary of methods and bibliog-
raphy will be found in F. Bachmann’s article in Encyklopéidie der Mathematischen
Wissenschaften [Encyk]. 1In particular, the several uses of the “pairing and equiva-
lence” method above are set in their proper perspective as special cases of a group-
theoretic extension theorem (loc. cit., pp. 12ff). Citations to the original source of

the method of cuts (Dedekind), half-cuts (Pasch, Russell, e al), etc., will also be
found therein.

For an extended and detailed derivation of the arithmetic and ordering of the
real number system (as well as of the arithmetic of the complex number system)
from the Peano axioms, see the classical work of Landau [Laz], now fortunately
available in English [La,].

4 The complex number system

We close this chapter with a few remarks about the complex number
system. As is well known, complex numbers were first introduced to
satisfy the demand for solutions to such equations as x2 + 1 = 0, which
cannot be satisfied by real numbers; with them, all algebraic equations
attain solutions. The “informal” manner of introducing such new
numbers is to set up a new “unit,” 7, and to call any “number” of the
form a + bi, where a, be R, a “complex number.” Tt is stipulated
that the new numbers satisfy the same laws (commutative, distributive,
etc.) as the real numbers (excepting the monotonic law, which has no
meaning in the new, non-ordered system), and that i2 = —1.

4.1 The complex number system as an “extension” of the real number
system

We can, however, build on the system % of Section 3 in the following
manner: Define a complex number as an ordered pair (a, b), a,be Z.
Define addition by the rule

(4.1a) @b +@cd=@+cb+d
and multiplication by the rule
(4.1b) (a,b) x (c,d) = [(a x ¢) — (b x d), (a x d) + (b x ¢)].

The commutative law, etc., follow from the same law for #. And
evidently the complex numbers contain a subcollection, namely
{(a, b) | b = 0}, isomorphic with %.
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42 It will be noticed that if, in the above formulation, we denote
(0, 1) by i (where 1 is the element of Z# such thatr x 1 = r for all r ¢ %),
then, by the multiplication rule (4.1b), i® =i x i = (—1,0), which
corresponds in the above indicated isomorphism with the real number — 1.
Furthermore, with i so defined, the transition to the usual representation
of complex numbers is made by the relations (a, b) = (a,0) + (0, b) =
(a,0) + [(b,0) x (0, 1)], where + and x are as defined in (4.1a) and
(4.1b); the form (a, 0) + [(b, 0) x (0, 1)] corresponds to a + bi.}

SUGGESTED READING

Eves and Newsom [E-N; VII] Pierpont [Pi; I-1I]

Hobson [Ho; I] Stoll [St; II, III]

Huntington [Hu] Young [Y; X-XII]
PROBLEMS

1. Show that the relation < defined for R in 1.1 satisfies the simple order
axioms.

2. In the last two sentences of the second paragraph of 1.2.6.1, we made
assertions that certain sets M would have cardinal number ¢. It would have
been sufficient to say “= ¢.”” Why could we assert the former?

3. Show that, if we extended Definition V 3.5.1.1 in suitable manner to a
definition of the product of two simple order types, then the example of
1.2.6.1 is such a product.

4. Can the example of 1.2.6.2 be represented as a product of two order types
according to the definition suggested in Problem 3?

S. Prove the assertions in the last two sentences of the second paragraph of
1.2.6.2.

6. Show that the ordered set S of 1.2.6.1 with (1, 1) deleted and the ordered
set I of 1.2.6.2 are not of the same order type. Can you show this by proving
that for any (1-1)-mapping f : S — I, there will exist x, y £ S such that x < y
and f(») < f(x)?

7. If L is a euclidean straight line (““infinitely long™’), then, given any interval
ab of L, there is a midpoint p of ab. Use this property, and the fact that L is
the union of a denumerable set of such intervals ab, to prove that L has a
countable separating set.

8. Would anything be gained, logically or otherwise, by using L as an inter-
pretation of A rather than R, in order to prove the consistency of the system A ?

9. Show that the set S and relation < of 1.2.6.1 satisfy the Dedekind cut
axiom,

10. Show that the set I' and relation < of 1.2.6.2 satisfy the Dedekind cut
axiom.

11. Establish the existence of the number d of 2.1.3.

12. Carry out the details justifying the statements made in 3.2.4.

+ Complete references, etc., may be found in [Encyk., I 1, Heft 2; 23ff]. See also
Young [Y; XII] and Klein [KI; 55ff], in which will also be found elementary expo-
sitions of quaternions.
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13. Show that the sets defining #; + #,"and &; x &, in 3.3 are actually
half-cuts of Z* ; and that the definition of ““ <’ in 3.3 satisfies the simple order
axioms.

14. Show that by using the (1-1)-correspondence between N and F in
IV 1.2, one may arrange the natural numbers in the order type 7 of the rational
numbers (in the natural order of the latter). Hence, show that by using half-
cuts in this ordering of N, we can immediately go to the order of Z.

15. Prove the categoricalness of the Peano axioms.

16. Set up a (1-1)-correspondence between F (the set of all rational numbers)
and A (the set of all algebraic numbers) which preserves order. [Hint: Cf, the
method used in 1.4.4 to set up a correspondence between F and S'.]

17. Do the set of all irrational real numbers and the set of transcendental
real numbers have the same order type (when they are considered as having
their natural order as real numbers)?



Vil

Groups and
Their Significance
for the Foundations

Up to this point we have done very little of an algebraic nature. Of
course, as a branch of mathematics, algebra is affected by such basic
matters as logical laws, number, the infinite, etc., which have been discussed
in the earlier chapters. And we have found minor uses for algebra, such
as in the definition and enumeration of algebraic numbers (IV 1.3).

In the present chapter we shall take a new road, so to speak, and show
how notions that have been developed in modern algebra have influenced
and clarified the foundations of mathematics. In particular, the theory of
the real number system can not only be placed on a foundation that many
consider more satisfactory than is afforded by the methods of Chapter VI,
but we shall also see many generalizations that the new approach makes
possible and which lead to considerable enrichment of mathematics itself
as well as of the particular field of algebra. Furthermore, we shall see
geometry in a new perspective, not heretofore possible from the narrower,
classical point of view.

1 Groups

The entering wedge, historically, was the notion of a group, which had
for a long time been in use in various special forms in algebra and geom-
etry. The ultimate formulation of the properties of an abstract group
was an achievement of the axiomatic method, and furnishes an excellent
example of the “economic” advantage of the method discussed in IT 4.10
and II 6.2. In different branches of mathematics, operations such as
those of addition and multiplication in elementary arithmetic, and such as
those exemplified by the combining of transformations in geometry, had
come to be studied from an abstract point of view, and it became apparent
that there was an underlying common idea. This led inevitably to the
axiomatic definition of group, and thence to a large body of theorems
constituting group theory, available for application wherever groups could
be recognized as playing a role in any field of mathematics. Later
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demands of modern mathematics led even to generalizations of groups,
but we shall mention these more fully later.

1.1 Operations

In Chapter VI we called addition, multiplication, etc., “‘operations of
arithmetic,” but thus far we have not discussed the notion of operation for
its own sake. As most commonly used, an operation in a set S is nothing
but a single-valued function f(x,y), x,y€S. It can be most easily
brought within the frame of IV 3.2.3.1 by use of the notion of product
set:

1.1.1 Definition. If Sy, S,, - - -, S, are sets, then the cartesian product

or product set (sometimes called simply product) S; x Sy x .-+ x S, is
the collection of all ordered n-tuples (x;, x,, - - -, x,,) in which x; &€ S, i =
1,2,---,n. Incase S; =Sy = --- = §, = §, then the product set is

the collection of all ordered n-tuples (xy, xg, - - -, X,) in which every x; € S;
in this case the product set may be denoted by the symbol S™.

1.1.2 Examples. The coordinate plane is the product set R2, and, in
general, coordinate n-space is the product set R", with, however, certain
additional conditions which give it special “spatial” attributes [notably,
the distance formula; thus, in the plane, the distance between (x;, y;) and

(xg, ¥2) is V(x1 — x2)* + (31 — ¥2)2 1.

1.1.2.1 From the point of view of product set, a binary relation between
elements of a set S is simply a subset of S2; a mapping (IV 3.2.3.1) of a
set S into a set S’ (or single-valued function of S with values in S') is a
special kind of subset of S x S’. It should not be forgotten, however,
that the notion of order relation (see II 7 and VIII 8.2.7.1) is basic to that
of product set.

1.1.3 Definition. If S is any set, then an operation (more specifically,
a binary operation) in S is a single-valued function o defined over SZ2.
For any element (x, y) of S2, the value of this function may be denoted by
xoy. And that x o y is z may be denoted by the “equation” xoy = z.

In the case of groups the value of the function is again in S, so that the
function becomes a mapping (as defined in IV 3.2.3.1) of S2 into S.

If, for all x,yeS, xoy = yox, then the operation is called
commutative.

1.1.4 Examples. The addition function S defined for A4~ in VI 3.1.1
is a commutative operation in 4" mapping A2 onto the set A" — {1},
since always x + y is an S(z) for some z, while 1 is not an S(z).
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1.1.4.1 If N is the set of natural numbers and x ~ y = x/y—i.e., the
real fraction x/y € F-—then the so-defined division is an operation mapping
NZinto F. But this operation is not commutative.

1.2 Definition of an abstract groupt

By a group is meant any collection G and operation o in G such that:

1. (Closure.) For all x,ye G, xoy is an element of G. (In other
words, the given operation is a mapping of G? into G.)

2. (Associative law.) For all x,y,z € G,

(xo0)y)oz=xo0(yoz).

3. (Existence of an identity.) There exists an element i of G such that,
for all x¢ G, xoi = x. The element i is called an identity, or identical
element, of the group.

4. (Existence of inverse elements.) If x e G, then there exists an
element x~! of G such that xo x~! =i. The element x~?! is called an
inverse, or inverse element of x.

If G has n elements, n € N, then we call G a group of order n with respect
to the operation, or simply a finite group if the specific number of elements
is not of importance. If G has infinitely many elements, then we call G
of infinite order, or simply an infinite group. 1If, for all x,y e G, xoy =
y o x, then we call G commutative, or abelian.

1.2.1 Examples. The ordinary integers of arithmetic with + as
operation form a group in which 0 is the identity, the inverse of any
integer being the negative of that integer.

1.2.1.1 The rational numbers, without zero, and x as an operation
form a group in which 1 is the identity, the inverse of p/g being g/p.

1.2.1.2 The integers 1, —1 with x as operation form a group of order
2. As a subset of the ordinary complex number system, 1, i, —1, —i
with x as operation form a group of order4. And in general, if ry, ry, - - -,
r, are the nth roots of 1, then with x as operation they form a group of
order n. Since the integer 1 with X as operation is a group of order 1,
it follows that a group of order » exists for every natural number ».

+ A great deal of work has been done on axiomatic definitions of group. The
axioms given here form one of the most commonly used systems (except that fre-
quently the commutativity of the identity with all elements and that of an element
with its inverse element are assumed—which we prefer to prove by way of exemplifica-
tion of the derivation of group-theoretic theorems). As they are given here, the
axioms are capable of considerable weakening, incidentally. See, for example,
Huntington [c].
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1.2.1.3 Let {R,} be the set of all rotations of a circle in the plane about
its center, where the index r has all values such that 0 < r < 1 and R,
denotes the rotation through the angle r-360°. Introduce an operation o
such that R, o R, = R,,,, where r + r’ is to be addition “mod 1”
(meaning that, if » + #' = 1, then we are to substitute » + ' — 1 for the
value of r + r’; thus, if r = 0.7 and #' = 0.8, then R, ., is Rys). Geo-
metrically, R, o R, means a rotation through r-360° followed by a rota-
tion through r’-360° (or vice versa), the end result being the same as if
one rotation R, were made, with k the number “r + r' mod 1.” The
collection {R,} with the operation so defined forms a group, called the group
of rotations of a circle.

1.2.1.4 Let G denote the set of all transformations

X =ax + by +e
(1.2.1.4a) (a.b,c.de,fe R)
V=cx+dy+f

of the coordinate plane, each of which transforms a point (x, y) into a
point (x’, ") whose coordinates are related to those of (x, y) by (1.2.1.4a).
We restrict (1.2.1.4a), however, by requiring ad # bc. If T, and T, are
two such transformations, then by 7, 0 7, we may denote the trans-
formation obtained by first effecting 7, and then effecting 7,; simple
algebraic considerations show that the transformations so combined are
equivalent to a single transformation whose coefficients a, b, ¢, d are
determinate. The set G and this operation form a group called the
affine group of the plane.

1.2.1.5 - Thus far the groups exemplified, excepting 1.2.1.4, have all
been abelian. A simple example of a non-abelian group is the set of all
non-singular square matrices with elements in F, say, of order n (= 2),

with the usual multiplication of matrices as the operation. The non-
abelian character is shown by the case » = 2 and the matrices

a b 1 1
m=( 3) M=o 1)
a a+ b a+c b+d)'
c ¢c+d d

1.2.1.6 Another non-abelian example, important in its applications,
is furnished by the so-called substitution groups, alternatively called
permutation groups. Consider, for example, the ordered pair (a, b), and
imagine an algebraic expression (e.g., a polynomial) in which  and b
occur in various powers. The substitution of & for a, and a for b, in this
expression, would presumably change its form unless the form is “sym-

where MxNz( ), NxM=(
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metric” in a and b; the substitution would itself give a test for such
symmetry. Now this substitution may be represented by the matrix

(1.2.1.62) (Z 2)"

in which (a, b) occurs in the first row and (b, @) in the second. There
being only two letters in the pair (a, b), there are only two possible types of
substitutions, barring repetitions, namely (1.2.1.6a) and the so-called
identity substitution,

(1.2.1.6b) (Z Z)-

If we use an ordered triple (a, b, ¢), then six substitutions are possible:

a b c a b ¢ a b ¢
Sl:(a b c)’ Sz:(b a c)’ Sa:(c b a)’

(1.2.1.6¢)

a b ¢ a b c a b ¢
S = Y = 5 =3 .
4(acb) Ss (cab) So (bca)
And, of course, with n letters, n! substitutions are possible, since in the
second row of the matrix n! permutations of the » letters are possible.
An operation can be set up by the rule that, if S; and S, are substitutions,

then S, o S; is the result of the substitution S; followed by the substitution
S;.  For example,

a b ¢ a b ¢ a b c
(1.2.1.6d) (b a c) ° (a c b) N (c a b).
With such a definition of the operation, the collection of n! substitutions
using n letters becomes a group, the so-called symmetric group of degree n.

That this group is generally non-abelian is exemplified by reversing the
order of the substitutions in the left-hand member of equation (1.2.1.6d).

1.2.2 If G is a group, then any subset of G which, using the same
operation, is again a group, is called a subgroup of G. Thus the pair
Sy, Sz of (1.2.1.6¢) form a subgroup of the symmetric group of degree 3;
so also do the pairs S;, S3and S}, S;. The three substitutions Sy, Ss, .Sg of
(1.2.1.6¢) form a subgroup, of order 3, of the symmetric group of degree 3.

1.2.3 In a group G we may define, for any ge G and H < G, sets
goH={x|x=gohheH} and Hog={x|x=hog heH}. If
H is a subgroup of Gsuchthatgo H = H o gforall g € G, then H is called
a normal subgroup or normal divisor of G. 1If G is abelian, every subgroup
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is, of course, normal. Note, however, that go H = Hog does not
necessarily imply that go h = ho g for every he H.

For example, we found in 1.2.1.6 that the substitutions S,, S, form a
subgroup of the symmetric group of degree 3; but this subgroup is not a
normal subgroup. On the other hand, the substitutions S,, S5, S do
form a normal subgroup H; note, however, that although S,0 H = Ho S,,
it is not the case that for the individual element S; of H, S, 0 S5 = S5 0 S,.

The importance of the notion of normal subgroup lies in the fact that
if H is a normal subgroup of a group G, then the subsets Ho g, g€ G,
form the elements of a new group, denoted by G/H and called the factor
group of G mod H. (“Mod” is an abbreviation for “modulo.””) The
group operation in G/H is defined by the relation (Hog)o(Hog') =
Ho(gog'). The elements of G/H are called cosets, or cosets of
G mod H.t For example, when G is the symmetric group of degree 3
and H the normal subgroup referred to in the preceding paragraph, then
G/H has only two cosets and is another example of the many isomorphic
groups of order 2 to be discussed in 1.4.1.

1.2.3.1 Integers mod m. An important and widely used factor group
occurs when G is the set of all integers with the operation +, and H is the
set of all integers of the form mn, where m is a fixed natural number =2.
The group G/H has exactly m elements. The integers 0,1,2,---,m — 1
are elements of its respective cosets, and it is customary to denote these
cosets by these same numerals. In particular, when m = 2, H is the set
of all even integers, and G/H consists of two elements “0” and “1”
(consequently “1 + 1 = 0”); another instance of the abstract group of
order 2 (see 1.4.1 below).

1.3 Some fundamental properties of groups

For our purposes, we need only a few elementary properties of groups.
These we shall state as theorems to be proved on the basis of the axioms of
1.2. Some of the proofs will be left as exercises, in order that the reader
may “get a feeling” for the methods used in abstract group theory. The
latter make an excellent example, incidentally, of the methods used in
modern algebra, as well as of the rigorous proof of theorems from axioms..

1.3.1 Lemma. Ifab,ce Ganda = b, thenaoc =bocandcoa =
cob;andaoc, coa, etc., are all elements of G.

Proof. By definition, a = b means that ¢ and b denote the same
element e of G. By the definition (1.1.3) of operation and axiom 1,

+ When H is not normal, the sets H o g are called right cosets of G mod H, and the
sets g o H are called left cosets of G mod H.
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eoc is a unique element of G and hence aoc = boc. The other
relation follows similarly.

1.3.2 Lemma (Right-hand cancellation law). If ab,ceG and
aoc=>boc, then a = b.

Proof. From aoc = boc follows, by Axiom 4 and Lemma 1.3.1,
that(@aoc)oc™* = (boc)oc ™t Axiom2allowsustowriteao (coc™?)
=bo(coc™1), or, using Axiom 4, aoi = boi. This, by Axiom 3,
becomes a = b.

1.3.3 Theorem (Commutativity of i). For all ae G, aoi=1ioa.

Proof. With g1 as defined in Axiom 4, the following relations hold by
virtue of the axioms cited:

(ioa)oa ' =io(@aoa™?) Axiom 2
=jiol Axiom 4
=i Axiom 3
=qgoal Axiom 4

By Lemma 1.3.2, we then have ioa = a. But also aoi = a by Axiom
3, and, since logical identity is a transitive relation, a0 i = i o a.

1.3.3.1 Corollary. The group G has only one identity.

Proof. For let i and j be identities. Then ioj =7 by Axiom 3.
Also, ioj =joi by Theorem 1.3.3, and joi =j by Axiom 3, thus
giving ioj = j. That i = j now follows.

1.3.4 Theorem (Commutativity of inverses). For each a,a~'eG,
aoa =g loa.

Proof. The theorem follows from the relations

(atoa)yoal!=qglo(@oa?) Axiom 2
=aloi Axiom 4
=joa? Theorem 1.3.3

and LLemma 1.3.2.

1.3.4.1 Corollary (Left-hand cancellation law). If a,b,ce G and
coa=cob, thena=b.

1.3.4.2 Corollary (Uniqueness of inverse). For each a € G, the inverse
a~' is unigue.

1.3.43 Corollary. For eachaeG, (a™ )™ = a.

1.3.5 Theorem. For arbitrary abe G, the relations aox = b,
y o a = b are satisfied by unique elements x, y, respectively, of G.



172 GROUPS AND THEIR SIGNIFICANCE FOR THE FOUNDATIONS Ch. Vil
1.4 Isomorphic groups

If G and H are groups which are isomorphic (IT 4.4.4) with respect to
the group axioms (1.2), then G and H are called isomorphic groups. Two
groups G and H are isomorphic, then, if there exists a (1-1)-correspondence
between their elements which preserves the group operation, i.e., denoting
elements of G by symbols g; and corresponding elements of A by symbols
h, if g, 0 g, = g5, then h; o hy = hg, and conversely.

1.4.1 Operation table for a finite group

In the case of finite groups, isomorphism between groups may be shown
by examination of their operation tables. Suppose that G is a finite group
of order n with elements x;, Xy, - - -, x,, where x; is the identity. We may
then make a table of n rows and »n columns in which the element in the ith
column and jth row is x; 0 x;. The first row and the first column will
contain the elements Xxj, Xy, - - -, X, in this order (cf. Theorem 1.3.3).
Also, in each row, and in each column, no element of G is repeated (as can
be shown by use of the cancellation laws), and hence each row and each
column contains all elements of the group.

For example, the operation table for a group of order 2 will look like
the following, if we drop the “x’s” and use only the subscripts:

1 2
1 1 2
2 2 1

The element in the lower right-hand corner is perforce 1, since each row
must contain all elements of the group. It follows that all groups of order
2 are isomorphic. Thus, as abstract groups, the groups of order 2 of
1.2.1.2 and 1.2.2 are the same. A like statement holds for groups of
order 3—only one such abstract group is possible—but this is not the case
for groups of order 4 (see Problems 12 and 13). The lowest order of
non-abelian groups is 6, viz., the order of the group isomorphic with the
symmetric group of degree 3.

1.4.2 Relation to substitution groups

The importance of substitution groups is due partially to the following
theorem:
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1.4.2.1 Theorem. Every finite group is isomorphic with some sub-
Stitution group.

Proof. Let M denote the operation table for a finite group G of order
n, drawn up as indicated above. For j = 1,2,---,n, let S; denote the
substitution whose matrix has in its first row the numbers of the columns
of M—ie., 1,---,i ---,n, and in its second row the elements of the jth
row of M taken in order. Schematically, then,

Sj=(1. l PN n.),

] “ e l o] PECEY n o]

where i o j indicates the subscript of the symbol for x; o x,.
Now, if §; and S are two such substitutions,

I ST S 1 ... ioj .. n
SjOS"_(j R XY e noj)o(k --+ (foj)ok ... nok)

1 .. i . n
= (jok .o (ioj)ok - (noj)ok)‘

By the associative law, (ioj)ok = io(jok), and hence S;0 S, =
Sior- It follows that, if N is the operation table for the substitutions
S, 8;++, 8, then M and N are identical. These substitutions
therefore form a subgroup of the symmetric group of degree n that is
isomorphic with G.

14.2.2 It follows from Theorem 1.4.2.1 that, as abstract groups, one
will find all the properties of finite groups exemplified in the substitution
groups.t

1.5 Semigroups

The demands of modern mathematics frequently necessitate the study
of sets with operations that do not have all the properties of a group.
For example, if a set S and operation in S satisfy Axioms 1 and 2 of 1.2,
then they form a so-called semigroup. If such a semigroup satisfies the
right- and left-hand cancellation laws and has only a finite number of
elements, it is also a group (see Problem 8), but for infinite groups this is
no longer the case (as for instance in the case where S is the set of natural
numbers and the operation is addition).

Other types of systems satisfying only part of the axioms of a group are
found of use (as for example in number theory), but will not be discussed
here.

T For an elementary exposition of substitution groups, see the series of articles
by G. A. Miller [a]. For finite groups in general, see Matthewson [Ma] and Miller,
Blichfeldt, and Dickson [M-B-D]. The student who reads German will find the
little book of Baumgartner [Ba] easy to understand and very instructive,
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2 Applications in algebra and to number systems

In number systems, such as the real and complex number systems, we
deal with collections in which fwo operations are given. These operations
are not independent, since they are related by the distributive law which
we saw exemplified in the real number system (see VI 2.2.3). It is not
strange, therefore, that in modern algebra we find great importance
attached to the study of sets in which two operations, which we may
denote by + and x, are given, satisfying distributive laws.

2.1 If we consider one of the simplest number systems, viz., that of the
integers, we notice that with respect to addition, +, we have a group, but
that with respect to multiplication, x, the collection does not form a
group because inverses do not exist. Let us study, then, some of the
properties of an abstract system of this sort. Specifically, let X be a
collection in which are given two operations denoted by + and x,
respectively, and satisfying the following axioms:

1. X is a group with respect to +, its identity being denoted by 0 and
the inverse of an element x by —x.t

2. With respect to the operation x, X satisfies the closure axiom (Axiom
1) and the associative law (Axiom 2) for a group; i.e., X is a semigroup
with respect to x.

3. For all x,y,z € X,

(Ba) xx@+2=@@&xy+(xx2)
(3b) x+yyxz=(xx2z)+(yx2).
A set X and operations +, x in X satisfying these axioms will be

denoted by (X, +, x). It may also be called a system (X, +, x).

2.2 On the basis of these axioms we can prove certain basic theorems
of arithmetic.

2.2.1 Theorem. Ifag X,thena x 0 =0xa=0.
Proof. Since 0 is the identity for the operation +,

0+0=0.

And, since X satisfies the closure axiom for a group, Lemma 1.3.1 holds
and we can write

(2.2a) ax (0+0=ax0,

1 We must be careful not to think here of *“—*’ as an operation; it is only part of
the symbol “ —x"" for an inverse with respect to +. We are reserving, in accordance
with custom, the symbol x~?! for the inverse with respect to x, which will be intro-
duced later.
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where both a x (0 + 0) and a x O are elements of X. By (3a) of
Axiom 3, (2.2a) becomes

(2.2b) (@x0)+ (ax0)=ax0,
which can be written
(@x0)+ (@ax0)=(ax0)+0.

And, since the left-hand cancellation law (1.3.4.1) holds in every group,
we get
ax0=0.

The proof that 0 x a = 0 may be given analogously, except that (2.2a)
becomes (0 + 0) x @ = 0 x a, and the other half (3b) of the distributive
law (Axiom 3) is used to obtain, analogously to (2.2b), the relation
Oxa+@©0®xa)=0xa.

222 Theorem. For all x,ye X, (—x) x y = —(x X y).
Proof. By Theorem 2.2.1, 0 x y = 0. In this relation, 0 can be
replaced by x + (—x), giving

(2.2¢) [x+(=x)] x y=0.
Applying part (3b) of Axiom 3 to relation (2.2¢) gives
(2.2d) (xx )+ [(—x) xy]=0.

Applying Corollary 1.3.4.2, relation (2.2d) shows that (—x) x y must be
the inverse, with respect to +, of x x y; ie, —(x x y) = (—x) x y.
By a similar argument one can prove:

2.2.3 Theorem. Forall x,ye X, x X (—y) = —(x x ).

2.2.4 Theorem. Forall x,ye X, (—x) x (=y) = x x ).

Proof. By Theorem 2.2.2, (—x) x y = —(x x y) for all x,ye X.

Hence, replacing y by —y, we get (—x) x (—y) = —[x x (=y)]. By
Theorem 2.2.3, this gives (—x) x (—y) = —[—(x x y)]. By Corollary
1.3.43, —[—(x x )] = x x y.
2.2.5 Remark. Theorems 2.2.2 to 2.2.4 will be recognized as con-
stituting the “Laws of Signs™ for any system (X, +, x) satisfying the
above axioms. As these “laws” are understood in elementary arithmetic,
however, they are stated in 2.7.2 below.

2.3 Rings

One of the most important basic notions of modern algebra is that of a
ring:
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23.1 Definition. A system (X, +, x) satisfying Axioms 1 to 3 of
2.1 s called a ring if + is commutative (1.1.3).

An important case is that of a ring in which there exists a right-hand
identity with respect to the operation x ; i.e., an element “1” such that
xx 1l =xforall xe X.

2.3.2 Theorem. If the system (X, +, x) has a right-hand identity
with respect to x, then + is commutative.

Proof. Denote the identity with respect to x by 1. Let x,ye X.
Then by Axiom 3 of 2.1 we have:

Cc+)xA+D=[x+y x 114 [(x +y) x H=x+y+x+y
AN xA+D=xxA+D+pxA+Dl=x+x+y+y
By virtue of these relations and the associative law for +, we get

X+ (+x)+y=x+Ex+y +y
which by 1.3.2 and 1.3.4.1 gives x + y = y + x.

233 Corollary. If the system (X, 4+, x) of 2.1 has a right-hand
identity with respect to x , then it is a ring and is called a ring with a unit.

234 Remark. We may prove similarly that both 2.3.2 and 2.3.3 hold
if “right-hand” is replaced by “left-hand,” a ““left-hand” idéntity being an
element 1 such that 1 x x = x for all x¢ X.

2.3.5 Examples. Examples of rings occur almost everywhere in
mathematics.

2.3.5.1 The most common example is afforded by the integers and
their elementary arithmetic; here we have a ring with a unit. The like
holds also for the arithmetic of the set F, the set R, and the set of complex
numbers. The even numbers 0, +2,---, +2n,--- with + and X in the
arithmetic sense form a ring without a unit.

2.3.52 Various sets of functions, with + and x suitably defined, also
form rings. For example, the set of all real single-valued functions forms
aring with a unit.  And, since sums and products of continuous functions
are continuous, the set of all continuous single-valued real functions forms
aring—a “subring” of the set of all real single-valued functions. Another
such subring is the set of all polynomials in a single real variable x with
real coefficients.

2.3.5.3 For fixed natural number n, the set of all square matrices of
order n with elements integers and +, x in the ordinary sense forms a
ring with unit in which x is not commutative (compare 1.2.1.5).

A ring in which x is commutative is called a commutative ring.
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2.3.54 From the group of integers mod 2 (1.2.3.1) we may obtain the
commutative ring of integers mod 2 by defining “1 x 1 = 1. This is
the smallest possible type of non-degenerate ring with a unit, in that it
contains only the identities for + and x. In a similar way we obtain the
ring of integers mod m, m > 2;a producti x j(i,j=0,1,2,---,m — 1)
is defined by reducing the ordinary product i x j (in the ring of integers)
by multiples of m to bring within the range 0 £ i x j < m. For ex-
ample, the ring of integers mod 4 has elements 0, 1, 2, 3;and 2 x 2 = 0,
2+2=0,2x3=2,2+3=1,etc.

2.3.6 ldeals. With Gand Hasin 1.2.3.1, H is not only a subgroup of
the group G relative to the operation + , but is an ideal in the ring (G, +, x).
In general, any non-empty subset 4 of a commutative ring (X, +, %)
such that (1) 4 is a subgroup of the group X relative to +, and (2) a € 4,
x & X imply (a x x) € A4, is called an ideal of the ring X. Ideals occupy a
position in the theory of rings analogous to that of normal subgroups in
the theory of groups; for just as a normal subgroup H of a group G yields
the factor group G/H, so does an ideal 4 in a ring X yield cosets forming
a ring called a quotient ring. To get the elements of the latter, we simply
form the factor group X /A4 of the group X relative to + ; addition of cosets
is as before (for the factor group), and (4 + x) x (4 + y)is defined to be
A + (x x y). (Cf. Problem 8.) For a discussion of ideals the reader is
referred to Albert [Al; 252ff] and van der Waerden [Wa; v. I, § 16].

2.4 Integral domains

A striking difference between the ring of integers and the ring of integers
mod 4 is that in the latter case we may have—as in 2 x 2 = 0—a product
of factors equal to zero although neither of the factors is zero! This
happens nowhere in the arithmetic of integers, rational numbers, real
numbers, etc. Indeed, in elementary algebra we assume that such can
never be the case, as for example in the solution of equations when we
assert that, if (x — 1)(x — 2) = 0, then the only possible solutions are
obtained from x — 1 = 0 or x — 2 = O since the product cannot otherwise
be zero.

Another way of looking at this is to notice that the cancellation law of
multiplication breaks down in the case of the ring of integers mod 4.
Thus, 0 x 2 = 2 x 2, but it does not follow that the “2” on the right of
each member can be cancelled.

Evidently, then, we obtain a more restricted system and more nearly
approximate the operations of ordinary algebra by ruling out these
possibilities. Actually, it is sufficient to rule out one of them (see Problem
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22). The result is what is variously called an integral domain, domain of
integrity, or ring of integrity:

2.4.1 Definition. A ring with a unit in which x is commutative and
satisfies the cancellation law is called an integral domain.

Thus the ring of integers mod 3 is an integral domain, but the ring of
integers mod 4 is not. The ring of continuous real functions mentioned
in 2.3.5.2 is not an integral domain (see Problem 27).

2.5 Fields

In the notion of integral domain we have not yet achieved the systems,
such as the rational number system, which are used in ordinary algebra.
Thus, the ring of integers is an integral domain, but it does not allow for
division. The latter is attained in the notion of “field.”

2.5.1 Definition. An integral domain in which every element x s 0
has an inverse x~! with respect to x is called a field. If a system
(X, +, x) has all the properties of a field except that x is not commuta-
tive, then it is called a non-commutative field.

The case X = F, and +, x with their ordinary meanings of addition
and multiplication, exemplifies a field.

2.5.2 Some properties of fields. In a field, division (defined below),
except by 0, is possible.

2.5.2.1 Lemma. If (X, +, x) is a non-degenerate ring with a unit 1,
then 0 # 1.

Proof. As X is non-degenerate, there exists x € X such that x # 0.
Then x x 1 = x # 0, whereas, if 1 and 0 were the same element, we
would have x x 1 = 0 (by Theorem 2.2.1).

2.52.2 Lemma. If (X, +, x) is a non-degenerate ring with unit 1,
then O has no inverse with respect to x .

Proof. For an inverse of 0, say 0~!, would imply 0 x 0~! = 1,
whereas 0 x 0°* = 0 by Theorem 2.2.1; and thus a contradiction of
Lemma 2.5.2.1 would result.

2.5.2.3 Lemma. In a field, the elements different from O form a group
with respect to x .

+ When x is commutative, the right-hand and left-hand cancellation laws, being
equivalent, are called ‘‘the cancellation law for non-zero elements.”” The term
“integral domain” is frequently used for systems satisfying Definition 2.4.1 without
the requirement of a unit.
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2.5.24 Definition. If (X, 4+, x) is a field, and x,y € X, then by
x =+ y, or x/y, is meant a unique element z of X such that x = y x z.}

2.5.2.5 Theorem. If (X, +, x) is a field, and x,ye X, y # O, then
for all x€ X the element x + y exists, being identical with the element
x x y~1, where y~' is the inverse of y with respect to x.

The proof is immediate, following from Lemma 2.5.2.3 and Theorem
1.3.5, if x # 0, and from the fact that there are no zero divisors (see
Problem 22).

2.5.2.6 Theorem. If (X, +, x) is a non-degenerate field and x € X,
then x + 0 does not exist.

Proof. For x # 0, the theorem follows immediately from 2.2.1.
For x = 0, both z = 0 and z = 1 satisfy the equation 0 = 0 x z, so that
no unique z exists.

2.5.2.7 Although 2.5.2.4 is the usual definition of x + y, an alternative
definition would be that x ~ y is x x y~*, where y~! is the inverse of y
with respect to x. Then Theorem 2.5.2.5 follows directly from Corollary
1.3.4.2, and Theorem 2.5.2.6 is an immediate corollary of Lemma 2.5.2.2.

2.5.2.8 Just as one goes about seeking the possible types of abstract
groups of a given finite order by drawing up the operation tables (cf. 1.4.1),
so may one investigate the possible fields of a given finite number of
elements by constructing addition and multiplication tables. (See
Problem 23.) It is easy, using the properties of rings and fields established
above, to show that for the case of a field of only two elements only one
type is possible, the latter being exemplified by the ring of integers mod 2
(cf. 2.3.5.4).

2.6 Vector spaces

The reader who has had some elementary physics or mechanics is
familiar with vectors and their use. For example, he may recall that, in
the plane, a vector V represents both a direction and a magnitude, and that,
if r € R, then rV is a vector of magnitude r times as great as that of V
(the direction of rV being the reverse of that of V if » is negative). The
number r is called a “scalar,” and rV multiplication of V by a scalar.
And, if he recalls the “parallelogram of forces,” he knows that vectors
are added.

1 If the field were non-commutative, we could of course define ““right-hand” and
“left-hand” division. This would necessitate special symbols for the two types of
division, however.
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In modern algebra these ideas find their generalization in the notion of a
vector space over a field §: ¥

2.6.1 Definition. A vector space B over a field & is a collection of
elements called vectors, such that (1) B is an abelian group relative to an
operation +, called addition, (2) for ae &, V € B, there exists a unique
element of B denoted by «¥; (3) for «,feF, Ve B, afV) = (« x BV,
and (¢ + B)V = oV + BV;t (4) for aeF, V,V,eB, oV, + Vo) =
aVy + o¥F,; (5) if 1 is the unit of §¥, then 1V = V for all Ve 8.

2.6.2 In addition to the example of plane vectors, in which & is R,
an example very useful in algebra, and its application in modern mathe-
matics is that in which the vectors are the mappings (IV 3.2.3.1) of some
set S'into a field §. In this case, + is defined by the relation (f + g)(x) =
S(x) + g(x), xe S, for each pair of mappings f and g; and (of )(x) =
o X f(x)foraed, xeS.

2.6.3 Some properties of vector spaces. (Throughout Section 2.6.3
we use B and F as defined in 2.6.1.) The proofs of the following two
theorems are left to the reader:

2.6.3.1 Theorem. If «y00,--,0, €& and Vy,Va, -V, eB, then
Vi + axVy + - -+ + V), is a unique element of B.

2.6.3.2 Theorem. There exists a unique element of B called the zero
element, which may be denoted by (', such that OV = O’ for all V € % (the
“0” in “OV” being the zero element of ).

2.6.3.3 Definition. The elements ¥, of a set {V,} of vectors are called
linearly independent if there exists no relation of the form

(2.6a) oV + Vot - + oV, =0,

where aj,o0, 0. F, Vi,Vs, - -,V €%, and not all «; = 0. When
vectors Vi, V,, - - -, V), satisfy a relation of the form (2.6a) in which not all
o, = 0, then Vy, Vs, - - -, ¥}, are called linearly dependent.

2.6.3.4 Definition. A set {V,} is called a base for % if (1) its elements
V, are linearly independent, and (2) if ¥ ¢ B, then there exists a relation
V=uaV+oaV+ -+ + b, in which o, e¢F and Vie{V,}, i =
1,2,---, k. That every vector space has a base can be proved by Zorn’s
Lemma.

T As a matter of fact, vector spaces over rings, called “modules,” are also studied
in modern algebra; see van der Waerden [Wa; 46]. Sometimes the term “‘linear

space” is used to mean vector space.
1 If V; and V, are vectors, then Vi = V. means that V; and V; are identical.



Sec. 2 APPLICATIONS IN ALGEBRA AND TO NUMBER SYSTEMS 181

2.6.3.5 Definition. The cardinal number of elements in a base for 8
is called the dimension of 8.

As stated, 2.6.3.5 implies that the dimension of a vector space is a unique
cardinal number. Inasmuch as in general there are many bases for a
given vector space, this implication is by no means obvious. It is not
difficult to prove the uniqueness of dimension if there exists some base that
is finite, but the proof that all bases of a given vector space have the same
cardinal number is not elementary in the case where the dimension turns
out to be infinite.t

A simple example of a vector space of infinite dimension is the collection
of all finite linear forms in variables x,, n = 1,2, 3,-- -, with rational
coefficients; for example, 2x; + 1x; — x;6 would be an element of this
vector space. The dimension in this case is X,. If linear forms in only
three variables x,, x;, x5 are used, then the dimension is 3 since x;, X3, X5
themselves form a base. The latter vector space is a ‘“‘subspace” of the
former.

2.7 The real number system

Let us next consider the application of the above notions to the definition
of the real number system. In Chapter VI we showed how the real
number system may be considered either as a construction based on the
natural numbers, or on the Peano axioms. In the present section we
return to the former point of view.

By way of making connection with the algebraic ideas above, we notice
that the real number system is a field; moreover it is an ordered field, in
that its structure is that of a linear continuum (VI 1.4.1, Definition 1.4.1.1).
We make these two properties part of a new definition of the real number
system:

2.7.1 Definition. A real number system is a field R in which there is a
binary order relation < with respect to which R forms a linear continuum,}
satisfying the monotonic law (VI 2.2.4) and the requirement that 0 < x,
0 <yimply0 < x x y.

2.7.2 This definition furnishes an axiomatic foundation which is
categorical and from which, therefore, the properties of the real number
system are derivable. As an example, let us consider the derivation of the

1 For the case of finite dimension, see Birkhoff and MacLane [B-M; 169]; for
the infinite dimensional case a proof based on Zorn’s Lemma will be found in S.
Lefschetz, Algebraic Topology, Amer. Math. Soc. Coll. Pub., vol. 27, New York,
1942, pp. 73-74.

1 If we were to write out each axiom for a field, each axiom for a linear continuum,
etc., we would find that the separability axiom [VI 1.4.1, Axiom (3)] is not inde-
pendent. See, for example, Albert [Al; 110ff].
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Laws of Signs. As these were derived in 2.2 for a system (X, +, x),
they are not quite in the specialized form in which they are understood in
arithmetic. The latter form is already partially stated in the above
definition in the requirement that

(2.7.2a) 0<x,0<y=0<uxxy.

We should be able to prove that x < 0, y < 0 =0 < x x y also. We
may arrange the proof as follows (R denotes a real number system as
defined in 2.7.1 and x, y, z denote elements of R):

2.7.2.1 Lemma. If0 < x,then —x < 0;and, ifx < 0,then0 < —x.
[Here, as in a system (X, +, x), —x denotes the inverse of x with
respect to +.]
Proof. If 0 < x, then by the monotonic law —x + 0 < —x + x or
—x < 0. (The other half of the lemma is proved in similar fashion.)

2.7.2.2 Theorem. If0 < xandy <0, then x x y < 0.

Proof. Bylemma2.7.2.1,0 < —y. Hence, by (2.7.2a),0 < x x (—y).
By Theorem 2.2.3, x x (—y) = —(x x y). Hence0 < —(x x y), which
by Lemma 2.7.2.1 and Corollary 1.3.4.3 implies x x y < 0.

2.7.2.3 Theorem. Ifx <O0andy < 0, then0 < x X y.
The proof is left to the reader.

2.7.3 The above theorems give a good example of how we would go
about studying the real number system from an axiomatic point of view.
In this system such properties as the Laws of Signs then assume a status
like that of the theorems of plane geometry, when the latter is properly
axiomatized.}

2.8 This completes our discussion of the role which the group notion
plays in modern algebra. We have also exhibited, to some extent, the
important role which the axiomatic method plays in algebra. Indeed, no
branch of modern mathematics makes greater or more effective use of the
method. For extensions of the above ideas the reader is referred to
Birkhoff and MacLane [B-M]; A. A. Albert [Al]; van der Waerden [Wal.

3 The group notion in geometry

We have already noted the existence of groups in geometry, such as the
group of rotations of the circle (1.2.1.3) and the affine group of plane

T See also the comment by Young [Y; 111]. Also see the geometric *“‘proof” of
the Laws of Signs cited by the same author [Y; 112ff].

There has been reported at least one case, in one of the teachers’ *‘service jour-
nals,” of a high school principal complaining that none of his mathematics teachers
could “‘prove” the Laws of Signs; it being obvious that his idea of “proof™ was
impossible of realization.

LYY
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transformations (1.2.1.4). The former may of course be extended to the
group of rotations, about a fixed point, of the entire plane. Such a group
is another example of a group of transformations. Let us define, in
general fashion, what is meant by a group of transformations:

3.1 Definition. Let S be any set. Then a transformation of S is a
mapping of S onto S (IV 3.2.3.1) which is (1-1); i.e., if y = f(x) denotes
the mapping, then every element of S is a y for some x, and for only one x.

It follows from the definition that a transformation always has an
inverse; in the above symbols, the inverse may be denoted by x = ().
This is of importance in the attainment of a group of transformations:

3.2 Definition. If f = f(x) and g = g(x) are transformations of a set
S, then by fg is meant the transformation f(g(x));t fg is called the product
of fand g.

33 Definition. If T is a set of transformations of a collection S, such
that, in terms of the operation fg defined in 3.2 the set T forms a group,
then T is called a group of transformations, or transformation group.

In particular, we have:

3.4 Theorem. If I is a set of transformations of a collection S such
that (1) the product of every two elements of T is an element of T, (2) the
identity transformation, x = fo(x), is an element of X, and (3) the inverses
of elements of T are elements of T, then T is a transformation group.
[Since Axioms 1, 3, and 4 of 1.2 are provided for in the statement of the
theorem, it is only necessary to show that the associative law holds.]

3.5 Geometry according to Klein

In the applications to geometry, the set S in the above definitions is
some kind of space. In modern mathematics, the term ‘“‘space” has
extremely broad connotations, the difference between “set” and “space”
often being very slight, a “space” being simply a set to which certain
special properties have been added. The most common property is that
of having a metric, or distance, function.

3.5.1 The space of analytic geometry

Consider, for instance, the plane of analytic geometry. As a set, it
is the collection S of all ordered pairs (x, ¥) of real numbers x, y; ie., a
product set (see 1.1.1 and 1.1.2). As a space, it is the set S together with
the Pythagorean distance function d(p, g) which expresses the distance

T Since we are discussing a special type of group here, we drop the o in fo g in
favor of the “multiplicative” form fg customarily used for transformations.
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between p and ¢; if p is (xy, ;) and q is (xg, y2), then we have the usual
expression:

(3.5a) d(p,q) = +\/(x1 — x> + (31 — y2)2

In analytic geometry, when we draw the customary right triangle relative
to rectangular axes and state that d(x, ») is the length of the hypotenuse of
this triangle, we really assume (3.5a) and thereby define our space. All
the other properties of the analytic plane follow from this definition.

Similarly, to get the space of three-dimensional analytic geometry we
start with the ser of all ordered triples (x, y, z) of real numbers x, y, z;
to define the space we add a distance function similar to (3.5a). Analo-
gous remarks hold for the spaces of four-dimensional, five-dimensional,
and generally r-dimensional analytic geometry.

3.5.2 The most general types of space

The most general type of space is the topological space. 1f we analyze
the intrinsic effect of the addition of the distance function (3.5a) to the
collection of pairs (x, y) of real numbers, we see that it amounts to the
assignment of position to the pairs (x, y) relative to one another. Thus,
if p, g, and r are points and d(p, q) = 2, d(p, r} = 3, then we consider ¢
“nearer” to p than r. And, as the distance between points decreases, in
terms of the usual ordering by magnitude of the real numbers d(p, q), we
consider that they come more nearly to occupy the same position in the
plane of analytic geometry.

If we consider position of elements of a set as basic, then we arrive at the
notion of a topological space (one of the earliest alternative names for
topology was Analysis Situs—*“position analysis”—due to Gauss).
There are other ways of defining relative position than by the method of
distance functions, however. One way is to assign a neighborhood to
each element of the set, S, which we want to make into a space. Thus, in
the ordered set R of real numbers, if r € R, then for any two real numbers
a and b such that ¢ < r < b we may call the set

(3.5b) {x|a<x<b}

a neighborhood of r in R (sometimes called “open interval neighborhood”).
Such notions as that of limit of a sequence, for example, are directly
definable in terms of such neighborhoods as (3.5b). However, the most
fundamental notion in a topological space T is that of limit point, a point p
being a limit point of a set M of points in T if, for every neighborhood U
of p in T, the set M N (U — p) is not empty. Thus the number 0 is a
limit point of the set of real numbers {x |0 < x < 1}; also of {x | x =
1/n,ne N}.
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We notice, incidentally, that every simply ordered set can be considered
a space, inasmuch as relative position of elements is given by the open
interval neighborhoods. It may not always be possible to express this by
defining a distance function like (3.5a), but we can define neighborhoods
by (3.5b); the resulting topology is called the order topology. In the
simply ordered set of ordinal numbers of the first and second classes,
w, w-2, w2 etc., are all limit points of sets of ordinal numbers; this is the
reason for calling them “limit numbers.”
3.53 Usually there is some motive for the manner in which we turn a
set into a space. For example, the motive underlying (3.5a) is to obtain
a euclidean geometry; and the motive underlying (3.5b) is to express the
intuitive notion of “limit” in the collection (thus w is the limit of 1, 2, - - -,
n, - - - in a natural way). Any collection M can be turned into a topological
space by defining each element to be a neighborhood of itself; but then the
resulting space has no limit points and, unless there is a natural motive for
this (such as, for example, where M is a finite collection, in which case
we usually do not desire limit points), the resulting space is without
significance.

3.5.4 Geometric properties and configurations

To sum up the foregoing remarks, to get a space from a set we add
certain properties which in some way or other embody intuitive ideas of
position in the set; the added properties or relations, and properties or
relations definable from them, we may call geometric.

Thus, distance between points as defined by (3.5a) is a geometric
property; it may also be considered a relation between p and g.  Similarly,
parallel, perpendicular, etc., are geometric relations between lines.

The elements of the space we usually call points, and special sets
definable in terms of the geometric properties are called geometric figures
or configurations. For example, the pairs (x, y) of the analytic geometry
plane are called points, and the sets

{6 | (x —x)* + (v —y)* = r%, re R}

are called circles with center (x, y,) and radius r. Properties definable in
terms of sets alone, such as cardinal number, are not usually considered
geometric (unless related particularly to a geometric property; see 3.5.5);
and arbitrary collections of points, not defined in terms of geometric
properties, are simply called sets of points, or point sets.

3.5.5 Geometric invariants

Now suppose that S'is a space, P is a geometric property or relation of S,
and T is a transformation of S. For example, S might be the space of
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plane analytic geometry defined in 3.5.1, P the distance function (3.52), and
T a rotation of S about the point (0,0). Then d(p, q) = d(T(p), T(9));
i.e., distance between a pair of points is the same as the distance between
their images under 7. We express the latter fact by saying that P is an
invariant under the transformation 7. On the other hand, with the
same space .S, but with P denoting the relation of perpendicularity between
lines and T an affine transformation (1.2.1.4), generally it is not true that if
lines L; and L, are perpendicular then T(L,) and T(L,) are perpendicular,
so that perpendicularity will generally fail to be invariant under an affine
transformation.

Now, if a property P is invariant under all transformations of a group T
of transformations of a space S, then we call P an invariant of S under <,
or simply a T-invariant of S. For example, if T is the group of translations
of the plane, S, of analytic geometry, then it is easy to show that parallel-
ism of lines is a T-invariant of S. And, according to the point of view
proposed by Klein in 1872,1 one may speak of the T-geometry of the space
S as the study of the properties of the space and its configurations that are
invariant under €. That is, the T-geometry of the space S is the study of
the T-invariants of S.

The importance of these ideas when they were first propounded cannot
be fully appreciated without an understanding of the state of mathe-
matics, particularly of geometry, at that time. Projective geometry had
blossomed after the publication of the researches of such mathematicians
as Poncelet in 1822 and von Staudt in 1847. Even some rudimentary but
important beginnings had been recently made in topology by Riemann.
But, with regard to the relations between the various geometries, their
position in mathematics, and even the proper location of specific theorems,
little had been done. Take for example the Euler polyhedral formula,}
still to be found in high school textbooks on geometry ; it is now recognized
as a theorem of topology, but at the time of which we are speaking it
turned up in all sorts of places.

Of more significance, however, than special theorems was the application
of Klein’s idea to the classification of geometries themselves. To take an
example, let us consider the geometry taught in high schools. What

T See Klein [a]; this is a translation, with additional notes, of Klein’s “Program
on entering the philosophical faculty and the senate of the University of Erlangen
in 1872, commonly called “Klein’s Erlanger Program.” It was customary, on
appointment to a professorship in a German university, to deliver before the general
faculty an “inaugural” lecture of this type.

1 This is the theorem which states that, if the numbers of faces, edges, and vertices
of a simple polyhedron are denoted by r, e, and v, respectively, then r — e + v = 2,
The number 2 is here an invariant, although a cardinal number, since it is related
to the geometric configuration (polyhedron) involved.
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properties of figures do we study? They are such properties as length,
area, congruence, parallelism, perpendicularity, similarity. All these are
invariants under the group of rigid notions; this is the group whose elements
are translations, rotations, and reflections through lines, as well as com-
binations of them of the sort defined in 3.2. The first part of high school
geometry is devoted to the “‘rigid motion geometry of the plane and space.”
Later, attention is given to similarity or equiform geometry. Here the
group is the group of similarity transformations which has the group of
rigid motions as a subgroup, but contains also those transformations which
preserve angles and reduce or increase distances between points in a
certain ratio. Under this enlarged group such properties as area, volume,
and congruence are no longer the subject of study, being no longer
invariants. However, “similar” figures such as similar triangles and
polygons are investigated.

3.5.6 Affine geometry

If one enlarges the group ¥ of transformations, then not only is a
different geometry obtained, but also the objects, i.e., invariants, of interest
change. In the first place, there are fewer of them since, if new trans-
formations are added, one may expect that properties which were invariant
before are no longer so. And, secondly, the decrease in the number of
invariants leads naturally to the search for invariants not noticed before.
For example, if one takes for £ the set of all affine transformations of the
plane (1.2.1.4), then no longer are angles invariant; however, parallelism
of lines is an invariant property, and hence a subject for study in “affine
geometry” of the plane.

When a transformation group ¥, is a subgroup of a transformation
group &, one may choose to study, in the ¥;-geometry, only those &,-
invariants that are not T-invariants, reserving the latter for the T-geometry.

3.5.7 Projective geometry

To continue the process begun in 3.5.6, one may consider the case where
Z is the group of projective transformations of the plane. A projective
transformation, from the analytic standpoint, is by definition a trans-
formation which replaces a point (x, y) by a point (x’, y’) according to the
rule:

x,_ax-l-by-!—c
dx + ey + f

,_8X+hy +i
dx + ey + f
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where a, b, ¢,--- are real numbers and satisfy the condition that the
determinant

a b ¢

d e f|l#0.

g h i

The group of affine transformations of the plane is that subgroup of the
group of projective transformations for which d = e = 0 (f # 0). Now
even parallelism of lines is no longer an invariant of the larger group;
however, incidence of points and lines (that a point p and a line L are
incident means that p is on L), for example, is an invariant. For an
excellent elementary discussion of projective geometry (including a
description and invariance proof of one of its most important invariants,
the ““cross ratio” of four points), the reader is referred to Courant and
Robbins [C-R; 165ff].

3.5.8 Although the Klein program formed an important landmark in
the history of mathematics, serving to clear up many geometric miscon-
ceptions, arranging the mass of geometric material then existent in neat
compartments, and pointing the way to new types of geometries, what is
today called “geometry” cannot be confined within its limits.} Neverthe-
less, the notion of a transformation group continues to be of great
importance and to serve as a means of classification of geometries of the
classic type.

4 Topology

As a branch of geometry, mostly developed during the present century,
the field of topology is based on a group T whose elements, called topo-
logical transformations or homeomorphisms, are extremely general; a
topological transformation is applicable to any topological space (3.5.2),
and is merely a (1-1)-mapping (see 1V 3.2.3.1) such that both the mapping
and its inverse preserve limit points. For the layman, a topological
transformation is therefore often roughly described as any deformation of
a configuration that does not “tear’ or “fold” but is otherwise unrestricted;
a circle may thus be deformed into an ellipse, a triangle, a polygon of any
number of sides—but not into two non-intersecting circles (because of the
“no tearing” condition) nor into a figure eight (because of the “no fold”

+ To invent a new geometry it was necessary only to find a new type of trans-
formation group T and a space to which it was applicable; such a “‘synthetically”
produced geometry might be of little significance to the progress of mathematics, of
course.

1 Regarding geometries outside the scope of transformation group classification,
see Veblen and Whitehead [V-W; 31-33].
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condition; more precisely, however, because of the *“(1-1) character of
the transformation). Analogously, topology of the plane is sometimes
facetiously called “rubber-sheet geometry.” These descriptions are very
unprecise, of course, although they may be made precise by suitable
definition of terms (see Wilder [d]).

4.1 As for topological invariants, clearly distance is not an invariant,
nor is any number which is a function of length, such as the cross ratio of
projective geometry. However, to take a very simple case, the fact that two
points, when deleted from a circle, separate it into two pieces is a topological
invariant of the circle; for, no matter what the topological transformation
T, the “transform” 7(C) of a circle C always has this property. Another,
related topological property of the circle is that deleting one point from it
does not “disconnect” it. The reader who has studied the theory of
functions of a complex variable will recall the “simply connected regions”
of the plane and the method of inducing simple connectedness by means of
‘““cross cuts.” Simple-connectedness and the minimum number of cross
cuts needed to produce simple-connectedness are purely topological
invariants.

4.2 It is hardly possible any longer to confine topology, as a branch of
mathematics, to geometry in the Klein sense. Its early development by
Riemann, Poincaré, Brouwer, Veblen, and others was geometric and quite
classifiable within the Klein program. However, as it has most recently
developed, topology has been adapted to all parts of mathematics, vir-
tually any collection of mathematical objects being a “topological space”
in some sense or other, with great advantages of simplification of method
and breadth of perspective. Some have compared the rapidly growing
role of topology in mathematics to the role which has been played by group
theory.

Indeed, in much the same manner as the concept of group evolved and
became a methodological (and unifying) tool for all of mathematics, so
has topology grown from a strictly geometric study, concerned with the
properties of polyhedrals, to a general body of concepts and methods
which furnish tools and new perspectives to all branches of mathematics.
As stated above, the notion of “topological space™ is so general, any set
whatsoever can be conceived of as a topological space. But this would be
of little significance, of course, if it did not lead to fruitful results. We
shall try to exemplify how this can happen.

4.3 Topological space defined by neighborhoods

As we pointed out in 3.5.2, the transition from “set” to “topological
space” consists basically in the specification of “limit points.”” However,
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it would ordinarily be very difficult to specify, for each subset A4 of the set,
just what points are to be limit points of 4. Where a distance function
(3.5.1) has been already assigned to the set, then limit points are determined
as indicated in 3.5.2. Frequently, however, the “space” into which we
wish to convert the given set will not be amenable to assignment of a
distance function; spaces exist which cannot be assigned such functions.
The more general approach is to assign neighborhoods of points, in terms
of which limit points may be defined as described in 3.5.2. And with
only this much to go on, a surprisingly large number of significant theorems
can be proved about the “set” now turned “space.” (Cf. Sierpinski
[Sq; 1]

Most topological spaces are slightly more restricted, however, in that
the neighborhoods assigned must satisfy certain axioms. Of particular
interest, from a historical standpoint, are the Hausdorff axioms which were
stated in Hausdorff’s classic book on set theory of 1914 (see Hausdorff
[H; 213]): One supposes given a set S in which to each element x is
assigned a non-empty collection {U,} of subsets of S called neighborhoods
of x, such that

(a) For each U,, x¢ U,.

(b) If U, and V., are neighborhoods of x, then there exists a neighbor-
hood W, of x such that W, < U, N V,.

(c) If ye U,, then there exists a neighborhood U, of y such that
U, < U,.

In terms of neighborhoods, limit points are defined just as in 3.5.2,
namely, x is a limit point of a subset A of S if for every neighborhood U,
of x the set 4 N (U, — x) # 0. Intuitively, this means that there are
points of A4 arbitrarily near to x (and different from x).

For example, any simply ordered set, such as the real number system R,
forms a topological space in terms of the open interval neighborhoods
(3.5.2). And in this space, the number O is a limit point of the set
A ={x|x = 1/n,ne N}; but 0 is not a limit point of the set {x |x =
1+ 1/n,ne N}.

4.4 Closed and open sets

In terms of limit points, many basic topological notions are defined.
For instance, a set Fis called closed if it contains all its limit points. Thus,
in R, the set 4 defined in the previous paragraph is not closed; but if we
add the number O to it, the augmented set is closed. The complements of
closed sets are called open; i.e., if F is closed, S — F is open (and con-
versely). Thus the collections of closed and open sets, being comple-
mentary, are of equal cardinality. It should be noted at this point that
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the effect of axiom (c) above is to make every neighborhood an open set.
For if y € U,, then y cannot be a limit point of S — U, since by (c), there
exists a neighborhood U, < U, and a fortiori (U, — y) " (S — U,) = 0.
Consequently, S — U, is closed and U, is open.

Now it may seem just as difficult a task to assign neighborhoods to each
point as it would be to assign limit points to each subset, and that there-
fore nothing is gained by resorting to the definition in terms of neighbor-
hoods. However, it turns out that (1) only the open sets need be defined,
and (2) in a majority of cases only a certain subcollection of the collection
of all open sets need be specified ; in particular, while S may have cardinality
¢, for instance, often only X, open sets need be defined in order to get all
open sets.

To see how this may be, recall that it is the limit points that are basic.
Now limit points may be defined either by the neighborhoods, as above, or
by the open sets. Another way of putting this is to say that the open sets
are themselves an “admissible” collection of neighborhoods if we make
the convention that if U is open and x € U, then U is a neighborhood of x;
i.e., an open set is a neighborhood of every point in it, and neighborhoods
need then not be specified for each and every point. And with this
convention it is easy to see that with the open set neighborhoods, we get
precisely the same limit points for a given set as before. (See Problem 32.)

In view of these considerations, the definition of topological space is
now usually given in terms of open sets. That is, if S is a set, then a
collection T of subsets of S, to be called open sets, constitutes a topology of
S if the following axioms are satisfied:

(1) Both S and 0 are elements of T.
(2) Every union of elements of T is an element of .
(3) The finite intersections of elements of ¥ are elements of <.

Limit points are defined as before, but substituting “open set” for “neigh-
borhood.” Of course, the same set S can be made into different topo-
logical spaces by varying the assignments of neighborhoods; we show an
example of this below. Now, by virtue of (2), we can assign a topology by
giving only a base for the topology; i.e., a collection B of open sets such
that every open set is a union of elements of 8. For example, a base for
the usual topology of R is the denumerable collection of open interval
neighborhoods having rational endpoints. Because of (3), the union of a
finite number of closed sets is closed (see Problem III 5).

4.5 Examples. A classic theorem, developed by Euclid, states that if
M is any finite collection of prime numbers, then there exists a prime
number not in M. The modern mathematician usually states, “The
collection of all prime numbers is infinite.”” An amusing proof of this can
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be given by using only the meager topological apparatus already described
(see Furstenberg [a]). Let S be the collection of all integers, and let a
base of open sets in S be the collection of all arithmetic progressions
(from —oo0 to +00). Now not only is each arithmetic progression open,
but is also closed (since the complement is the union of a finite number of
arithmetic progressions and hence open by (2)). Consider the set
A = J,4,, where for every prime p 2 2, 4, is the set of all integral
multiples of p. Then S — 4 = {—1,1}. Theset S — A cannot be open,
hence 4 cannot be closed. But if the collection of all primes p were
finite, A would be closed since it would be the union of a finite number of
closed sets.

Notice, in the above example, that the topology assigned to the integers
is not the “natural” topology; the latter makes each integer an open set,
hence a neighborhood of itself, and thus no point is a limit point of any
set in the natural topology (the so-called “‘discrete” type of space). How-
ever, the topology assigned above accomplishes the purpose for which it
was chosen, namely, to prove the number of primes infinite. Another,
quite different type of topology, may be assigned the integers. It is
necessary only to consider the set N of natural numbers: Let the arithmetic
progressions of type {an + b}, where a and b are prime to one another, be
taken as a base for open sets. Again it will follow that the number of
primes is infinite, in a manner similar to that used above. But this time
the space, N, has many interesting topology properties.t In particular,
it is connected; i.e., it is impossible to express it as the union of two dis-
joint, non-empty, closed sets (“open” may be substituted for “closed”
here). This property of “connectedness” is a characteristic property of
the space R of real numbers; indeed, using the order topology, Axiom (2)
of VI 1.4.1 for the linear continuum may be replaced by *“C is connected.”
Another interesting aspect of the topology just assigned to N is related to
Dirichlet’s theorem which states that every progression {an + b}, where
aand b are prime to one another, must contain an infinity of primes. This
theorem is equivalent to the assertion that the primes form a “dense” subset
of N in that every natural number 7 is a limit point of the set of all primes.

This is as far as we shall go with the notion of a topology. For further
study of the subject, the reader is referred to the numerous books now
available in “general topology” (e.g., Hall and Spencer [H-S]).

5 Concluding remarks

With the discussion of these fundamental algebraic and geometric
ideas we bring to a close our résumé of what may be called the foundations

1 See Golomb [a].
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of classical mathematics. The ideas that form the content of this and the
foregoing chapters are derived from the end result of centuries of mathe-
matical thought and evolution, and constitute what we may consider the
basis of the type of mathematics—algebra, geometry, analysis, etc.—that
is commonly taught in universities at the present time.

In the following chapters we shall inquire more closely, from various
points of view, into the source, validity, and acceptability of what has
gone before.

SUGGESTED READING

Albert [Al; I, 11, XTI} Kerschner and Wilcox [K-W; VII, XX]
Baumgartner [Ba] McCoy [Mc]
Bell [By; III-VI] [B,; ITI-IX] Northrop [N; VIII]
Birkhoff and MacLane [B-M] van der Waerden [Wa]
Campbell [Ca; II-V] Weyl [b]
PROBLEMS

1. Do the natural numbers and their reciprocals, with x as operation, form
a group?

2. Let G be a set with three distinct elements 1, x, y, and an operation whose
operation table is:

|1xy
1 1 x y
x |y 1 x
y x y 1

Does G form a group with respect to this operation? If not, which of the
axioms for a group fail to hold?

3. Form a group of order 6 analogous to the group of 1.2.1.3. Relate it
to the regular hexagon.

4. Prove Theorem 1.3.4 without using the commutativity of 7.

5. Show that, if in Axioms 3 and 4 of 1.2 the expressions “xoi = x,”
“xo0x~! =i arereplaced by “io x = x,” “x~! o x = i,” respectively, then
the new axiom system is equivalent to the old (cf. Problems 11 and 12 of
Chapter II).

6. Show that, if only one of the two changes in Axioms 3 and 4 indicated in
Problem 5 is made, then the new axiom system is not equivalent to the old.

7. Show that, if Axioms 3 and 4 of 1.2 are replaced by the statement of
Theorem 1.3.5, then the new axiom system is equivalent to the old.

8. Show that, if G is of finite order », then Axioms 3 and 4 of 1.2 may be
replaced by the right- and left-hand cancellation laws (1.3.2, 1.3.4.1).

9. Show that the transformations of the coordinate plane of type (1.2.1.4a),
with ad # bc, form a group.

10. Show that parallelism of lines is invariant, but that angles are not
invariant, under the group cited in Problem 9.
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11. Show that parallelism is not an invariant of the projective group of
transformations of the plane (3.5.7).

12. Show that all groups of order 3 are isomorphic.

13. Exhibit two operation tables such that every group of order 4 has one of
them for its operation table.

14. In any group we may represent x o x by x2, x o x o x by x%, and so on.
Also we let x® =iand (x~*)* = x~* for eachke N, If a group G has an
element g such that, for every x € G, there is an integer k such that x = g*, then
Giscalled cyclic. Show that for every n e N there existsacyclicgroup of order n.

15. Show that if a group G is an infinite cyclic group, then G is isomorphic
to the group of integers with operation addition.

16. Show that every infinite cyclic group has infinitely many subgroups.

17. Show that a group which has only finitely many subgroups must be
finite. ¥

18. Show that an integral domain having only finitely many subsets forming
integral domains need not be finite. Also show that a field having no proper
subfield may be infinite. T

19. Show that the real numbers mod 1 do not form a system (X, +, x)as
defined in 2.1.

20. Do the real numbers mod 1 satisfy the Laws of Signs as embodied in
Theorems 2.2.2 to 2.2.4?

21. Show that the ring of integers mod 4 is not a field. What can we say in
this respect about the integers mod p, where p is a prime?

22. If r is an element, not 0, of a commutative ring R with a unit, and there
exists x € R, x # 0 such that r x x = 0, then r is called a zero-divisor of R.
Show that a necessary and sufficient condition that a ring R be an integral
domain is that it have no zero-divisors.

23. Construct addition and multiplication tables for a field having four
elements, in which 1 + 1 = 0.

24. Show that the set of all real numbers of the form a + bV2, where
a,b ¢ F, with + and x in the ordinary sense, is a field.

25. Prove that no non-degenerate proper subset of F is a field (if + and x
have their usual meaning in F).

26. Show that, for any two elements x and y of a system (X, +, x), the
number [(—x) x y] + [x x y] + [-(x x »]is both(—x) x yand —(x x y)
and hence (—x) X y = —(x x y).

27. Show that the ring of all continuous, single-valued real functions is not
an integral domain.

28. Using the notation of 2.3.6, show that, if 4 is an ideal of X, then the
operation x is uniquely defined for the cosets of X/4; ie., if xye4 + x,
y1€A+ y,thenx; x y16 4+ (x x ).

29. Show that the integers form a subring, but not an ideal, of the ring of
all polynomials in one variable x with integer coefficients (with +, x asusually
understood).

30. Show that, if X is the polynomial ring of Problem 29 and I the subring
of integers, then the cosets of X mod I (rel. +) do not satisfy uniquely an
operation X as defined for the case if I were an ideal of X.

31. In Definition 2.7.1, replace the requirement that “0 < x, 0 < y imply
0<xxy by “0<x,0<yimply x x y < 0. What do the “Laws of

1 Cf. Amer. Math. Mo., 70 (1963), p. 332, Problem E1522,
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Signs” become in the resulting system? Is this new “real number system”
consistent ?

32. Prove that in a topological space defined by neighborhoods (as in 4.2),
a point x is a limit point of a point set M if and only if for every open set U
containing x, M N (U — x) # 0.

33. Show that if the set R of real numbers is assigned the order topology
(3.5.2), then every element of R is a limit point of R. More generally, if S
is a non-degenerate connected topological space in which each point forms a
closed point set, then every point of .S is a limit point of S.



P A R T T W O

Development of
Various Viewpoints
on Foundations

Up to this point our chief concern has been with what might be called
foundation material; i.e., the ideas and methods which form the basis of
the mathematics taught in most modern universities. Except for inci-
dental remarks, there has been little formal criticism or philosophical
speculation on the nature of the material.

In this second part, however, the discussion is no longer confined to the
“orthodox,” although much of what is included may justly be so labeled,
or at least is of such a character that it is rapidly becoming so. Although
the preceding chapters may have seemed, with few exceptions such as the
Russell and Burali-Forti contradictions, to consist of what the ‘“non-
cognoscenti” would expect of mathematics—precise, logical ideas and
methods of deduction—and to depict a situation which appears fairly
“austere and serene,” the fact is that in modern mathematics the austerity
and serenity are mainly on the surface. At the heart of mathematical
creation there is sharp disagreement as to the origin, meaning, and
validity of mathematical notions. The remark in II 6.3 that it would be
almost a miracle to get as many as five mathematicians to agree upon a
definition of mathematics, was not an exaggeration; certainly with few
exceptions no mathematician would seriously propose such a definition.}
This is due to the nature of the subject; it is not a dead compendium of
laws regarding “quantity” and ‘space,” but a live, growing aspect of
human culture that would quickly break the bonds of any confining
definition.

During periods which have been conducive to abstract thought and
intellectual freedom, such.as those of ancient Greece and the European
Renaissance, mathematicians and mathematical philosophers have
speculated on the nature of their activities. In modern times, such
speculation has been particularly active and has led to sharply differing
conclusions. It will be the function of this second part to describe some

1 By ““definition” is meant the type of definition used in mathematics; see the
second paragraph of Chapter III.
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of the chief aspects of this development and its present status; not ex-
haustively (which would require volumes), but enough to draw a general
picture whose details may be filled in, wherever desired, by reference to the
bibliographical material cited. The descriptions of the differing views of
various individual mathematicians or ‘“schools” will be as objective and
impartial as possible. At times it may seem that “‘sides’’ are being taken;
such an impression, however, will be due to the desire to present the
advocate’s point of view as advantageously as possible.

It will be impossible, as a matter of fact, to do justice to all points of
view in a work of this size and nature. The available space is too limited,
and probably many readers would not want to labor with all the details.
The best that can be done is to include certain general ideas to the extent
of provocation; that is, that the reader will be provoked into going to
original sources (furnished in the citations to the bibliography) and
forming his own conclusions on the merits of the case in hand. If I
succeed in doing this, I shall have fulfilled my function of reporter and
expositor.



VI

The Early Developments

Some description of the development of the present-day situation has
already been included in the earlier chapters. For instance, in Chapter I
we remarked on the background and development of the modern axiomatic
method. And in III 1 and III 2 the circumstances which led up to the
invention of the set-theoretic contradictions and some of the resulting
impact on mathematical thought were described. In the present chapter
these matters will find their place in a brief systematic presentation, in
approximately chronological order, of the origin and sources of the
various opinions now in existence.

1 The eighteenth-century beginnings of analysis

Any student of the history of mathematics is familiar with the discussions
that followed the work of Leibniz and Newton on the calculus. The
literature of the time shows that many different concepts of the meaning
of differentials were then current; and that the methods of proof then in
vogue would for the most part be wholly unacceptable today. One
prominent mathematiciant of the period postulated that “A quantity,
which is increased or decreased infinitely little, is neither increased nor
decreased.” We may wonder just what “infinitely little” meant; to the
modern mathematician the phrase would be indicative of a lack of com-
prehension of the fundamental ideas of the calculus. It is probably not
unfair to state that for a long time the calculus had no foundation. Each
writer chose what seemed to him a “foundation” and built thereon. The
period can be characterized as one of experimentation. Mathematicians
were aware of the importance of the new theory (calculus), and in general
showed remarkably good sense in developing it. As a matter of fact, we
should not be unjustly critical of the pioneering work done at this time;
rather, our admiration should be evoked by the manner in which sound
mathematical theory was erected on unsound bases.

For example, Lagrange tried to avoid the difficulties in the meaning of
the differential by using the derivative exclusively. Instead of proceeding,
like Johann Bernoulli and Euler, to set up expressions in dx and treating

1 Johann Bernoulli.
199
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some of the occurrences of dx as zero, and others as “infinitely small”
quantities, he calculated his derivatives by expanding functions in Taylor’s
series and then selecting the respective coefficients as (by definition) the
derivatives. He attempted to show that any function can be so handled,
which is of course incorrect; but he may be considered to have incidentally
made a beginning on the theory of analytic functions.

When any attention at all was paid to divergence of series, it was as a
rule of a desultory and unrigorous character. Even after Cauchy had
given a rigorous foundation for the theory of infinite series, old habits
prevailed. The notion of /imit, so simple from the modern standpoint,
remained fairly clouded in mystery throughout the eighteenth century.
D’Alembert gave a good approximation to the modern definition (his
definition gave Cauchy the starting point for his “Cours d’analyse™), but
unfortunately the idea of “‘approach—a quantity approaching another
“nearer than by any given quantity”’—led to such futile questions as
“Can a variable reach its limit?”

As we shall see, modern “rigor” is not beyond reproach, although it
would hardly be possible for a “layman” to criticize, with justification, the
present standards of rigor, such as happened in the eighteenth century
when Bishop Berkeley attacked Newton’s “fluxions.” {

2 The nineteenth-century foundation of analysis

Early in the nineteenth century Cauchy placed the calculus on an
essentially modern basis; Abel, Gauss, and Cauchy developed a rigorous
treatment of infinite series; and later in the century Weierstrass worked at
the “‘arithmetization” of analysis. A characteristic of the latter was the
freeing of analysis from the intuitive geometric type of proof so prevalent
at the time. For example, the geometric approach to continuous real
functions leads naturally to the belief that such a function, representable
by a “smooth” graph, certainly must have derivatives at some points at
least. Weierstrass’ famous counter example} of a continuous function
defined over the reals and having a derivative at no point dispelled this
illusion. We must here keep in mind, however, that to “free” a theory of
certain notions does not necessarily imply that those notions forever
thereafter cease to be of use. Just as in the case of the undefined terms
of an axiomatic system we find it extremely useful, and in practice neces-
sary, to keep certain interpretations in mind, so in the development of

+ See the entertaining account in Struik’s remarkable little history of mathe-
matics [St; 178]. The reader may find it profitable to read the entire account of the

beginnings of analysis in this book.
1 Riemann also possessed such an example (unpublished).
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calculus and function theory we find it advantageous to continue to use
geometric interpretations. It is generally conceded, for instance, that the
teaching of calculus is facilitated by the use of graphs. Strictly speaking,
however, no analytic geometry is needed for either calculus or function
theory.

We might recall here that we make similar concessions to pedagogy in the teaching
of high school geometry, not striving to place it on a truly axiomatic basis but
allowing the student to use “preconceived notions” such as “straight,” “‘distance,”
“measure.” In the teaching of calculus, one may accept the geometric foundation
of the sine function which the student has studied previously in his trigonometry
course, and give an unrigorous geometric proof that lim,._, (sin x)/x = 1, before
establishing the derivatives of the trigonometric functions. (In analysis, the latter
are analytically defined, not geometrically.) Such pedagogic devices are entirely
justifiable, of course, except that it is questionable just how long the student should
be kept insulated from the underlying “concessions.” Certainly he should not be
allowed to believe that he is receiving dogma.

The work of Weierstrass was paralleled by that of other researchers,
especially Dedekind and Cantor. Dedekind’s approach to the foundation
of the real numbers has already been exemplified in the “Dedekind cut”
(see VI 1.4 and 3.3 for instance), and contact has been made with that of
Cantor in the characterization of the order type of the real number system
by means of the separability principle.t Both Dedekind’s methods and
those of Cantor were based on an acceptance of the “actually infinite.”
We have seen, for example, how the Dedekind cut defines a single real
number in terms of infinite classes of numbers.

Vigorous opposition to these ideas, especially to the ideas of Cantor
(which we discussed in some detail in Chapters IV and V), were expressed
by Kronecker.

2.1 Kronecker’s “intuitionism”

Kronecker was a contemporary and (ultimately) a colleaguef of
Weierstrass at the University of Berlin, but their different notions of
what constitutes mathematical existence did not make for harmony

t Cantor designated the order type of {x | 0 < x =< 1} as “order type 6. Instead
of the Dedekind cut axiom which we used in VI 1.4, however, Cantor employed the
notion of “perfect set”; to define the latter would have necessitated employing the
notion of limit point.

1 Weierstrass was professor at the University of Berlin for thirty years, com-
mencing with the year 1856. Kronecker (whose private resources freed him of the
necessity of seeking a salaried position) commenced his sojourn in Berlin in 1855,
teaching informally at the university until finally accepting a professorship made
vacant by Kummer’s retirement in 1883.
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between them.t Because of their “prophetical” significance and relation
to the present-day discussions on foundations, we shall outline briefly
Kronecker’s chief views:

2.1.1 In the first place, he objected strenuously to ‘““clouding” mathe-
matics by basing the notions of finite set and of real numbers on the actually
infinite. Although he agreed that “arithmetization” was the correct
approach, not only to analysis but also to all mathematics, his ideas of
arithmetization ruled out all use of infinite sets (as in the Dedekind cut)
in both definitions and number constructions. Much quoted is his
remark,} “The integers were made by God, but everything else is the work
of man.” Hence:

2.1.2 He asserted that the natural numbers and operations with them
are “‘intuitively founded,” and that algebraic numbers and operations with
them can be based on the natural numbers and their properties; but that the
real numbers are not capable of such a foundation.

Here he was striking at the heart of the question of what constitutes
mathematical existence. Previously there had been considerable reluc-
tance, because of fear of ridicule or of ecclesiastical denunciation, to
introduce certain concepts (as, for example, negative and imaginary
numbers, and non-euclidean geometries), but evidently Kronecker’s
objections were based on a serious and deeper-lying philosophy. He
seemed to fear that there was a danger of mathematics drifting into fantasy
and mysticism. To him, the Cantor theory of transfinite numbers was not
mathematics but mysticism;§ it started with the assumption that infinite
sets exist in mathematics—an assumption that to Kronecker was untenable.

The reader may be puzzled by the conjunction of this statement with the preceding
statement that Kronecker accepted natural numbers and operations with them.
But notice that we did not say ‘“‘the set of natural numbers...” The latter might
be taken to imply an already existing “‘totality.” In the latter sense, we recognize,
for example, that

2,867,944,782,612,713,942

is the symbol for a natural number, although it is quite likely that no one has ever
seen it before it appeared here in print! That is, it represents an element of the “‘set
of all natural numbers” which existed prior to our selecting this particular one of its
elements for exhibition. Quite different is the conception of the natural numbers as

tIn a letter to Sonja Kowalewski, Weierstrass complained bitterly of the fate
that compelled him to endure the “interesting, but not mathematics” type of comment
which Kronecker frequently used in appraising Weierstrass’ work and that of others.

1 Bell [B,; 34] facetiously remarks that inasmuch as ‘“he said this in an after
dinner speech perhaps he should not be held to it too strictly.”

§ Cantor was aware that his work was in a sense (to cite Struik [St; 243]) “a
continuation of the ancient scholastic speculations on the nature of the infinite”
and ‘“defended St. Augustine’s full acceptance of the actually infinite.”
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a kind of constructible or ‘“growing” collection which consists of a beginning set of
numbers—1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.—and a rule for deriving new elements of
the “collection” (thus 10 + 1 = 11; 11 + 1 = 12; going as far as we like or are able).
In the latter case no actual infinite is ever attained. And the above natural number
is not a natural number because it is a member of some already existing totality, but
because it can be exhibited as a result of the construction just indicated. If one
objects that each and every natural number is so attainable and hence the existence
of the “set of all natural numbers” again follows, it can be pointed out that this
assumes an infinity of operations in order to construct each and every natural
number. For the “finitist,”” only the “constructible” concept of the natural numbers
is acceptable. By “‘intuitively founded” Kronecker evidently meant that we have
an intuition of the natural numbers founded on our experience of time and the
succession of events.

When informed of Lindemann’s proof (1882) that = is a transcendental number,
Kronecker is reported to have remarked that this was of interest, excepting for the
fact that = does not exist!

This is perhaps an exaggeration, the evidence pointing rather to a rejection of
the general notions of irrationals as set up by his contemporaries. In order spe-
cifically to avoid these and, indeed, avoid the use of all numbers except natural
numbers (even negative integers!), Kronecker developed a modular arithmetic,
employing congruences mod x + 1, or mod x? + 1 (to avoid use of the complex
unit i), etc. (For a simple discussion of these matters, see Couturat [Coz; 603-616].)

2.1.3 All definitions and proofs should be “constructive,” that is, a
definition of a mathematical entity should permit one to construct the
entity ; for example, by giving a rule for its construction from mathematical
elements already known to exist. (In particular, the “set of all real
numbers” is not definable in this sense.) And, if a proof is given of the
existence of a mathematical entity, then the proof should be ““constructive”;
i.e., one following the steps of the proof should thereby commence
constructing the entity.

For example, most proofs of the Fundamental Theorem of Algebra are
non-constructive, in that they show that the assumption of the existence
of an algebraic equation having no root leads to contradiction. Such
proofs give no inkling as to how to find a root. Generally, reductio ad
absurdum existence proofs are of this nature, hence, from Kronecker’s
point of view, unacceptable.

Another type of existence proof to which Kronecker would have ob-
jected is that which relies on the Choice Axiom (IIT 6.3). An outstanding
example of such a proof is that of the Well-Ordering Theorem (V 3.1.2).
In this proof (V 5.1.4) it is assumed, on the basis of the Choice Axiom,
that, for each subset S’ of a given set S, there exists a representative
element x(S’). But no rule is given for specifying x(S”), so that one is
unable actually to well-order a given set by following the steps of the proof.

Like comments hold regarding the proof (V 3.3.1) that the set R
(assuming its existence for the moment) has a basis. Before giving the
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rule for constructing such a basis, a well-ordering of R or equivalent
thereof has to be provided. Yet from the existence of a basis one can
prove many beautiful mathematical theorems.

2.1.4 Arguments of a purely logical nature do not necessarily yield
legitimate mathematical theorems. This is a natural corollary of the
stipulation (2.1.3) that existence proofs must be constructive. Thus, to
use again the example of the reductio ad absurdum proofs of the Funda-
mental Theorem of Algebra, such existence proofs are logically correct
perhaps, but they are of no value as mathematics. For mathematics the
proofs must provide a way of finding the root asserted to exist.

We note here the first inkling of a possible limitation on the use of logic
in mathematics. From a position of utter dependence on logic, one turns
to a new criterion: construction on the basis of the natural numbers.
One may still use logic—for example, one will prove non-existence of an
entity by the usual demonstration that assumption of existence leads to
contradiction. But to squeeze existence out of such logical manipulation
is not valid mathematically.

2.1.5 Thus Kronecker’s meaning of the term “arithmetization™ is quite
literal! From the arithmetic of the natural numbers one constructs, by
finite methods, the rest of mathematics. As we shall see, in “the rest of
mathematics” we do not reach all that is commonly taught today, not
even all the real numbers which are at the basis of present-day analysis.

Kronecker found, in his day, no supporters for his opinions. Other-
wise, our discussion of his ideas would not have been relegated to a few
paragraphs of a summary nature. No doubt this was due in considerable
measure to the severe limitations these notions placed on both method and
content, and the radical proposal which they contained regarding the
purely logical as opposed to the mathematical. But still his ideas might
have found more favor, and certainly would have been accorded more
sympathetic discussion among his colleagues, if it were not for the advent
of Cantor’s theory of the transfinite.

2.2 Cantor’s theory of the transfinite

During the period 1879-1897 Cantor published his investigations on the
theory of sets, including the theory of cardinal and ordinal numbers. It is
interesting to observe that he was led to his ideas by his researches in
analysis, particularly in the theory of trigonometric series. We have
already referred (footnote in connection with V 3.5.2.2) to his observation
of the well-ordered sequence of derivatives of a given set of real numbers,
for instance. Cantor’s ideas, as applied to the foundations of analysis,
form an extensive continuation of the work of Weierstrass.
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Their fruitfulness in analysis, however, was almost eclipsed by their
influence on mathematics in general. In geometry, for example, they
made possible a new perspective. And in the new field of topology they
became indispensable.

On all sides, then, Cantor’s ideas bore fruit. ls it any wonder that the
objections of Kroneckert were of no avail and that the Cantorian theory
prevailed? It is true that some of the “fruit” was sour—Cantor himself
was probably aware of the fact that care and discretion had to be used in
“storming the infinite”—else one might transcend consistency entirely.
But the good seemed by far to outweigh the bad. Consequently today we
find the ideas of Cantor, especially his extensions of Weierstrass’ treatment
of the real number system, almost universally accepted and taught in the
universities and colleges of the world. This, incidentally, partially
explains the prominence which we have accorded them in the earlier
chapters.

Before continuing in this vein, however, we should note another develop-
ment that was taking place during the latter part of the nineteenth century,
one which was to have considerable influence on present-day thought.

3 The symbolizing of logic

We have already had occasion to comment, in III 2.3, on the rise of
“symbolic logic.” In order that the nature of this development may be
clear, we recall that logic, as developed by the Greeks (particularly
Aristotle), and by the scholastic philosophers of the Middle Ages, made
little use of symbols. It is true that not infrequently symbols were used
as a kind of shorthand. For example, the syllogism might be stated in the
form, “If all A’s are B’s, and x is an A, then x is a B.” Here 4 and B
stand for classes of perfectly general character; the classical logicians
understood well the generality of their logical laws. But such use of
symbols is a far cry from a calculus of symbols, such as was introduced in
mathematics in very early times.

3.1 Meaning and purpose of a symbolic logic

When we speak of symbolic logic, then, we mean something analogous
to the use of symbols in mathematics. When we apply algebra to the
solution of some concrete problem, we are employing a symbolic calculus
in which the steps involved in solving the particular problem have all
been provided for; little further thought need be expended, once the

+ Cantor’s ideas also met criticism, but when their fruitfulness became evident,
opposition dwindled (although it survived in notable instances—see Section 7).
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symbols of the algebra (x,y,---) have been properly interpreted or
adapted to the problem. In a simple case where only one symbol, x,
receives a meaning, and, say, a quadratic equation results, the solution of
the latter by the “quadratic formula” gives the desired result “‘ready made.”
So, in logic, we desire not only symbols to designate the entities (such as
propositions and classes) with which we deal, but symbolic representation
of relations (such as >, €, <) and rules for operating with them. The
reasoning involved in special problems should be provided for in the
resulting calculus.

It was undoubtedly the example of what a good calculus of symbols had
accomplished in mathematics that stimulated the search for a similar
apparatus to employ for the reasoning process. The purpose of such an
apparatus would be not simply a way of making reasoning—more specifi-
cally, the drawing of conclusions by the deductive process—an easier feat,
but it was realized, in view of the example of mathematics, that (1) greater
rigor and (2) broader perspectives would be attainable. Both of these
aspects of the symbolic method are involved in the facility with which the
mathematician sees new properties and relations in known theories, and
the opening up of new avenues of research.

3.2 Influence of Leibniz

Probai)ly no one realized these facts better than Leibniz, who, though
neither he nor anyone else can be credited with beginning symbolic logic,
was one of the prime movers in its direction. With Leibniz’s somewhat
grandiose schemes for systematizing, and reducing to a few simple
elements, all human thought we are not concerned here; but his recognition
of the importance of a good symbolism, and in particular of instituting a
calculus of reasoning (calculus ratiocinator), together with his subsequent
propagandizing for it, were unquestionably a factor in stimulating the
logicians of the eighteenth and nineteenth centuries.t

3.3 Boole’s algebra of logic

What can perhaps properly be called a “foundation” for symbolic
logic was laid in England in the first half of the nineteenth century,
especially by Boole and De Morgan. In Boole’s work we obtain for the
first time a calculus of logic, specifically a calculus of sets, complete with
rules of operation. It is properly called an algebra—not quite the modern
form of “Boolean algebra,” however—since all four elementary operations
of algebra are defined. Subtraction had the same meaning as in III 3.3.2,

t The reader might consult the section on Leibniz in Struik [St; 154fF].
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and multiplication the same meaning as in I1I 3.3.3; but addition was some-
what different in thatt x + y was defined only for x and y disjoint. Rules
such as the commutative laws of addition and multiplication and distrib-
utive laws were given, as well as such peculiar laws as x2 = x. The
numbers | and 0 occupied special positions in that 1 designated the entire
universe of elements (of which all sets are subsets); 0 designated the null
set (our @ of IIT 3.4). The difficulties arising in the interpretation of such
expressions as x + 1, x/y, 2x, were circumvented by noticing that, if one
treated the algebra as though the variables were restricted to the values O
and I, then all ordinary laws and operations were applicable. The result
was, then, that if one carried through the algebra without worrying about
interpreting the formulas derived,} and used the devices worked out by
Boole to reduce the resulting expressions, the end product would be both
valid and capable of interpretation.§

3.4 Subsequent development of the algebra

One of the principal changes subsequently made in Boole’s algebra of
logic was the interpretation (Jevons) of x + y as defined as III 3.3. This
enabled one to write x + x = x and thus eliminate the 2x which had no
interpretation. And, to get rid of other non-interpretable formulas,
division was altogether eliminated (Peirce). The inclusion symbol, <,
of Il 3.1.2 was introduced by C. S. Peirce. The monumental treatise of
Schréder [Sch], published in 1890, more or less brought this development
to a final satisfactory form.

It would take us too far afield to go into the details of the Boole—
Schroder algebra. But more recent developments in the applications of
Boolean algebra should not go without mention at this point, since lack
of space will not permit consideration of them later. These have extended
to applications in computer and switching circuit design (see Hohn
[Hoh], for instance). Relations to set theory and logic, in both of which
occur important models of Boolean algebra, are more noteworthy from
our point of view, however.

t To denote sets we shall use here the usual symbols x, y, -+ of algebra rather
than the capital letters (S, 4, B,---) of Chapter III.

1 These were usually incapable of interpretation.

§ The student familiar with Boole’s Calculus of Finite Differences, still used as a
reference in present-day instruction (particularly of actuarial students), should

understand this process perfectly. The algebraic operations with z, f, etc., per-

formed with meaningless formulas, but ultimately reduced to a form where they can
be affixed to the functions under consideration, form a nice analogue of the logical
algebra.
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In the modern forms of Boolean algebra, the “U” and “N” of III 3.3
are commonly employed instead of “+> and *“-,” with “+” reserved for
the “symmetric difference”; specifically, x + y = (x — y)U(y — x). The
relation to the calculus of sets found concrete expression in the Stone
representation theorem to the effect that every Boolean algebra is iso-
morphic with a certain algebra of sets; also, every Boolean algebra is
isomorphic to a certain class of rings with unit. (See Stone [St].) These
results remind us of the relation between abstract groups and permutation
groups (cf. Theorem VII 1.4.2.1).

Applications to logic are based on the fact that the calculus of prop-
ositions (to be discussed in IX 3) forms a model for Boolean algebra, and
recent investigations in this theory have been made using Boolean algebra
as principal tool. Regarding these matters, the reader is referred to such
works as those of Rosenbloom [Ros; I] and Stoll [St; VI].

4 The reduction of mathematics to logical form

By the latter half of the nineteenth century, mathematical thought had
matured to the point where it was recognized that mathematics could be
developed along “pure” or abstract lines, with no reference to material
reality. Undoubtedly the acceptance of conflicting (euclidean and non-
euclidean) geometries and the consequent denial of one of the tenets of
Kantian philosophy had a good deal to do with this evolution. And, too,
the ideas of Leibniz and the subsequent development of logic along formal
lines must have exerted an influence. In addition, both Peirce and
Schrdder had begun to apply their logical calculus to arithmetic.

4.1 Frege's arithmetic

The first work of a definitive character, so far as basing mathematics on
logic is concerned, was that of Frege. In his Begriffschrift [Fr,] he
introduced the notion of “propositional function”—called by him “Func-
tion,” the term “propositional function” being due to Russell (see Chapter
IX)—and a complete system of basic formulas for propositions in terms of
implication and negation (compare the comment of Hilbert-Bernays
[H-B; 64f]). Frege’s Die Grundlagen der Arithmetik, published in 1884
(now available in parallel paged German and English translation [Fr]), is a
landmark in the development of the modern logical foundations of mathe-
matics, being the first attempt to base mathematics on pure logic; specifi-
cally, to found, on the notions of primitive logic, both definitions of number
and laws of arithmetic. To quote Frege’s own appraisal of the workt

1 By permission of Basil Blackwell.
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[Fr; 99°], “Arithmetic thus becomes simply a development of logic; and
every proposition of arithmetic a law of logic, albeit a derivative one.”
This work (in which, incidentally, the “Frege-Russell” definition of number
given in IV 4.1.1 first appeared) was not accorded proper credit until
Russell called attention to its true worth and significance. We shall
postpone to Chapter IX the continuation of Frege’s line of thought in the
work of Russell and Whitehead.

4.2 The Peano school

Of a somewhat different type was the work of Peano and his colleagues.
Instead of trying to base mathematics on logic, they analyzed the methods
of mathematics and tried to express them in a form similar to that of the
logical calculi. Tt could be characterized as a union of mathematics and
a calculus of logic. Instead of trying to give “natural number” a meaning
such as is embodied in the Frege-Russell definition, i.e., reducing it to the
logical notion of set, Peano treated the notion as undefined and used
essentially the axiom system which we gave in VI 3.1.

However, as Peano formulated the axioms, they were stated in the logical
symbols which constitute his “pasigraphy.” For ‘“number” the symbol
“No” was used, ¢+ designated the successor of a, etc., and the analogue
of Axiom (2) of VI 3.1, for example, was stated in the form

aegNo. > .a+ g No,}

where € corresponds to the symbol denoting “is an element of” which we
introduced in IIT 3.1. (The introduction of this symbol g, implying a
recognition of the necessity for making a distinction between € and <,
was an important innovation, incidentally.) The derivation of theorems
becomes an algebraic process, only symbols and formulas being employed ;
each theorem is stated as a symbolic formula. The reader can consult
Peano’s Formulaire [Pg] for details, especially Volume V.

This method of deriving mathematical theorems as symbolic formulas
from a given set of axioms stated as formulas, using what corresponds to a
logical calculus for the derivation, finds its counterpart in the so-called
“formal systems” of modern mathematical logic, to which we come later.
It reduces mathematics to a strictly “formal” process, with no direct
reference to any “real” interpretation of the symbols involved. It has the
advantages that accrue from avoiding errors due to varied interpretations

+ Literally translated: ““If a is a number, then ¢+ is a number”; the symbol >
denoted implication.

1 The volumes of the Formulaire were published between 1894 and 1908, and
essentially represent a series of reports by Peano and his collaborators.



210 THE EARLY DEVELOPMENTS Ch. Viii

of terms or unsuitable connotations, such as are frequently made in the
use of ordinary language, as well as from rendering the steps of a proof
more precise and less vaguely dependent upon logical rules. It has its
opponents among those who dislike such formality and divorcement from
“reality.” It does, however, represent an important development in the
relations between mathematics and the methods of symbolic logic, as well
as in the evolution of mathematics itself, and has had an influence on both
mathematics and logic which continues to the present day.

5 Introduction of antinomies and paradoxes

Another development of great importance, which occurred at the end
of the nineteenth century and the beginning of the twentieth, was the
introduction of the contradictions to which the ‘“unrestricted” theory of
sets leads (cf. II[ 1.1, ITT 2, IV Problem 28, V 3.5.3). That this new theory,
so beautiful and fruitful, should lead to such logical consequences came as
a profound shock to many mathematicians. Frege (who lived until 1925),
for example, considered that all his work, based on the theory of sets, was
jeopardized. Many mathematicians, as a result of the antinomies, as well
as of later developments in the foundations, ceased to work on aspects of
mathematics which depend upon an unqualified acceptance of set theory.
Poincaré characterized the theory of sets as ‘‘a disease from which mathe-
matics will some day recover.” Others, more courageous perhaps, or
more convinced of the ultimate validity of the theory of cardinal and
ordinal numbers, set out to correct the errors into which mathematics had
drifted. Prominent among these was Russell, whose use of the “logistic”
method we shall discuss presently; also Zermelo, who attacked the problem
of providing a set theory free of contradiction by trying to furnish a
consistent axiom system which would avoid the “too large” sets.

6 Zermelo’s Well-Ordering Theorem

The publication of Zermelo’s proof of the Well-Ordering Theorem
(Zermelo [a]) in 1904 added fuel to the discussion, since even those
mathematicians who would grant the existence of the set R were, in many
cases, loath to admit the possibility of its being well-ordered. There was
no question of any contradiction here; it was a question of admissible
methods and existence. Already the question of what constitutes mathe-
matical existence had arisen in connection with Kronecker’s views, and the
appearance of contradiction in set theory had revived some of the ideas
expressed by Kronecker. This was particularly to be noted in Poincaré’s
writings.
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7 Poincaré’s views

Poincaré’s reaction to the Zermelo theorem was one of complete
rejection. His basis for this was the lack of definition of representative
elements involved in the use of the Choice Axiom, which we have already
stated (in 2.1.3) would have been opposed by Kronecker. In a way,
Poincaré can be considered a follower of Kronecker in his philosophy of
mathematics. Of Poincaré’s views we should mention specifically the
following:

71 Recognition of the basic character of the natural number system,
and especially of the mathematical induction principle, as incapable of
reduction to logic; i.e., a “synthetic a priori judgment” in the Kantian sense.
(See Poincaré [Po; I, 64, 452].)

7.2 Every mathematical entity should be definable in a finite number of
words; concepts should be built up by proceeding from the particular to the
general, not conversely. (Poincaré [Po; 382]) This reminds us of
Kronecker’s objections to “basing the finite on the infinite” (2.1.1).

7.3 Most of the concepts and conclusions of the Cantor theory of sets
should be excluded from mathematics [Po; 433-484].

In 7.1 to 7.3 Poincaré was clearly in agreement with Kronecker.
Kronecker did not have the antinomies before him as a guide in attacking
the problem of definition, however, as Poincaré did. Poincaré’s reaction
to them was:

7.4 Non-predicative definitions should not be employed [Po; 480-481].
By a non-predicative definition is meant a definition of an entity £ which
defines E in terms of a class of which E is an element. It not infrequently
happens that, in order to specify a certain real number, for example, we
determine a class to which we know it belongs, and then we define the
number in terms of this class. Thus we define the maximum of a con-
tinuous function, which has been defined over a closed interval, as the
greatest of all its values. Such a definition is non-predicative.t

But it seems impossible to give up this type of definition entirely,
especially in the theory of sets. To reject sets defined non-predicatively
would, to be sure, bar such self-contradictory and non-predicatively
defined sets as the set of all sets and the well-ordered set of all ordinal
numbers. But the cost appears too great unless some modification can be
introduced to retain the apparently legitimate uses of this type of definition.

+ It is amusing to note that, soon after Poincaré made known his opposition to
the non-predicative type of definition, one of his colleagues pointed out to him a
situation in one of his (Poincaré’s) own articles, where he had used this objectionable

type of definition. (Unfortunately, Poincaré was able to point out how it could be
avoided in this case!)
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7.5 Poincaré rejected and ridiculed attempts to base mathematics on
logic [Po; 448-485]. He asked, “If ... all the propositions [which mathe-
matics] enunciates can be deduced one from another by the rules of formal
logic, why is not mathematics reduced to an immense tautology? The
syllogism can teach us nothing essentially new, and, if everything is to
spring from the principle of identity, everything should be capable of
being reduced to it. Shall we then admit that the enunciations of all those
theorems which fill so many volumes are nothing but devious ways of
saying Ais A7” {[Po;31.f] Someone has written “Logic is barren, where-
as mathematics is the most prolific of mothers.” Poincaré exclaims
“Logic is no longer barren; she has brought forth a contradiction!”
(in reference to the Russell antinomy).

He believed that attempts to place the method of mathematical induction
on a contradictionless basis were doomed to run into a vicious circle, in
that the induction procedure would of necessity be used in the proof of
freedom from contradiction. For mathematical induction, he felt, is
forced on us by our intuition. Nevertheless, he stated repeatedly—and in
this he agrees with the Formalists (Chapter XI) rather than the Intuition-
ists—that, in general, proof of freedom from contradiction, as in the case
of a geometry, is adequate basis for assertion of mathematical existence
[Po; 61, 439-440, 454, 474].

During the first decade of the present century a discussion took place
between Poincaré and Russell which fortunately took the form of a series
of articles in the French periodical Revue de metaphysique et de morale.
These are available for the reader familiar with French. Poincaré’s
Foundations of Science is available in English translation [Po].

7.6 Many of Poincaré’s French colleagues were equally vehement in
voicing their opinions concerning “le grand débat.” Their views make
interesting reading; some will be found in Note IV of the appendix to
Borel [Bo; 150-160]. In particular there are included there five letters
interchanged by Borel, Hadamard, Lebesgue, and Baire (loc. cit., pp.
150fT) which were prompted by the appearance of Zermelo’s Well-Ordering
Theorem.§ Also see Menger [a].

8 Zermelo’s set theory

In Section 5 we mentioned the reactions of Russell and Zermelo to the
introduction of the antinomies. Because of the scope of Russell’s work

+ Quoted with permission of Science Press.

1 Probably many of Russell’s early ideas on the relations between mathematics
and logic were formed during this exchange.

§ These appeared originally in the Bulletin de la société mathématique de France,
1904.
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we defer its exposition to the next chapter; we close this chapter with
some details concerning Zermelo’s axioms for set theory. Zermelo’s
system is of importance in that it formed a point of departure and a model
for many later systems which place set theory on an axiomatic foundation.

8.1 Zermelo conceived the idea of providing an axiom system, similar
to those used in geometry, in which the undefined terms would be set and
e. (Compare point and < as used in the simple order axioms, I1 7). The
aim would be to provide a consistent system of axioms in these terms, so
that, if the only sets used in practice actually constituted models of the
axiom system, no contradictions would result; and which, while not
permitting the “too large” sets in the models, would allow large enough
sets for all ordinary purposes of mathematics.

8.2 The manner in which Zermelo carried out this idea (see Zermelo
[c]) was substantially as follows:¥

With the undefined term sef and binary relation € between sets, the terms
subset (A < B), disjoint and relation = between sets may be defined
essentially as in 1II 3.1.2, 3.1.3, and 3.6. (“A4 = B” would be defined as
“4 < Band B < A”; some authors make an axiom of this, and call it the
“Axiom of Extensionality).” If a relation x ¢ M holds between sets x and
M, we call x an element of M. The first five axioms are:

1. If a, b, and A are sets such that ae A and @ = b, then be A. ]

II. If @ and b are distinct sets, then there exists a set, denoted by
{a, b}, such that a€{a, b}, be{a, b}, and, if x€{a, b}, then x is either
aorb.

IIT. If M is a set and M € M for at least one set M, then there exists a
set @I whose elements are the elements of all the elements of M, and only
these. (In symbols, x € @M implies x € M for some M such that M € I;
and, if x € M such that M ¢ I, then x € SI.)

IV. If M is a set, then there exists a set 1M, called the power set of M,
whose elements are the subsets of M, and only these. [Thus UM is the
analogue of the set 2 defined in IV 3.2.3.4.]

V. If M is a set and P a property having significance for the elements of
M, then there exists a subset M(P) of M whose elements are all those
elements of M that have property P, and only these.

By the term “significant property” in Axiom V is meant a property such
that, if x € M, then either x has property P or it does not. Thus, if M is
the set of all natural numbers, P may be the property of being odd, or it

+ For our elementary exposition we are following the first formulation of Fraenkel
[F2; 58ff], which differs in minor respects from Zermelo’s. Fraenkel’s axioms, as

translated by R. L. W., are used with permission of B. G. Teubner.
1 The necessity for this axiom rests on the undefined character of e.
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may be the property of being prime. If M is the set of all real numbers, P
could be the property of being algebraic, even though there exist numbers
about which we do not at present know whether they are algebraic or not.
If M is the set of natural numbers and P is the property of being red, then
P is not a significant property for the elements of M. (That the use of this
notion in the axioms is objectionable was recognized by Fraenkel and
others. For further comment on this axiom see Section 9.)

Since the next Axiom (VI) involves the null set and product set of a
given set, we prove the following theorems which introduce and establish
their existence:

8.2.1 Theorem.t If there exists any set at all, then there exists a
unique set O called the null set, which has no elements and is a subset of
every set.

Theorem 8.2.1 follows from Axiom V if, for given set M, we let P be
the property of not being an element of M ; and from the definition of subset
(cf. I1I 3.1.3-3.1.4).

8.2.2 Theorem. If M is a set, then there exists a set {M} whose only
element is M.

Proof. Given a set M, there exists the set @ by 8.2.1. And by Axiom
IV there exists the set 110, which evidently is a set {@} having exactly one
element, namely 0.}

Thus, no matter whether M is 0 or not, there exist two distinct sets M
and N, and hence by Axiom II the set {M, N}. If we let P denote the
property of being “equal to (=) M,” then from Axiom V we get {M, N}(P)
to be {M}.

8.2.3 Theorem. If M is a set different from O, whose elements are
disjoint sets, then there exists a set 8 M whose elements are those subsets of
&M that have exactly one element in common with each element of M. If
O e M, then BM = Q.

Proof. The set @M exists by Axiom I1I, and the set USM by Axiom
IV. Let P be the property of having exactly one element in common with
each element of M. Then by Axiom V the set U& M(P) exists, and is the
desired set BM. If 0 € M, no element of USM has property P and in this
case ‘PM is .

1 In Zermelo’s formulation (see Zermelo [c]), the existence of the sets @ and {M}
(cf. 8.2.2) was postulated along with {a, b} in Axiom II.

I We have to distinguish between the set §, which has no elements, and the set {0},
which has one element. Similarly, we have to distinguish, for any set M whatsoever,
between M and {M}; the former may have many elements, whereas the latter has
only one.
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8.2.4 We can now state the next axiom which, it will be noted, is
another form of the Choice Axiom:

VI. If M is a set different from @, whose elements are disjoint sets, and
0 ¢ M, then the set ‘M is different from 0.

8.2.5 It will be noted that all the Axioms I to VI, as well as Theorems
8.2.1 to 8.2.3, are of the “If..., then...” form. None of them is an
assertion of existence; in other words, none of them gives us permission to
assume that any sort of set exists, a priori.

One way to remedy this defect is to assert the existence of some set;
for example, we might add the axiom, “There exists at least one set.”
Or we might be more explicit and state the existence of the set @ (cf.
footnote to Theorem 8.2.1). In either case, we would then have postulated
the existence of sets with any finite cardinal number. For, if M is a set,
then 0 exists by Theorem 8.2.1, and the set {M} with exactly one element
exists by Theorem 8.2.2. Axiom II provides the set {@, {#}} with two
elements. And so on.

However, the existence of an infinite set would not follow from the
axioms unless a stronger existence axiom is added. For this purpose we
might use:

VII. There exists a set Z having the following properties: The set 0 is
an element of Z, and, if x ¢ Z, then {x} ¢ Z.t

With this axiom it is provable} that there exists a set Z, of the type
postulated in this axiom which is a subset of every set Z of the type
postulated here. The set Z, is a ‘‘smallest” set of this type; in other
words, its elements are @, {0}, {{0}}, {{{0}}}, etc. Its similarity to the set of
natural numbers (which has the smallest transfinite cardinal number X,)
is evident. (Compare IV 4.1.1.) Indeed, many prefer, even when a
non-axiomatic approach is undertaken (the so-called “naive” approach),
to let these sets or combinations thereof serve either as the standards or
norms (IV 4.1.1) for the natural numbers or as the natural numbers them-
selves. When we say that “a set M has 3 elements,” we can take the
position that this means that there is a (1-1)-correspondence between the
elements of M and the elements of the set composed of @, {0}, and {{0}}.§

8.2.6 Even with Axiom VII, the existence of sets with arbitrarily large
cardinal number is not assured. Although from the set Z, (defined in
8.2.5) we obtain, by virtue of Axiom IV, the set 1Z, of cardinal number

+ This is VII b of Fraenkel [F2; 99].
I See Fraenkel, loc. cit.
§ See, for instance, Halmos [Hal].
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2% = ¢; and (denoting UZ, by Z,) a set Z, = UZ, of still larger cardinal
number—in fact, then, a sequence of sets Z,, Z,, - - -, Z,, - - - such that, for
eachn, Z, < Z,.; no set of cardinal number greater than all the numbers

fn is assured. In the “unrestricted” set theory (see Problem 26 of Chapter
IV) we obtain such a number by first forming the set Z = {Z,, Z,, - - -,

Z,, - -},thentheset T = SZ. Then T > fn foralln. But, with Axioms
I to VII alone, the “set” Z is not postulated as a set by these axioms.
From the standpoint of consistency, perhaps this is desirable. The
axioms seem to provide all sets of the type ordinarily used, without going
so far as to permit “too large” sets of the self-contradictory type such as
the “set of all sets” or the “well-ordered set of all ordinal numbers.”
However, we may go even further, providing for the existence of such sets
as the set T of the preceding paragraph by strengthening the assertions of
the axioms. The details of this we do not go into here. The reader will
find them, together with extended commentary, in Fraenkel [Fy; 114-115].

8.2.7 Relations and functions. In order to introduce the notion of
cardinal number on the basis of the above axioms,T it is necessary to set
up the relation of (1-1)-correspondence. It is possible to go further,
however, since by introducing the notion of ordered pair we may set up
general binary relations between sets and hence the concept of function
as in II 4.4.1. This may be done by the Wiener-Kuratowski method }
as follows:

8.2.7.1 Definition. If x and y are distinct sets, then the ordered pair
(x, y) is the set {{x}, {x, y}}.

Note that, if x and y exist, then {x} exists by Theorem 8.2.2, {x, y} exists
by Axiom II, and consequently the set {{x}, {x, y}} exists by Axiom II;
thus the ordered pair (x, y) exists. The symbol (x, y) can be extended to
the case where x = y by making the convention that (x, x) is the set {x}.

On the basis of Definition 8.2.7.1 it is easy to set up definitions of binary
relations, correspondences, and functions, the latter two in substantially
the same manner as was done in I1 4.4.1 and IV 3.2.3.1. A binary relation
in a set S can be defined as a collection R of pairs {{x}, {x, y}}, where
x,yeS. For each such pair we may write, for example, x < y, or
xRy, to indicate that the pair {{x}, {x, y}} is an element of R.§

t The discussion in 8.2.5 and 8.2.6, in which sets of various cardinalities were
mentioned, was of course ‘‘extra-axiomatic’’ and not within the system.

I See Wiener [a] and Kuratowski [a].

§ For a systematic development of set theory based on the Zermelo-Fraenkel axioms,
see Suppes [Su].
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9 Amendments to the Zermelo system

We have already referred (8.2) to the objectionable use of the notion
“significant property” in Axiom V. As we pointed out in III 3.2.1, set
and property are interchangeable notions. Hence to introduce into the
axioms for sets the idea of “property” as though it were an intuitively
known concept is clearly unsatisfactory. In the first place, it is tantamount
to favoring one of two equivalent notions by accepting it as a kind of
“universal” while subjecting the other to axiomatic treatment. And, in
the second place, to sneak an equivalent notion into the axioms under the
guise of a ““universal’” smacks of a vicious circle procedure [Fraenkel calls
it a “jellyfish” (““quallenhaft”) device].

9.1 The problem of how to eliminate this defect from the axiom system
was attacked by both Skolem (see Skolem [a]) and Fraenkel ([F;; 285ff],
[F,; 103ff]). As they reformulated the offending axiom, the “properties”
admissible for determining subsets are defined by formulas built up from
formulas of the type x ¢ M. Thus Fraenkel commences with elementary
“set-functions’; a “set function” of a set x may be (1) any fixed given set,
(2) the (variable) set x, (3) the set ©x (Axiom III), and (4) the set Ux
(Axiom 1V); and (5) if ¢(x) and #(x) are set-functions, then so are
{e(x), $(x)} and @(H(x)). Axiom V is then restated as follows:

V’. Given a set M and two set-functions ¢(x) and (x); then there
exists a subset M’ of M which has as its elements exactly those elements x
of M such that ¢(x) € (x).

For exaniple, if M and A4 are given sets, then the assignment of meanings
o(x) = x, §(x) = A, with M as in V', proves the existence of the set
AN M.

Further details will be found in Fraenkel (Joc. cit). Also see Stoll
[Sto; VII].

For axiom systems for set theory containing further improvements, one
may consult papers of von Neumann [a, b], Bernays [a], and Gddel [G].
(See also Ackermann [a].)
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PROBLEMS

1. Prove on the basis of the Axioms I to VI of Section 8.2, augmented by
the axiom “There exists at least one set,” that there exists for every natural
number # a set having n elements.

2. What is the relation between Axiom VI of 8.2.4 and the existence of
product sets (VII 1.1.1)? How would you define products of sets S,, where
the index v has for domain an arbitrary set 4 (i.e., 4 could be N, or R, for
instance) ?

3. How would you define ternary relation in analogy with the definition of
“binary relation” in 8.2.7.1; and, in general n-ary relation?

4. What would you think of a consistency proof of the system of Axioms I
to VII of Section 8 which is based on the satisfiability criterion of Chapter 11,
using as model the set theory of Chapters III to V ?

5. Now that we have discussed both the non-axiomatic (sometimes called
“natural” or ““naive”’) set theory (III-V), and the axiomatic set theory (Sections
8, 9), which would you prefer as a basis for your work if you were going to
do a type of mathematics which requires set theory tools?

6. On the basis of Axioms I to VII of Section 8, can we give the definitions
of “ordinary infinite” and “Dedekind infinite” as in III 4 and prove their
equivalence as in 111 57

7. In view of the set theory contradictions and the alternative set theories
which have been proposed (Zermelo-Fraenkel, von Neumann, Bernays, etc.)
do you think it is feasible to speak of “the theory of sets” as though it were a
unique thing?
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The Frege-Russell Thesis:
Mathematics an Extension
of Logic

In this chapter we again pick up the logical thread which had its origin
in ancient Greece, and was strengthened by the introduction of symbolic
methods during the last two centuries by Leibniz, De Morgan, Boole, and
others. As we saw in the last chapter, despite the criticism of Kronecker,
the set-theoretic approach became more and more popular and was freely
used by Weierstrass, Cantor, and Dedekind in the founding of analysis.
Frege, and Peano and his colleagues, attempted to make the relations of
logic and mathematics even more intimate, using symbolic methods to
construct what seemed to them a firmer and more rigorous foundation of
mathematics.

1 The Frege-Russell thesis

Early in the present century a new shift of emphasis occurred ; from being
a method or a tool for the construction of mathematical theory, logic was
advanced as a progenitor of mathematics. What is variously called the
“logistic thesis,” or the “Frege-Russell thesis,” viz., that mathematics is
derivable from, or an extension of, logic, was presented in extensive detail
in the Principia Mathematica of Whitehead and Russell [P.M.].T

This thesis was not entirely new; its germ can be found in the writings of
earlier logicians and mathematicians. Thus Jevons remarks:i “I hold
that algebra is a highly developed logic, and number but logical discrimina-
tion.” Frege held§ that «“. .. inferences which on the face of it are peculiar

t Hereafter we shall denote the Principia Mathematica, 2nd ed., by P.M. (See
Whitehead and Russell [P.M.].) This was preceded by Russell’s book, The Principles
of Mathematics [R.], which, as explained in the Preface to P.M., was to have been
the first volume of P.M. As the writing of P.M. progressed, however, it became
clear that revisions, etc., of material contained in The Principles of Mathematics
necessitated the writing of a completely new work.

1 As quoted by Frege; cf. Frege [Fr; 22°]; used here with permission of Basil
Blackwell.

§ Loc. cit., IV®; quoted by permission of Basil Blackwell.
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to mathematics, such as that from n to n + 1, are based on the general
laws of logic’; andt *“. .. essential for mathematics . . . is the recognition
of its close connection with logic. I go so far as to agree with those who
hold that it is impossible to effect any sharp separation of the two.”

To Peano and his followers, however, the use of symbolic logic would
seem to have been purely a means to an end. Logic, to them, was the
servant of mathematics; a servant that mathematics admittedly could not
dispense with. It was probably inevitable that a school of thought should
arise that would conceive of this dependence on logic as the outward
evidence of a relationship that was more like that of parent to child than
servant to master. (See VIII 4.1.)

1.1 Background of the thesis

We can hardly do better here than let the chief protagonists of this
theory speak for themselves: “[This work, i.e., P.M.] has arisen from the
conjunction of two different studies,... On the one hand we have the
work of analysts and geometers, in the way of formulating and systematiz-
ing their axioms, and the work of Cantor and others on such matters as the
theory of aggregates. On the other hand we have symbolic logic, which,
after a necessary period of growth, has now, thanks to Peano and his
followers, acquired the technical adaptability and the logical compre-
hensiveness that are essential to a mathematical instrument for dealing
with what have hitherto been the beginnings of mathematics. From the
combination of these two studies two results emerge, namely (1) that what
were formerly taken, tacitly, or explicitly, as axioms, are either unnecessary
or demonstrable; (2) that the same methods by which supposed axioms are
demonstrated will give valuable results in.regions, such as infinite number,
which had formerly been regarded as inaccessible to human knowledge.
Hence the scope of mathematics is enlarged both by the addition of new
subjects and by a backward extension into provinces hitherto abandoned to
philosophy” (P.M., Preface).}

1.2 Axioms of logic as a basis

The ideal goal of this “backward extension” was a set of “primitive”
axioms of logic, statements that the logician would call “true,” on which
one could base the whole of mathematics. In this way the main thesis
might be considered established. Numbers, for instance, would be so
defined as to have unique meanings; “1” would emerge as what we

t Loc. cit., IX®; quoted by permission of Basil Blackwell.
1 The italics are mine; quoted with permission of Cambridge University Press.
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ordinarily think of as “unity,” and not merely as a candidate for the
initial element of a sequence as postulated in the Peano axioms (which
might equally well be 0,” “2,” “3,” or..., as “1,” so far as the Peano
axioms are concerned). At the same time, one would attempt so to
construct the theory as to eliminate contradictions such as had appeared in
the theory of sets and which had threatened the foundations of Frege’st
work.

In what follows we shall give a sketch of the manner in which this
program was carried out in P.M., together with some subsequent develop-
ments. Only enough detail will be given (1) to illustrate the general
procedure which was followed and (2) to furnish a basis for the later
discussion of intuitionist logic as well as of the modern “formalistic”
approach to logic and mathematics.

2 Basic symbols; propositions and propositional functions

Much as in the axiomatic method, one starts with certain ideas that are
left undefined, and with certain assumptions analogous to axioms. How-
ever, while recognizing this, Russell and Whitehead provide an auxiliary
explanation of the “meanings” of these basic ideas. This is necessary,
particularly since they are not dealing with such matters as euclidean
geometry, for example, where one can usually assume that a reader is
already familiar with the fundamental ideas in some form or other, as well
as with just what the ultimate purposes are. The explanations are
accompanied by the proviso that they “do not constitute definitions,
because they really involve the ideas they explain.”

2.1 Primitive ideas

The most elementary notion employed in P.M. is that of proposition;
as used therein, it appears to be a statement that involves only definite or
constant notions: thus “the sun is bright” or “this ink is black™ are
propositions. They are similar to the constants of elementary algebra or
the points of geometry. But statements such as “x is red” or “x is a

+ Whitehead and Russell make clear their debt to Frege: “In all questions of
logical analysis, our chief debt is to Frege. Where we differ from him, it is largely
because the contradictions showed that he, in common with all other logicians
ancient and modern, had allowed some error to creep into his premises; but apart
from the contradictions, it would have been almost impossible to detect this error.”
And to Cantor: “In Arithmetic and the theory of series, our whole work is based on
that of Georg Cantor.” And, although the geometric portion of P.M. was never
completed, the geometric (as well as axiomatic) work of “v. Staudt, Pasch, Peano,
Pieri, and Veblen” is acknowledged. (Quotations from P.M., Preface, by per-
mission of Cambridge University Press.)
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father of y** are not propositions since they contain rariables. *‘Variable”
is used much as in mathematics, every variable having associated with it a
valid “domain of values.” Statements that contain variables and which
become propositions when specific values, i.e., constants, are substituted
for all variables, are called propositional functions (see Section 4).

To propositions are assigned “truth-values,” the truth-value of a
proposition being truth if it is true, and falsehood if it is false.

These notions (cf. VIII 4.1) embody concepts whose nature is
not generally agreed upon even today by logicians and philosophers,
who point out that in P.M. they seem not to be used consistently. With
good reason, one may insist that to confine the notion of “proposition”
and “propositional function” to actual sentences is reminiscent of the
early status of the concept of “function” in mathematical analysis as an
expression of a certain kind containing variables. In P.M. it is stated
(p. 92), for instance, that by ‘‘elementary propositional function” is
meant “‘an expression containing an undetermined constituent, i.e., a
variable, or several such constituents, and such that, when the undeter-
mined constituent or constituents are determined, i.e., when values are
assigned to the variable or variables, the resulting value of the expression in
question is an elementary proposition.”

Probably the majority of logicians would hold that a proposition is the
“meaning” expressed by the sentence embodying it, so that “This table is
small” and “Dieser Tisch ist klein” are the same proposition although their
forms are different. And it is quite possible that this is the view intended
in PM.

2.2 Basic symbols

Propositions are denoted by small Latin letters, usually p, g, r, etc.
Propositional functions are denoted variously: Thus ¢x denotes a function
with a single variable x.§ By @p one might indicate a propositional
function whose variable p is replaceable by propositions. The assertion
of the truth of a proposition or propositional function is indicated by the
symbol |-~. Thus

=.p

asserts the truth of the proposition p. All axioms are assertions, and
hence preceded by the symbol |—. Without this symbol, no assumption is

T Quoted with permission of Cambridge University Press.

} Compare the discussion in IV 4.1.1 regarding the concept of number and the
symbols used to denote numbers.

§ Parentheses are avoided to a large extent in P.M.
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being made regarding the truth of a proposition p; in particular, p, g,
r, - -+ are symbols for propositions which may be either true or false.

Most of the parentheses, brackets, etc., are replaced by dots on the
line; e.g., ““. pvq.” instead of “(p vg).” For brackets enclosing paren-
theses, a “double dot™ : is used. And generally a larger number of dots
indicates an “outside” parenthesis, a smaller number an “inside” paren-
thesis. Hence, if one encounters : in a formula, it indicates a bracket
enclosing everything to the next double dot : or to the end of the expression.
(Cf. pp. 91T, 16ff of P.M.)

Negation is represented by the ~ already used in II 3.1; thus ~p
represents denial of a proposition p. The and/or symbol v is used as in
I113.3.1. The result of the application of ~ or v to propositions is again
a proposition (if p is a proposition, then ~p is a proposition, etc.).

2.2.1 Implication. P.M. uses © for implication, which is defined in
terms of the basic symbols as follows:

(2.2a) p>2q.=.~pvg Df

The Df stands for ‘“‘definition” and in conjunction with = denotes “is
defined to mean.” Both = and, ultimately, = are usually set off by dots.
Expression (2.2a) can be read “p implies ¢ is defined to mean that either p
is false or g is true.”

This definition of implication may at first seem strange, since in ordinary
affairs of life we so commonly assume that in the statement “p implies ¢”
or, as more commonly put, “If p, then ¢,” the “antecedent™ p is neces-
sarily connected in some way with the “consequent” gq. Thus, it would
hardly seem natural to assert that “if water flows downhill, then light is
bright.” For in this case there is no apparent connection between ante-
cedent and consequent. Nevertheless, if p is the proposition ‘“Water
flows downhill” and ¢ the proposition “Light is bright,” then p > ¢
(see 3.5—especially 3.5.3). For in view of the meaning of v, the expression
“~pvgq” is considered true whenever (1) p is true and q is true, (2) p is
false and ¢ is either (i) true or (ii) false; the only case ruled out by (2.2a)
is that where p is true and g is not true. What one is interested in, here,
is truth-value; whether there is some necessary connection between p and
q is not of importance. The truth-value of p > g, like the truth-values of
p vqand ~p, depends on the truth-values of the constituent propositions
D, q; in the case of p v g, the truth-value is truth if the truth-value of either
p orgistruth. In order to distinguish it from other types of implication,
(2.2a) is called material implication (cf. 3.8).

If we examine the kind of implication that we use in mathematics, we
find that it actually corresponds to the “material” type. Consider, for
example, the axiom system O” obtained by adjoining to the simple order
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axioms (II 7) the axiom, “There exist two and only two distinct points in
C,” and changing the “If” part of Axiom 3 to “If x, y, z are distinct.”
The new Axiom 3 is not independent in the resulting system. For suppose
we let p denote the statement “There exist three distinct points x, y, and z
such that x < y and y < z,” and ¢ the statement “x < z’’; then the new
Axiom 3 states “If p, then g,” or “p implies ¢.” Now, in view of the new
axiom, p is false, or, as we sometimes put it, “p cannot be satisfied”;
and whatever the statement “p implies ¢”” may be, under these conditions
we take it as valid in the system. In other words, if p is false, we accept
that p implies g, no matter whether g is true or false. We might recall here
the discussion in II 1.2 of vacuous satisfiability.

2.3 The primitive propositions

The axioms of what may be called the propositional calculus, which
formed the initial portion of P.M., and which P.M. called “primitive
propositions” (see P.M., p. 96), were as follows:

1 F:pvp.2.p

11 l-:9.2.pvyg

11 :pvg.> .qvp

v F=:pv(@vr).> .qv(pvr)
v l-:.g>r.2:pvg. D> .pvr

(The dots after |— always indicate range, which includes everything
following the dots until either an equal number of dots is encountered
preceding a symbol =, or the end of the expression.) These axioms may
be read as follows:

I. If p is true or p is true, then p is true.
In P.M.,, I is called the “principle of tautology.”
IL. If g is true, then p or q is true.

P.M. calls II the “principle of addition”—to a true proposition any alter-
native may be added and the resulting proposition is true.

III. If either p or g is true, then either g or p is true.

This is obviously the commutativity of v; in P.M. it is called the “principle
of permutation.”

IV. If p is true, or either g or r is true, then g is true, or either p or r
is true.
This is clearly a type of associative law.
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V. If ¢ implies r, then “p or ¢” implies “p or r.”  Notice the similarity
to the monotonic law of real number arithmetic (VI 2.2.4). P.M. calls V
the “principle of summation.”

These “principles,” from the logistic standpoint, are *“primitive logical
truths,” and constitute a system sufficient for the theory of deduction.}
They are to be considered true regardless of the truth values of the prop-
ositions p, g, r. The usual name for such expressions is “tautology.” They
must, however, be accompanied by rules for determining their own
consequences.

3 Calculus of propositions

Axioms I to V constitute, in their symbolic form, what would today be
called a set of basic formulas. Formulas of a similar character proved
from them would correspond to ‘“theorems.”

3.1 Manner of proving theorems

Inasmuch as the system so constituted is supposed to embody a “theory
of deduction,” it raises what seems at first sight to be a paradoxical
question, viz., What kind of deduction shall we use to deduce the properties
of deduction? The answer is that we give two simple rules for calculation
of formulas from formulas.

They are:

(1) Substitution of a formula A for all occurrences of a proposition p in
a given formula. (For example, substitution of pvg for p in I gives
(pvovieve) .= .(pve))i

(2) Modus ponens: “Anything implied by a true proposition is true.”
(That is, no matter what the formulas 4 and B, if we have “I— . A” and
“I— . A4 D B,” then we may infer “I— . B.””)

3.2 Some sample proofs

We insert here some examples of how formulas are derived from the
“primitive propositions.” In particular, we show through the following
sequence of lemmas how to derive the Law of the Excluded Middle.

+ As a matter of fact, I to III and V constitute such a system, since Bernays [b]
showed that IV is derivable from them. Regarding the independence of these
postulates, see Henle [a].

1 This rule is not explicitly stated in P.M., but is employed throughout. Cf.
Russell [R;; 151f].



226 THE FREGE-RUSSELL THESIS Ch. IX
3.2.1 -:.gq>r.>2:p>qg.>.p>r
Proof. Using rule (1), substitute ~p for p in V:
(3.2.1a) —i.g=2r.2:~pvg.D . ~pvr
By (2.2a), ~p vqis the same as p © q. Hence (3.2.1a) becomes
f-:.q>r.®>:p>qg.>.p>r

3.2.1.1 It follows easily from 3.2.1 that, whenever we have propositions
of the form a = b, b > ¢ asserted, and a > ¢ is to be proved, then the
proof may proceed as follows: Replacing p, ¢, r in 3.2.1 by b, ¢, a respec-
tively gives

:.b>¢c.2:a>b.>.a>c¢
—.b>e¢

Then by rule (2) we get
F:a>b.>.a>c¢

-.a>5b
Again by rule (2),
—.a>c¢
3.22 :p.2.pvp
Proof. Substitute p for g in II.
3.23 .p2p

Proof. 1In 3.2.1, substitute p v p for ¢, and p for r:
Fiipvp.D.p:> 1.p.D.pVvp:>D . pDp

By virtue of I, pv p. > . p is a true proposition. Hence, by rule (2),

we get
F:ip.2.pvp:2.p>op
which in turn gives, by 3.2.2 and modus ponens,
.p>p

3.24 l—.~pvp

Proof. This is merely a restatement of 3.2.3, by virtue of Definition
(2.2a).

3.2.5 .pv~p (Law of the Excluded Middle)

Proof. By III, with ~p and p substituted for p and g respectively,
we get

(3.2.53) =i ~pVp.> .pvV~p



Sec. 3 CALCULUS OF PROPOSITIONS 227

But ~p v p is true by 3.2.4; hence by modus ponens (3.2.5a) and 3.2.4 give
F=.pVv~p

3.3 The reductio ad absurdum

The type of proof which involves showing a proposition p false, by
showing that p leads to absurdity, is embodied in the assertion:

3.31 F:p>D ~p.>.~p
Proof. 1In I substitute ~p for p to get
=it ~pv~p.>.~p
Then by (2.2a) this becomes the desired assertion.

332 As a matter of fact, there is a more general form for reductio ad
absurdum, of which 3.3.1 is a special case, namely:

F-:p>2qg.2:p>2 ~q.2 . ~p

(That 3.3.1 is obtainable from 3.3.2 may be seen by substituting p for g in
3.3.2 and applying 3.2.3 and modus ponens.)

3.4 The double negative

An important principle of classical logic is that the double negative of a
proposition is equivalent to the proposition. As soon as equivalence is
defined, this may be derived from the primitive propositions and the Law
of the Excluded Middle as follows:

3.4.1 b-.p 2 ~(~p)
Proof. In 3.2.5 substitute ~p for p:
= ~pv ~(~p)
Then by Definition (2.2a) this becomes the desired assertion.
342 —=.pv ~{~(~p)}

Proof. 1In V replace ¢ and r by ~p and ~{~(~p)} respectively:
(34.2a) :.~p.2 . ~{~(~p)}.2:pV ~p.2 . pV ~{~(~p)}
In 3.4.1 replace p by ~p:

(3.4.2b) F:~p. 2. ~{~(~p)}

Relations (3.4.2a) and (3.4.2b), together with modus ponens, give
Fipv~p.2.pv ~{~(~p)

which, with 3.2.5 and modus ponens, gives the desired assertion.
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343 f—.~(~p)>p
Proof. In III replace g by ~{~(~p)}:
Fipv ~{~(~p)}. 2 ~{~(~p)}Vp
This, together with 3.4.2 and modus ponens, gives
. ~{~(~p}vp
Definition (2.2a) yields the desired assertion.

3.5 Miscellaneous theorems

The following exemplify other theorems important in the applications of
the theory of deduction.

Frequently used is the type of argument which proves a proposition p by
showing that the assumption of its falsity implies p. This is embodied in
the P.M. calculus of propositions by:

3.5.1 Fi~p>p.>2.p

Proof. From 3.4.1 and 3.2.1 (in the latter we substitute p for g,
~(~p) for r, and ~p for p), we get
Substituting ~p for p in 3.3.1 gives

Fi~p > ~(~p). 2. ~(~p)
Hence by 3.2.1.1 we have
Ei~p>p.2 . ~(~p)
Application of 3.4.3 and 3.2.1.1 completes the proof.
A useful formula, also, is the following:
3.5.2 :p.2.pvg

Proof. Axioms II and III (with II in the form p. > .qvp, etc)
together with 3.2.1.1 give the desired relation.

A feature of material implication, often termed “paradoxical,” is the
theorem that a false proposition implies every proposition: This derives
from:

3.5.3 :~p.2.p>gq
Proof. Substitute ~p for p in 3.5.2 and apply (2.2a).

Thus if A4 is a false statement—*“}— . ~A”—and B is any statement
whatsoever, substitution of “4” for “p” and “B” for “q” in 3.5.3 gives
“I-: ~A4.> .4 > B”; whereupon modus ponens gives “\— .4 > B.”
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Another favorite device in mathematics is to prove that a proposition p
implies a proposition ¢ by showing, instead, that the denial of g implies
the denial of p. The basis for this is the theorem:

3.54 =ip> ~q.2.9> ~p
Proof. In Axiom III replace p by ~p and g by ~gq, giving
Fi~pV~g. 2. ~gV ~p
Application of (2.2a) gives the desired assertion.

Note that 3.5.4 takes the form stated in words prior to 3.5.4, if we change p to ~¢q
and q to p (and apply 3.4.3).

Another concomitant of material implication is the assertion that a
true proposition is implied by any proposition. This follows from
3.5.5 F:q.2.p>29¢q

Proof. In Axiom II replace p by ~p and apply the definition of
implication (2.2a).

Thus if B is a true statement—“}— . B”—and A is any statement,
3.5.5 and modus ponens give “I— . A > B.”

3.6 The logical product

An important detail of the Russell-Whitehead propositional calculus is
the non-independence of the logical product, there indicated by a dot .,
and the symbols ~, v. In P.M. (p. 109), the symbol . is defined as
follows:

(3.6a) p.q.=.~(~pv ~gq) Df
The intuitive idea behind (3.6a) is that assertion of p and q is equivalent to
asserting the denial of the logical disjunction of the denials of p and g.

3.6.1 A consequence of Definition (3.6a) is the equivalence, in the
P.M. calculus of propositions, of the Law of the Excluded Middle and the
Law of Contradiction. The latter has the form:

3.6.2 .~({@.~p

In words, 3.6.2 states that it is false that a proposition is both true and
false. To derive 3.6.2 from (3.6a) and the Law of the Excluded Middle
(3.2.5), note that, by 3.2.3, Definition (3.6a) gives

F:p.g.>.~(~pv~q)
and hence, by 3.5.4 and modus ponens,

(3.6.2a) F:~pve~g. 2 ~(p.9)
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Since, by 3.2.5, - . ~p v ~(~p), we get the desired relation by replacing
q by ~p in (3.6.2a).

3.6.3 Note that combination of 3.5.3 and 3.6.2 furnishes the basis of
the much-quoted assertion that, if a logical system contains a contradiction
—i.e., an assertion — . A . ~ A, where A is a formula—then all propositions
are provable in the system.

3.7 Sheffer’s “stroke’ symbol

In closing this section, we might point out some developments which
should prove of great interest to the student of mathematics. Since P.M.
was first published, with its two undefined symbols (or “logical con-
stants”) ~ and v and five axioms (later reduced to four axioms by
Bernays—cf. 2.3), it has been shown that one undefined symbol and one
axiom are sufficient. (Cf. problems 29 and 30 of Chapter 11.)

The symbol referred to is / and is called “stroke.” It was introduced by
H. M. Sheffer [a], and its intuitive meaning can correspond to either (1)
total rejection (employed by Sheffer, loc. cit.), or (2) incompatibility. To be
more specific, p/q would mean, in case (1), that both p and g are false—in
the previous symbols, ~p . ~g; and, in case (2), that at least one of the
propositions p, g is false—in the previous symbols, ~p v ~¢. In either
case, ~p would be defined as p/p, whereas (1) would require that we define
p v qtomean (p/q)/(p/q), and (2) that p v g mean (p/p)(q/q). The intuitive
meaning (2) is generally preferred, however (as leading to somewhat
simpler forms).t

Thus, treating the new symbol / as undefined, we would define the P.M.
symbols ~ and v as follows:

(3.72) ~p.=.plp Df
(3.7b) pvq.=.(pp)/glg)  Df

Since @ and . are defined in terms of ~ and v, it is clear that by means of
(3.7a) and (3.7b) they are definable in terms of / alone. For example,

(3.70) r>q.=.p/q9)

If meaning (1) had been selected for /, then p > g would have had to be defined
as {(p/p)/q}/{(p/p)/q}. The simpler form (3.7c) is one of the reasons for preferring
meaning (2).

That Axioms I to V may be replaced by a single axiom in terms of / was
shown by J. Nicod [a]. This axiom is a single formula in terms of prop-
ositional symbols p, ¢, --- and the stroke /, and is not a ‘‘fictitious”

1 This is the sense in which Quine uses the symbol; see his [Q;1; VI.
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combination of separate axioms of the sort discussed in II 3.6. It does,
however, have the disadvantage of being rather complicated, so that it is
probably better to found the system of P.M. on the basis outlined pre-
viously. For further commentary, the reader is referred to Quine
[Q; 45-49]. Also see the comment of Hilbert-Bernays [H-B; 64-65] and
the work of Tarski referred to therein.

3.8 Other types of “implication”

In dealing solely with propositions whose ““truth values” are of concern
to us, Definition (2.2a) seems to embody the most generally accepted type
of implication, and is certainly the one commonly employed in mathe-
matics. It is not, however, the only kind definable, nor, when only the
forms or structure of propositions are under consideration (with no atten-
tion paid to their content or “‘truth”), is it necessarily the most desirable.

The first attempt at an alternative type of implication was made by
C. 1. Lewis. This resulted in a theory of deduction which he called strict
implication. A new undefined concept, denoted by {p, which may be
read “p is possible,” was introduced. The relation of strict implication
was then defined thus:

(3.8a) p3qg.=.~0(p. ~q) Df

The formula p -3 ¢ may be read “p strictly implies g.”” Between this type
of implication, and p = ¢, as defined in (2.2a), which may now be read
“p materially implies ¢,” the following relation holds:

(3.8b) p3qg.3.p>q

(The “converse” implication does not hold.) Using the interpretation of
2.2.1, if p is “Water flows downhill,” and ¢ is “Light is bright,” then,
although p > g holds, p 3 ¢ does not hold.

The paradoxical properties of material implication proved in 3.5.3
(““A false proposition implies every proposition”) and 3.5.5 (“If a prop-
osition is true, then it is implied by every proposition™) do not hold for
strict implication. (See, however, Halldén [a].)

For further details regarding strict implication, the reader is referred to
Lewis and Langford [L-L; 122ff]. 1In all, Lewis studied five different
systems of deduction (see Lewis and Langford [L-L; 492ff]), remarking
(loc. cit., pp. 501-2), “Prevailing good use in logical inference—the
practice in mathematical deductions, for example—is not sufficiently
precise and self-conscious to determine clearly which of these five systems
expresses the acceptable principles of deduction.”

Regarding the general problem, the reader is also referred to Tarski
[T; 23ff], Emch [a], Lewis [a], Curry [Cu].
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3.9 Truth-table methods

An important alternative to the methods of proof employed in the
propositional calculus of P.M. is that of matrix or “truth-table” methods.
Although implicit in the work of some earlier authors, they were first
systematically exploited by E. L. Post [a] and J. Lukasiewicz in 1921.
Their importance, from the present point of view, derives from the fact
that they provide an algorithm or rule for determining whether a given
formula is a tautology (i.e., true independently of the truth values of the
constituent propositions) or not.

Instead of starting with primitive propositions, tables defining the truth
values of the basic constants ., v, ~, and > are provided. Denoting
“true” and “false” by “t” and “f” respectively, these are given in the
following form:

p 9 p4qg pvqg ~p p=>gq

e T
e . e+
e e N
-+ o
e )
e

In each of the last four columns are given the truth values corresponding
to the possible combinations of truth values of p and g to the left.

On the basis of the tabulation I, tests of arbitrary formulae may be
made. For example, consider the formula constituting Axiom I of 2.3:
pvp.>.p. The following table illustrates the method:

p 9 DpvYp pvVp.=>.p

I

—h h et et
e
Lo P R T e o
- - - -

In Table I1, the column under “p v p” is formed by observing that “p v g
is true in Table I whenever p or ¢ has a “t” value; then the column under
“pvp.> .p” is formed by observing that in Table I, p © ¢ is true
whenever both p and g have value “t” or when p has value “f.”” That the
last column contains only “t” indicates that the formula is valid irrespective
of the truth values of p and g; i.e., the formula is a tautology.
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In case more than two primitive propositions are involved in a formula,
the possible combinations of truth values necessitates using a more
extended matrix, of course; for k& propositions, the number of rows will
be 2. For example, the table validating Axiom V is:

~
<

¥r q=>r pvq pvYr pvq.=.pNtvr qg>r.>2:pvg> D pvVvr

e e R R e e
Lo T o 7 Tl T o T
e e e e e R
L N A
e e R e N e )
o B e A R I
L T A
L N )

The first three columns contain the eight possible combinations of truth
values of p, ¢, and . Then the next three columns contain the correspond-
ing truth values of the innermost parentheses ¢ > r, pvg, and pvr.
The next inner parenthesis is “pvgq. > .pvr”, whose truth values are
obtained from the values of p v g and p v r, using the table for “>""in I.
The final column is made up from the fourth and seventh columns of the
table, again using the table for “>.” Since the final column contains only
“t’s,” the formula being tested is a tautology.

As already observed, the virtue of this method is that it forms an
algorithm; like that for finding a square root of an integer, or the greatest
common divisor of two integers (“‘euclidean algorithm™), it always works.
We have a method of deciding, for every formula, whether it is a tautology
or not, and from this standpoint—the “truth-table” standpoint—the
propositional calculus is a ““decidable” theory (see XI 5). Moreover it can
be shown, although we do not go into this, that the two methods, (1)
provability on the basis of the axioms as in P.M. and (2) validation by truth
table, are equivalent; if a formula is provable from the axioms, then it will
turn out to be a tautology by the truth-table method, and conversely. As
a consequence, the propositional calculus is complete in the sense
that every tautology can be proved. As a matter of fact it can be shown
that the system is complete in the sense that if any formula not provable
from the axioms is added to them, then contradiction results (this is
the logical analogue of completeness in the sense of I1 4.3.1; see Problem 21
at the end of Chapter II). The distinction will be made clearer when we
consider the predicate calculus below.
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4 Forms of general propositions;
the predicate calculus

Although the propositional calculus is a complete system in the senses
described above, it is not sufficient for the needs of mathematics. In the
propositional calculus no attention is paid to the form or structure of a
proposition; e.g., whether it may be a statement such as “For every two
numbers x and y, x + y = y + x,” or “There exists a number x such that
x* —4x + 4 =0." It is necessary to analyze the various forms of
propositions that may arise, particularly if we are to achieve a foundation
for arithmetic.

For this purpose, we may first symbolize the subject-predicate form of a
proposition by a so-called predicate variable or propositional form P(x),
in which P denotes the predicate and x the subject; or, more generally, a
functional symbol P(x;, x,, - - -, X,) in case more than one variable enters
into the predicate. And as we may expect, attention must be given to the
domains of these functions, just as in the case of the set-functions intro-
duced in II 4.4.1; the range, however, will generally be two-valued—truth
or falsity—and for some values of the individual variables in P, P may be
expected to be true, and for others false.

4.1 Free and bound variables

For the study of the “for all” and “there exists” type of propositions
exemplified above, the customary symbols are V and 3. Thus, for a
propositional function of one variable x, we have the forms:

(4.1a) Vx P(x)
(4.1b) Ix P(x).

We may read (4.1a): “For every x (in its domain), P(x)”; and (4.1b):
“There exists x such that P(x),” or “For some x, P(x).” The occurrences
of x in these expressions may be compared to that of x in f 01 x% dx; as the

latter is a constant, the appearance of x in it was called “apparent” in
P.M., x being termed an apparent variable in both (4.1a) and (4.1b).
Today the more common term for such an x is bound variable; while the
x in P(x) itself is called a free variable. [In P.M. the symbol (x) was used
instead of Vx).]

The symbols V and 3 are called quantifiers; ¥ is often called the
“universal quantifier” and 3 the “existential quantifier.” For functions
of more than one variable, various combinations may occur:
“VxVy P(x, y),” “Vx3y P(x, y),” and “IxVyVz P(x, y, z),” for example.
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42 Predicate calculus

We may now extend the propositional calculus to a more general theory
variously called the predicate calculus, calculus of propositional functions,
or functional calculus, of which the propositional calculus forms only a
part. We shall describe as much of it as will serve our purposes, referring
the reader to treatises on logic for details and extensions. (See, for
instance, Hilbert and Ackermann [H-A].) In particular, we need con-
sider only the first-order predicate calculus, in which the predicate variables
are not themselves quantified (i.e., no forms such as VP P(x) occur).t

4.2.1 Formulas

First we must specify what may be called a formula. As in the prop-
ositional calculus, we have propositional variables p, g, r, - -, as well as
the logical constants v, ~, -, and . In addition, we have individual
(““subject” or “object™) variables x, y, z, - - - as well as predicate variables
(functions) P(x), P(x, y), Q(x), etc., in which occur individual variables;
and, finally, the quantifiers V and 3. As formulas we have, in addition to
propositional and predicate variables, the various combinations that we
can build up from these by using both the logical constants and quantifiers.
Thus, if A is any formula, then ~ 4 is a formula. If 4 and B are formulas,
then A-B, Av B, A © B are formulas, provided that 4 and B do not
contain any variable that is free in one and bound in the other. If 4isa
formula in which x occurs as a free variable, then Vx 4 and 3x A are
formulas.

4.2.2 Axioms and methods of proof

In the case of the propositional calculus, we gave a set of axioms and
two proof methods (substitution and modus ponens) in order to establish
theorems concerning the tautological character of formulas. We also
pointed out, however, that one could alternatively use truth tables to
arrive at the same results, thereby achieving not only greater simplicity in
many cases, but establishing an algorithm for deciding in every case
whether a formula is a tautology or not. Can we proceed analogously in
the case of the predicate calculus?

Consider the formula Vx. P(x) > Q(x), P and Q being predicate
variables and x the sole individual variable involved. What would we
mean by specifying that it is a “tautology” or, to use the more commonly
preferred term, “universally valid”? Aside from the possible interpreta-
tions of P and Q, consider the question of the domain of the variable x.

+ Quantification of predicate variables leads to higher-order calculi. In following
the now common procedure of making a separation of the first-order calculus from

those of higher order, we are emulating Hilbert and Ackermann [H-A] as well as
later authors.
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This domain might be of any cardinality, finite or infinite; this feature
alone might be enough to discourage us from attempting truth-table
methods, since a priori an infinite, even uncountably infinite, variety of
truth tables would be needed. Despite this, we can develop truth-table
methods and a mode of reasoning about them which will yield results.
However, we shall avoid further consideration of this possibility and turn,
instead, to an axiomatic presentation.

As axioms we select those axioms of the propositional calculus given in
2.3 and the following:

V1 . A(s) @ 3x A(x)
VII . Vx A(x) © A(s)

We may read VI: “If 4 holds for a particular s, then there exists an x for
which A4 holds”; and VII: “If 4 holds for all x, then it holds for any
particular individual s.”

As rules for proof, in addition to modus ponens we have:
(1) From A > P(x) we may infer 4 2 Vx P(x),
(2) From P(x) © 4 we may infer Ix P(x) > 4,

where in both (1) and (2), 4 is any proposition not containing x as a free
variable and P(x) has x as a free variable. We must also extend the
substitution rule so as to allow, for example, substitution of a formula 4
for an individual variable x in a formula F so long as (i) 4 contains no
individual variable which is bound in F, and (ii) all occurrences of x in F
are replaced by A4, and (iii) the result of the substitution is a formula as
defined above.

Since we have proved the Law of the Excluded Middle—p v ~p—in
3.2.5, we may substitute A(x) for p and obtain: A(x) v ~A(x). By 3.5.5,
AX) v ~A(x) . 2:(pv ~p). @ . A(x) v ~A(x). Hence, by modus
ponens, pv ~p . > . A(x)v ~A(x). Then by rule (1) above and modus
ponens, we may infer Vx. A(x) v ~A(x). Such a formula, we would
conclude, is true for every domain and, hence, valid in the sense of the
predicate calculus.

For a more extended presentation of the calculus, we refer the reader to
treatises on logic (e.g., Hilbert and Ackermann [H-A]).

4.2.3 Completeness

We found that the propositional calculus was not only complete in the
sense that every tautology is provable, but also in the “logical” sense that
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addition of an unprovable proposition would result in contradiction
(cf. 11, Problems 21 and 22). Does the like hold for the predicate calculus ?

That the predicate calculus is not complete in the logical sense can be
seen from a consideration of the formula 3x . 4(x) @ Vx A(x). That this
is not provable from the axioms (i.e., is not universally valid), can be
inferred from a consideration of any domain for x containing at least two
individuals a and b; but in a domain containing a single element the
formula would be true, so it is not logically inconsistent with the axioms of
the predicate calculus. (A formal proof of the impossibility of proving
it may be found in Hilbert-Ackermann [H-A], pp. 92-95.)

However, the predicate calculus is complete in the sense that every
universally valid formula is provable. This was first shown by K. Gédel
in 1930 (Godel [c]). Godel’s theorem T may be stated as follows:

For every formula A of the first-order predicate calculus, either ~ A is
provable, or A is satisfiable in the domain of the natural numbers. (A
formula is called “satisfiable” in the domain N of natural numbers if it
holds for some assignment of natural numbers to its individual variables
and truth values for the predicate variables.)

It follows from this theorem that if a formula A is universally valid it is
protable; for if it is universally valid, it certainly is valid in N, and hence
~A is not satisfiable in N. Thus, by the theorem, ~(~ A) is provable;
and by the propositional calculus, ~(~A4) and 4 are equivalent. By the
same line of reasoning, we have a famous theorem of Lowenheim (1915)
to the effect that if a formula is valid in the domain N, then it is valid in every
domain (since provability implies universal validity).

Moreover, we can now get another famous theorem, the so-called
Léwenheim—Skolem theorem: If a formula A is satisfiable in some non-
empty domain D, then it is satisfiable in N. For if A is satisfiable, then ~ A4
is not universally valid and therefore not provable. It follows from
Godel’s theorem that A is satisfiable in the domain N.

4.2.4 Skolem’s Paradox

From the result just stated has come a famous paradox called “Skolem’s
Paradox” which may be interpolated here. We recall that mention was
made, in the discussion of the axiomatic method in Chapters I and II,
of the way in which the logical apparatus was taken for granted; only the
“technical” terms were regarded as undefined, while the logical terms were
placed in a different—"“universal”—category (see II 4.10, for instance).
We are now in a position to alter this situation by “imbedding” the
technical theory in the predicate calculus, the logical apparatus thereby

1 This theorem is not to be confused with the more famous theorem to be discussed
later in the next chapter.
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becoming also axiomatized. Instances of this will be seen in the discussion
of formal systems in Chapter XI.

But how will the set theory apparatus be handled in such a treatment?
We can, if we wish, employ a development of classes similar to that
exemplified in P.M., which will be described in the next section. However,
it is now more common to use an axiomatic treatment such as that of
Zermelo-Fraenkel (cf. VIII, 8,9), in which the axioms are formulated in the
logic of the first-order predicate calculus (with addition of suitable set-
theoretic predicate variables such as a predicate symbol for “x = y”).t

Let us now consider such an axiomatized set theory. Since it is formu-
lated in the logic of the first-order predicate calculus, all formulas of the
theory must be satisfiable in N. But how is this compatible with the fact
that such theorems as that expressing the uncountability of the set of all
subsets of N are provable in the theory?

One way of looking at this is to observe that the collection of ordered
pairs constituting the (1-1)-correspondence between the new domain D,
and the set N is not one of the ““sets” of the axiom system. What is a set
in the usual “naive” sense is not, in other words, a set in the axiomatic
sense of the term. And, according to the Lowenheim-Skolem theorem, it
is necessary to conclude that no set theory, fully formalized within the
predicate calculus, can force the usual interpretation of the “uncountable.”
Of course, it may be that no reasonable axiom system for set theory is
satisfiable, thus implying that the conjunction A of all the axioms is not
satisfiable and that ~A is provable (by Godel’s theorem); that is, all
such systems are inconsistent. Even if this unpleasant alternative is the
case, the “Skolem paradox” still applies to any consistent theory which
seems to require an uncountable set (such as a theory of the real numbers—
if there is such a consistent theory).

5 Classes and relations as treated in P.M.

It was remarked in III 3.2.1 that the notion of set could be replaced by
that of property, a set being considered to consist of all things which
have some given property. A similar notion is at the basis of the treat-
ment in P.M. of sets, or “classes” as they are called in P.M.

Consider a propositional function ¢x. Then by %(px) we may denote
the class of all things x such that ¢x is true. In the symbolism of III 3.2,
{x | px} is evidently the same as £(px), and we could obviously use the
former symbol here. But as it is more commonly used by logicians, we
shall in the present discussion employ the latter symbol.

+ It is in such formulations of set theory that the proof of independence of the
Choice Axiom and continuum hypothesis, discussed in V 3.6, may be carried out.
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5.1 Avoidance of contradiction

Although, from the standpoint of mathematics, the main purpose of
developing the theory of classes is to define number and set up arithmetic,
it is necessary also to take care that the theory is so constituted as to avoid
the contradictions to which the “unrestricted” theory of sets leads (cf.
1112, V 3.5.3).

Let us suppose that C denotes the class determined by the function ¢x,
and let us express this by the relation

(5.12) C = X(¢x).

That y is an element of C we may denote by the usuale: ye C. Thatyis
not an element of C we may denote by y ~¢ C.

Now the x in the function ¢ defining C should have a definite range.
Thus, if px is the propositional function “x is a professor of mathematics,”
we would not substitute “New York” for x. A value of x which we should
particularly avoid in assertion of either truth or falsity is the class C itself;
for C is only a symbol which was defined (5.1a) in terms of ¢ (compare
VIII 7.4). It is violation of this principle that gives rise to such contra-
dictions as that of the “set of all sets that are not elements of themselves.”
For, if ~¢C, and hence C ~£ C, is a permissible assertion, then we may
define

S = C(C ~£O).

Then either (1) S€S or (2) S ~&S. But (1) S € C(C ~& C) implies
S ~eS;and 2) S ~& C(C ~¢ C) implies ~(S ~& S);i.e, SeS.

5.2 Theory of types

To avoid such contradictions, P.M. introduced a “theory of types” for
the handling of propositional functions. As it was presented in P.M., this
theory involved the use of an axiom called the “Reducibility Axiom”
(to be discussed in 5.2.3), at whose non-primitive and arbitrary character
much criticism was directed. Some critics pointed out that the axiom, from
a logical standpoint, is probably not true, and in any case renders void the
contention that mathematics has been shown to be derivable from
postulates of primitive logic. Whitehead and Russell were not unaware of
this; thus in the Introduction to the second edition of P.M. they stated:
“This axiom has a purely pragmatic justification: it leads to the desired
results, and to no others. But clearly it is not the sort of axiom with
which we can rest content.” Subsequent attempts by Chwistek [a],
Wittgenstein [Wt], Ramsey [Ra}, and later logicians to eliminate or modify
the use of the axiom have nullified this objection to a great extent, and the
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“simple theory of types” such as pioneered by Chwistek and Ramsey
indeed renders pointless the axiom of reducibility. (See especially
Church [e].)

5.2.1 Simple theory of types

Because of the parallel between (1) classes and (2) propositional func-
tions, a type theory may be set up for either classes or functions.

A simple type theory for classes would consist of a hierarchy of levels,
each level above the first encompassing a class type; specifically, on the
first or O-th level would be placed the elements of lowest order, what would
be called “individuals,” from which classes of the first level are formed.
The classes of level 1 may be used as elements to form classes of level 2;
and so on. In applying such a type theory, one follows the rule that the
elements of a class are all to belong to a given level; in an expression
A & B, the symbol B may stand for a class of any level above the O-th, but
then 4 must be the symbol for a class (or an individual) of next lower level.
Adherence to such a rule would, it will be noted, avoid such contradictions
as that of Russell and “the set of all sets.”

The parallel simple type theory for functions is set up analogously.
To classes of the first level correspond propositional functions of the first
level; to classes of the second level, functions of the second level (whose
variables are, then, functions of the first level); etc.

5.2.2 Relations

From propositional functions of two or more variables may be formed
relations: Thus, if pxy is a propositional function of two variables x, y,
there corresponds a relation
(5.2.2a) EP(pxy).

[Obviously one can think of this as the class of all (ordered) pairs (x, y)
satisfying the propositional function pxy.]

For example, if pxy is the propositional function “x is the father of y,”
then Xj(pxy) would denote the relationship of fatherhood; in particular,
if x; and y, are particular (constant) individuals bearing this relationship,
one could write

X1 XP(pxy) 1
in which formula (5.2.2a) is used as the symbol for the relationship.
5.2.3 Extension of the type theory

With the introduction of relations, it becomes necessary to extend the
theory of types in order to accommodate functions of several variables.
For the theory of classes, it is sufficient to designate the primary “indi-
viduals,” and thence the classes of first, second, .. ., levels, as in 5.2.1.
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But, where two or more variables are involved, these may not all be of the
same type.

In P.M., a so-called “ramified” type theory was introduced which would
enable one to avoid not only the set-theoretic contradictions, but also the
“semantical” contradictions such as that of Grelling (see Problem 13 of
Chapter III) and Richard (see Problem 31 of Chapter IV). In this ramified
theory, propositional functions of the same type were divided into “orders”
according to the occurrence of functions as bound variables. Thus, on
the first level, propositional functions, ex, where x is an individual (0-th
level), would be designated as of first order, but (¢)¥(e, ), in which a first-
order function occurs as bound variable, would be designated as a second-
order function. Unfortunately the resulting theory necessitated at this
point the introduction of the “Reducibility Axiom” mentioned above,
which asserted that every propositional function is formally equivalent ¥
to a “predicative function” (i.e., a propositional function whose order is
next above the highest order of its variables). And, as remarked above,
this axiom was criticized on various grounds. The work of later logicians
makes it apparent, however, that the axiom is by no means necessary.
Ramsey [Ra] made the distinction between the set-theoretic contradictions
and the contradictions of semantic type, and gave an alternative theory
sufficient to avoid the former while maintaining the non-essentiality of the
latter so far as mathematics is concerned.

The current use of the theory of types probably stems from the formu-
lation of Carnap [Car; 19ff]. He denotes class types by symbols 10, t1,
t2, - - -, where 0 is the type of an individual. If in a relation xRy we call x
the “first member” and y the ‘“second member,” then a relation whose
first member is of type zm and second member of type tn is designated as
of type #(mn). Here, the m and n» may denote not merely numbers, but
combinations of numbers, etc. Thus, if m denotes the type of an individual
and » a relation of type #(02), then the relation itself would be designated as
of type #(0(02)). Analogous conventions are made for relations involving
three variables, four variables, etc. For classes, if the elements of a class
have type tm, then the type symbol of the class is #(71). Thus, if the ele-
ments of a class are relations of type #(02), then the class is of type #((02)).
For #(0) we may write 71, for #(1) write ¢2, as before.

In employing this theory of types, it is stipulated that all values of a
given variable must have the same type. In particular, all elements of a
given class must have the same type; if the class is of type #(m), then its
elements must be of type tm, no “objects” of any other type than those of
type tm being even considered as allowable candidates for elements of the

+ Functions are called “formally equivalent* if they are true or false for the same
values of their variables.
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class. (Thus no class C can stand in either relation Ce C or C ~¢ C,
each of these possibilities being ruled out.) Likewise all first elements of a
relation must be of the same type, viz., type tm if the relation is of type
t(mn). [Exceptions are made in the case of class inclusion, such as
A < B, class intersections, 4 N B, etc., where it leads to no difficulty if
A, B are allowed to vary in type; strictly speaking, a special symbol, such
as >, should be used if 4 and B are of type t(mn), for example.]

For further details, Carnap’s work (loc. cit.) may be consulted. See also
Hilbert-Ackermann [H-A; 152ff], and Church [e]. For a critique of the
classical methods of constructing the continuum of real numbers, and
alternative methods, see the work of H. Weyl [Wel; also see the elementary
expositions of Weyl [a] and Quine [b], [Q;; V].

524 In addition to the Reducibility Axiom, it was found necessary to
include other axioms whose ‘logical”” character is at least debatable.
Thus an Axiom of Infinity, providing for the infinite classes of mathe-
matics, and “multiplicative axioms” (choice axioms) were introduced
in P.M.

5.3 When the concepts of class and relation have been adequately
developed, it is possible to proceed to the definition of cardinal number and
to ordinary arithmetic. From our earlier discussions of number it can
easily be surmised how we would go about doing this, without entering
into the details.

Also, since mathematics contains geometry, it would be necessary,
after arithmetic has been set up, to introduce geometry by the usual
methods of coordinates. The geometric part of P.M. never appeared,
however. Shortly after Whitehead’s death, Russell [b] wrote: “White-
head was to have written a fourth volume on geometry, which would have
been entirely his work. A good deal of this was done, and I hope still
exists. But his increasing interest in philosophy led him to think other
work more important. He proposed to treat a space as the field of a
single triadic, tetradic, or pentadic relation, a treatment to which, he said,
he had been led by reading Veblen.”

By way of an interesting historical footnote, we might add that in the same
connection Russell pointed out the importance of Whitehead’s contribution to
P.M., attributing to him entire responsibility for the treatment of apparent (bound)
variables, for instance; and commenting ‘“Neither of us alone could have written the
book; even together, and with the alleviation brought by mutual discussion, the
effort was so severe that at the end we both turned aside from mathematical logic
with a kind of nausea.”

5.4 Before leaving these matters we should emphasize something that
becomes apparent in the above discussion, namely, that in dealing with a
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symbolic logic we operate at different language levels. Thus, in discussing
P.M., we have the language symbolized in terms of p, g, v, ~, etc., as well
as the language (““metalanguage”) in which we discuss the former language,
set up our rules of syntax, etc. For example, the symbols 0, 1, etc., used
in discussing the theory of types, are in the metalanguage; later they appear
in the arithmetic as it evolves from the theory of classes and relations, but
now in the language of our formal logic.

As a matter of fact, the use of a metalanguage is also essentially involved
in any discussion of non-formalized axiom systems, for instance, in
Chapters Tand II. A striking example of the contrast between language of
a system X and the metalanguage occurs frequently in practice concerning
the use of the Law of the Excluded Middle. If an axiom system X is not
complete, and if 4 is a Z-statement such that both® + 4 and Z + ~ 4
are consistent, the statement ‘““Either 4 holds or 4 does not hold” would
not be valid in the metalanguage. It would, however, be correct to
state within the system X, “Either 4 holds or 4 does not hold,” since this
is a valid use of the Law of the Excluded Middle. And we use this
principle in the proof of theorems. For example, in the system I' of
Chapter I we may wish to prove some theorem 7, and are able to show
that (1) if every line contains at most a finite number of points, then T
holds; and (2) if there exists a line which contains infinitely many points,
then 7 holds. Since either every line contains at most a finite number of
points or not every line contains at most a finite number of points, we
would consider T proved.

6 Concluding remarks

Whether the Frege—Russell thesis—that mathematics is an extension of
logic—has been established or not is a matter of opinion. Obviously, an
affirmative opinion would seem to assume that one is satisfied in his mind
as to what mathematics is; indeed, the affirmation of the thesis does, in a
way, assert a definition of mathematics, inasmuch as one points to P.M.
or one of its more modern counterparts, and says “What you can thus and
so derive from this system, using the rules assigned for such derivation, is
mathematics.”

However, as will be seen in Chapter XI, no system such as P.M. can be
complete in the sense that it will answer all questions in mathematics
(even of the arithmetic of integers); and no matter how the axioms are
augmented, there will always remain theorems that can neither be proved
nor disproved. This objection can, of course, be countered by the
observation that this is inherent in the nature of mathematics; that
mathematics is ever capable of expansion.
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There still remains, nevertheless, the debatable question as to whether
the theory of sets, which necessitates axioms peculiar to itself, can be
considered as part of logic. The fact that we must introduce axioms of
infinity, Choice Axiom, etc., is now augmented by the proof recently given
that both the Choice Axiom and the continuum hypothesis are independent
axioms in the theory of sets. And this necessity of introducing into set
theory axioms whose only purpose is to achieve technical mathematical
ends certainly weakens the case for the “logistic thesis.”

We shall return in Chapter XI to the subject of Mathematical Logic.
But to appreciate the manner in which later developments evolved, it seems
desirable to take account of a point of view which stems from Kronecker’s
“Intuitionism™ (VIII 2.1) and emphasizes both the role of the natural
numbers and constructivity in the Foundations of Mathematics. This new
Intuitionism, although opposed as a body of doctrine by the majority of
mathematicians, has nevertheless exerted a subtle influence on the more
recent developments in mathematical logic.
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PROBLEMS

1. Use a truth table to show that the following formula is a tautology:
~p.V.~gvp.q [thelast dot is “and”; the others denote parentheses, thus:
(~p)v(~gvp.9l

2. Use a truth table to verify that the formula given in Axiom V is a
tautology.

3. Prove the formula given in Problem 1 as a theorem from Axioms I to V
(formulas already proved in the text may be used in the proof). Asa corollary,
obtain —:.p.>:q.> .p.q.

4. Let us define:

=g.=.p>q.q>p Df

Then prove as a theorem :p = p. [Hint: In the result of Problem 1,
substitute “p = p” for “p”’; use 3.2.3 and modus ponens.]

5. Prove as a theorem (-:p >q.>.~qg> ~p. [Hint: Substitute
“~(~g)” for “r” in 3.2.1 and use modus ponens; then substitute “~gq” for
“g” in 3.5.4 and refer to 3.2.1.1.]

6. Prove as a theorem :~g> ~p.> .p >gq. [Hint: Substitute
‘~g” for “p” and “p” for “q” in 3.5.4; use 3.4.3 and 3.2.1.]

7. Prove asa theorem |-:p 2 g. = . ~¢g ® ~p. (To what type of proof
in mathematics does this formula correspond ?)

8. Prove as a theorem |—: ~(p.g). > . ~pv ~q.

.
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9. Prove as a theorem - : ~pv ~qg. > . ~(p.q).
10. Prove as a theorem -:(p.q). > .(g.p).

11. Prove as a theorem -:(p =¢q). = .(g = p).
12. The following is given as a definition in P.M.:

~(VxP(x)) . = . 3x(~ P(x)) Df

Justify it on intuitive grounds.
13. Treat the following similarly (also given as a definition in P.M.):

~@AxP(x)). = . Vx(~P(x) Df

14. Would you judge on intuitive grounds that the following formula is
universally valid ?

Vx(P(x). Q(x)). = . VxP(x). VxQ(x)
15. The following implication is universally valid:
VxP(x) vVxQ(x). > .Vx(P(x) v Q(x))

Show that the converse implication is not universally valid.

16. Would you judge on intuitive grounds that the following formula is
universally valid ?

Ix(P(x) v Q(x)) . = . AxP(x) v AxQ(x)
17. The following implication is universally valid:
Ax(P(x) . O(x)). = : IxP(x) . IxQ(x)

Is the converse implication universally valid ?
18. Is the converse of the following formula universally valid ?

IyVxP(x,y). > . VxIyP(x, y)
19. Would you judge the following formula to be universally valid?
~[3x VyP(x, y)}. = . Vx 3y[~P(x, y)]

20. What is your judgment regarding the validity of the following
implication?

~{Vx3y VzP(x,y,2)]. > .IxVy Vz[~ P(x, y, 2)]



Intuitionism

During the first half of the present century it was frequently stated that
there were three “schools of thought™ regarding the origin and nature of
mathematics: Logisticism, Intuitionism, and Formalism. This did not
mean that the class of all mathematicians could be subjected to a class
decomposition, relative to an equivalence relation denoting membership
in the same “school” (as in II 8.5)! Probably the great majority of
mathematicians have spent little, if any, time speculating on the question
of possible membership in a “school of thought.”” They have been either
too busy doing research at the higher levels of their fields, or disdainful of
such a question.

Nor was this so-called division into “schools” a partition of the relatively
small body of mathematicians and philosophers who make research in the
foundations their main occupation. Rather, it represented an attempt at
classification of thought tendencies. Some, for example, L. E. J. Brouwer
and his students, could justifiably be classified “Intuitionists.” Brouwer,
a Dutch mathematician and founder of modern Intuitionism, wrote his
thesis (1908) on the Law of the Excluded Middle and'its limitations as a
mathematical tool. Thereafter he continued to espouse a doctrine
unyielding in its philosophical aspects (which stemmed from Kronecker)
while developing, along with his students, the type of mathematics to
which this philosophy leads. Simultaneously, the German mathematician
D. Hilbert (cf. I 1.5-1.6, for instance) and his students undertook to use
symbolic logic as a tool for giving a contradiction-free development of
classical mathematics including the theory of the infinite. The sequel
brought about a recasting of mathematical logic which no longer needs to
make any appeal to a philosophy such as the “logistic thesis.” Indeed,
stripped of the surrounding philosophical detail, P.M. is easily conceived
as a purely axiomatic, or “formal,” building up of mathematics. Conse-
quently, so far as the symbolic framework is concerned, distinction between
the Logistic and Formalistic “‘schools” has disappeared.

As a philosophy, however, Intuitionism is of such a distinctive character
that it still deserves separate attention. Moreover, although violently
opposed to Intuitionist tenets, Hilbert was eventually compelled to adopt
principlesinhis “metamathematics” that savored strongly of the constructive
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character of Intuitionism—a tendency which became even more marked
in the subsequent evolution of Mathematical Logic.

1 Basic philosophy of Intuitionism

In our discussion of Kronecker’s views in VIII 2.1, we emphasized his
insistence on the notion of mathematics as a construction on the basis of
the “intuitively given” natural numbers. This notion is the kernel of
Intuitionism as it is generally understood t today. And the consequences
of this thesis, particularly in set theory and logic, will be shown below so
that the results can be contrasted with the “classical” concepts treated in
Part L.

Before going into such details, however, let us review briefly the under-
lying philosophy of present-day mathematical Intuitionism. The most
striking aspect of it is probably what we might call its self-sufficiency.
It is self-generating, relying in no way on other philosophies or logic.
Its basic ideas are to be found in the intuition, which seems to be similar to
the time (not the spatial) intuition of Kant. Specifically, it recognizes the
ability of the individual person to perform a series of mental acts consisting
of a first act, then another, then another, and so on endlessly. In this way
one attains “fundamental series,” the best known of which is the series of
natural numbers. (Compare the viewpoint of Poincaré, VIII 7.1.)

This operation is not dependent upon the use of a language. To quote
Brouwer (f; 86) in this regard: . .. neither the ordinary language nor any
symbolic language can have any other role than that of serving as a
nonmathematical auxiliary, to assist the mathematical memory or to
enable different individuals to build up the same set.” As a consequence
of this principle, mathematics is basically independent of language. In
Heyting’s words [He,; 8], “Intuitionist mathematics consists in mental
constructions; a mathematical theorem expresses a purely empirical fact,
namely the success of a certain mental construction.” Thus, “2 4+ 2 =
3 + 1” means “I have effected the mental constructions indicated by

+ As a philosophy, Intuitionism has undoubtedly been misinterpreted in many
of its details. This is quite probably not due to carelessness on the part of interpreters
in general, however, but rather to the complicated nature of the basic definitions of
Intuitionism as presented by Brouwer. Of recent years much of this unfortunate
misunderstanding has been cleared up, owing in large measure to the investigations
and expositions of Brouwer’s students and colleagues (such as, for instance, A.
Heyting; see especially Heyting [Hel, [He,]. Also see Beth [Be] and Kleene [Kle]).
The present author is quite aware, let it be made plain, of his own weaknesses of
understanding and susceptibility to error; so the reader is admonished to take the
following exposition “with a grain of salt” and, if sufficiently provoked, to consult
the bibliography cited herewith.
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‘2 + 2’and by ‘3 + 1’ and I have found that they lead to the same result”
(Heyting, loc. cit.). For the communication of mathematics the usual
symbolic devices, including ordinary language, are necessary, but this is
their only function. This seems to make of mathematics virtually an
individual affair rather than an organized or cultural phenomenon, and is
perhaps the tenet of Intuitionism that it is most difficult to accept. How-
ever, it is possible that the Brouwer thesis only requires that one set apart
the basic ideas—the intuition of the natural numbers and the ideas regard-
ing set-formation—from linguistic influences, while acknowledging the
subsequent role of language in the development, on this basis, of mathe-
matics as a cultural phenomenon. Whether this is a tenable doctrine or
not is still debatable. (Compare Chapter XI1.)

For the related insistence of Intuitionism that mathematics is not
dependent upon classical logic, a stronger case can be made. Brouwer
goes to considerable lengths to build his system without use of any logic
other than what he can justify and found on his mathematics. Here the
argument that mathematics is not dependent upon logic is supported by
doing. There emerge general rules, supposedly intuitively arrived at, for
the derivation of new theorems from old. And, as Heyting has shown,
these can be presented in the form of a symbolic logic which he calls a
mathematical logic. This mathematical logic is thus a subdomain of
mathematics whose use outside of mathematics would be “senseless”
(cf. Heyting [He; 13ff]). A brief description of it is given below (Section 7)
in order that the reader may compare it with the classical type of logic
as described in Chapters VIII and IX.

To summarize, the basic philosophy of mathematical Intuitionism is
that, although historically mathematics was derived from the world of
experience by means of the senses, in its abstract formation it is purely
intuitive and not dependent upon logic or science. On the contrary, the
latter depend upon and use the methods of mathematics. All mathematics
may be derived from the fundamental series of natural numbers by
“intuitively clear” constructive methods. Language and other symbolic
apparatus are not mathematical tools, but (imperfect) means of com-
municating mathematical ideas.

2 The natural numbers and the definition of set; spreads

Kronecker was a strict finitist. To him, the “constructible” concept of
the natural numbers, as described in VIII 2.1.2, embodied the only accept-
able manner in which the natural numbers form a “set.” Such a “set” is
not a set in the Cantorian or generally accepted sense, which is that of an
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“already formed” or “already existing” totality. The reader may refer
to the material in fine print in VIIT 2.1.2, and compare with the following,
which forms the opening paragraph of what may be taken as the “official”
presentation of Brouwer’s views [a]:

“At the basis of mathematics lies an unlimited sequence of symbols or
finite symbol arrays, which is determined by a first symbol and the law
which derives from each of these rows of symbols the next. For this
purpose T the sequence ¢ ,of (natural) numbers 1, 2, 3, 4, 5, - - - is especially
useful.”

Thus the intuitionist does not base the natural numbers on an axiom
system, such as that of Peano. Except for the mathematical induction
axiom, the properties embodied in the Peano system are obvious from the
law of generation of the natural numbers; while the induction property can
be proved therefrom. Thus we can argue as follows: Let P(x) be a prop-
erty of natural numbers such that P(1) holds, and P(n) implies P(n + 1).
Then given a natural number 4, the Intuitionist observes that in generating
k by starting with 1 and passing over to k by the generation process, the
property P is preserved at each step and hence holds for %.

The distinction between this manner of conceiving the natural numbers
and that of classical mathematics, which considers them as forming a
completed (infinite) totality, is brought out in the following example
[He,; 2]. Define two natural numbers m and n as follows: (1) m is
the greatest prime such that m — 1 is also prime; if no such prime exists,
let m = 1. (2) n is the greatest prime such that n — 2 is also prime; if
no such prime exists let » = 1. Now certainly m is 3. As for n, the
classical concepts of the completed totality N of natural numbers would
permit us to argue that either there exists an infinite series of twin primes
(in which case n is 1), or there does not exist such a series (in which case n
is the larger of the greatest pair of twin primes). Thus (2) defines a
number n. But the Intuitionist would not admit this argument, since the
manner of generating natural numbers has not, so far, yielded definitive
information regarding the existence of an infinity of twin primes. To
use the Law of the Excluded Middle and assert “either the sequence
of twin primes is finite or it is not finite” makes no sense to the
Intuitionist.

The intuitionist conception of “set” must, of course, be based on the
natural numbers, and be of a constructive nature. The definition as
formulated by Brouwer in [a; 245] was quite complicated, although it
does bring out the central role played by the natural numbers:

“A set is a Jaw, on the basis of which if an arbitrary natural number is
repeatedly chosen, then each of these choices either generates a definite

+ Meaning, presumably, “for the purposes of such a sequence.”
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symbol array with or without termination of the process,} or brings about
stoppage of the process and rejection of its result; for every n > 1 follow-
ing a non-terminating and non-stopped sequence of # — 1 choices, at least
one natural number can be given which, if it is chosen as the nth natural
number, does not bring about stoppage of the process. Every sequence
of symbol arrays generated in this manner by an unlimited sequence of
choices (which is then generally not presentable in finished form) is called
an element of the set. The common origin of the elements of a set M we
shall usually designate briefly as the set M.”

It is to be observed that a set, according to this definition, isnota finished
totality; rather it is a Jaw, according to which elements (“of the set”) can
be constructed. Involved in the construction of an element is the sequence
of natural numbers. Not even an element is necessarily presentable in
finished form—the array of symbols constituting it is to be generated by an
unlimited sequence of choices. Thus a real number, = for instance, is
determined only to the extent to which the construction of its successive
digits is carried out.

The laws determining finite sequences as unlimited sequences of symbol
arrays of the kind found in the sequence { form special cases of sets whose
elements are formed by the single symbols. The set of natural numbers,
that is, the symbol arrays of ¢, will be designated by A.

As to the distinction between ‘““finite” and “infinite” sets, Brouwer
defines: “If for each » in { there is determined a natural number k,, such
that every time a natural number greater than k, is selected as the nth
choice, the process is stopped, then the set is called finite.” As an
example, he points out that the “unlimited” sequences of numbers of one
digit form a finite set.

2.1 Later Brouwer avoided the term “set,” replacing it by “spread” as
being more graphic and less likely of confusion with the common denota-
tion. The definition given by Heyting in [He,; 34ff] is quite lucid and
utilizes two laws—a “‘spread-law” and a “complementary law”—a device
which separates out the difficulties and helps bring out more clearly and
precisely the role played by the natural number and construction therewith.
Without going into technicalities, the spread-law may be described as a
rule for specifying “admissible” finite sequences of natural numbers; and
the complementary law assigns a specific mathematical entity to each such
admissible sequence. The sequence generated by the complementary law
is called an element of the spread.

1 Brouwer notes here that the possibility of the “termination of the process” can
obviously be replaced by the possibility “that after a certain choice every further
choice generates nothing.”




Sec. 3 SPECIES 251

In particular, in order to get the real numbers as conceived by the
Intuitionist, the mathematical entities assigned are rational numbers, the
real numbers then emerging in the form of Cauchy sequences. However,
the assignment made according to the complementary lawt may be quite
arbitrary within, perhaps, certain limitations. For example, in the
definition of a Cauchy sequence {a,}, defining a real number, the assign-
ments may be quite arbitrary so long as for every n |a, — a,.,| < 1/n for
all . It will be observed that this makes the intuitionist real number
“system” something in the nature of a spectrum where the “points” are
not well marked out but are in a process of appearing. In particular, like
the natural numbers, it is not a completed totality. Owing to the arbi-
trary nature of the sequential elements, however, the real numbers generate
a cardinal number (in the intuitionist sense described below) different
from that assigned to the natural numbers.

Two elements are called equal if it is certain that for every n the nth
choice for each element generates the same symbol array. Of just what
this “certainty” consists, and its character, is presumably to be decided
for the particular case. For example, if we were to present any two of the
many well-known definitions of 7, we could give a proof that the decimal
developments of the two numbers so defined would agree in the nth digit
for every n; and so the two numbers are equal. But suppose that N is
defined as follows: N is a number such that 0 < N = 1; in decimal form
its nth digit after the decimal point, a,, is 0, unless the nth digit of the
decimal part of = is the first of a sequence of seven 7°s—7777777—in
which case the digit a, is 1. We cannot say that N and 0 are equal, since
we have no way of knowing that there does not exist a sequence of seven
7’s in the decimal part of =. (Possibly there is such a sequence. Inci-
dentally, = is now known, by computation on modern computers, to
thousands of digits.)

Two spreads are called equal if for each element of either “can be given”
an equal element of the other.

3 Species

On the basis of spreads and elements, which he calls mathematical
entities, Brouwer erects a hierarchy of concepts. which he calls species
(Spezies; compare the type theory of P.M., IX 5.2). A species of the first
order is a property which only a mathematical entity can possess, in which
case the entity is called an element of the species of first order. Thus the
property of being prime is a species of first order, since it is a property only

T A like freedom is allowed in regard to the spread-law, so long as the resulting
sequences are admissible.
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of natural numbers (which as elements of 4 are mathematical entities).
And spreads are themselves species of first order (since, if M is a spread,
then the property of being an element of M is possessed only by the
elements of M—hence the latter are elements of a species, M, of the first
order). Equality of species is defined in a manner similar to that for
spreads. A species of second order is a property which only a mathematical
entity or species of first order can possess, in which case it is called an
element of the species of second order. And similarly species of the nth
order, as well as their equality, are defined for arbitrary number n.  Sub-
species are defined in a manner similar to that for subsets.

4 Relations between species

Equality was defined above, and the notion of subspecies introduced.
Two elements are called different if it is certain that their equality is an
impossibility. For example, the number N defined in Section 2 is not
different from zero; thus we can say neither that N equals zero nor that N
is different from zero. Similarly, two species are called different if it is
certain that their equality is an impossibility. A species S is called discrete
if it is possible to determine of each two elements of .S that they are either
equal or different. Thus any set which has both zero and the number N
of Section 2 as elements cannot be called discrete.

4.1 Union and intersection of species

Union (addition) of sets is defined as in ordinary set theory (III 3.3), and
union of species is defined similarly. A like remark holds regarding
intersection (product); see III 3. However, although the union of two sets
is again a set, the intersection of two sets is not necessarily a set; as, for
example (Brouwer, loc. cit.) if S is a set whose single element is the number
0, and S’ a set whose single element is the binary fraction N defined in
Section 2.

5 Theory of cardinal numbers

If there can be established a (1-1)-correspondence between two species S
and S’, that is, a law which makes correspond to each element of S an
element of S’ in such a way that equal and only equal elements of S
correspond to equal elements of S’, and every element of S’ to an element
of S, then we write § ~ S’, and say that S and S’ have the same cardinal
number, or are cardinally equivalent. (Brouwer cites the example of the
set of all natural numbers and the set of all natural numbers except 1.)
Two species are not necessarily comparable, however (compare V 3.6.2).
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5.1 Finite and infinite species and their cardinal numbers

A species is called finite if it is cardinally equivalent to the set of natural
numbers of a certain initial segment{ of the sequence {. A species is
called infinite if it has a subspecies cardinally equivalent to the species 4 of
natural numbers. It should be noted that there is no basis for ascer-
taining that every set or species is either finite or infinite; hence, a species
that is not finite is not necessarily infinite. On the other hand it is certain
that a species cannot be both finite and infinite. For one can prove:

5.1.1 Theorem.} Principal property of finite species. For every
manner of representation of the (1-1)-correspondence between a finite species
S and the set of numbers in an initial segment of {, the same initial segment
is used.

Proof. Let S, and N denote two “enumerations” of .S, such that S; uses
up the initial segment 1, 2, - -, k of {, and N uses up an initial segment
that includes 1, 2, - - -, k. Let S, denote the enumeration derived from S,
by exchanging in S; the elements which correspond to 1 in S; and N.
Then S, uses up the same initial segment 1, 2, - - -, k of { as S;, while in
both S, and N the same element of S now corresponds to 1.

Next let S; be the enumeration derived from S, by exchanging in S, the
elements which correspond to 2in S;and N. Then S; and S; use the same
initial segment 1, 2, - - -, k of {, while S5 and N have the same elements
corresponding to 1 and 2.

Proceeding in this manner, we obtain finally a last enumeration, S,
which uses the same initial segment of { as S;, and at the same time has the
same elements corresponding to 1,2, - - -, k, respectively, as N. But S;
contains all elements of S, and consequently the elements of N corre-
sponding respectively to 1, 2,---, k contain all elements of S; in other
words, N has no elements corresponding to an element of { greater than k.

5.1.2 Cardinal numbers of finite sets. As a consequence of this
theorem, Brouwer states that we can denote the cardinal number of a
finite species by the last number of the sequence { which is used in an
enumeration of the species. The cardinal number of a species having no
elements is called null and denoted by 0. These are evidently to be taken
as definitions of “cardinal number” for finite species, since Brouwer gives
no general definition such as that of Frege-Russell.

5.1.3 A proper subspecies of a finite species S cannot be cardinally
equivalent to S; for the supposition of such an equivalence would lead to a
1 That is, section; see V 3.1.1. Note that Brouwer’s “finite” corresponds to the

‘“‘ordinary finite” defined in III 4.1.1.
1 Compare with Theorem III 5.2.1.
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contradiction of Theorem 5.1.1. And in particular a finite species cannot
also be infinite.

Of course species exist about which one cannot say whether they are
finite or infinite.

5.2 Denumerable sets

As in the classical theory (as given in Chapters III to V), the simplest
example of an infinite species is 4. Brouwer states (loc. cit., p. 249, § 3) that
he will denote the “cardinal number” of 4 by a (again no explicit definition
of “cardinal number” is given). Species which have the same cardinal
number as A are called countably infinite; since no confusion would result,
we may use the same term denumerable as we used in the classical case.
Hence, every infinite species has a denumerable subspecies.

Again, as in the classical theory, the species of integers, rational numbers,
and algebraic numbers are each denumerable. The proof of the denum-
erability of the species of the algebraic numbers is worth noting, but will
not be repeated here for lack of space (see Brouwer, loc. cit., pp. 249-250).
Also, a species which can be separated into a denumerable species of
denumerable species is itself denumerable.

5.3 The cardinal number ¢

As another example of an infinite set, Brouwer offers the species C of
unrestricted sequences of natural numbers,f whose cardinal number he
denotes by c¢. The species C, each of whose elements consists of n
unrestricted sequences of natural numbers has the cardinal number c.
And as in the classical theory, this fact permits a relation of cardinality
between points of a line and points of n-dimensional euclidean space (for
details see Brouwer, loc. cit., pp. 251-252).

5.4 Other types of equivalence between species

The notion of cardinal equivalence does not exhaust the possible types
of equivalence relations between sets. In the classical theory, it was shown
that, if 4 and B are sets such that there exist (1-1)-correspondences between
A and a subset of B, and between B and a subset of 4, then there exists a
(1-1)-correspondence between 4 and B (Bernstein Equivalence Theorem,
1V 4.2.3). Brouwer defines:

5.4.1 Definition. Two species S and S’ (and likewise the correspond-
ing cardinal numbers s and s") are called equivalent if by some law L, there

t See Heyting [He,].
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is made to correspond to every element of S an element of S’ so that to
equal and only to equal elements of S equal elements of S’ correspond;
and if by some law L, there is made to correspond to every element of S’
an element of S so that to equal and only equal elements of S’ equal
elements of S correspond. This equivalence is expressed by the formula
s =y

5.4.2 Definition. If for species .S and S’ such a law as L;, defined in
5.4.1, exists, but no such law as L, can possibly exist, then we write
s < 8" (or s" > s5) and say that S (s) is smaller than S’ (s'), and S’ (s') is
greater than S (s).

54.3 Definition. If we know that to every element of S there corre-
sponds an element of S’ such that to equal elements and only equal
elements of .S do equal elements of S’ correspond, then we write s < s’
(or " = s), although in this case there need not necessarily one of the
relations s < s', s = 8" hold.

It will be noted that we have here a denial of the Law of the Excluded
Middle; since, if such a law as L; of 5.4.1 exists, then, according to the
Law of the Excluded Middle, either such a law as L, exists (and hence
s = §') or such a law as L, does not exist (and hence cannot exist in the
classical sense, so that s < s').

- In particular, the species C is greater than the species A;a < ¢. If Kis
the species of lawfully defined unlimited sequences of natural numbers
(i.e., each element of K is defined by some law, as opposed to the un-
restricted nature of the elements of C), then C is also greater than K.

The “equivalence” possibilities are not yet exhausted, but we refer the
reader to works cited for such further details.

5.5 Types of countability

Corresponding to the above types of equivalence (and non-equivalence),
Brouwer defines various types of countability (see Heyting [a]). With
regard to the possibility of cardinal numbers “higher” than ¢, nothing
seems to have been done in the intuitionist mathematics. The possibility
of a “species of all subspecies of a given species” seems in general excluded
by the difficulty of finding suitable defining properties, for instance. And,
similarly, the diagonal procedure (IV 3) is in general not definable.

This does not mean, of course, that higher cardinal numbers are not
definable. In any case, however, one obviously must distinguish between
the cardinal numbers of intuitionist mathematics and those of the classical
type as expounded in Chapter 1V.



256 INTUITIONISM Ch. X
6 Order and ordinal numbers

As might be expected, in view of the above description of Brouwer’s set
theory, the treatment of order and ordinal numbers is quite different from
that expounded in Chapter V. For a description of it, the reader is
referred to Brouwer [b]. In that work, incidentally, Brouwer gives a
definition of “continuum” which is very similar to the one given in VI 1.4
above, where use is made of the “Dedekind cut.”

The theory of well-ordered species is given in Brouwer [c]. It is prob-
ably unnecessary to remark that for Intuitionism the theorem of Zermelo to
the effect that ““every set has a well-ordering” (Theorem V. 3.1.2) is devoid
of sense. To form well-ordered species two “‘generating operations™ are
permissible; addition of a finite number of known well-ordered species,
and addition of a fundamental series of known well-ordered species.
Consequently every well-ordered species is countable. The introduction
of “null” elements renders the theory even less analogous to the classical
theory. (Cf. Heyting [He; 27].)

For work of Brouwer concerning “partial order,” and related types of
order with applications to the continuum, one may consult Brouwer
{d, el

7 The intuitionist logic

In mathematics as it is usually taught, logic of the classical type is
assumed as a priori, and plays an important role in proofs of theorems.
Of special importance is the Law of the Excluded Middle and its conse-
quence that the falsity of the falsity of a proposition p implies p (see
[X 3.4.3). Thus, to prove a “Theorem T,” if one can demonstrate that
the assumption of the falsity of T leads to contradiction, then T is true.
For any proposition which leads to contradiction must be false; hence, if
the falsity of T is false, then T is true by the principle cited above. In
particular, Theorem T may be an assertion of the type, ‘“There exists a
natural number having property P.” If property P is “‘evenness,” one
naturally proves the theorem by exhibiting an even number. But, in the
event that property P is of such a character that no number having this
property has been found, one may resort to the device of showing that the
assumption of non-existence of such a number leads to contradiction and
concluding that one has thereby proved Theorem T.

The intuitionist would not accept such a “proof” as this. The former
proof—by exhibition of a number with the desired property P—is of the
constructive character demanded by the intuitionist. But the latter proof
introduces into mathematics a new principle that is not capable of being
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founded on the ideas set forth above. If one examines the proofs given
in Section 5, one sees that 5.1.1 involves only a constructive procedure;
however, 5.1.3 employs the argument that a certain two species cannot be
cardinally equivalent since the supposition of such an equivalence would
lead to contradiction of 5.1.1. Thus the intuitionist accepts the principle
that any proposition which implies contradiction must be false. This does
not involve a use of the Law of the Excluded Middle, however, nor its
corollary that the falsity of the falsity of a proposition p implies p.

It appears, then, that the intuitionist accepts the Law of Contradiction,
but not the Law of the Excluded Middle. Of course, he accepts the Law of
the Excluded Middle where it is ““intuitively” clear; if G were a finite set
of natural numbers, then he would say that it is intuitively clear that either
G contained a prime number or that no element of G was prime (no matter
how great the number of elements in G, so long as it is finite). But, if G
were infinite, the intuitionist would not admit the assertion, unless, of
course, a prime number is exhibited in G or it is shown that the assumption
that G contains a prime number leads to absurdity (the latter being accepted
as proving that no element of G is prime). To show that the assumption
that G contains no prime number leads to contradiction would not be
accepted as a proof that G contains a prime number, since this would
constitute a replacement of the falsity of the falsity of a proposition by the
proposition itself.

We saw in IX 3.6 that, as the P.M. propositional calculus is set up, the
Law of the Excluded Middle and the Law of Contradiction are equivalent;
a consequence of the interdependence of the logical constants ~, ., and
v. And from the material in IX 3.4 it follows that p and ~ (~p) are equiv-
alent. Since the intuitionist accepts none of these principles, it becomes
an interesting problem to analyze, if possible, what can be described as
the logical apparatus to which the intuitionist mathematics leads.

7.1 An intuitionistic symbolic logic

Such an analysis was first made by Heyting in 1930. We shall give
sufficient indication of Heyting’s system to enable the reader to compare it
with the logistic calculus as described in Chapter IX. (We base our
description on Heyting [He] and Kolmogoroff [a].)

Instead of commencing with two “logical constants™ as in Chapter IX,
namely v and ~, and defining © and the logical product (as in IX 3.6),
four symbols, A, v, 7, and >, are immediately introduced, standing
respectively for conjunction (“and”), disjunction (‘“‘or”’), negation, and
implication. These symbols are independent of one another; for example,
a O b is not the same as —a v b [cf. IX (2.2a)]. Then “postulates” or
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fundamental “formulas” are stated, as was done for the propositional
calculus in Chapter IX. We find, for example, the formula
F:.a>b.A.b>c:>D:a>c,

where a, b, and ¢ are propositions; also the following, which embodies the
Law of Contradiction,

(7.1a) . (aA"a)

The formula which would embody the Law of the Excluded Middle
cannot be derived from the system. However, the formula

(7.1b) . av Ta),

which may be interpreted as the falsity of the falsity of the Law of the
Excluded Middle, is derivable in the system! But, although

(7.1¢c) .a> 7a

occurs in the system, —a > a does not occur, so the formula a v —a
does not follow from the above. Since the formula ~— g > ais derivable
from a v Ta, it follows, by conjunction of this fact with the remarks just
made, that the Law of the Excluded Middle is equivalent to the formula
T a D a; see Brouwer [g; 252, footnote 4], who attributes this observa-
tion to P. Bernays.

Nevertheless, long strings of negations do not occur. For the formula

(7.1d) —.a>b.>.7b>D g

occurs in the system, and if in this formula we replace 6 by —77a and
make use of (7.1c), we obtain

(7.1e) .7 7Ta > Ta

(as observed in Kolmogoroff [a; 63]; the same proof, in ordinary language
rather than in the symbolic form given here, occurs in Brouwer [g; 253],
however). Conversely, if we replace a by ~7a in (7.1c), we obtain

(7.1f) .7@> g

and from (7.1e), (7.1f) the equivalence of —7@ and g is obtained.
It follows from the above that every string of negations —7 - -. g can
be reduced to either 7 g or ~a.
It is interesting to observe that Godel, employing certain results of
Glivenko, showed that, if the “logistic” symbols
a.b,avb, ~a,a>b
are replaced by the following symbols, respectively,

anb, 7(TaaTb), Ta, T(a A Tb),
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then every formula of the “logistic” calculus is transformed into a valid
formula in the intuitionistic logic! (See Godel [b].)

Moreover, Godel also showed that a system of axioms for arithmetic
(of integers) and number theory due to Herbrand can be interpreted and
proved valid in the intuitionist framework, thereby providing an intuition-
istic consistency proof for classical arithmetic and number theory. (See
Godel, loc. cit., and Kleene [Kle; § 81].)

7.2 The Kolmogoroff interpretation

The intuitionistic logic assumes a much more natural character, if
instead of considering the above a propositional calculus, we conceive of
a, b,c,---, as denoting problems, and the calculus itself as a mode for
solving problems—a “solution calculus.” We can, indeed, following
Kolmogoroff [a], approach the matter entirely independently, without any
intuitionist presuppositions, purely as a question of formulating methods
of solution of mathematical problems (such as, for example, problems in
geometric construction).

From the latter point of view, we consider a, b, ¢,--- as denoting
problems to be solved, and interpret a > b to mean the problem of
deriving the solution of b from that of a (or “carrying back” the solution of
b to that of a); more explicitly, @ = b means the problem “assuming that a
solution of a is given, find a solution of 5.”” By a A b we would indicate
the problem of solving both @ and b, and by a v b the problem of solving at
least one of the problems a and . By —a is indicated “assuming that a
solution of a is given, obtain a contradiction.” The symbol |- is used as
an indication of a problem to be solved for all values of the variables
(problems) involved; thus,

(7.2a) .a>anaa

means ““for all a, show how to obtain a solution of a A a from a solution of
a.” Certain basic problems, such as (7.2a), are postulated—that is,
considered solved—and solutions of others derived therefrom. For
example, if |~ . p A ¢ is solved, then |- p may be considered solved.

The development of the “solution calculus” turns out to coincide,
symbolically, with the intuitionist propositional calculus. For instance,
we will not expect to find - . a v 77a—the Law of the Excluded Middle—
in the “solution calculus,” since it would be tantamount to having estab-
lished, for all problems a, either a method for solving a or a method for
showing that the assumption of a method of solution for a leads to
contradiction. As Brouwer asserts, the assumption of the universal
validity of the Law of the Excluded Middle would be equivalent to
assuming that every problem is solvable. What may be considered the
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intuitionist form of the Law of the Excluded Middle, (7.1b), is the
symbolic formulation of a theorem of Brouwer which asserts that there
cannot be given a provably unsolvable problem. It should be noted,
incidentally, that the intuitionist logic does not give permission to assert the
existence of a “‘middle third”; formula (7.1b) is, in a sense, as far as the
logic goes in assertions regarding the general validity of the formula
av a.

8 General remarks

Enough has been given above, no doubt, to demonstrate that Intuition-
ism is not a purely negative philosophy such as that of Kronecker. In the
hands of Brouwer and his followers a sizable literature of intuitionistic
mathematics has been built up. It is interesting to observe that Brouwer,
after his early work on the foundations of mathematics during the first
decade of the present century, published during the second decade a series
of basic and very important articles in the then budding field of topology.
But in the third decade he resumed constructive work in the intuitionistic
foundations of mathematics, not only laying down the principles of his
general theory, but also supplying new proofs of classical theorems which
met the requirements of the intuitionist program. For example, in [i] he
gave a new proof of the Jordan Curve Theoremt (which he had earlier
(1910) proved in his topological papers but not from an intuitionist stand-
point); also new proofs of the fundamental theorem of algebra were given
both by him and by others. Mention has already been made above of his
present researches into partial orderings.

8.1 Summary

In a positive way, then, intuitionism builds on the “intuitively given™
sequence of natural numbers, using only constructive methods. In the
theory of sets this necessitates conceiving of a set not as a ready-made
“collection,” but as a law by means of which the elements of the set can be
constructed in a step-by-step fashion. In proofs of existence, the entity
whose existence is to be proved must be shown to be constructible; it is
not sufficient to show that the assumption of its non-existence leads to
contradiction.

In attempts to set up a logic for intuitionist mathematics, the latter fact
is recognized by not identifying the double negation with affirmation, or,

1 If Cis a circle in a plane S, then C divides S into two connected parts, called
domains, of which C is the common boundary. The Jordan Curve Theorem states
that every topological transform T(C) in S does likewise (cf. VII 4).

1 For a review of the effects of intuitionistic thought on various mathematical
theories, the reader is referred to Heyting [He; 22-29].




Sec. 8 GENERAL REMARKS 261

what is equivalent, by suitably limiting the Law of the Excluded Middle.
A corollary of this is that it is not affirmed that every mathematical prob-
lem is solvable. It develops that intuitionist mathematics produces its
own type of logic, mathematical logic thus becoming a branch of mathe-
matics, or an “applied mathematics.” 1In the view of Brouwer, the chief
protagonist of intuitionist mathematics, language or symbolism is not
basic to mathematics. While it is recognized that mathematics had its
origins in experience, its modern abstract formulation is the product of
the pure intellect, and has intuitive, not merely formal, content. In
particular, the symbolic logic discussed in 7.1 is not a mathematical tool;
it serves, however, as a means of communicating the logic engendered by
intuitionism.

8.2 Some examples

The number N defined in Section 2 furnishes a good example of the
effect of the intuitionist philosophy on the real number continuum. Of
this number it cannot be asserted that either it is equal to zero or it is
different from zero. For to show the latter it is necessary to exhibit
a sequence of seven 7’sin =, and to show the former it is necessary to
prove that the assumption of the existence of such a sequence leads to
contradiction.

The Brouwer continuum is of such a character that a number is fixed
only by successive rational approximations or a ‘“closing down” process,
such that, for any given number 1/, the value of the number is determinate
within an error <1/n.  Of two numbers N; and N,, it is possible that they
are equal (as defined in Section 2), that they are definitely unequal (entfernt)
as in the case of 3 and =, for example, or such that neither of these assertions
can be made, as in the case of 0 and N above.

Or consider the number X which is equal to

(=D¥/(10)y,

where & is the number of the first decimal place in the decimal development
of = where a sequence of digits 0123456789 commences; or, if no such
number k exists, X = 0. The number X is certainly well-defined ; but we
do not know whether it is negative, positive, or zero! And the number
I + X, although certainly positive, is not expressible in the decimal system
(since we do not know whether to start it with 1.000 - - - or with 0.999 - . .)!

As might be expected, in the light of these limitations and the nature of
intuitionist set theory (as set forth above), the building up of analysis—
calculus, theory of functions, etc.—in the intuitionist mathematics takes a
form quite restricted in comparison with that of the usual analysis. The
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fundamental theorem of Bolzano, which states that, if /(x) is a continuous
single-valued real function over an interval [a, b] such that f(a) < 0 and
f(b) > 0, then there exists a value ¥ of x such thata < X < band f(x) = 0,
is lacking, as is also the related theorem on the attainment of its maximum
value by a function continuous over an interval. Those portions of
analysis which are constructible by actual computational methods are in
general to be found in intuitionist mathematics.

Geometry of the analytic variety, subject to the limitations imposed on
analysis, is possible in intuitionist mathematics. So, too, are geometries
which are built on an axiomatic foundation, so long as the latter is
realizable analytically.

In spite of whatever objections may be raised against intuitionist
mathematics, it is generally conceded that its methods do not lead to
contradiction. Such non-constructively conceived notions as “the set of
all sets,” “the set of all ordinal numbers,” are obviously unattainable by
intuitionist methods. But whether such a ‘“‘state of health” has been
achieved by “cutting off the leg to heal the toe” is a matter of opinion,
evidently!

Its influence on other foundation philosophies will be touched upon in
the sequel.

For further information on intuitionism (besides the already cited
Heyting [He,]), especially as regards more recent developments, the
reader is urged to read Chapter 15 of Beth [Be].

ADDITIONAL BIBLIOGRAPHY

Brouwer [h] Kleene [Kle]

Curry [Cu,] Menger [a, b]

Dresden [a} Weyl [We,; II]
PROBLEMS

1. If S is a non-empty, simply ordered set of rational numbers which has no
first element, give a constructive proof that S contains a *w-sequence.
(Compare V, Problem 6.)

2. Is the proof (cf. IV, Problem 2) that the set of all finite subsets of the set
of natural numbers is denumerable, a constructive proof?

3. Discuss and compare the intuitionistic implication (the “>” of 7.1)
with material implication (IX 2.2.1).

4. Give instances in which the Intuitionist would accept the Law of the
Excluded Middle as a basis for an existence proof.

5. Is the Intuitionist being “‘inconsistent’” when he rejects the Law of the
Excluded Middle as general basis for an existence proof, and on the other
hand proves non-existence by contradiction?
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6. The mathematical induction principle (or equivalent thereof) is usually
stated as a postulate in the classical theory of the natural numbers (as in the
Peano axioms, for instance). Why, then, is the proof of it which is indicated
in Section 2 valid for the Intuitionist?

7. Although Intuitionism does not accept set theory of the classical type
(Chapters 1II to V), its philosophy does suggest questions concerning the
nature of constructive proof therein. Which of the proofs given in the set
theory of Chapters I1I to V would you consider as constructive?

8. Compare the Intuitionist conception of the natural numbers with that
described in 1V 4.1.2.

9. The Intuitionist (cf. Heyting [He;; 17]) regards the following as an
example in which —— p does not imply p: Let r = 0.333... unless a sequence
0123456789 occurs in the decimal development of 7, in which case if the <9”
of the first such sequence occurs in the kth decimal place of 7, then r has only
“0’s” after its kth decimal place. Now let p be the proposition *r is rational”
and suppose “—r.”” Then r = 0.33...3 (k decimals) would be impossible,
and no sequence 0123456789’ appears in =, so that r = 1/3—again rational.
Hence he would assert ““——p.”” However, we cannot assert “p,” since this
would mean (for the Intuitionist) that integers p and ¢ can be calculated such
that r = p/gq. Contrast this with the classical mode of argument.

10. What do you consider the significance of the interpretations of classical
systems within intuitionist logic as given by Godel (cited in Section 7.1)?
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Formal Systems;
Mathematical Logic

In contrast to the intuitionist tenet that language and symbolism are
not basic to mathematics, was Hilbert’s belief that the axiomatic method
offered the most hopeful remedy for the “ills” of mathematics. This was a
natural evolution from his early work on axioms for geometry. But, to
insure a mathematics free of contradiction, the axiomatic method as used in
his Foundations of Geometry, or as described above in Chapters I and 11,
could not suffice. Freedom from contradiction is guaranteed only by
consistency proofs; and the proof of consistency by interpretation
(I 1, 2) cannot be satisfactory in general, inasmuch as it usually only shifts
the question to another domain of mathematics. In the case of the
Foundations of Geometry, consistency was assured only if real number
arithmetic conceals no inconsistencies; and a proof of this is still lacking!
A different approach is therefore demanded.

Partly influenced, no doubt, by the work of Peano and his school, as
well as by the Russell-Whitehead work, Hilbert decided upon a union of
the axiomatic and logistic methods. A reduction of mathematics to logic,
even if successful, would still leave open the question of the consistency of
that “logic.” But perhaps by analyzing mathematical concepts and
processes, both logical and otherwise, and representing them by an
appropriate symbolism, as in a symbolic logic like that discussed in
Chapter IX, we may be able to demonstrate that the formula for a contra-
diction can never be obtained from the fundamental formulas and the
rules laid down for manipulating the symbols. For a given branch of
mathematics, this would mean combining a system like that of the
predicate calculus with axioms using the technical terms. In short, the
predicates involved in the formulas would include symbols representing
the technical terms and relations.

1 Hilbert’s “proof theory”

Hilbert called a formal system thus inadequately described a “‘proof
theory.” As described by Hilbert in a preliminary paper (cf. Hilbert [b]),
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the fundamental idea of any proof theory would be as follows: “Every-
thing which constitutes mathematics today is rigorously formalized, so
that it becomes a stack of formulas. These distinguish themselves from
the ordinary formulas of mathematics only by the fact that besides the
ordinary signs or symbols there enter also the symbols of logic, especially
implication (—) and negation (). Certain formulas which serve as
foundation stones for the formal edifice of mathematics are called axioms.
A proof is a figure, which must lie clearly before us as such; it consists of
conclusions by means of the conclusion scheme

S
S—>T

T (modus ponens)

where the premise, S, is either an axiom (or axioms) or the end formula of a
proof figure which occurred earlier in the development.f A formula is
called provable if it is either an axiom or the end formula of a proof.

“To the ordinary, thus formalized mathematics, is added a, in a certain
sense, new mathematics, a metamathematics . . .. Inthis metamathematics
one works with the proofs of ordinary mathematics, these latter themselves
forming the object of investigation.” (Cf. IX 5.3.)

If F stands for any formula in such a system, then a contradiction is
obtained if the formula

(1a) F.F

(where . is the logical “and,” and F is Hilbert’s form of the negation of F)
is provable. If one can show that no such formula as represented in (1a)
is provable, then one has shown the “consistency” of the system. In
particular, if the symbols and axioms are given mathematical meanings,
then by following the proof methods allowed in the theory no contra-
diction can be obtained in the corresponding mathematical system.

In this connection it is interesting to note Hilbert’s further comments
(Hilbert [b; 154-155]): “The infinite comes into the proof theory as soon
as we introduce the ideas ‘all’ and ‘there exists.” The former is equivalent
to an infinite ‘and,’ the latter to an infinite ‘or.” From the Law of the
Excluded Middle for finite sets we conclude that either all elements of a
given finite set have a certain significant property P, or there exists one
that does not have property P.... In ordinary mathematics we argue
likewise in regard to infinite sets.

“But if we thoughtlessly apply to infinite totalities a procedure which is
permissible in the finite case, then we open gate and door to errors. It is

1 Hilbert may have been oversimplifying here, since in the “Grundlagen™ (2.1)
modus ponens is not the only rule of inference required.
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the same source of error that we see in analysis; in the latter field the
carrying over, to infinite sums and products, of theorems which are valid
for the corresponding finite sums and products is permissible only if
special convergence conditions, eic., are satisfied. Similarly we cannot
treat the infinite logical sums and products in the same manner as the
finite, unless our proof theory reveals such treatment to be justified.”
These remarks, among others, were later (1928) cited by Brouwer [h], as
evidence of the influence which Intuitionism had had on Formalism.

2 Actual development of the proof theory

As Hilbert’s program developed, there first appeared (in 1928) the
Hilbert-Ackermann Grundziige der theoretischen Logik [H-A], cited
frequently in Chapter IX. In essence preparatory to the larger work cited
below, it is (as its title indicates) a formal treatise on logic in the tradition
of Peano and Russell.

2.1 The Grundlagen der Mathematik

What may be considered the “Principia Mathematica” of Formalism
is the Hilbert-Bernays Grundlagen der Mathematik, published in two
volumes; volume I appeared in 1934 and volume II in 1939 [H-B].
Originally planned as a detailed exposition of the proof theory, with proofs
of freedom from contradiction, its scope had to be enlarged as a result of
unforeseen difficulties. (The first forty-four pages of volume I contain
some very interesting and elementary discussions of the axiomatic method
as applied to geometry of the plane and elementary number theory, and
the arguments for its formalization.)

Since it would not be practicable to give here a detailed summary of this
work, we shall be content with some remarks regarding methods, the ends
actually achieved, and the work of later writers.

2.2 Metamathematical proofs

A question which has probably already occurred to the reader is: What
is considered a proof in the metamathematics? For plainly the proofs
embodied in the formal mathematics, which are to be justified in the
metamathematical study, must not be duplicated in foto in the latter!
Otherwise we would be traveling in a vicious circle. More generally, we
may ask, ‘“What methods of procedure are used in the metamathematics ?”
In seeking the answers to these questions, we are at first struck by the
intuitionist-like character of the methods used—not that metamathematics
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and intuitionist mathematics turn out to be the same—but the existence of
an entity, for instance, is considered established only if it is constructible
by finite methods. For example, existence of a number having a given
property is established only by giving a method for constructing such a
number. And all proofs have to be of a finite character that is “clearly
perceptible” (anschaulich iiberblickbar). Also, the method of definition by
induction based on the natural numbers, which Intuitionism regards as
basic, is generalized to a more powerful tool called “definition by
recursion.”

2.3 Recursive definition

To give an indication of this method, we need the notion of “number-
theoretic function” by which is meant a function of non-negative integers,
each of whose values is a non-negative integer. Such a function, for
example, would be a function f(x) which is 0 when x is even and 1 when x
is odd; or a function f(x, y) which is 2 when |x — y| is even and 3 when
|x — y|is odd. A function f(x, yy, - - -, yn) is called recursively defined by
the number-theoretic functions g(y4, - - -, y,) and A(z, x, y1, - - -, y,) if for
all non-negative integers y,,- - -, ¥, the following relations hold:

f(07y1a' “,J’n) = g(yl:' "7yn):

f(x + 1,y1,"',)’n) = h(f(X,yh“',J/n),X,J’b“',}’n)-

If h(zy, -+, zn) and g, i = 1, - - -, m are given functions, then the function
h(g., -+, gn) is said to be formed from 4 and the g;’s by substitution.

A number-theoretic function f'is called recursive (see Godel [d] for the
definition as stated here; usually now called “primitive recursive”t) if
there exists a finite sequence of number-theoretic functions fi, fo, - - -, fx
such that f, is f, and every f;, i = 1, - - -, k is either (1) recursively defined
from two of the preceding f’s, (2) results from preceding f;’s by substitution,
or (3) is a constant or a ‘“‘successor function” x + 1.

For example, let S(x) be the successor function; i.e., S(x) is the integer
x + 1 directly following x in the series of integers. And let g;"(xy, - - -, X,)
=x;,i=1,2,---,n, be the identity (or selector) function; i.e., it selects
the ith integer from the n-tuple (x,- - -, x,). Then we may define a func-
tion A(x, y) as follows:

A©, y) = &:'(»),
h(Z’ X, y) = S(gla(za X, y)),
A(x + 1, y) = h(A(x’ y)5 X, y)

>

t Regarding ‘‘general recursiveness,” and its relations to “effective calculability”
(Church) and the Turing [a, b] computing machine, see Kleene [Kle; Part III],
Davis [D], and Beth [Be; 297-316].
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As the function A(x, y) is recursively defined from the functions g;* and A,
it is a recursive function by virtue of the sequence S, g;*, b, 4. (The reader
will recognize A(x, y) as the sum x + y; compare the above with VI
3.1.1)

Such recursive functions are of fundamental importance in both the
Hilbert-Bernays theory and modern investigations of “formal systems.”
Number-theoretic functions that are recognized in the metamathematics to
be recursively definable are deemed to be constructively (or effectively)
definable, and hence admissible, in the formal system. We shall see an
example of this in Section 3.

2.4 Degree of success of the program

For certain elementary systems the proofs of consistency were success-
fully carried out, thus incidentally exemplifying what Hilbert would like
to have done for a ‘“‘complete” mathematics. For instance, the first
application of the proof theory in the Grundlagen [H-B; § 6] to an infinite
system is a proof that a certain elementary system of axioms concerning
integers is consistent. This system embodies the calculus of propositional
functions and the Peano axioms, but not the mathematical induction
principle. In the proofs, the case which involves no bound variables
(IX 4.1) is first treated, and then extension is made to cases involving
bound variables. In connection with the latter it is shown how to
reduce a formula to numerical formulas which can be shown true or false
(cf. Section 3 below).

It is subsequently shown how to extend such reduction methods to the
system obtained by adding the mathematical induction axiom to the other
Peano axioms in the system. Unfortunately this does not give a consist-
ency proof for the entire arithmetic of whole numbers. For it will be
recalled that in developing arithmetic from the Peano axioms. it is neces-
sary to define + and x (VI 3.1.1, 3.1.2); and in the proof theory this is
done by means of recursive definition. Hence it becomes necessary to
determine whether the addition of such recursive definitions introduces the
possibility of contradiction. That contradiction is not introduced so long
as the system embodies only the predicate calculus for free variables was
established.

2.4.1 Example. As an example of a system shown to be consistent in
the Grundlagen we give the following (System “D,”” vol. I, p. 357). Instead

T See also Grzegorczyk [a].
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of S(a), the symbol @’ is used. In addition to the axioms and rules of
the predicate calculus, one states

a=a,
a=b->(A(a)— A40)),
a # 0,
a =b-—a=b,
a+0=a,
a+ b =(a+ by,
A(0) & (x)(A(x) — A(X)) — A().

The first two of these axioms establish the role of *“=""; 4(x) is any formula
involving the free variable x, and a and b are individual arbitrary instances
of x. The next two axioms are counterparts of the Peano axioms (1) and
(3) of VI 3.1. The fifth and sixth axioms serve to define ““+,” and the last
axiom is the mathematical induction axiom—number (4) of VI 3.1 (this is
really an infinite number of axioms, covering all choices of “A”—some-
times referred to as an ‘“‘axiom schema’).
If to the above are added the following axioms

a-0=0,
a-b'=ab+ a,

then a formalizationt of the arithmetic of integers results (this is Hilbert-
Bernays’ System “Z”). No consistency proof for this system was
obtained. And a decision procedure such as will be described in the next
section, if found for this System “Z,” would provide a method for solving
the famous Fermat problem. Also, such unsolved problems as “Is every
even number the sum of two prime numbers?”” and “Is it true that there
exist arbitrarily large prime numbers differing by 27 would become
solvable. For these problems may be formulated in the symbols of the
above system.

However, the consistency of System “Z” is demonstrable by methods
developed by Gentzen (see Gentzen [a, b]). Unfortunately, Gentzen’s
proof utilizes transfinite induction and, consequently, departs from the
finite methods to which the proof theory is restricted. (Cf. [H-B II;
360ff].) As pointed out in X 7.1, if we use the Godel transformation
(cf. X 1.6.1), the question of consistency for the arithmetic of integers is
reducible to that of the consistency of the Heyting calculus of intuitionist

+ It will be noted that this formalization does not embody the concept of “set,”
or even of a “‘sequence,” however.
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arithmetic; and for the consistency of the latter the Kolmogoroff (X 7.2)

“problem-calculus™ affords a proof by interpretation (as explained in
II 2).

3 Godel’s incompleteness theorem

Whether the complete Hilbert program could be carried out was rendered
very doubtful by results due to Gédel (which appeared in 1931, before the
actual publication of the Grundlagen) and other authors.t

These results may be roughly characterized as a demonstration that, in
any system broad enough to contain all the formulas of a formalized
elementary number theory, there exist theorems (formulas) that neither
can be proved nor disproved within the system. (Cf. II Problem 23) In
particular, then, as Gédel pointed out, a system such as that of Principia
Mathematica (see Chapter IX), if consistent, must contain “undecidable”
formulas, as must also certain axiom systems for set theory (such as the
Zermelo-Fraenkel-von Neumann system) when formalized by the addition
of the axioms and rules of conclusion of the predicate calculus. The
manner in which this was accomplished is described below. }

Consider a formal§ system whose primitive symbols consist of individual
variables x, y, z, - - -, functional symbols F, G, - - -, and further symbols
S, 0, =, ~, 2, (,). In interpreting formulas constructed from these
symbols we shall regard the individual variables as ranging over the
natural numbers, while the functional symbols stand for properties and
relations of numbers. S will denote the successor function (so that Sx
is the number x + 1), while 0, =, and the logical connectives have their
usual meaning. Thus the formulal|

MFX) . = . @NG) v (y = S50))

would be read: If every number x has the property F, then there exists a
number y such that either y has the property G, or y is 2. In the formal
system, incidentally, we shall denote SSO by 2, SSSO0 by 3, etc.

t A very elementary exposition of Gédel’s results and their implications may be
found in the little book of Nagel and Newman [N-N].

{ The material below and in Section 4 is based on lectures given by Professor
Leon Henkin at the Mathematical Seminar, University of Southern California,
November, 1949. Attention is also called to an elementary exposition given by
Rosser [b], and to Weyl [We, ; 219ff].

§ Concerning formal systems in general, see Curry [a].

I Symbols like v, A (for the logical product, analogous to the - of P.M.), 3 may
be regarded, in this system, as abbreviating formulas composed only of primitive
symbols. For example, (4 v B) would be taken as short for ((~ 4) > B), whatever
the formulas A4 and B, while (3x)4 stands for ~((x) ~ A4).
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After setting up formal axioms and rules of inference for obtaining
formal proofs of those formulas which express valid propositions about
numbers, we proceed to ‘“arithmetize”t the formal system as follows.
We first assign to each primitive symbol a coordinate in the following
manner (in the groupings below, symbols in the first line are within the
system, and the numbers in the second line are the coordinates of the
symbols directly above):

For the basic logical symbols we make the correspondences:

0 S‘ ~ D ( ) =
23 4 5 6 7 8
For the individual variables (which can be denumerably infinite in

number):
x y oz
11 112 118
For functions of the first order (functions of individual variables):
Fl Gl Hl
13 132 138

And so on, using powers of the (n + 5)th prime number for function
symbols of the nth order.

To a formula in the system will correspond, then, a sequence of numbers,
namely, those corresponding to the successive symbols of the formula.
Thus, to
(3a) (x)F1(x)
will correspond the sequence

6 11 7 13 6 11 7

We can make a unique number correspond to the formula by taking the
product of the successive prime numbers (in their natural order) with
powers equal to the numbers of the symbols (in the order in which they
occur). Thus to formula (3a) will correspond the number

2°.311.57.712.116.1311.177

We shall call this the Gddel number of the formula.

Notice that the Gédel number can be computed as soon as a formula is
given; and that, conversely, when a number is given we can determine
(by factoring it into primes) whether or not it is a Gédel number, and if so
to which formula it belongs.

T Note the similarity to the process of assigning coordinates to points in geometry.
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Finally, to any sequence of formulas we may make correspond a unique
number

(3b) 20D, 3D, L prdo

where n(1),n(2),---,n(k) are the successive Godel numbers of the
formulas of the sequence. We call (3b) the sequence number of the
sequence of formulas. In particular, to every formal proof (i.e., proof
within the system) corresponds a sequence number, since a formal proof
of a formula F consists of a finite sequence of formulas each of which is an
axiom, or derived from axioms and preceding formulas by the allowable
rules of inference of the system, the last formula of the sequence being F
itself.

By means of this arithmetization, statements about the formal system
can be “translated” into sentences about numbers. In general, corre-
sponding to each class, relation, or operation on formulas there is an
associated class, relation, or operation on (Gddel) numbers.

Now it happens that many of the interesting classes and functions arising
in this way are primitive recursive (2.3). Since all primitive recursive
notions may be defined by formulas of our system, we see that in a sense
the formal system can “talk about itself”! The meaning and some of the
consequences of this fact will become evident as we proceed.

Outside the system (in the metamathematics, that is) let B(x, y) denote
that y is the sequence number of a formal proof in which the last formula
has Gédel number x. And let f(x, y) be the Gdel number of the formula
obtained by replacing, in the formula having Godel number x, each
occurrence of the particular individual variable z by 5. Godel shows that
both B and f are recursive.

Now form the relation B(f(x, x), y). This is also recursive; denote it by
G(x,y). Being recursively definable, it has a counterpart in the system
which we denote by T'(x, y). Then by virtue of the rules for constructing
formulas, the system contains the formula

(3c) ~@IG, p)-
Let the Godel number of this formula be i.
A new formula is obtained by replacing z in (3c) by i:

(3d) ~@IE ).
Let the Gédel number of (3d) be j. Note that
(3e) J=JG10.

We now prove:

3.1 Theorem. If a formal system, S, such as that described above, is
consistent, then the formula (3d) is not provable in S.
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Proof. Suppose that it is provable in S, and let k& be the sequence
number of such a proof. Then B(j, k) holds and, by virtue of (3e),
G(i, k) holds. But then I'(z, k) is provable in S, for it may be shown that,
whenever particular numbers are in some recursive relationship, the for-
mula of the system which expresses this fact is formally provable. It then
follows easily that (3y)I'(7, y) is provable in S. Since our starting
assumption was that (3d) is provable in S, it follows that S is not consistent.
However, S was assumed consistent, so we conclude that (3d) is not
provable in S.

To show that the formula

(3f) @G, y)

is also not provable, Godel used the assumption of “w-consistency”;t
Definition. A formal system is w-inconsistent if it contains a formula
(x) such that both

(@x)e(x)
and

~(p(0)’ N‘P(T), Nq’(i), et

are provable in the system. If no such formula exists, then the system is
called w-consistent. Evidently w-consistency implies ordinary consist-
ency (since inconsistency implies all formulas provable), but the converse
does not necessarily hold.

3.2 Theorem. If the formal system S is w-consistent, then the formula
(3f) is not provable in S.

Proof. Suppose that it is provable. Then B(j, k) cannot hold for any
k, since otherwise (3d) is provable in S and S is inconsistent. Thus, for no
k does B(j, k) hold. That is, B(f(i, i), k) holds for no k, implying that
G(i, k) holds for no k. Thus, for each natural number k, ~T(i, k) is
provable in S. In particular, then, all formulas

~ F(L O)a ~ F(i’ T): ~ F(iy 2)9 e

are provable in S. But, since (3f) is also provable, this implies that S is
w-inconsistent. We must conclude, then, that (3f) is not provable in S.

From Theorems 3.1 and 3.2 it follows that S contains a formula (3d)
that is not provable, nor, if S is w-consistent, is its negation provable in S.
From this we get

3.3 Theorem. If the system S is w-consistent, then it cannot be
complete.

T See, however, Rosser [a], [b].
1 Cf. Godel [c], p. 190.
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4 Consistency of a formal system

It is natural to ask if such a formal system S could be made complete by
adding to its basic axioms either (3d) or its negation. The answer is no,
because, so long as only formulas are added whose Go6del numbers
constitute a primitive recursive set of numbers, the resulting system will
remain incomplete. In such systems, then, consistency seems to imply
incompleteness; that the converse holds is obvious, since an inconsistent
system is always complete. As for systems with axioms whose Godel
numbers do not form a recursive set—they suffer from the embarrassing
drawback that there is no effective test for deciding whether or not a given
formula is an axiom!

Regarding consistency, Godel showed that in a formal system such as S
above, it is a recursive notion and hence expressible in the system. This
can be done as follows: Since B(x, y) is recursive, it has a counterpart
B(x, ) in the system, and we can let “Wid” denote

() - ~@y)@y2) . Bx, y1) A BIN(x), y2)

[Here we have indicated by N(x) the counterpart in S of the Godel
number of ~ A, where A4 is the formula ‘with Godel number x.] Gddel
then showed that, if the system is consistent, the consistency is not
provable within the system:

41 Theorem. If S is a consistent system, then Wid cannot be proved
in S.

Proof. By paralleling within the system our proof of 3.1, we can
demonstrate that
(4.1a) Wid > ~@3»)B3J, »).
And, since j = f(i, i), and hence B(j,y) = B(f(i,i),y) = G(,y), (4.1a)
gives

Wwid = ~@p)I'Q, »).

Now, if Wid were provable, we would then have at once that

~@nTa, y)
was also a formal theorem. But this contradicts Theorem 3.1.

5 Formal systems in general

Although it appears an impossibility to develop mathematics in a
complete, consistent formal system, just as it would be impossible to
axiomatize the whole of mathematics in a single system using the typé of
axiomatics described in Chapters T and I, we can reduce special parts of




Sec. 5 FORMAL SYSTEMS IN GENERAL 275

mathematics and logic to formal systems just as we axiomatize special
parts of algebra and geometry. And this has been done with fruitful
results. In some of these systems, analogues of the Godel theorems have
been shown to hold. In others, however, positive results have been
obtained; decision problems are solvable (see below) and completeness
demonstrable. We have already seen an instance of the latter in the case
of the propositional calculus [IX 3.9]. Other instances will be found in
Tarski’s ““A decision method for elementary algebra and geometry” {T,]
(cf. also references to other cases therein) and Tarski-Mostowski-Robinson
[T-M-R].

5.1 Decision procedures

Given a collection, C, of formulas in a theory T, a decision problem for
C in T is the problem of finding a method—an effective procedure—by
which, given any formula, we can decide in a finite number of steps whether
itisin C. If such a method exists, it may be called a decision method or
decision procedure for C. To quote Tarski [T, ], “a decision method must
be like a recipe, which tells one what to do at each step so that no intelli-
gence is required to follow it; and the method can be applied by anyone so
long as he is able to read and follow directions.” The same author cites as
an example the collection, 4, of all true formulas (sentences) of the form
“p and q are relatively prime” in the elementary theory of integers. For
any particular sentence, such as “215 and 349 are relatively prime,”
Euclid’s algorithm provides a method for deciding whether it is in 4 or not.

The important case, and the one in which we are most interested, is that
where C consists of the set of all provable formulas of a formalized system.
The decision problem then becomes the problem of finding a decision
procedure by which it can be decided of any particular formula whether it
is provable by the methods admissible in 7. If such a procedure exists,
it is called simply a decision procedure for T; and the problem of deter-
mining whether a decision procedure exists for T is called the decision
problem for T. A theory for which a decision procedure exists is called
decidable; and if not, undecidable.

Now we may justifiably ask: “What is an ‘effective procedure’ anyway ?”’
To say that it must involve only a finite number of steps, constructively
pursued (an “algorithm”), is still rather vague. It is precisely this charge
that some have leveled at the intuitionist requirement of “constructive
proof”—that it is not precisely defined. Consequently, in attacking a
decision problem for a theory T, we may expect better chances of success if
we can formulate, in some manner, a specific type of procedure P and then
investigate whether it “works” for 7.
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Continuing the same line of thought, we may achieve greater generality
by so formulating P as to make it meaningful not just for one theory, but
to a whole class of theories; perhaps, indeed, to any formalized theory.
Thus, if a theory T is formalized by using the first-order predicate calculus,
symbols for the technical terms, operations, etc., of T, and we “arith-
metize” it in the manner devised by Godel (Section 3), then we may be
able to formulate P by recursive methods as exemplified in the “primitive
recursion” employed in Section 2.3.

5.2 Precise formulation of the notion of decision procedure

The carrying out of such a program was achieved in several ways, all
a priori different. Chief among these were general recursiveness (Herbrand-
Godel), a generalization of primitive recursion; A-definability (Church-
Kleene); and computability (Post-Turing). The notion of A-definability
was proposed by Church [d] as a precise definition of what one might
mean by the intuitive notion of “‘effectively calculable.” In dealing with
an “arithmetized” theory, the decision problem can be transformed into
a problem concerning whether a given number-theoretic function (2.3) is
effectively calculable or not (cf. Church, loc. cit.); hence, Church’s pro-
posal. And, as the word implies, computability is based on the idea that
if a number-theoretic function is to be effectively calculable, it should be
possible to construct, at least theoretically, a machine that would carry
out the calculation.

That these notions have perhaps caught the intuitive notion of effective
calculability is supported by the fact that all have been proved equivalent
(see Kleene [Kle; 320], for instance; also citations therein). In addition,
other evidence such as that known effectively calculable functions all turn
out to be general recursive, and that search for methods that could yield
functions not general recursive seem only to give functions that can hardly
be deemed effectively calculable, bolster the belief that in general recursive-
ness we have a justifiable definition of “effective calculability.”” And at the
same time, we are able to give formal expression to the notion of “effective
definability.”

To develop these notions in detail would take us beyond the scope of
this book, and we refer the reader to more technical works such as that of
Kleene [Kle] and Davis [D]. It is interesting to speculate, incidentally, on
what Poincaré’s attitude toward these developments might have been, con-
sidering his ideas regarding definition in mathematics (VIII 7) and, on the
other hand, his rejection of the “logistic” investigation of the foundations
of mathematics (Joc. cit.). The attitude of Intuitionism would probably be
general rejection of any attempt to confine the notion of constructive
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definition to a precise “confining” formulation; for a fuller discussion,
however, see Kleene [Kle; §§ 80-82].

5.3 Existence of undecidable theories

In 1936, Church [d] showed, by using the notion of A-definability cited
above, the absence of decision procedures for a large class of formal
systems. In particular, he showed that there is no decision procedure for
Peano arithmetic. On the other hand, for the system D of Section 2.4.1
there does exist a decision procedure (cf. Hilbert-Bernays [H-B; 359-367]);
although there does not exist one for system Z. Church’s result was
extended by Rosser [a] to showing that the Peano arithmetic is essentially
undecidable in the sense that every consistent extension of it is undecidable.
The arithmetic of every finite field is decidable. Also, the arithmetic of the
field of real numbers is decidable, and so is that of the field of complex
numbers.

Since most theories turn out to be undecidable, the study of decision
problems has turned out to be a rather “negative” occupation. Thus, the
first order predicate calculus is itself undecidable. In contrast to the real
number arithmetic, the field of rational numbers is undecidable. The
general theory of rings is undecidable. The theory of groups (and semi-
groups) is undecidable (although that of commutative groups is decidable).
And various topics in set theory and topology are also known to be
undecidable.

For further information regarding decision problems, the reader is
referred to such works as Kleene [Kle] and Tarski-Mostowski-Robinson
[T-M-R].

6 General significance of formal systems

We have seen how, from the type of axiomatic geometry of the Greeks,
there evolved a more rigorous axiomatic method as exemplified in the late
nineteenth century and early twentieth century geometries (e.g., Pieri,
Hilbert) and in the subsequent axiomatization of a major part of mathe-
matics (groups, fields, real number system, etc.). This type of work still
goes on, inasmuch as the so-called “working mathematician” (meaning one
who is not a “logician’!) usually employs the kind of axiomatic tools that
we described in Chapters I and II, assuming as “universal” not only the
logical processes employed, but also the set theory. He may know that
the latter conceals contradictions, but since his uses of set theory usually
involve only the ““safe” portions of the theory, he justifies his methods by
observing that they “work.” Besides, he would not have time to set up a
complete formalization.
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Of the earlier investigations in foundations, it seemed that only the
Peano axioms for the natural numbers achieved any notable recognition
by the general mathematical public, for although the type of attitude
Poincaré evinced toward work in the logical foundations may not have been
so pronounced among the rest of the mathematical community, it certainly
seems to have been rather widely shared. The Peano axioms, stripped of
their formalism and couched in the natural language common to the
axiomatics of the day, formed a convenient starting point for the teaching
of analysis during the early part of the twentieth century (in which the
concept of the real number system was developed as in VI 3, or some
variant thereof such as the use of Cauchy sequences instead of Dedekind
cuts). But of the other work of Peano and his school, as well as of Frege,
Russell, and others, the general mathematical public seemed unaware.

With the development of modern mathematical logic, however, the
importance of logic and, ultimately, of formal systems in general, became
apparent. Realization that fundamental questions in foundations could
hardly be resolved without reduction to formalism was probably the major
factor in this. This was already evident early in the century, when the
study of consistency was the motivating factor in logical studies. On the
other hand, devices such as the Frege-Russell definition of number,
designed to found mathematics in “logic,” met cold reception such as that
of Poincaré, together with the query, “Why bother to do it?” A quite
satisfactory foundation for a theory could be achieved by using axioms as,
for instance, Hilbert did in his geometry; and although the proofs of
consistency, completeness, and the like by using models may not have been
absolute, they were good enough for the working mathematician; and, we
may admit, still seem to be. Axiomatic foundations for set theory, such
as those of Zermelo-Fraenkel and von Neumann, seemed unnecessary to
most mathematicians, since what they wanted was only a portion of the
set theory that we have discussed in Chapters III-V. And to a great
extent this is still the case—indeed, so far as transfinite numbers are con-
cerned, often the need is only for the distinction between the countable and
the uncountable!

But appreciation of the accomplishments of the mathematical logicians
seems to be rapidly growing. Earlier results, such as the well-ordering
theorem, the subsequent “discovery” of the Choice Axiom, its equivalence
to comparability (V 5), and the like, were originally achieved without
resort to logical formalism. But deeper questions, such as the nature of
models (cf. the “ideal” models of II 1.2 and II 2), the nature of definition,
completeness, decidability, and the like, have required a finer instrument
than the language of ordinary mathematical discourse and its ambiguities,
and compelled resort to formalized axiomatics. And these have justified
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their introduction by results whose power and generality were undreamed
of at the turn of the century. In addition, such matters as the develop-
ment of machine computation and the theory of automata seem to have
given a stimulus for the admission, into the main stream of mathematical
evolution, of what is now called ‘“Mathematical Logic.”
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PROBLEMS

1. Contrast the attitudes of (1) Russell, (2) Brouwer, and (3) Hilbert
regarding the role of logic in mathematics.

2. If it develops that we can never devise a mathematics wholly free of
contradiction, what will the effect be on (1) fields (such as physics) which use
mathematics as a tool; (2) the convictions of those who have relied on mathe-
matics as a secure haven from the uncertainties of the natural world ?

3. What conclusions have you reached in regard to the respective concep-
tions of Brouwer and Hilbert regarding what constitutes mathematics?
What are their chief differences?

4. Compare (a) impossibility of trisecting an angle of 60° with ruler and
compass alone, and (b) existence of unsolvable problems in a formalized
arithmetic.

5. Contrast the axiomatic method as described in Chapters I and II with the
formalized axiomatics such as those described in the present chapter. Note,
in particular, that in the former the proof procedures are tacit, while in the
latter they are given explicitly in the metamathematics.

6. Note that the result of Section 4 implies that there exists no meta-
mathematical proof of consistency of a formalized arithmetic which can be
interpreted within the system. Contrast this circumstance with the Gentzen
consistency proof cited in 2.4.1.

7. In view of Goédel’s incompleteness theorem, do you believe it would be
better to develop arithmetic in non-axiomatic form, as, for instance, Intuition-
ism does (although not necessarily adopting the limitations imposed by the
Intuitionist tenet of constructivity)? Or would you prefer, as a compromise,
development of arithmetic by the type of axiomatics described in Chapters
Iand II?

8. Discuss the following opinion: The axiomatic method as described in
Chapters I and II is more suitable for the creation and development of new
mathematics than systems formalized in the predicate logic. Its methods are
not metamathematically limited, and consequently the possibility of discovering
new methods quite open.
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9. Discuss the following: Formalized axiom systems are the best instrument
for the analysis of fundamental questions such as provability, independence of
basic principles (e.g., the Choice Axiom in set theory), completeness, etc.

10. Set theories have been presented in formalized axiomatic form (e.g.,
Godel [G], von Neumann [b]). What advantages would you think these
might have over the non-formalized presentations (such as that given for the
Zermelo set theory in Chapter VIII); what disadvantages ?



Xl

The Cultural Setting
of Mathematics

In the preceding chapters we have tried to give an introduction to the
fundamental ideas and methods of mathematics. In Chapters I and II
we described the axiomatic method as it is commonly used in modern
mathematics, and in Chapters III to V we discussed the basic notions of
set theory which we encountered in the actual use of axioms and which
are fundamental in modern mathematics. In Chapters VI and VII we
applied the axiomatic method and set theory to the definition of basic
notions of analysis and algebra. The rigorous formalistic use of axioms,
which we found emerging in the works of earlier mathematical logicians
(Chapters VIII and IX) and reaching maturity in modern symbolic logic
(Chapter XI), is rarely used in actual mathematical practice. To proceed
purely formally, setting forth the basic axioms as formulas, and the
allowable methods of proof as prescribed rules for deriving new formulas
from old (cf. XI 1), would probably be impractical as a mode of either
teaching or research, generally speaking. Purely formal methods,
although indispensable for the investigation of the foundations (as in
questions concerning completeness, consistency, and decision problems,
for example), would probably hamper research in higher mathematics
rather than facilitate it.

The situation may be compared to that existing between a ‘““natural
language” and a formal language; although a commonly spoken language,
such as English, is full of ambiguities and illogicalities, its replacement by a
formal language, if such were possible, would probably slow up social
intercourse, and the formal language undoubtedly would eventually be
contaminated by the same kinds of ambiguities and logical defects found
in the natural language.

Regarding the effect of the controversies over the theory of sets and the
contradictions to which it is liable, it is probably safe to say that the modern
worker in the foundations is more interested in the problems to which
they have given rise than in the choice or validity of an underlying phi-
losophy; one can be either a follower of Russell or an intuitionist and be
interested in the relations between the Russell logic and the intuitionist

281
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logic (cf. X 7.1), or in the conditions sufficient for the solvability of a given
problem. (We have not, indeed, touched upon all the varieties of
foundation philosophies to which past speculation has given birth; for
further discussion on philosophic lines the reader is referred to the general
literature in the subject. See, for example, Benacerraf and Putnam [B-P],
Beth [Be], Black [BI], Fraenkel [F,], Kattsoff [K], Maziarz [M], and Weyl
[Wey; P. 1], and their extensive bibliographies.)

In contrast to the somewhat technical material given in the preceding
chapters, we now give some attention to the general cultural setting of
mathematics. After all, mathematics was born and nurtured in a cultural
environment. Without the perspective which the cultural background
affords, a proper appreciation of the content and state of present-day
mathematics is hardly possible.

1 The cultural background

To avoid misunderstanding, we must make clear our use of the term
“culture” above. We use it in the general anthropological sense, as
exemplified in the terms “Chinese culture,” “ancient Greek culture.”
In this sense, a culture is the collection of customs, beliefs, rituals, tools,
traditions, etc., of a group of people such as an Indian tribe, or the people
of a given region such as the United States. It is not the use of the term
as in “‘a cultured person” that we have in mind.

As human beings we are born into cultures, and it is these that, acting
on and interacting with our receptive nervous systems, determine the
habits, beliefs, etc., that largely make up our “personalities.”” Most of
what we take for granted is culturally determined. A culture, it should be
noticed, is more than the habits, beliefs, skills, etc., of any single one of the
persons living under its influence ; usually it existed before he was born and
will continue to exist after him, although it may undergo change during his
lifetime. He possesses some of the “cultural elements,” but not all of
them. If he is born and brought up in a middle western town of the
United States, he may belong to one of the branches of the Christian
religion (usually depending on whether his parents did), talks English of
the variety spoken in that region, perhaps learns a trade such as tool-
making, gets married, has a family, and dies. His best friend’s experiences
may parallel these, except that the friend’s religion may be different and he
may become a musician instead of a tool-maker.

Now the tool-making skill, the religions, the musical techniques, etc.,
were already present in the middle western culture before the above
hypothetical persons were born, and will go on after them. As individuals
these persons may contribute to the culture new ways of making tools,
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new techniques of piano playing or musical composition, but these, though
“new,” are the result of the interaction of the cultural elements concerned
with the individual’s own capacities. Thus the musical composition will
probably be written in the diatonic scale, and contain elements common to
the fashions in composition of the time. The effect of the culture on the
modes of dress, eating habits, recreation, etc., are too obvious to dwell
upon.

2 The position of mathematics in the culture

So far as mathematics is concerned, both the tool-maker and his friend
the musician will probably learn to count before entering primary school,
study arithmetic in the primary school, and possibly elementary algebra
and plane geometry in the secondary school. Probably neither will go
any further in mathematics, and the musician will undoubtedly promptly
forget all the algebra and geometry he has learned. Both will retain
enough knowledge of arithmetic to enable them to do the ordinary
computations required in borrowing money, using recipes, etc., and the
tool-maker may remember such elementary geometry as is useful to him in
his trade. As carriers of the mathematical tradition in their culture,
however, they play only a minor role, viz., that of every parent who
teaches his child to count and helps him with his “home-work™ during the
school years. Their conception of mathematics might be considered a
modern version of that of the ancient Babylonian and Egyptian computers,
to whom mathematics was a body of rules for handling quantitative
problems arising in the workaday world.

The principal mathematical element in the culture, embodying the living
and growing mass of modern mathematics, will be chiefly possessed by the
professional mathematicians. True, certain professions, such as engineer-
ing, physics, and chemistry, which employ a great deal of mathematics,
carry a sizable amount of the mathematical tradition, and in some of these,
as in the case of physics and engineering research, some individuals
contribute to the growth of the mathematical element in the culture.
But, in the main, the mathematical element of our culture is dependent
for its existence and growth on the class of those individuals known as
“mathematicians.”

Now, if we compare mathematics with such cultural elements as lan-
guage, religion, and dress, we notice a striking difference; for, although
the latter elements are generally peculiar, in their various manifestations,
to regional groups, mathematics seems to have a universality that knows no
boundary lines. During the present century it has been customary to hold
international mathematical congresses every few years. In attendance at
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these will be found mathematicians representing all manners of language,
dress, and religion, as well as all shades of political opinion. But a
Russian algebraist, a German algebraist, and an American algebraist all
share the same algebra; and a Japanese topologist and an American
topologist share the same topology. What differences exist between them
generally have to do with details concerning new theories, rather than
with the known parts of the subject which they share. This universality
of mathematics seems to be one of its most distinguishing characteristics
among the various cultural elements.

However, on closer study we shall find that (1) this universality did not
always exist, (2) it is not so complete as it seems, and (3) its existence is
easily explained in cultural terms.

3 The historical position of mathematics

If we look at the position of mathematics in the various cultures about
the time of Christ, we find a radically different situation from that of the
present. In the Greek culture, geometry and its attendant logical and
dialectical devices were the principal elements of mathematics; they were
paralleled by a numerical and algebraic system whose basic symbols were
derived from the Sumerian-Babylonian cultures and have been virtually
forgotten today. Although the Romans were influenced by the Greek
mathematics, they had their own system for writing numerals—a system
much more cumbersome than the Greek types for numerical manipula-
tions, yet surviving to this day on monuments, title pages, and other odd
places. On the other hand, in the Chinese culture, no geometry of the
Greek type was known. Mathematics in China consisted principally of
numerical computations and solution of algebraic equations. And,
although there were evidently contacts between the Eastern and Western
civilizations from early Christian times onward, there are few instances of
diffusion of mathematical ideas from one of these culture areas to another
until relatively modern times. No geometry of the systematic logical
type cultivated by the Greeks gained a foothold in China, where such
geometric elements as existed seem to have been of the non-logical,
“rule” type characteristic of the pre-Greek Egyptian geometry. Chinese
mathematics evidently emigrated to Japan along with other elements of
Chinese culture and there, despite the probable introduction during the
seventeenth century of Euclid texts in the Chinese language, mathematics
continued along the same traditional lines. In the seventeenth and
eighteenth centuries we find mathematicians in Japan solving equations of
degrees as high as 3000 and 4000! The major resistance to absorption of
Western mathematical ideas was not broken down in Japan until the
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cultural innovations following the Restoration of 1868, when European
mathematics began to flow in along with other cultural elements.

On the other hand, conditions in the Mediterranean area during the
flourishing of the Greek culture and for centuries thereafter were such that
no systematic development of algebra was made. And it was left to the
Arabs to preserve and transmit, via Africa, Spain, and Italy, the Hindu-
Arabic mathematics (and the system of enumeration which is universal
today), along with Greek geometry.

It is frequently very difficult to determine why an element of a culture C,,
which might be very useful in a culture C,, is not always accepted and
integrated with C,. Thus it was pointed out by Sarton (see Schaaf
[S; 72-73]), for example, that although the metric system would have been
highly useful to the industrial elements in English culture, it was not
accepted by the latter. Incidentally, Sarton used this example to support
a contention that mathematics is not always “economically” determined,
but dependent to a large extent upon forces “interior” to us. So far as
economics is only a single aspect of culture, Sarton was of course correct;
but we can question the propriety of setting the economic aspects of
English culture, by implication, “‘external” and other aspects “internal.”
Evidently there were present in the English culture other elements (perhaps
national pride and resistance to innovations from without, for instance)
which were stronger in their resistance to adopting the metric system than
the attraction of the metric system for the industrial elements of the culture.

These observations (which could be augmented by many others if space
permitted) teach us that mathematics is not something which is by its
nature universal, absolute, or foreordained; it is subject to laws of develop-
ment and influence from other cultural elements much as are arts and
sciences in general. Of course, we do not expect to find mathematics
developing, under cultural influences, exactly like other cultural elements,
any more than we expect to find different individuals reacting the same way
to their environments. This is due partly to the nature of the subject and
partly to its position in the complex of human activities, just as the
development of the individual personality is due partly to inherent qualities
and partly to the position of the individual in his society and culture.

4 The present-day position of mathematics

In contrast to the historical situation depicted above, mathematics
occupies today a seemingly unique position. Although mathematicians
speak various ‘“‘natural languages” around the world, their mathematical
language is practically universal. Thus an algebraist can pick up an
algebraic article in a journal published in any part of the world, and, after
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piercing the natural language barrier, find the same algebraic notions and,
as a rule, algebraic symbols with which he himself works. The same
generally holds in any branch of mathematics (although in a new branch
there usually is a period when the terminology is a bit chaotic).

However, variations in symbols and terminology do occur, not only
between mathematicians in different countries but also between groups in
the same locality. Not infrequently, differences of opinion have arisen
regarding the direction further research should take and the important
problems to be solved. Such differences lead, temporarily, at least, to
different “schools” which, while sharing essentially the same philosophy
about foundations, do differ on subject matter and choice of method.

For example, it is well known that usually there are many different ways
of solving a given problem. Indeed, once a problem is solved, many new
solutions are likely to be found, perhaps of a simpler or more elementary
character than the original solution. Of the possible solutions, some will
be preferred by one group, others by another group. Perhaps some of the
solutions are geometric, for instance; then the geometric-minded will
usually prefer them. If some are of an algebraic nature, with no geometric
elements entering in, they will almost certainly be preferred by mathe-
maticians who have specialized in algebra. An instance of the latter
kind was especially noticeable in the relatively new subject of topology a
number of years ago when some, called ‘“‘set-theorists,” preferred to use
set theory as their chief tool while others preferred algebraic methods.
(Today, mixed methods prevail in topology.)

It is natural also to expect that differences will be found between groups
living in widely separated (geographically) areas. Indeed, some mathe-
matics still take on a distinctly national character. French mathematics
was long known for its preference for function theory, English for interest
in applied mathematics, German for foundations, and Italian for geometry.
Today we frequently hear comment among mathematicians regarding the
abstract character of mathematics in the United States—a trend which was
perhaps somewhat retarded by the call for mathematicians to go into war
work in 1941 and subsequent years.

Nevertheless, despite these variations (which are generally due to cultural
influences), mathematics today can be considered to be distinguished by a
universality foreign to most other human activities.

5 What is mathematics from the cultural point of view?

The question, “What is mathematics ?”” has probably received as much
attention as any question of fundamental character—and as many answers.
In view of the discussion of the last four chapters, it would be unlikely that
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the reader would expect that anyone could give a nice, compact answer
that would find general acceptance.

Here we must qualify the question, however. As it stands, no indication
is given as to the type of answer expected. It is not the dictionary type of
definition that is ordinarily desired in asking the question. More likely,
it is expected that one will give the sort of answer that philosophy has
sought. And both philosophers and mathematicians have given answers,
but none has found general acceptance. The trouble seems to lie chiefly
in the assumption that mathematics is by nature something absolute,
unchanging with time and place, and therefore capable of being identified
once the genius with the eye sharp enough to perceive and characterize it
appears on the human scene. And, since mathematics is nothing of the
sort (although the layman will probably go on for centuries hence believing
that it is), only failure can ensue from the attempt so to characterize it.

Is there any sense, then, in which the question can be answered?
Probably only in that it is one of those questions that have to be answered
by pointing; we point out what the thing to be defined is, at a certain
time and place. We do not thereby assume any responsibility for the
appearance of the same thing at another time or place. Thus we can give
a pretty fair answer as to what mathematics was in Greece in the year
100 B.c. And much of this Greek mathematics has evolved to become
part of what we would call mathematics today—although we should not
take this to mean that mathematics has a timeless character as so many
have asserted, for it is not eternal; much of mathematics once accepted has
since been rejected—is no longer mathematics, that is—or has completely
changed in character. Although from a superficial point of view the Greek
geometry seems still to be a part of mathematics, in a strict sense it is not.
In the Greek culture, geometry was thought to be either an idealistic
description of real space dictated by natural phenomena, or a doctrine
imposed by a philosophy of absolutes; whereas in our culture the analogue
of what the Greeks called geometry is only one of several co-existing
geometries, each of which embodies only a special mathematical concept.
In its modern axiomatic form (as described in Chapters 1 and II), it is
something quite different from what the Greeks considered it. In this
sense, then, the Greek geometry cannot be said any longer to constitute
mathematics, any more than does the progenitor of man in the evolutionary
scale any longer exist except through his descendant, modern man. Like
comments hold for the notion of number.

When the question, “What is mathematics ?”” is considered a request for
a criterion that will enable us to distinguish the principal mathematical
element of a culture from other elements, then a satisfactory answer may
become possible. We have to bear in mind that during the course of
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human history, as man came to recognize differences between certain
activities, he found it convenient to assign them names in order to distin-
guish them from one another; and then ultimately, in a philosophic mood,
he came to believe that the names themselves had acquired a content and
being of their own; and so he set out to find just what this content was.
And the result, as in the case of other abstractions, such as “mind,”
“life,” “beauty,” has often been a philosophic muddle. “In the beginning
was the word” simply does not hold concerning mathematics—for first
there had to be something to be called “mathematics.” In primitive
cultures having only such rudimentary forms of mathematics as counting,
no word for “mathematics” is found.

Why do we differentiate certain elements of the Greek and Chinese
cultures from other elements of those cultures and call them ‘“‘mathe-
matics”? More generally, what enables us to go into any culture and pick
out its ‘“mathematical” elements? Obviously, we use what we call
“mathematics™ in our own culture as a criterion; thus, so far as ancient
cultures are concerned, we lump together everything numerical, geo-
metrical, and algebraic under the name ‘“‘mathematics.” Conceivably,
however, what we call “‘mathematics” in an ancient culture might have been
(and probably was) called in that culture by names that would correspond,
in our language, to ‘‘astrology” or ‘“theology.” Inevitably we are
influenced and guided by what we call mathematics, in our determination of
the mathematical elements of other cultures. And consequently we may
as well narrow down the question to: “What is the cultural element called
‘mathematics’ in the world of today?” (Because of its essential univer-
sality, there is no need to say “in the United States” or “in France”—
“in the civilized world” will do.)

One way to answer the question, impractical, to be sure, is to gather
into one library copies of all the “mathematical” material in the world
and, having done so, answer, “This is mathematics today.” We said
“impractical,” for not only would it be obviously impossible to make such
a collection, but also selection of the items to be included would in many
instances reflect tastes peculiar to the selector. Recall Kronecker’s
reported remark concerning Lindemann’s proof of the transcendence of .
It is still not uncommon to hear one mathematician characterize the work
of another by a contemptuous, “It’s not mathematics!” The position of
the selector would not be unlike that of the zoologist who is asked to
determine whether certain tissues are ‘““animal” or have “life.” The
“border-line” cases alone would render the task of selection an impossi-
bility. The best that could be done would be to place some items in a
department labeled with a question mark, or with the notation “not
generally accepted as mathematics, but accepted by some.”
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There is an interesting historical item in this connection, namely, the
first extant history of mathematics—that of J. E. Montucla, published in
1758. Montucla divided “mathematics” into two parts, the one “com-
prising those things that are pure and abstract, the other those that one
calls compound, or more ordinarily physico-mathematics.” The first
part dealt with what we would today probably call “pure mathematics,”
and the second with other concepts that could be formulated in mathe-
matical terms. Thus Montucla treated such subjects as mechanics, optics,
astronomy, judiciary astrology, navigation, geography, and music.
And, for good measure, he flung in some material on applications to the
construction of observatories, ships, etc. He cites evidence to show
that his inclusion of such topics had a precedent in early Greek histories of
mathematics which included music and gnomonics (although otherwise
devoted exclusively to geometry). The “division of labor” consequent to
the growth of mathematics since Montucla’s time has forced a change in
cur ideas of what constitutes mathematics!

Compare Montucla’s history with a history of mathematics written
during recent years, and notice the change. Although modern histories of
mathematics still contain references to astronomy (because so many early
“mathematicians” were what we would today call “astronomers’), these
are only incidental and no special section is devoted to astronomy as a
rule. Vestigial remains of older cultures are still found in our colleges,
in the existence of ““departments of mathematics and astronomy,” despite
the fact that today we have a special class of workers called “astronomers”
to whom ‘““mathematics” is a “tool,” not a profession.

Actually, the variability of the subject matter covered by the term
“mathematics” is so pronounced that it can be quickly discerned by
comparing a history written about 50 to 75 years ago with one written
during more recent times. Take, for instance, the histories of Ball [B]
and Cajori [Caj], which were written shortly before 1900. In Ball’s first
edition (1888) there is no mention of “logic”; in the fourth edition (1908)
there is a remark concerning George Boole to the effect that he “was one
of the creators of symbolic or mathematical logic.”” The index of this
book contains no citation to any other reference to logic. Cajori’s first
edition (1893) contains four remarks of a similarly incidental nature
concerning logic. The second edition (1919), however, contains four
pages (407-410) of material concerning “mathematical logic™ (not cited
in the index, for some reason). Compare these books with Bell’s Develop-
ment of Mathematics [Bg], published in 1940. Here at least 25 pages are
devoted to ‘“mathematical logic,” reflecting the developments of the
present century sketched in our preceding chapters. Obviously, mathe-
matical logic was coming to be considered part of mathematics, although



290 THE CULTURAL SETTING OF MATHEMATICS Ch. Xii

still referred to by some as an “application” of “mathematics.” Another
reflection of this development is to be found not only in recent writings but
also in the fact that, whereas all the logic formerly taught in our colleges
was done under the auspices of “philosophy” (pursuant to the Aristotelian
tradition), today in contrast mathematics departments commonly contain
men whose major work is devoted to logic and who teach courses
embodying the developments in logic since the Renaissance.

We are compelled to conclude that the “‘absolute” type of definition
traditionally sought for “mathematics’ probably cannot be given. Cul-
tural changes show no respect for abstract definitions. Susceptibility to
definition may be a sign of senility.t

6 What we call ““mathematics’ today

From what we have said above, it is perhaps clear that we cannot give a
definitive answer even to the modified question, ‘“What is mathematics in
the world of today?” The best we can do is to “approximate.” In the
culturological approach, the first move should be to observe what those
men whom we call “mathematicians” do. And, since mathematicians also
eat, drink, play, etc., like other people, we had best qualify this by saying
that we should observe what those men, whom we call mathematicians, do
as mathematicians. As mathematicians they seem to be dealing with, or
studying, abstract forms or structures and relations between them. As we
understand cardinal number, for instance, it is a structural property of a
set; if we say a set has four elements, we have said something about the
structure of the set. If we say it is linearly ordered, we have assigned
another structural property. Similarly, topological or other geometrical
statements are statements about the form or structure of some set. In
algebra we assign relations between elements or subsets of a set. And so
on. The nice thing about this characterization of what mathematicians
do today is that it includes mathematical logic, which may be said to be
concerned with the forms of proof or of abstract reasoning.

Of course, we immediately ask how this is to be differentiated from art,
for example, because art also is concerned with form or structure. How-
ever, while mathematics abstracts form, art usually individualizes it. The
mathematician conceives the abstract number 4, but the artist only paints
four birds, four flowers, etc. Even “abstract art,” so-called, is a process of
individualization. Many mathematicians, incidentally, consider mathe-
matics an art (see, for example, the articles of J. W. N. Sullivan and J. B.

+ Regarding the cultural nature of mathematics, see L. A. White [a]; the same

paper is reprinted, in somewhat altered form, in White [Wh], to which we also refer
the reader for a general discussion of the meaning of “culture.” See also Wilder [b].
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Shaw reprinted by Schaaf [S]). From our point of view, when we abstract
the forms which we find in painting, pottery, music, etc., we do mathematics.
However, no definition would be sufficient to rule out border-line cases,
even when applied only to the present. It is impossible to say with defi-
niteness or assurance just where mathematics stops, and art, or physics, or
... begins.

The abstract structures with which mathematics deals can be applied to
individual special cases—just as when we apply “4” to marbles and say
“4 marbles,” or apply euclidean geometry to engineering. In this we
merely reverse the operation of abstraction. There is nothing mysterious,
as some have tried to maintain, about the applicability of mathematics.
What we get by abstraction from something can be returned. Much
so-called “applied mathematics,” as a matter of fact, is really (pure)
“mathematics,” in that, although it has been suggested by some particular
structure, it is in itself a study of abstract structure. A great deal of the
work in modern physics and related subjects is really mathematics in so
far as it is concerned with abstract structures.t

Other “border-line” cases arise in applications of the axiomatic method.
Is such a setup as that of Woodger [Wo], in which genetics is placed in an
axiomatic form, mathematics or biology? It would seem as though it
could be called either; as a study in abstract structure, perhaps we should
call it mathematics; but, as soon as the undefined terms ““org,” “cell,”
“genet,” etc., used therein are given their biological meanings, it should
perhaps be called biology (and applied mathematics).

It would seem, then, that present-day mathematics is properly character-
ized as a living, growing element of culture embodying concepts about
abstract structures and relations between these structures. And, as such,
its content is variable and subject to cultural forces much as is any other
cultural element. Even the symbols which are used for the expression and
development of mathematics have variable meanings; a symbol which
represented one thing to the mathematicians of the nineteenth century may
represent something quite different, because of the evolution of mathe-
matical thought, to mathematicians of the twentieth century. And,
correspondingly, the mathematical element of our culture during the
nineteenth century was something quite different from that of today, even

1 Perhaps we should point out that we have not really fallen here into the error
of setting up a definition into which we are now trying to herd various activities
that are usually called by other names. The “physicists’ (and others) to whom we
refer are usually quite willing to agree that what they are doing, in the sense referred
to, is “mathematics.”” We shall not attempt to define what “‘physicists’ do; but we
can agree either that some ‘“mathematics” is also what we call ‘“‘physics,” or that
physicists sometimes are ‘“‘mathematicians,” no matter how they are classified on
the payroll.
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though many of the symbols remain the same (consider the varied meanings
of dy/dx since its introduction by Leibniz). The concepts held by mathe-
maticians of the nineteenth century may still be called “mathematical,”
although many of them may not actually form part of present-day math-
ematics; properly speaking, such concepts are mathematical only in the
sense that they did form part of mathematics at a certain time and place.

7 The process of mathematical change and growth

One of the most persistent illusions of the layman about mathematics is
that mathematics is a fixed, immutable body of “‘truth” epitomized in such
statements as “2 and 2 are 4.” Often quoted is that favorite nineteenth
century orator (whose address at Gettysburg eclipsed Lincoln’s famous
address of the same occasion, in the opinion of their audience): “In the
pure mathematics we contemplate absolute truths, which existed in the
divine mind before the morning stars sang together, and which will con-
tinue to exist there, when the last of their radiant host shall have fallen
from heaven”—a pronunciamento which would appear to make of the
mathematician an inspired prophet. In the same address, Everett quoted
“an ancient sage” (probably Plato: “God geometrizes continually”) as
saying that “God is a geometer,” an opinion which was later repeated by
the astronomer Jeans.

Even professional mathematicians share the illusion. Thus G. H.
Hardy wrote [a; 4]: “It seems to me that no philosophy can possibly be
sympathetic to a mathematician which does not admit, in one manner or
another, the immutable and unconditional validity of mathematical truth.
Mathematical theorems are true or false; their truth or falsity is absolute
and independent of our knowledge of them.” New mathematics, accord-
ing to Hardy [Ha; 63-64], “which we describe grandiloquently as our
‘creations,” are simply our notes of our observations™; in his view it is
already a part of some “mathematical reality” “outside us”” and we simply
“discover or observeit.” As Bell observed [a], ““The impregnable strength
of this creed is that it can be neither proved nor disproved.” And, he
might have added, its inevitable weakness lies in its utter inability to
explain anything about mathematics.

The cultural viewpoint, by way of contrast, does explain much about
mathematics. Evidently this opinion was shared by D. J. Struik, who, in
the Introduction to his history [St], apologized that lack of space forced
“insufficient reference to the general cultural and sociological atmosphere
in which the mathematics of a period matured—or was stifled. Mathe-
matics has been influenced by agriculture, commerce, and manufacture, by
warfare, engineering, and philosophy, by physics and by astronomy. The
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influence of hydrodynamics on function theory, of Kantianism and of
surveying on geometry, of electromagnetism on differential equations, of
Cartesianism on mechanics and of scholasticism on the calculus could only
be indicated in a few sentences—or perhaps a few words—yet an under-
standing of the course and content of mathematics can only be reached if
all these determining factors are taken into consideration.” [Italics mine.
RLW.]+ A similar viewpoint seemed to be in the mind of D. Jackson
when he wrote [b; 411]: “On the plane of social rather than individual
psychology, there is a fascinating subject of inquiry in the relation between
mathematical advances and the general consciousness of the age that
produces them.”

Like any other cultural element, mathematics grows by evolution and
diffusion. Given a suitable juxtaposition of ideas, either in the mind of an
individual or in the minds of a group, certain syntheses take place and new
concepts come forth. Thus we can trace the evolution of the concept of
an abstract group in the writings of nineteenth century mathematicians in
the same manner as we can trace the evolution of the theory of biological
evolution in the works of Darwin’s predecessors and his own, and con-
temporary, writings. Every research mathematician is familiar with the
numerous instances of the simultaneous announcement of new theorems
and theories by two or more mathematicians. This is an entirely similar
phenomenon to that which occurs when a new invention is about to be
made; when the cultural conditions are right, it will appear without fail.
As Spengler stated [S; v. 2, 507], ““a task that historic necessity has set will
be accomplished with the individual or against him.” Mathematics does
not grow because a Newton, a Riemann, or a Gauss happened to be born
at a certain time; great mathematicians appeared because the cultural
conditions—and this includes the mathematical materials—were conducive
to developing them. There were just as great potential analysts and
algebraists living during the Greek era as during the age which produced
Weierstrass and Kronecker, but among other things the necessary analytic
and algebraic elements were lacking in Greek culture. This is not to
belittle the greatness of great men, but rather to mourn for those who were
and are denied the opportunity to develop their talents. What great
man, if honest with himself, has not observed the passing chimney-sweep
without remarking, “There, but for the ‘concatenation of events,” go1.”

+In an earlier paper Struik speaks of “sociological” determination of mathe-
matics. However, the quotation from [St] given above (with permission of Dover
Publications, Inc.) seems to indicate that what he actually had in mind was “cul-
turological” determination. It is interesting to note that, in a book edited by
W. L. Schaaf [S], the essay referred to is contrasted with the remarks of Sarton

cited above; actually, however, Sarton and Struik appear to be substantially in
agreement if their writings are suitably interpreted in terms of cultural influences.
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We can, of course, agree that mathematics could not advance without
“creative genius” being available; but we can still insist that the genius
cannot operate in an intellectual vacuum, and that without proper cultural
stimuli his “genius” will never become known. As the anthropologist
Ralph Linton remarked [Li; 319]%: “The mathematical genius can only
carry on from the point which mathematical knowledge within his culture
has already reached. Thus if Einstein had been born into a primitive tribe
which was unable to count beyond three, lifelong application to mathe-
matics probably would not have carried him beyond the development of a
decimal system based on fingers and toes.”

How do “favorable” conditions for the development of mathematics
come about? So far as the general sociological and cultural conditions are
concerned, we can say that, in the first place, only in a culture which affords
specialization of occupations can mathematics develop to any great
extent. Much of early mathematics developed through the needs of a
priesthood or for religious purposes (the earliest mathematical work in the
United States worthy of note seems to have been in the hands of men
trained by the Jesuits to calculate the correct annual date for Easter}).
But the process of counting developed much earlier, being found in all
primitive cultures (a fact that could be considered an argument for the
intuitionist insistence upon the counting process as the proper basis of all
mathematics; cf. X 1). As the needs of agriculture, religion, navigation,
etc., make demands, new mathematical tools are created; witness the
development of the rudiments of geometry in ancient Egypt. In comment-
ing on the arithmetical and geometrical rules that Sumerian clerks applied
(“true prototypes of the quantitative laws of modern science”), the British
anthropologist Childe remarks [Chi; 102]§: “Obviously we need not
bother to ask the names of the laws’ discoverers. They are too patently
social products called forth by the needs of a society affected by the urban
revolution and discovered with the aid of the spiritual equipment produced
by the revolution.” The point hardly needs belaboring, it would seem, in
the face of the abundant historical evidence.

In the second place, an adequate symbolism must be available. This is
necessary for two reasons: (1) All human activity, as distinguished from
such general animal activities as eating and sleeping, is based on symbolism,
and for a pursuit of such an abstract nature as mathematics, symbolism
becomes a sine qua non. (2) Symbols are the vehicle for the communica-
tion and diffusion of mathematical ideas. No mathematician needs to be

+ Quoted with permission of Appleton-Century-Crofts, Inc.

1 See the Smith-Ginsburg [S-G; 3-4] history; this excellent little work, incidentally,
shows a remarkable awareness of the cultural nature of mathematics.

§ Quoted with permission of Penguin Books, Ltd.
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convinced of (1); indeed, much mathematical work goes into the construc-
tion of suitable symbolic apparatus. And, so far as (2) is concerned, it is
in large measure responsible for the present-day universal character of
mathematics.

Thirdly—and associated with the above——suitable means should be
available for the diffusion of mathematical concepts. Given proper
cultural conditions in various societies, if mathematical ideas are to diffuse
from one society to another, good means of communication must have
been established. Greek and Chinese mathematics developed along such
different lines chiefly because of the lack of diffusion of ideas from one
culture to another at that time. In modern times, with good means of
communication, together with the establishment of mathematical journals,
visits of scholars to foreign countries, international mathematical gather-
ings, etc., mathematics achieves its current practically universal character.
Depending only upon the use of symbols, and not necessitating the posses-
sion of intricate tools or expensive apparatus, it can achieve a universality
not so easily attained in other fields. Even in the face of such barriers to
diffusion as are sometimes raised by the conflicts of international politics,
mathematics has not, in any appreciable manner, developed different
culture areas in modern times.

This is not to imply that mathematics has not been affected by such
cultural forces as are comprised by political and social events. The influx
to the United States of mathematicians fleeing from the Nazi philosophy
and persecution of 1930-1945 had a great influence on mathematics.
The resultant contacts between leaders in their fields has led to syntheses
of ideas that might not yet, if ever, have occurred under the former
conditions of cultural separation. Unfortunately, on the other side of the
ledger must be noted those losses, not only in the lives of brilliant mathe-
maticians, but also in the breaking up of various groups who were active
in mathematical research (Go6ttingen, Warsaw, etc.).

8 Differences in the kind and quality of mathematics

It needs to be emphasized that from the cultural point of view such
differences in the development of mathematical ideas as occurred between
the Greek and Chinese, as well as those slight differences between nations
today, are due not to the “nature” or intrinsic qualities of the peoples
involved, but to the cultures to which they are subject. From the cultural
point of view the peoples themselves may be regarded as constants; it
is the cultures into which they are born and to whose evolution they
contribute that differ. The mathematicians in a given culture possess a
subculture—the mathematical subculture—which is affected not only by



296 THE CULTURAL SETTING OF MATHEMATICS Ch. Xl

diffusion from other mathematical cultures, but also by the larger culture
in which it is embedded. If the larger culture makes demands such as
those recently made in the United States by scientific, military, and
industrial developments, the subculture cannot avoid being affected. Thus
we find mathematicians today working on high-speed computers, and
various applications (which will themselves inevitably give rise to new
concepts), who otherwise might have followed a different course of
mathematical development.

The direction that mathematics takes in a culture is guided by the
cultural needs or attributes—religious, philosophical, agricultural, navi-
gational, industrial, as well as mathematical—of the culture. The
different directions taken by Greek and Chinese mathematics were deter-
mined by the primitive cultural conditions prevailing in those cultures
during their prehistoric periods. And, having received an initial push in a
certain direction, the mathematical subcultures no doubt proceeded to a
certain extent on their own momentum, operating mainly under evolu-
tionary forces within (in the case of Chinese mathematics) or under both
evolutionary and diffusionary forces (from other parts of the general
culture; especially philosophy in the case of Greek mathematics).

Today, mathematics grows under the influence of a complexity of
evolutionary and diffusionary forces. Many authors have emphasized
the freedom which a mathematician has in the choice of direction of his
research. Without going so far as Spengler’s “freedom to do the neces-
sary ...,” we still have to admit that only those mathematical constructs
can evolve and be destined to live that are so related to the evolutionary
development of mathematics as to prove fruitful in their consequences in
some way. The arbitrary setting up of postulational systems, for example,
having no regard for their relation to existing systems, may not be regarded
by the mathematics profession as creating mathematics.

The importance of a theory or a problem in mathematics is similarly
determined, i.e., by its relation to the evolutionary development of
mathematics. However, what is not mathematics today (because of its
lack of relation to the existing mathematics) can one day become
mathematics.

We have mentioned some of the instruments of diffusion above—
journals, international and national gatherings, emigration of mathe-
maticians under political or other pressure—but little about the nature
of evolutionary forces. These forces present a difficulty, in that they are
not so easily detected and pointed out as are the diffusionary forces. It
seems reasonable, however, to expect that, once a new branch of mathe-
matics, offering a fertile field for research, is present in the minds of a
sufficient number of mathematicians, then that branch will grow along
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certain lines, irrespective (except for minor details) of the idiosyncrasies of
the particular individuals possessing it.f Much overlapping of results
ensues (cf. Merton [a], [b]), and the activity in the subject reaches a
maximum intensity, which is followed by a waning of interest, due perhaps
to the most important and interesting problems having been solved, or
perhaps to the branch having been absorbed in a more encompassing new
branch of mathematics. Ultimately, only scattered workers may be left
in the original branch, the majority of the younger men in the field having
become occupied with newer theories.

It will be noticed how similar this process is to that of styles or fashions.
Various fashions arise in mathematics and pursue a course not unlike that
of fashion in other parts of the culture. A mathematician of the early part
of this century would probably be appalled by the mathematics of today.
It was not uncommon for a mathematician who participated in the rapid
development of classical analysis to express his disdain for the subject
matter and methods of modern mathematics. As in other fields of human
affairs, the elders deplore the new fashions favored by youth. But the
youth are no more to be blamed for the changes in fashion than are the
women whose husbands complain about the changes in styles of clothes.
Kroeber has shown that in fashions definite cycles occur, the changes being
not in any way subject to the whim of fashion designers (who, like the
Sumerian clerks, are “patently social products™). It is possible that,
two thousand years hence, similar cycles may be discerned in the history of
mathematics. (Although we are accustomed to think of mathematics as
one of the most ancient of man’s creations, the rapid development of
mathematics under both evolutionary and diffusionary forces is a distinctly
modern development.) Perhaps the abstract form assumed by modern
mathematics is to be superseded by a form more like classical analysis,
especially in its relations to the needs of other fields of knowledge. There
are already signs that such may be the case, in the applications of mathe-
matical logic, postulational methods, modern algebra, topology, etc.,
especially in the social sciences. Where classical analysis found applica-
tion and, indeed, origin in physics, chemistry, and other natural sciences,
the new mathematics may find its applications and many of its concepts in
the social sciences.f Such a development would only be in agreement

+ Compare: ‘““Mathematical science, like all other living things, has its own natural
laws of growth.”—C. N. Moore, Bull. Amer. Math. Soc., vol. 37 (1931), p. 240.
Also Weyl [b; 538].

I Those who think that a social “study” cannot be a “science” or an “exact
science” until it is capable of being put into the same type of mathematical form
as modern physics seem to be guilty of putting the cart before the horse. Much of
classical mathematics, especially analysis, is due to the needs of physics or to physical
influences, and to try to squeeze a modern social science into the same framework
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with our view of mathematics as a subculture of our general culture,
developing not only under its own evolutionary momentum but also
subject to forces, sometimes concealed, that affect it from without.f

9 Mathematical existence

What is the effect of the cultural point of view on the question of
mathematical existence? For example, what light does it throw on
Kronecker’s rejection of infinite sets (VIII 2.1.2)? So far as such an
attitude is based on the desire to avoid possible contradiction, or even on
an esthetic impulse to found mathematics in a manner free of certain
principles, or the like, it may be held to have justification—or at least to
provide room for argument. But when such attitudes are based, as they
frequently are, on a philosophy which conceives of mathematics as an
ideal entity or as having an absolute nature which we endeavor to discover,
much as the physicist or the explorer seeks natural data, they appear to be
unwarranted. For mathematics, like other cultural entities, is what it is
as a result of collective human effort directed along evolutionary and
diffusionary lines. And what it becomes will not be determined by the
discovery of ‘“‘mathematical truth” now hidden from us, but by what
mankind, via cultural paths, makes it.

Consequently, if for sufficient reason, such as the discovery of new
contradictions or of more pleasing alternative ideas, uncountably infinite
sets are no longer used in mathematics, it will not be because they do not
“exist”’—they will continue to “‘exist” as much as they ever did. They
would merely cease to be considered ‘“‘mathematical.” Similar remarks
may be made concerning the Choice Axiom, well-ordering, continuum
hypothesis, etc. It is even conceivable that future political conditions
might lead to such a pronounced separation of cultures that one culture,
C,, will reject much of classical mathematics, such as the Cantor set
theory—as it would if it adopted wholesale the intuitionist philosophy—

is unjustified. This is not to say that some classical analysis, such as is used in
statistics, for instance, may not find significant application in some aspects of social
science. But the type of mathematics needed by the social sciences, if any, will be
developed either as a result of direct need or of the simultaneous acting of hidden
cultural forces. (Examples will continue to occur, of course, of mathematical
materials which evolved along purely mathematical lines and of ‘‘no practical value,””
which later find application in another field; this is not to gainsay our main point,
however.)

t Sarton remarks (see Schaaf’s reprint [S; 71]): “On the basis of my historical
experience, I fully believe that mathematics of the twenty-fifth century will be as
different from that of today as the latter is from that of the sixteenth century.”
(Quoted with permission of G. Sarton and Harper and Brothers.)
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while another culture, Cs,, proceeds along the lines of mathematical thought
as it exists in the United States today. There would then be no question
as to which mathematics is the “true” mathematics—that of C, or of Co—
each having been culturally determined and neither having any preferred
claim to ““truth.”

In short, mathematics is what we make it; not by each of us acting
without due regard for what constitutes mathematics in our culture, but
by seeking to build up new theories in the light of the old, and to solve
outstanding problems generally recognized as valuable for the progress
of mathematics as we know it. Until we make it, it fails to “‘exist.”
And, having been made, it may at some future time even fail to be
“mathematics” any longer.t}

t For an idea of the large amount and variety of new mathematics published
annually, the reader is advised to consult the files of Mathematical Reviews in any
mathematics library. This journal publishes abstracts of articles embodying the
results of current mathematical research—articles which have appeared in journals
throughout the world.

t For a description of an actual “‘case history” of the cultural development of a
mathematical concept as well as further general commentary, see Wilder [e]. (A

more extended study of the manner in which mathematics develops will be found in
the author’s forthcoming book “Evolution of Mathematical Concepts.”)
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Spain by, 285
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of real number system, 156
Ausdehnungslehre, Grassmann’s, 6
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advantages of, 43
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Bernstein equivalence theorem, 109, 254
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Binary number system, 99
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lations
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Boolean algebra, 206-208

Borel theorem, 89
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of propositions, 225
functional, 235
of propositional functions, 235
Cantor axiom, 88f, 150
Cardinal number of the continuum, ¢, 86fF
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proof that set of all points in plane has,
89
proof that set of all transcendental num-
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Cardinal numbers, 101f
addition of, 146f
Frege-Russell definition of, 102
intuitionist concept of, 252
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norms for, 102ff
on basis of Zermelo system, 216
ordering of, 105
representative sets for, 105
to have the same, 86
transfinite, 107
Cartesian product, 166
Categoricalness, 36
Characterization, 38
Chinese mathematics, 267ff
Choice Axiom, 72fT, 79, 108, 215, 238f
comment on, 74ff, 122
independence of in set theory, 133, 238f,
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Choice Principle, 73
Class, as defined in P.M., 238; see also Set,
Sets
Class decomposition (corresponding to an
equivalence relation), 49
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empty, 15, 60, 63
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Completeness, desirability of, 37
of an axiom system, 32, 52 (Problem 21)
of an axiom system relative to its unde-
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of Hilbert’s geometry, 37
of predicate calculus, 236ff
of propositional calculus, 233
Commutative laws of real number system,
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Complex number system, foundation of,
on Peano axioms, 162
Computability, 276
Concept underlying an axiom system, 18ff
Consistency, of a formal system, 265, 268,
274
of an axiom system, 19, 23
of arithmetic, 269
w-, 273
proof of, 26
relative, 28
Constructive procedures, 91ff
Continuum, see Linear continuum
Continuum hypothesis, 132, 238f
generalized, 132
independence of, in set theory, 133, 238f,
244
Continuum problem, 132
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Burali-Forti, 56, 130
Grelling, 77, 241
in a formal system, 265
lack of in intuitionist mathematics, 262
Richard, 113, 241
Russell, 54, 77
set of all sets, 113 (Problem 28)
set of all singletons, 113 (Problem 29)
Contradiction, Law of, 26, 39
intuitionist attitude toward, 257
Coset, 170
right, 170f
Countable, 87
effectively, 95
intuitionist definition of, 255
Cut, 118
Dedekind, 118f, 151
half-, 160
of the real number system, 147

Decimals, finite, 146
density of, in real number system, 146
Decision problem, 275
Decision procedure, 275
Definition, 10, 54
by induction, 125
effective, or constructive, 75, 94ff, 203
nature of, in axiomatic systems, 40ff
non-predicative, 211
primitive recursive, 267
recursive, 267
Density, 146
Denumerable, 87
effectively, 95
intuitionist definition of, 254
Derivative, 199fF
Derived set (or derivative) of a point set,
130f
Diagonal procedure, 85, 91ff
general, 97
use in constructing irrational numbers,
91
use in constructing transcendental num-
bers, 97
Differential, 199
Diffusion of mathematical ideas, 293fF
Distance function, 183
Distributive laws of real number system,
157
Division (+), 179



INDEX OF TOPICS AND TECHNICAL TERMS 319

Domain of integrity, 178
Double negative, 227
relation to Law of Excluded Middle, 258

Effective calculability, 267f, 276
Effective procedures, see Constructive pro-
cedures
Equivalence relation, 48
between species, 254

Equivalence of Choice Axiom, Well-Order-

ing Theorem and Comparability,
1356F
Euclid’s algorithm, 275
Euclid’s Elements, 4, 142
Euclid’s fifth postulate (“parallel postu-
late”), 5
Euler’s polyhedral formula, 186
Evolution in mathematics, 293 ff
Excluded Middle, Law of, 26, 39, 226, 243,
246, 258
equivalence to Law of Contradiction in
P.M, 229
intuitionist attitude toward, 249, 257,
259
use of relative to infinite sets, 265
Exist, to (as used in an axiom), 18
Existence, mathematical, 202fF
cultural view of, 298

Factor group, 170
Falsehood, as used in logic, 222
Fashions in mathematics, 297
Fermat’s “‘last theorem,” 269
Field, 178
non-commutative, 178
ordered, 181
Finite, Brouwer definition of, 250
Dedekind, 66
ordinary, 64ff
species, 253
First element of a simply ordered set, 117f
Fluxions, 200
Formal systems, XI
Formalism, XI
Formula, logical, 225, 235
undecidable, 270
Frege-Russell definition of number, 102,
209
Frege-Russell thesis, 219
degree of general acceptance of, 243

Function, 34

analytic, 200

domain and range of, 34
inverse, 34
number-theoretic, 267
recursive, 267

with no derivative, 200

Fundamental Theorem of Algebra, 203

intuitionist proofs of, 260

General recursiveness, 276
Geometry, affine, 187
analytic, 201
elementary school, 3, 9f
equiform, 187
Euclid’s, 4
Greek, 287
Hilbert’s, 7, 30, 36, 38
in the sense of Klein, 183
intuitionist, 262
non-euclidean, 5
on the basis of P.M., 242
Pasch’s, 7
Pieri’s, 8
plane, 9
projective, 187
Veblen’s, 8, 41
Godel incompleteness theorem, 270
Goddel number, 2711
Greek mathematics, 284ff, 287
Group, 167
affine, 168
of integers mod m, 170
of non-singular square matrices, 168
of nth roots of unity, 167
of rigid motions, 187
of rotations of a circle, 168
order of, 167
projective, 187
symmetric, of degree n, 169
Groups, VII
abelian (= commutative), 167
cancellation law for, 171
factor, 170
isomorphic, 172
order of, 167
semi-, 173
sub-, 169
substitution (= permutation), 168,
173
Grundlagen der Mathematik, 266
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Hamel basis for real numbers, 125ff
Hilbert-Bernays System “‘Z,” 269
Homeomorphism, 188

Ideal, 177
Identity correspondence, 35
Implication, 17
intuitionist, 257
material, 223
strict, 231
Independence of axioms, 28
complete, 30
Infinite, Dedekind, 66
intuitionist definition of, 253
ordinary, 65
Integers, foundation of, on Peano axioms,
158
mod m, 170
as topological space, 192
Integral domain, 178
Interpretation of an axiom system, 11, 24
vacuous, 25
Interval, 154
closed, 154
open, 154
Intuitionism, X
Kronecker’s, 201-204
Invariant (geometric), 185
topological, 189
Irrational numbers, order type of, 164
(Problem 17)
Isomorphic, 35
Isomorphism, 35
as an equivalence relation, 49
Italian school of logic, 8, 209, 220

Japan, mathematics of, in 17th and 18th
centuries, 284
Jesuits, influence on early American math-
ematics by, 294
Jordan Curve Theorem, 260f
Brouwer proof of, 260

Klein’s Erlanger Program, 186f

Lambda-definability, 276
Language, and Intuitionism, 247
contrast of natural and formal, 281
universality of mathematical, 285
Last element of a simply ordered set, 117f
Law of the excluded third, see Excluded
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Middle, Law of
Laws of Signs, for a general number sys-
tem, 175
for a real number system, 155, 157, 182
for a system, 175
Limit, 199ff
Limit point, 184
Limits of ordinal numbers, 134, 185
Line, euclidean, order type of, 150
Linear continuum, 151
axioms for, 151
Brouwer conception of, 261
Linear order = simple order (q.v.)
Logic and Intuitionism, 248
Aristotelian, 26, 39, 45, 72
as a basis for mathematics, 208, IX, XI
Boole’s algebra of, 206-208
calculus of, 205ff
intuitionist, 256fF
Kronecker’s viewpoint concerning, 204
use of, in axiomatic method, 26, 38ff
Logical deduction, 17, 225
Logical product, 229
“Logistic thesis,”” 208, 219
Poincaré’s views concerning, 212
Loéwenheim-Skolem theorem, 237

Magnitudes, 142
Mapping, 100
Mathematical induction principle, 67
definition by, 68
Poincaré’s views concerning, 212
proof by, 68
Mathematical Logic, IX, XI
Metalanguage, 243
Metamathematics, 265
Metric, see Distance function
Model, 24
of one axiom system within another, 28

Modus ponens, 225
Monotonic law of real number system, 157

National features of mathematics, 286
Natural numbers, 46
as basis of intuitionist mathematics, 247,
249
Kronecker’s viewpoint concerning, 202
natural order of, 64f ’
ordering of in w2-sequence, 128
Peano axioms for, 158
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Negation, as used in logic, 223
Double, 227
Intuitionist theory of, 258
Neighborhood, 184
Newton’s Principia, 4
Non-euclidean geometries, 5
Normal subgroups, 169

(1-1)-correspondence, 34
Operations, 166
tables of, 172
for a field, 179
Or = and/or, 47f, 148f
Order type, 115ff
addition of, 117
have the same, 115
w, axiomatic definitions of, 117ff, 120
w, *w, 116
w1, 131,133
axiomatic definition of, 134
Ordered n-tuple, 114, 116
Ordered pair, 216
Ordinal numbers, 127
addition of, 117
classes of, 131
intuitionist concept of, 256
of the first and second kind, 135
ordering of, 129
product of, 128
second class of, 133
Ordinal numerals, 116
Osiris, 6f, 7f, 8f

P.M. (= Principia Mathematica), IX
Parallel postulate, 5, 10
Partial order, 51 (Problem 16)
Peano axioms for natural number system
158
as basis for real numbers, 158fF
Peano school, 209
Pi (), decimal value of, 251
existence of, 203
transcendence of, 91, 203
Point, 185
Point set, 185
closed, 190
connected, 192
open, 190
Postulates, see Axioms
Predicate calculus, 234ff

)

Present-day mathematics, general char-
acter of, 285fT
Primitive terms (of an axiom system),
18
Principia Mathematica, IX
Product set, 166
Proof, as used in axiomatic method, 13ff
formal, 265
Kronecker’s concept of, 203
metamathematical, 266
“reductio ad absurdum,” 9, 39, 203, 227
Proof theory (Hilbert), 264ff
Proposition, 221
Propositional calculus, 224ff
intuitionist, 257ff
Propositional function, 222

Quantifiers, 234
Quaternions, 163f

Rational numbers, 81
denumerability of, 82
foundation of, on Peano axioms, 159ff
Real numbers, 84
axiomatic definition of order type of,
150
concept of, 143
density property of, 146
foundation of, in axiomatic form, 181
on Peano axioms, 158fF
Kronecker’s viewpoint concerning, 202
operations (addition, multiplication,
etc.) with, 154fF
ordering of, 144ff
separability of, 145ff
uncountability of set of all, 84
Recursive definition, 267
Reducibility Axiom, 239ff
Reductio ad absurdum, 9, 203, 227,
see also Proof
Reflexive, reflexiveness, 48
Relations, 216, 238, 240
binary, 216
ternary, n-ary, 218 (Problem 3)
Ring, 175ff
commutative, 176
of integrity, see Integral domain
quotient, 177
with a unit, 176
“Russell set,” 57
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Satisfiable, 26
Section (of a simply ordered set), 121
Separability, 146
axiom, for linear continuum, 151
in the ordered real number field, 181fn
Set, 55
Brouwer’s definition of, 249ff
Cantor’s definition of, 55
finite, see Finite
inductive, 67
infinite, see Infinite
null, 60
spanning, 118
symbol for definition of, 60
synonyms for, 55
Set of all sets, self-contradictory nature
of, 113 (Problem 28)
Sets, difference of, 62
disjoint, 63
intersection of, 62
intuitionist theory of, 248
non-degenerate, 63
non-empty (non-vacuous), 63
operations with, 61
relations between, 59T
symbols for, 59
theory of, III-V
union of, 62
Zermelo theory of, 212ff
Sheffer “stroke” symbol, 230
Simple order, axioms for, 47
Skolem’s paradox, 237ff
Social sciences,mathematics and, 297
Souslin’s problem, 154
Space, 183
topological, 184, 190
Span, 118
‘Species, 251ff
relations between, 252fF
Spread, 250
-law, 250
Statement, I-%-, 27
-, 17
Styles and fashions in mathematics, 297
Subset, 59
proper, 60
Substitution, in logic, 225
Successor, 66
immediate, 120
Symbolic logic, 58, 205ff, IX, XI
intuitionist, 257ff

Symbolism, dependence of mathematics
on, 294

Symmetric, symmetry of a binary rela-
tion, 48

System (X, +, x), 174

Tautology, 225, 232
Technical terms, 18
Tertium non datur, see Excluded Middle,
Law of
Theorems, 10
Topology, 89f, 188ff
base for, 191
Brouwer’s work in, 260
order, 185
Transcendental numbers, 90
construction of, 97
existence of, 90
order type of, 164 (Problem 17)
Transfinite induction principle, 123
definition by, 125
proof by, 124
Transfinite numbers, 55, 202, 204
Transformation, 183
affine, 187
group, 183
product of, 183
projective, 187
similarity, 187
topological, 188
Transitivity, of a binary relation, 48
Truth, as used in axiom systems, 20
Truth, as used in logic, 222
Truth-tables, 232ff
Types, theory of, 239
ramified, 241
simple, 240

Uncountable, 87

Undecidable theories, 277

Undefined terms, 9
independence and completeness of, 39fF
logical, 11
technical, 11, 18

Universal terms, 11, 18

Variable, bound (apparent), 234
free, 234
in logic, 222, 234

Vector, 180
linear independence of, 180
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Vector spaces, 179ff Well-Ordering Theorem, 121, 122, 210
base for, 180 intuitionist attitude toward, 256
dimension of, 181 proof of, 137ff

over rings, 180f
Zermelo Postulate; this term is frequently

employed to denote the Choice

Well-Ordered, 119 Axiom (q.v.)
Well-Ordering, 119 Zermelo theory of sets, 212ff
minimal, 140 (Problem 21) Zorn’s Lemma, 138, 181f

type, 119 Zero, as a number, 63
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