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Preface

This book of problems is the result of a course in
differential geometry and topology, given at the mechanics­
and-mathematics department of Moscow State University.
It contains problems practically for all sections of the
seminar course. Although certain textbooks and books
of problems indicated in the bibliography list were used
in preparation of this volume, a considerable number of
the problems were prepared for this book expressly.

The material is distributed over the sections as in text­
book [3J. Some problems, however, touch upon topics
outside the lectures. In these cases, the corresponding sec­
tions are supplied with additional definitions and
explanations.

In conclusion, the authors express their sincere gratitude
to all those who helped to publish this work.
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1
Application

of Linear Algebra to Geometry

1.1. Prove that a vector set a., ... , ak in a Euclidean space is linearly
independent if and only if

det II (a;, aj) II ;>!: o.
1.2. Find the relation between a complex matrix A and the real matrix

rA of the complex linear mapping.
1.3. Find the relations between

det A and det rA, Tr A and Tr rA, det (A - "AE) and det (rA - M).

1.4. Find the relation between the invariants of the matrices A, Band
A 8:J B, A (8) B.

Consider the cases of det and Tr.
1.5. Prove the formula

det ~ = eT rA
•

1.6. Prove that

~eB = e(A + BJ + C'IA, B]C"

for a convenient choice of the matrices C' and C", where lA,
B] = AB - EA.

1.7. Prove that if A is a skewsymmetric matrix, then ~ is an orthogonal
matrix.

1.8. Prove that if A is a skewhermitian matrix, then ~ is a unitary
matrix.

1.9. Prove that if lA, A*] = 0, then the matrix A is similar to a diagonal
one.

1.10. Prove that a unitary matrix is similar to a diagonal one with
eigenvalues whose moduli equal unity.

1.11. Prove that a hermitian matrix is similar to a diagonal one with
real eigenvalues.

1.12. Prove that a skewhermitian matrix is similar to a diagonal one
with imaginary eigenvalues.
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1.13. Let A '" II au II be a matrix of a quadratic form, and Dk
= det lIaulllsi,jsk,

Prove that A is positive definite if and only if for all k, 1 ~ k ~ n,
the inequalities Dk > 0 are valid.

1.14. With the notation of the previous problem, prove that a matrix
A is negative definite if and only if for all k, 1 ~ k ~ n, the inequality
(-I)kDk > 0 holds.

1.15. Put IIA ~2 = L; laikl2
• Prove the inequalities...

IIA + BII ~ IIAII + IIBI[,

IIMI! ~ IAI . I:A~,

liABIl ~ IIAII . IIBI!·

1.16. Prove that if A 2 = En, then the matrix A is similar to the matrix

(~k ~EJ, k+ I= n.

1.17. Prove that if A 2 '" - E, then the order of the matrix A
is (2n x 2n), and it is similar to a matrix of the form

(
0 En).

-e, 0

1.18. Prove that if A2 = A, then the matrix A is similar to a matrix

of the form (: ~).

1.19. Prove that varying continuously a quadratic form from the class
of non-singular quadratic forms does not alter the signature of the form.

1.20. Prove that varying continuously a quadratic form from the class
of quadratic forms with constant rank does not alter its signature.

1.21. Prove that any motion of the Euclidean plane R2 can be resolved
into a composition of a translation, reflection in a straight line, and
rotation about a point.

1.22. Prove that any motion of the Euclidean space R3 can be resolved
into a composition of a translation, reflection in a plane and rotation
about a straight line.

1.23. Generalize Problems 1.21 and 1.22 for the case of the Euclidean
space Rn

•
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2
Systems of Coordinates

A set of numbers a', q', ... , qn determining the position of a point
in the space R" is called its curvilinear coordinates. The relation between
the Cartesian coordinates Xl, X2, ••. , x« of this point and curvilinear
coordinates is expressed by the equalities

Xs = xs(ql, ~, ... , qn), (I)

or, in vector form, by

r = r(qt, q2, ... , qn),

where r is a radius vector. Functions (I) are assumed to be continuous
in their domain and to have continuous partial derivatives up to the third
order inclusive. They must be uniquely solvable with respect to a',
q2, ... , qn; this condition is equivalent to the requirement that the
Jacobian

(2)

s, k = I

should not be equal to zero. The numeration of the coordinates is
assumed to be chosen so that the Jacobian is positive.

Transformation (I) determines n families of the coordinate
hypersurfaces qr = qo. The coordinate hypersurfaces of one and the same
family do not intersect each other if condition (2) is fulfilled.

Owing to condition (2), any n - I coordinate hyperplanes which
belong to different families meet in a certain curve. They are called coor­
dinate curves or coordinate lines.

ar . .
The vectors rk = --k are directed as the tangents to the coordinateaq

lines. They determine the infinitesimal vector

in a neighbourhood of the point M(ql, q2, ... , qn). The square of its
length, if expressed in terms of curvilinear coordinates, can be found from
the equality

ds' = (dr, dr) = (S~l rsdqs, k~l rkdqk)

where (,) is the scalar product defined in R",

9



The quantities gsk = gks = (rs, rk) define a metric in the adopted coor­
dinate system.

An orthogonal curvilinear coordinate system is one for which

[
0, s;t. k

gsk = (r., rk) = 2
Ht , s = k

The quantities HZ; are called the Lame coefficients. Thev are equal to the
moduli of the vectors rs:

G;~) 2 + G;~r+ ... + G;;) 2

The square of the linear element in orthogonal curvilinear coordinates
is given by the expression

,--2 2 12 2 22 2 2ds: = H 1dq + Huiq + ... + Hzdqn .

I
axs I2.1. Calculate the Jacobian J = aqk of transition from Cartesian

coordinates (Xl, ... , Xn ) to orthogonal curvilinear coordinates (ql,
q2, ... , qn) in the space an.

2.2. Calculate the gradient grad j of the function j: a3 -> a in an or­
thogonal curvilinear coordinate system.

2.3. Calculate the divergence diva of a vector a E a3 in an orthogonal
curvilinear coordinate system.

2.4. Find the expression for the Laplace operator tJ.j of the function
j: a3

-> a in an orthogonal curvilinear coordinate system.
2.5. Cylindrical coordinates in a3

ql = r, q2 = <p, q3 = Z

are related to Cartesian coordinates by the formulae

X = r cose, y = r sine, Z = z.

(a) Find the coordinate surfaces of cylindrical coordinates.
(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator in cylindrical coordinates.
2.6. Spherical coordinates in a3

ql = r, q2 = 0, q3 = <p

are related to rectangular coordinates by the formulae

X = r sinO cose, y = r sins sine, Z = r cosO.

(a) Find the coordinate surfaces of spherical coordinates.
(b) Compute the Lame coefficients. .
(c) Find expression for the Laplace operator in spherical coordinates.

10
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where c is a scale factor.
(a) Find the coordinate surfaces of elliptic coordinates.
(b) Compute the Lame coefficients.
2.8. Parabolic coordinates in R3

q I = A, l = p" l z

are related to Cartesian by the formulae

x = ~(p,2 - A2), Y ~ All. Z = z.
2

(a) Express parabolic coordinates in terms of cylindrical.
(b) Find the coordinate surfaces of parabolic coordinates.
(c) Compute the Lame coefficients.
2.9. Ellipsoidal coordinates in R3 are introduced by the equations

(a > b > c):

1 (A > - c2
) (eIlipsoid),

y2 Z2
--- + - 1 (- b2 > 1J > - a2

) (hyperboloid of
b2 + 1J c2 + 1J -

x2 y2 Z2
-- + --- + -- = 1 (- c2 > P, > - b2

) (hyperboloid of
a2 + p, b2 + P, c2 + p,

one sheet),

x2

---+
a2 + 1J

two sheets).
Only one set of values A, p" 1J corresponds to each point (x, y, z) E R3

•

The parameters

a' = A, q2 = p" q3 = 1J

are called ellipsoidal coordinates.
(a) Express Cartesian coordinates x, y, z in terms of ellipsoidal

coordinates A, p" 1J.

(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator in terms of eIlipsoidal

coordinates.
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2.10. Degenerate ellipsoidal coordinates (a, (3, .,0) in R3 for a prolate
ellipsoid of revolution are defined by the formulae

x = c sin{3 cos e, y = c sinho sin{3 sine, z = c cosh« cosl3,

where c is a scale factor, 0 ~ a < co, 0 ~ {3 < 11", -11" < .,0 ~ 11".

(a) Find the coordinate surfaces in this coordinate system.
(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator.
2.11. Degenerate ellipsoidal coordinate system (a, (3, .,0) in R3 for an

oblate ellipsoid of revolution is defined by the formulae
x = c cosho sinl3 cose, y c cosho sin{3 sine,
z = c coshc cose,

o ~ a < co, 0 ~ {3 ~ 11",

c sinha sincp c sinl3
, z =

cosh o - cos{3 cosh« - cos{3'
x =

(a) Find the coordinate surfaces for this coordinate system.
(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator.
2.12. Toroidal coordinate system (a, (3, cp) in R3 is defined by the

formulae

c sinh a cos cp
,y =

cosh a - cos{3

x=

where c is a scale factor, 0 ~ a < co, -11" < {3 ~ 11", -11" < cp ~ 11".

(a) Find the coordinate surfaces in a toroidal coordinate system.
(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator.
2.13. Bipolar coordinates in R3

ql = a, q2 = 13, q3 = Z

are related to Cartesian coordinates x, y, z by the formulae

a sinha a sinl3
x= y= Z=~

cosh a - cos{3' cosh a - cos{3'

where a is a scale factor.
Compute the Lame coefficients for a bipolar coordinate system.
2.14. Bispherical coordinates in R3

ql = a, q2 = {3, q3 = cp

are defined by the formulae

c sina coscp c sina sin<p c sinh{3
, y = , z = ,

cosh{3 - COsa cosh{3 - cosa' cosh{3 - COSa

where c is a constant factor, 0 ~ a < {3, - co < {3 < co, -11" < cp ~ 11".

12



These formulae can be written shorter:

(X + i(3----­
z + io = ci cot --- (e = ..Jxz + yZ).

2

(a) Find the coordinate surfaces in a bispherical coordinate system.
(b) Compute the Lame coefficients.
(c) Find expression for the Laplace operator.
2.15. Prolate spheroidal coordinates in R3

ql = A, qZ = u, • q3 = <p

are defined by the formulae
.--,---,-----,-,----,-----~"

x = CAP., Y = C..JClIz - 1)(1 - p.z)cos<p,

z = -r~(AT=--i)(I--=n?)sin<p,

where A ~ 1, - 1 0:;;; p. 0:;;; 1, 0 0:;;; <p 0:;;; 21r, and C is a constant factor.
Compute the Lame coefficients for this coordinate system.
2.16. Oblate spheroidal coordinates in R3

ql = A, qZ = p., q3 = <p

are defined by the formulae
~--

x = cAp.sin<p, y = C..J(AZ
- 1)(1 - p.2), Z = CAP. cose,

A ~ 1, - 1 0:;;; p. 0:;;; 1, 0 0:;;; <p 0:;;; 27r.

Compute the Lame coefficients for an oblate spheroidal coordinate
system.

2.17. Paraboloidal coordinates in R3

ql = A, qZ = u; q3 = <p

are defined by the relations

x = AP. cose, Y = AP. sine,
1 Z 2

Z = -(A - p.).
2

(a) Compute the Lame coefficients fOT a paraboloidal coordinate
system.

(b) Find the coordinate surfaces.

2.18. Let HI. Hz. H3 be the Lame coefficients for a certain curvilinear
coordinate system in R3

•

Prove the relations

a en, 1 aHt aHz
----- +---
al H2 al H~ aq3 aq3

13
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aHz aH3+----
Hi Bq' aq'

aH3 en,
----
H~ al aqz

a 1 aH 3 a aHz
(2)----- + -----

al Hz aqz aq3 H 3 al

a 1 en, a 1 aH3
(3)----- + ----- +

aq3 H 3 aq3 aq' H, Bq'

aZH, 1 aH3 aH, 1 en, en,
(4) aqZal H3 aqz aq3 + Hz aqz aq3;

(5) aZHz _1_ aH, aHz + _1_ aHz aH3 •

alaq' H, aq3 aql H3 aq 3 aql'

aZH
3 1 aHz aH3 1 aH3 en,

(6) aq1al Hz a;; aqz + HI a;; aqz·

o·,

o·,

2.19. Prove that if functions H,(q', I, l), HZ(ql, I, l), H 3(ql, I,
l) of class C 3 satisfy the relations of the previous problem, then they
are the Lame coefficients for a certain transformation

Xs = xs(ql, qZ, q3), S = I, 2, 3.

3
Riemannian Metric

3.1. Prove that the metric ds' = dx' + f(x)dyz, 0 < f(x) < 00 can be
transformed to the form ds' = g(u, v)(du 2 + dv 2

) (isothermal coor­
dinates).

3.2. Prove that local isothermal coordinates can be defined on any real
analytic surface M 2

• Find the conformal representation of the metric ds':
3.3. Mercator's projection is defined as follows: rectangular coordinates

(x, y) are defined on a map so that a constant bearing line (where the
compass needle remains undeflected) on the earth's surface is put into
correspondence with a straight line on the map.

(a) Prove that to a point on the surface of the globe with spherical
coordinates (0, rp) on the map, there corresponds, in Mercator's
projection, the point with coordinates x = <p, y = In cotOI2.

(b) How can the metric on the terrestrial globe be written in terms of
the coordinates (x, y)?

3.4. Prove that the metric ds 2 on the standard hyperboloid of two sheets
which is embedded in the pseudo-Euclidean space R3 coincides with the
metric on the Lobachevski plane.

14



3.5. Write the metric on the sphere S2 in complex form.
3.6. Find a metric on the two-dimensional space of velocities in

relativity theory.
3.7. Change the coordinates in the previous problem so that v ---> tanhv

(where v is the velocity of the moving point).
3.8. Write the metric of the previous problem in polar coordinates for

the uni t circle.
3.9. Calculate the length of a circumference and the area of a circle

on (a) the Euclidean plane, (b) a sphere, (c) the Lobachevski plane.
3.10. Let the Lobachevski plane be realized as the upper half-plane of

the Euclidean plane. We call Euclidean semicircumferences with centres
on the axis Ox and Euclidean half-lines resting upon the axis Ox and
orthogonal to it "straight lines" of the Lobachevski plane. We call a figure
formed by three points and the segments of "the straight lines" joining
them a triangle in the Lobachevski plane.

Prove that the sum of the angles of a triangle in the Lobachevski plane
is less than 7r.

3.lt. (Continuation of Problem 3.10.) Let ABC be an arbitrary triangle
in the Lobachevski plane, a, b, e the non-Euclidean lengths of the sides
BC, AC, AB, and a, (3, ')' the values of its angles at the vertices A, B,
e. Prove the following relations:

cosa + cos(3 cos')'
(I) cosha =

sin(3 sin)'

sin')' sino
(2) coshb

cos(3 + cos)' cosa.
,

cos)' + cos a cos (3
(3) coshe =

sino sin(3

3.12. (Continuation of Problem 3.11.) Prove the analogue of the law
of sines for the Lobachevski plane:

sinha sinhb sinhe .JQ
sino sin(3 sin)' sino sin(3 sin)"

where Q = cos2a + cos2(3 + cos2
)' + 2cosa cos(3 cos)' - I.

3.13. (Continuation of Problem 3.12.) Prove the following formulae ex­
pressing the angles of a triangle in the Lobachevski plane in terms of
its sides:

(I) cos«
coshb coshe - cosha

sinhb sinhe

15



(2) cosiJ

(3) cos'}' =

coshc cosh a - coshb

sinhc sinha

cosh a coshb - coshc

sinha sinhb

3.14. (Continuation of Problem 3.13.)
Assume that 'Y = 1r12, i.e., the triangle ABC is right. Prove the fol-

lowing relations:

(I) sinha = sinhc sino:

(2) tanha tanhc cosfi:
(3) tanha sinhb tano:

(4) coshc cosha coshb;

(5) coshc coto cotd;

(6) cosha cosec/sind.

3.15. Let ABC be a spherical triangle on a sphere of radius R, a, (3,
'Y the values of the angles at the vertices A, B, C and a, b, c the lengths
of the sides BC, AC, AB. Prove the following relationship

a
cos­

R

be. b. c
cos - cos - + Sill -Sill - cos a.

R R R R

4
Theory of Curves

4.1. Let C be a plane curve, M« a point of the curve C, and XOY a
rectangular system of coordinates given in the plane of the curve. Denote
the points of intersection of the tangent and the normal to this curve
with the axis OX by T and N, respectively. Let P be the projection of
the point M« onto the axis Ox.

(a) Find the equation of the curve C if its subnormal PN is constant
and equal to a.

(b) Find the equation of the curve C if its subtangent PI" is constant
and equal to a.

(c) Find the equation of the curve C if the length of its normal MoN
is constant and equal to a (for any point Mo on the curve).

4.2. Find the equation of the curve C whose tangent MT is constant
in length and equal to a.

16



4.3. An arbitrary ray OE intersects the circumference

( a)2 a2
x

2
+ y 2 =4

and a tangent to it passing through the point C which is diametrically
opposite to 0 at points D and E. Straight lines are drawn through the
points D and E parallel to the axes Ox and Oy, respectively, to meet each
other at a point M. Set up the equation of the curve formed by such
points M (witch of Agnesi).

4.4. A point M moves uniformly along a straight line ON which rotates
uniformly around a point O. Form the equation of the path of the point
M (Archimedes' spiral).

4.5. A straight line OL rotates around a point 0 with constant angular
velocity w. A point M moves along the straight line OL with a velocity
which is proportional to the distance 10M!. Form the equation of the
path described by the point M (logarithmic spiral).

4.6. A circle of radius a rolls along a straight l'.ne without slipping.
Set up the equation of the path of a point M counected to the circle
rigidly and placed at a distance d from its centre (when d = a, this is
a cycloid; when d < a, a curtate cycloid; and when d > a, a prolate
cycloid).

4.7. A circumference of radius r rolls without slipping along a circum­
ference of radius R and remains outside it. Form the equation of the path
of a point M of the rolling circumference (epicycloid).

4.8. A circumference of radius r rolls without slipping along a circum­
ference of radius R and remains inside it. Construct the equation of the
path of a point M of the rolling circumference (hypocycloid).

4.9. Find a curve given by the equation r = r(t), C < f < d, if it is
known that r ' (t) = }..(t)a, where }..(t) > °is a continuous function, and
a is a constant nonzero vector.

4.10. Find a curve given by the equation r = r(f), - 00 < t < 00, if
r " (f) = a is a constant nonzero vector.

4.11. A vector function r(f) satisfies the differential equation
r " = [r' X a], where a is a constant vector. Express (a) [r ' X r"]2;
(b) (r', r ", r ' ") in terms of a and r'.

4.12. Let 'Y be a closed curve of class C I
• Prove that, for any vector

a, there is a point x E 'Y at which the tangent to 'Y is orthogonal to a.
4.13. Two points move in space so that the distance between them

remains constant. Prove that the projections of their velocities onto the
direction of the straight line joining these points are equal.

4.14. Prove that if a vector function r(t) is continuous on a segment
[a, b] together with its derivative r ' , and r II r ', but r ' ~ 0 and r ~ 0,
then the hodograph of the vector function r = r(t) is a straight line
segment.

t
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4.15. Prove that if a vector function r = r(t) is continuous on a certain
segment [a, bl together with its twofirst derivatives r ' and r", these deriv­
atives are different from zero for all 1 E [a, b], and collinear, i.e., r' II r"
for all 1 E [a, b], then the hodograph of the vector function r = r(t) is
a straight line segment.

4.16. A plane curve is given by the equation r = ('1'(/), I<p(t»). Under
what condition does this equation determine a straight line?

4.17. Find the function r = r(<p), given that this equation describes a
straight line in polar coordinates on the plane.

4.18. Prove that a point describes a plane path under the action of
a central force F = Fr.

4.19. A plane translational motion is given on the plane by the laws
r = r\(/) and r = r2(/) of motion of the ends of a solid rod. Find the
equation of the centre surface (a centre surface is the set of all points
of intersection of straight lines passing through the ends of the rod and
perpendicular to the directions of the velocities of its ends).

4.20. The set of instantaneous centres of rotation with respect to a
moving rod is called a centrode in a plane translational motion (see the
previous problem). Set up the equation of a centrode.

4.21. Prove that the linear velocity v of a point in any plane transla­
tional motion is determined by the relation v = w[r], where r is the radius
vector of the point M(R) under consideration with respect to the instan­
taneous centre of rotation (see Problems 4.19, 4.20), and [r] is the vector
obtained from r by rotation through + 7r12. Express w in terms of rt and
r2 and find the velocity v of the point M(R).

4.22. The differential equation of the motion of a material particle M
is as follows:

hr rx > 0).

Prove, on the basis of this relation, that the point moves along a curve
of the second order.

4.23. A material particle moves under the action of a central force
F = Fro. It follows from the result of Problem 4.18 that the motion takes
place in a certain plane. Form the equation of the motion and the dif­
ferential equation of the path in polar coordinates.

Consider the case

F = - kr7 = _ kr; rOo
r r

4.24. The motion of an electron in a constant magnetic field is
determined ,l;Jy the following differential equation

r" = [r' x H], H = const.

Prove that the path is a helix.

18



(5) r

(3) r

(4) r

4.25. Find the curves determined by the differential equation

r ' == [er],

4.26. Find the curves determined by the differential equation

r' == [e x [r x ell,

where e is a constant unit vector.
4.27. Find the curves determined by the differential equation

r ' == ae + [e x rl.

where a == const and e == const.
4.28. Find the curves determined by the differential equation

I 2-
r ' == - r e - r(r, e),

2

where e == const and lei == 1.
4.29. Form the equations of the tangent and normal to the following

curves:

(I) r == (a cost, b sint J (ellipse);

(2) r [; (t + +), ~ (r -+)] (hyperbola);

(a cos? t, a sirr' t J (astroid);
(a(t - sint), a(l - cost) I (cycloid);

[~ t2 _ ~ t4 ~ t 2 + ~ t 3]
2 4' 2 3

at the point t == 0;

(6) r == (alP COSIP, alP sine I (Archimedes' spiral).

4.30. At what angle do the curves x 2 + y2 == 8 and y2 == 2x intersect?
4.31. At what angle do the curves

r + y2 == 8x, y2 == x3/(2 - x)

intersect?
4.32. At what angle do the curves

r == 4y, y == 8/(r + 4)

intersect?
4.33. Prove that the length of the segment of the tangent to the astroid

r/3 + y2/3 == a2l3

between the coordinate axes equals a.

19
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2

equals a.
4.35. Prove that the cardioids

r = a(l + cose), r = a(l - cose)

are orthogonal.
4.36. Find the envelope of the family of straight lines joining the ends

of pairs of conjugate diameters of an ellipse.
4.37. Find the envelope of the family of straight lines cutting a triangle

of constant area off the sides of a right angle.
4.38. Find the envelope of the family of straight lines cutting segments

of given area off a given parabola.
4.39. Find the envelope of the family of straight lines cutting a triangle

of given perimeter off the sides of a given angle.
4.40. Find the envelope of the family of circumferences constructed on

parallel chords of a circumference as on diameters.
4.41. Find the envelope of the family of ellipses that have common

principal axes and a given semi-axis sum.
4.42. A beam of parallel rays falls on a spherical mirror. Find the enve­

lope of the reflected rays (caustic).
4.43. Find the envelope of the family of ellipses that have a given area

and common principal axes.
4.44. Find the envelope of the family of circumferences with centres

on an ellipse and passing through one of its foci.
4.45. Find the envelope of the family of circumferences of radius a and

centres on a curve r = r(v).
4.46. Find the envelope of the normals of a curve r = r(v). The vector

function r(v) is defined, continuous and twice differentiable on a segment
[a, b]. The vectors r' and r " are noncollinear at each point of this
segment.

4.47. Find the envelope of the rays reflected from a circumference if
the luminous point is on the circumference.

4.48. Calculate the curvature of the following curves:

(I) y sinx at the vertex (sine curve);

(2) x a(l + m)cosmt - amcos(1 + m)t

y a(l + m)sinmt - amsin(l + m)t (epicycloid);

(3) y a cosh(x/a) (catenary curve);
(4) x2y 2 = (a2 - y2)(b + yf (conchoidal curve);
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(5) r2 = a2cos2rp (lemniscate);

(6) r = a(1 + cose) (cardioid);
(7) r = arp (Archimedes' spiral);

(8) r = (a cos! t, a sirr' t I (astroid).

4.49. Calculate the curvature of the following curves:

(I) y = -In cosx;

(2) x = 3t2
, Y = 3t - t3 for t = I;

(3) x = a(cost + t sint), y = a(sint - t cost) for t = 11"12;

(4) x = a(2cost - cos2t), y = a(2sint - sin2t).

4.50. Find the curvature of the following curves given in polar
coordinates:

(I) r = ae; (2) r = arpk; (3) r = a" at the point rp = O.

4.51. Find the curvature of the curve given by the equation

F(x, y) = O.

4.52. Curves arc given by their differential equation P(x, y)dx +
+ Q(x, y)dy = O. Find their curvature.

4.53. Calculate the length of the following curves:

(I) y = a cosh(x/a);

(2) y = K12
;

(3) y = ~;

(4) y = Inx;

(5) r a(1 + cose):

(6) r (a(t - sint), a(1 - cost)};

(7) r {a(cost + tsint), a(sint - tcost)};

(8) r = g(2cost + cos2t), ~ (2sint + sin2t)];

(9) r = {a cos 3t, a sirr'r}:
(10) y = eX;

(11) r = [a (In cot ~ - cost), a sint].

4.54. Find the arc length of the curve

x = - i' (a)sina - 1"(ojcoso,

y = i' (a)cosa - 1"(a)sina.
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The natural equations of a plane curve are equations of the form:

(I) k = k(s), (2) F(k, s) = 0 or (3) k = k(t), s = s(t).

If the natural equations of a curve are given, then the parametrization
of the curve can be given in the form

x = Jcosa(s)ds, y = Jsina(s)ds.

4.55. Form the natural equations of the curves:

(I) x = a cos'r, y = a sin3t;

(2) y xl12 ;

(3) y .r;
(4) y Inx;

(5) y a cosh(x/a);

(6) y e'";

(7) x a (In tan ~ + cost), Y = a sint;

(8) r = a(l + cose):

(9) x = a(cost + t sint), y = a(sint - t cost).

4.56. Find the parametric equations of the curves if their natural
equations are given (here R = 11k):

(I) R = as;

S2 R 2

(2) - + -
a2 b2

(3) Rs = a2
;

(4) R = a + S2/a;

(5) S2 + 9R2 = 16a2
;

(6) S2 + R2 = 16a2
;

(7) R2 2as;

(8) R2 + a2 = a2e- 2s
- a

4.57. Letp be the distance from the origin of radii vectors to the tangent
to a curve 'Y at a point M, and r the distance from the point 0 to the
point M. Prove that

k = I::1·
4.58. At a certain point of a curve r = r(s), we have: k ;>! 0, k ;>! O.

Having taken the equation of the osculating circumference in the form
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('I - ro - ROnO)2 = Rij, prove that the osculating circumference
intersects the given curve in a neighbourhood of the indicated point.

4.59. Given that the following conditions are fulfilled at a certain point
of a curve: ko ;z! 0, KO = 0, /(0 ;z! 0, prove that the osculating circum­
ference at this point of the curve does not intersect the curve in a
sufficiently small neighbourhood of this point.

4.60. Given an equation R = f(a), where R is the curvature radius of
a curve, and a the angle from a constant vector a to the tangent vector
T to the curve, form the parametric equations of the curve.

4.61. Given an equation a = f(R) (see the previous problem), form the
parametric equations of the curve.

4.62. Given an equation s = f(a), where s is an arc and a the angle
from a constant vector a to the tangent vector T to the curve, form the
parametric equations of the curve.

4.63. Given an equation a = f(s) (see the previous problem), form the
parametric equations of the curve.

4.64. Given that a beam of luminous rays falls on a plane curve r = r(s)
from the origin of radii vectors, form the equation of the envelope of
the reflected rays (caustic).

4.65. What form will the equation of the caustic of a plane curve with
respect to the origin of the radii vectors have if the equation of the curve
is given in the form r = r(t)?

4.66. A beam of parallel rays with the direction of a vector e(lei = I)
falls on a plane curve given by an equation r = r(s). Form the equation
of the envelope of the rays reflected from the given curve (caustic).
Consider the cases where the curve is given by an equation r = r(/) and
where it is given by an equation Y = f(x).

4.67. Write the equation of the tangent line and the normal plane of
the curve

r = (u 3
- u2

- 5, 3u2 + I, 2u3
- 16)

at the point where u = 2.
4.68. Find the tangent line and the normal plane at the point

A(3, -7, 2) of the curve

r = (u 4 + u2 + I, 4u3 + 5u + 2, u4
- u3

) .

4.69. Find the tangent line and the normal plane at the point
A (2, 0, - 2) of the curve

r = (u 2
- 2u + 3, u3

- 2u2 + u, 2u3
- 6u + 2).

4.70. Write the equation of the osculating plane of the curve

r = ( u2
, u, u3

- 20 l
at the point A(9, 3, 7).
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4.71. Show that the curve

r = Iau + b, cu + d, u2
}

has the same osculating plane at all points.
4.72. Form the equations of the osculating plane, principal normal, and

binormal of the curve

y2=X, x2 = z

at the point (I, I, 1).
4.73. Given a helix

r = Ia cos t, a sin t, bt},

form the equations of the tangent, normal plane, binormal, osculating
plane, and principal normal.

4.74. Given a curve

r = (t2
, 1 - t, t 3

),

form the equations of the tangent, normal plane, binormal, osculating
plane and principal normal at the point t == 1.

4.75. Form the equations of the tangent line and the normal plane of
the curve given by the intersection of two surfaces

F1(x, y, z) = 0 and F2(X, y, z) = o.
4.76. The curve in which a sphere meets a circular cylinder, whose base

radius is twice less and which passes through the centre of the sphere,
is called a Viviani curve. Make up the equation of a Viviani curve in
implicit and parametric forms. Find the equations of the tangent, normal
plane, binormal, principal normal and osculating plane.

4.77. Find the length of the arc of the helix

x = 3a cost, y = 3a sint, z = 4at

from the point of intersection with the plane xOy to an arbitrary point
M(t).

4.78. Find the length of one turn between the two points of intersection
with the plane xOz of the curve

x = aU - sint), y = a(l - cost), z = 40 costl2.

4.79. Find the length of the arc of the curve

x 3 = 302y, 2xz == 02

between the planes y = al3 and y = 90.
4.80. Find the length of the closed curve

x = cos3t, Y = slrr'r, z == cos2t.
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4.81. Reparametrize the helix

r = {o cost, 0 sinr, bl], b > 0,

by the natural parameter.
4.82. Reparametrize the curve

r = [e'cosr, e'sinr, ell

by the natural parameter.
4.83. Reparametrize the curve

r = [coshz, sinhr, II

by the natural parameter.
4.84. Find the vectors T, P, {3 of the Frenet frame for the helix

r = {o cost, 0 sinr, btl.

Calculate the curvature and torsion of the helix.
4.85. Given the curve

r = {t2, J - I, 13I,

find the vectors T, P, (3 of the Frenet frame. Calculate the curvature and
torsion of this curve.

4.86. Find the vectors T, P, (3 of the Frenet frame, curvature, and torsion
of a Viviani curve (see Problem 4.76).

4.87. Find the curvature and torsion of the following curves:

(I) r = {t - sinr, 1 - cost, 4sinl12 I;

(2) r {e', e - I, IY2 I ;

(3) r {elsin/, e'cost, e' I;

(4) r {2/, lnl, 12 1;

(5) r {31 - 13
, 3/ 2,31 + 13 I ;

(6) r = [cos! I, sirr' I, cos21I.

4.88. At each point of the curve

x = I - sinr, y = 1 - cost, Z = 4sinll2,

a segment equal to four times the curvature at this point is laid off in
the positive direction of the principal normal.

Find the equation of the osculating plane of the curve described by
the end of the segment.

4.89. Calculate the curvature and torsion radii for the curve

x 3 = 302y, 2xz = a',
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4.90. Deduce the formulae for the calculation of the curvature and
torsion of the curve given by equations y = y(x) and z = z(x) and find
the Frenet frame for this curve.

4.91. Find the curves intersecting the rectilinear generators of the
hyperbolic paraboloid xy = az at right angles.

4.92. A curve on a sphere that intersects all the meridians of the sphere
at a given angle is called a loxodrome. Find the equation of a loxodrome
and the vectors T, P, fJ of the Frenet frame for this curve at an arbitrary
point. Calculate its curvature and torsion.

4.93. Given a curve

r = (v cosu, v sinu, kv),

where v = v(u), prove that this curve is placed on a cone. Define the
function v(u) so that this curve intersects the generators of the cone at
a constant angle ().

4.94. The tangent vector T = T(t) ¢ 0 is given at each point of a curve
r = r(t). The function r(t) is defined, continuous, and has a continuous
derivative r' (t) on a segment [a, b). The function T(t) is continuous on
the segment [a, b). Prove that this curve can be parametrized so that

dr
- = T.
dt

4.95. A curve C is given by an equation r = r(t), the function r(t)
is defined on a segment [a, b) and possesses noncoplanar derivatives r',
r", r'" at a point M. Prove that the osculating plane of the curve C
at the point M intersects the curve C.

4.96. Prove that if all osculating planes of a curve are concurrent, then
the curve is plane.

4.97. A curve C is given by an equation r = r(t); the function r(t)
is defined on a segment la, b] and possesses derivatives r', r", r'" at
some point M(t) with r' ¢ r". Calculate the limit

. d
lim --3'
At-O liltl

where d is the distance from the point M(t + .11)to the osculating plane
of the curve C at the point M. Consider the special case where the curve
is given by an equation r = r(s) (s being the natural parameter).

4.98. Find a necessary and sufficient condition for the given family
of curves

r = Q(u) + }"e(u) (lei = I)

to have the envelope. Find this envelope.
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4.99. For what value of b is the torsion of the helix

r = (a cost, a sinr, btl (a = const)

at its maximum?
4.100. Prove that if the torsion of a curve C at some of its points M

is other than zero, then the osculating plane of the curve C at the point
M intersects the curve.

4.101. Express t, i', 'f in terms of r, ", fJ, k and x,
4.102. Prove that rfJfJ = x.
4.103. Prove that if the principal normals of a curve form a constant

angle with the direction of a vector e, then

d

ds
k2 + x 2

---- + X = 0,
d x

k--
ds k

and conversely, if this relation is fulfilled, then the principal normals of
the curve form a constant angle with the direction of some vector. Find
this vector.

4.104. Prove that if all normal planes of a line contain a vector e, then
this line is either straight or plane.

4.105. Prove that if all the osculating planes of a curve which is not
a straight line contain the same vector, then this curve is plane.

4.106. Prove that if fJ = const, then the curve is plane.
4.107. Prove that if the osculating planes of a curve have the same

inclination, then the curve is plane.
4.108. A space line is called a generalized helix if all its tangents form

a constant angle with a fixed direction.
Prove that a line is a generalized helix if and only if one of the following

conditions is fulfilled:
(a) the principal normals are perpendicular to a fixed direction;
(b) the binormals make a constant angle with a fixed direction;
(c) the ratio of the curvature to the torsion is constant.
4.109. Prove that the condition i'fr(4) = 0 is necessary and sufficient

for a line to be a generalized helix. .
4.110. Prove that the line J? = 3y, 2xy = 9z is a generalized helix.
Let r = r(s) be a curve parametrized by the natural parameter. Then

the mapping r: (a, b) -+ R3 determines a curve s -+ r(s). This curve may
be non-regular. Since 1r(s) 1 = 1, the image r(s) lies on the sphere with
radius 1 and the origin at its centre. This curve is called the tangent spheri­
cal image of the curve r = r(s). The normal spherical image
s -+ ,,(s) and the binormal spherical image s -+ fJ(s) may be defined
similarly.
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4.lH. Find the tangent, normal and binormal spherical images of the
helix

r = (a cost, asint, btl.

4.112. Let r = r(s) be a curve parametrized by the natural parameter.
(a) Prove that the tangent spherical image of the curve r = r(s) degener-

ates into a point if and only if r = r(s) is a straight line.
(b) Prove that the binormal spherical image of the curve r = r(s)

degenerates into a point if and only if r = r(s) is a plane curve.
(c) Prove that the normal spherical image of the curve r = r(s) cannot

be a point.
4.113. Let sbe the length of the tangent spherical image of a curve

r = r(s):
s

s- = ~ IT' (a)lda.
o

ds
(a) Prove that - = k.

ds

(b) Find necessary and sufficient conditions for the tangent spherical
image to be a regular curve.

4.114. Les s* be the length along the normal (resp. binormal) spherical
image of a curve r = r(s). Prove that

ds* ~--
-- = "k2 + x2 (resp. Ix I).

ds

4.115. Let r = r(s) be a curve parametrized by the natural parameter,
k» ~ O. Prove that the tangent to the tangent spherical image is parallel
to the tangent to the binormal spherical image at the corresponding
points.

4.116. Let r = r(s) be a curve parametrized by the natural parameter.
Prove that if the tangent spherical image of this curve lies in a plane
passing through the origin, then the curve r = r(s) is plane.

4.117. Prove that the curve r = r(s) is a helix if and only if the tangent
spherical image is an arc of a circumference.

By definition, a spherical curve is a curve r = r(/) for which there exists
a constant vector m such that

< r(t) _. m, r(/) - m > = ,2.
4.118. Let r = r(t) be a regular curve, and a a point which lies in each

normal plane to r = r(t). Prove that r r(t) is a spherical curve.
4.119. Prove that

r = (-cos2t, -2 cost, sin2t)
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is a spherical curve by showing that the point (- I, 0, 0) lies in every
normal plane.

4.120. Let r ==r(s) be a curve which is parametrized by the natural
parameter, k ;t:. 0, x ;t:. 0, and e == 1/k, (J == 1/ x . Assume that
Q2 + (e' (J)2 == a2 == const, a > O. Prove that the image of the curve
r == r(s) lies on a sphere of radius a.

4.121. Prove that if r == r(s) is a curve which is parametrized by the
natural parameter, k ;t:. 0, x ;t:. 0, then r(s) lies on a sphere if and only if

x (k')1 ( (e')')k == ~ or x e == - -;; .

4.122. Using the results of the previous problems, prove that a curve
r == r(s) lies on a sphere if and only if there exist constants A and B
such that

k(A coslxds + Bsinlxds) == I.

4.123. Two curves r == r1(1) and r == r2(1) are said to form a pair of
Bertrand curves if for any value of the parameter to, the normal to r(t)
coincides with the normal to r2(1).

(a) Prove that two arbitrary concentric circumferences which lie in the
same plane form a pair of Bertrand curves.

(b) Let

r1(1) == 1[_1__ t~, 1_t2, 0],
2 cost

1
r2(1) ==

2 [
1 ~ 2 r-2 ]- - t\ll - t- - t, I - t + rv l - t ,0 .

cost

Prove that r1(1) and r2(t) form a pair of Bertrand curves.
4.124. Prove that the distance between the corresponding points of a

pair of Bertrand curves is constant.
4.125. Prove that the angle between the tangents to the two curves of

a Bertrand pair at corresponding points is constant.
4.126. Let r == r1(s) be a curve parametrized by the natural parameter,

and k» ;t:. O. Prove that the curve r == r2(s) (s is not the natural parameter
of r2(s» which forms a pair of the Bertrand curves with rl(s) exists if
and only if there are constants A and ~ such that

l/A == k + ux .
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4.127. Let r = r(t) be a regular curve of class C3
, x ;z! O. Prove that

r(l) is a circular helix if and only if r(l) possesses at least two different
curves which are related in the sense of Bertrand.

Let m be a constant vector, r = r(s) a curve, e(s) = Ir(s) - m1 2
, and

a a positive number. The curve r(s) is said to possess at a point s == So
a spherical contact of order j with the sphere of radius a and centre at
the endpoint of m if

e(so) == ~, c' (so) == en (So) == '" = eU ) (so) = 0,

eU+ I)(so) ;z! O.

4.128. Given that k ;z! 0, calculate the first three derivatives of the
function e(s) in terms of T, II, {J, k and x :

4.129. Prove that a curve r = r(s) possesses a spherical contact of order
2 at a point s == So if and only if m = r(so) + II (so)/k(so) + 'JI{J(so), where
A is an arbitrary number.

4.130. Given that x(so) ;z! 0, prove that a curve r == r(s) possesses a
spherical contact of order 3 if and only if

1 k' (so)
m == r(so) + -- II(SO) - 2 {J(So).

k(so) k (So) x(so)

4.131. Let a curve r = r(s) be of constant curvature. Prove that the
osculating sphere and the circumference have the same radius.

Let r = r(s), S E (0, aI, be a plane piecewise regular curve of class C2

parametrized by the natural parameter. The number

;r($)

n-l

~ t.B;
;==0

211"

where k is the curvature of the curve, s;(O :::.:; i :::.:; n - 1) are the singular
points, T- (s;) = lim T(S), T+ (s;) = lim T(5), and t.B; is the angle

5-5;- s-st
between the vectors T- (s;) and T+ (s;), is called the rotation number ;r($)

of the curve.
4.132. Compute the rotation number of the curve 'Y represented in

Fig. 1.
4.133. Compute the rotation numbers of the curves given by the fol-

lowing equations (the parametrization is not natural):

(1) r = (a + ecosl, esint), 0:::.:; I:::':; 211", lal < e;

(2) r (a + e cosz, e sint} , 0 :::.:; I :::.:; 211", 0 < e < lal;

(3) r (e cos21, - e sin2t), 0 :::.:; I :::.:; 271", e > 0;
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(4) r [+cost, sint]. 0 ~ t ~ 211";

(5) r (2cost, - sinz] , 0 ~ t ~ 611";

(6) r = (1, sinzt\, 0 ~ t ~ 211".

I·ig.l

4.134. Prove that if rts) is a simple, closed, regular. and plane curve,
then the tangent circular image r : [0, L) -+ SI of this curve is a mapping
"onto".

An oval is a regular. simple, closed and plane curve for which k > O.
The vertex of a regular plane curve is a point at which the curvature k
has a relative maximum or minimum.

Let rts) be an oval and P a point on r(5). Then there exists a point
P' such that the tangent r to the oval at this point is opposite to the
tangent at the point P, i.e.• r(p l

) = - r(P). The tangents at the points
P and P' are parallel. Thus. for a given point P, there exists a unique
point P' (said to be opposite of P) on the oval. so that the tangents at
P and P' are parallel and distinct.

The width w(s) of an oval at the point P = r(s) is the distance between
the tangent lines to the oval at the points P and P'.

An oval is said to be of constant width if its width at a point P is
independent of the choice of P.

4.135*. Prove that any oval possesses at least four vertices. (This
statement is known as the four-vertex theorem.)

4.136*. Prove that if r(s) is an oval of constant width w. then its length
equals 1I"W.

4.137": Let r = r(s) be an oval of constant width. Prove that the straight
line joining a pair of opposite points P and P' of the oval is orthogonal
to the tangents at the points P and P' .

4.138*. Given that r = r(s) is an oval,prove that r" is parallel to r
at least at four points.
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4.139. Prove that the notion of vertex does not depend on the choice
of parametrization.

4.140. Show that the four-vertex theorem (see Problem 4.135) is not
valid if the requirement of closedness is omitted.

4.141. Let rl : [0, a] -+ RZ be a segment of a curve parametrized by
the natural parameter, and rz(s) a curve

rz(s) = rl(s) + (ao - S)T(S),

where T(S) is a tangent vector to rl(s) and ao > a a constant. Show that
the unit tangent to rz(s) is orthogonal to T(S) at every point.

4.142. Let r(s) be a plane curve of constant width. Show that the sum
of the curvature radii Ilk is constant at opposite points and does not
depend on the choice of the points.

4.143. (a) Let r(s) be an oval of length L and with natural parametri­
zation. Denote the angle between the horizontal and tangent vector T(S)
by 0, Prove that the mapping 0 : [0, L] -+ [0, 211"] is a parametrization
of the oval r(s).

(b) Let e(O) be an oval parametrized by a parameter 0 so that r(s) =
= e(O(s». Prove that the point which is opposite to r(s) is R(s) =

= e(O(s) + 11").
(c) Prove that the curve R(s) is regular,
4.144. Let e(fJ) be an oval parametrized by an angle fJ in a manner

similar to that of the previous problem. Let w(fJ) be the width of the
oval at a point e(O). Prove that

2lr

~ wdfJ = 2L,
o

where L is the length of the oval.
4.145. Let e(fJ) be an oval parametrized by an angle fJ, k(fJ) and w(O)

its curvature and width, respectively, Prove that

dZw 1 I
-+w=--+---­
dOz k(O) k(fJ + 11"}'

The total curvature of a regular space curve r = r(s) parametrized by
L

the natural parameter is the number ~kds, Since k = iT' (s)!, the total cur­
o

vature is the iength of the tangent image

T : [0, L] -+ S2,

4.146:" Prove that if r = r(s) is a regular closed curve, then its tangent
spherical image cannot lie in any open hemisphere.
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4.147:'" Prove that the tangent spherical image of a regular closed cUP
cannot lie in any closed hemisphere except for the case when it is a gre
circumference bounding the hemisphere.

4.148:'" Let 'Y be a closed C1-curve on the unit sphere S2. Prove th
the image C of the curve 'Y is contained in an open hemisphere if

(a) the length I of the curve 'Y is less than 21r;
(b) I = 271", but the image C is not the union of two gre:

semi-circumferences,
4.149:'" Using the results of Problems 4.146-4.148; prove the followir

statement: the total curvature of a closed space curve 'Y is not less the;
271" and equal to 271" if and only if 'Y is a plane convex curve (Fench
theorem).

4.150:'" Let 'Y be a space closed curve. Assume that 0 ~ k ~ I/R f(
a certain real number R > O. Prove that the length I of the curve 'Y sati
fies the inequality I ~ 27l"R.

4.151. Calculate the tangent spherical image for the ellipse

r = {2cost, sint, OJ, 0 ~ t ~ 271".

What can be said about the image taking the Fenchel theorem im
account?

Let w be an oriented great circumference on the sphere S2. Then the
exists on S2 a unique point w associated with w, viz., the pole of tl
hemisphere which is on the left when moving along w in the positi:
direction (Fig. 2).

Fig. 2

Conversely, every point of S2 is related to a certain orientable gre:
circumference. Thus, the set of oriented great circumferences is in one-tc
one correspondence with the points of S2.

The measure of the set of oriented great circumferences is the measui
of the corresponding set of points in S2.

If wE S2, then w.L denotes the great oriented circumference asso:
iated with w.
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For a regular curve 'Y with the spherical image C, we denote the number
of points in en w.L (which may be infinite) by n,,(w). Note that the
number n,,(w) does not depend on a parametrization of the curve 'Y.

4.152~ Let C be the image on S2of a regular curve 'Y of length /. Prove
that the measure of the set of oriented great circumferences which
intersect C (taking the multiplicities into account) equals 4/. In other
words,

1~n,,(W)da = 4/ (the Crofton formula).

s

4.153~ A closed simple curve 'Y is said to be unknotted if there exists
a one-to-one continuous function g : D 2 ..... R3 (D 2 being the unit disk)
which maps the boundary S· of the disk D 2 onto the image of the curve
'Y. Otherwise, the curve is said to be knotted.

Prove that if 'Y is a simple, knotted, and regular curve, then its total
curvature is greater than or equal to 411".

4.154~ Using the Crofton formula, prove that for any closed, regular
curve, ~kds ~ 211". L

We call the number ~ xds the total torsion of a regular space curve
o

r = r(s) parametrized by the natural parameter.
4.155~ Prove that for any real number r, there exists a closed curve

L

'Y such that its total torsion Jxds == r.
o

4.156~ Prove that the total torsion 1xds of a closed curve r = r(s) (s
being the natural parameter) placed on the sphere S2 equals zero.

4.157~ Let M be a surface in R3 such that Ixds = 0 for all closed curves
placed on M. Prove that M is a part of a plane or sphere.

4.158*. Prove that 1; ds == 0 for any closed. spherical curve param­

etrized by the natural parameter.

5
Surfaces

5.1. Make up a parametric equation of the cylinder for which the curve
" == Q(u) is directing and whose generators arc; parallel to a vector e.

5.2. Make up a parametric equation of the cone with vertex at the origin
of the radius vector for which the curve Q == Q(u) is directing.
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5.3. Make up a parametric equation of the surface formed by the
tangents to a given curve e = e(u). Such a surface is called a developable
surface.

5.4. A circumference of radius a moves so that its centre is on a given
curve e = e(s) and the plane in which the circumference is placed is,
at each particular moment, a normal plane to the curve. Make up a pa­
rametric equation of the surface described by the circumference.

5.5. A plane curve x = \O(v), z = t.j;(v) revolvesabout the axis Oz. Make
up parametric equations of the surface of revolution. Consider the special
case where the meridian is given by an equation x = !(z).

5.6. The circumference x = a + bcosv, z = bsinv (0 < b < a) re­
volves about the axis Oz. Make up the equation of the surface of
revolution.

5.7. A straight line moves translationally with a constant velocity while
intersecting another straight line at right angles and uniformly rotating
about it. Make up the equation of the surface which is described by the
moving straight line (right helicoid).

5.8. Make up the equation of the surface formed by the principal nor­
mals of a helix.

5.9. Make up the equation of the surface formed by the family of nor­
mals to a given curve e = e(s).

5.10. A straight line moves so that the point M where it meets a given
circumference moves along it, the straight line remaining in the plane nor­
mal to the circumference at th~responding point and rotating through
an angle equal to the angle MOMo through which the point was turned
while moving along the circumference. Make up the equation of the sur­
face described by the moving straight line assuming that the original
position of the moving straight line was the axis Ox and the circumference
is given by two equations x? + y2 = a', Z = O.

5.11. Given two curves r = r(u) and e = e(v). Make up the equation
of the surface described by the middle point of the line segment whose
extremities lie on the given curves (translation surface).

5.12. Make up the equation of the surface formed by the rotation of
the catenary line y = a coshx/a about the axis Ox. This surface is called
a catenoid.

5.13. Make up the equation of the surface formed by the rotation of
the tractrix

e = (a In tan(7r/4 + tl2) - a sint, a cost)

about its asymptote (pseudosphere).
5.14. The surface formed by a straight line moving parallel to a given

plane (director plane) so that its generator intersects a given curve
(directing curve) is called a conoid. A conoid is determined by a directing
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line, director plane, and curve which the moving straight line intersects
(i.e., the directing curve). Make up the equation of a conoid if the director

plane yOz, directing line y = 0, z = h, and the directing curve ~ +
a

2

+ ~ = I, Z = 0 (i.e., ellipse) are given.
b2

5.15. Make up the equation of the conoid for which the directing line,
director plane and directing curve are given by the following equations,
respectively:

(a) x = a, y = 0;

(b) Z = 0;

(c) y2 = Zpz; x = O.

5.16. We call a cylindroid the surface formed by straight lines which
are parallel to a plane. A cylindroid can be determined by two directing
curves (lying on it) and a director plane (the generators of the cylindroid
being parallel to it). Make up the equation of a cylindroid if its generators
are two circumferences x 2 + Z2 - 2ax = 0, y = 0 and y2 + Z2 - 2ay = 0,
x = 0, and the director plane is the plane xOy.

5.17. A surface given by the parametric equation

r = r(u, v) = Q(u) + va(u),

where Q = e(u) is a vector function determining a certain curve, and
a = a(u) a vector function determining the distribution of the rectilinear
generators of the surface, is said to be ruled. Makeup the equation of
a ruled surface whose generators are parallel to the plane y - z = 0 and
intersect two parabolas y2 = 2px, Z = 0 and Z2 = - 2px, y = O.

5.18. Make up the equation of the ruled surface whose generators
intersect the axis Oz, are parallel to the plane xOy, and intersect the line
xyz = 0 3, r + y2 = b 2.

5.19. Make up the equation of the ruled surface whose generators
intersect the straight line r = a + ub, curve Q = Q(v), and are per­
pendicular to a vector n.

5.20. Make up the equation of a ruled surface whose generators are
parallel to the plane xOy and intersect two ellipses

y2 Z2 y2 Z2
- + - = I x = a,' - + - = I x = -a.
b2 c2 ' c2 b2 '

5.21. Make up the equation of a ruled surface, formed by the straight
lines intersecting the curve e = (u, u2, u3

), parallel to the plane xOy,
and intersecting the axis Oz.
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5.22. Make up the equation of the surface formed by the straight lines
parallel to the plane x + y + Z = 0, intersecting the axis Oz, and circum­
ference e = Ib. a cosu, a sinu).

5.23. Make up parametric equations of the surface formed by the
straight lines intersecting the circumference >!' + Z2 = I, Y = 0 and
straight lines y = I, Z = I and x = I, z = O.

5.24. Make up the equation of the surface formed by the tangents to
the helix e = Iacos v, asin v, bv I (developable helicoid).

5.25. Make up the equation of the conic surface with the vertex at the
point (0, 0, - c) and the directing line (x 2 + y2)2 = a2(>!, _ y2).

5.26. Given a straight line AB and a curve e = e(u) in a plane 7r. The
curve e moves uniformly in the plane 7r so that each of its points travels
paralIeI to AB. The plane 7r is, at the same time, in uniform rotation
about AB. Make up the equation of the surface described by the curve
e. This surface is called a helical surface. A special case of a helical sur­
face is a right helicoid (see Problem 5.7); in this case, e = e(u) is a
straight line orthogonal to AB.

5.27. Let r = r(u) be a curve whose curvature k is other than zero.
Normal planes are drawn through each of its points, and a circumference
with centre on the curve r = r(u) and given radius a, a > 0, ak < I,
is constructed in every such plane. The locus of these circumferences is
a tubular surface S.

(a) Make up the equation of the surface S.
(b) Prove that any normal to the surface S intersects the curve r = r(u)

and is a normal to this curve.
5.28. Find the surface S, given that all its normals meet at one point.
5.29. Show that the volume of the tetrahedron formed by the

intersection of the coordinate planes and the tangent plane to the surface

x = u, y = v, Z = a3/uv

does not depend on the choice of the point of tangency on the surface.
5.30. Show that the sum of the squares of the coordinate axis intercepts

of a tangent plane to the surface

x = u3sin3v, y = U3COS 3V, Z = (a2 _ U2)3/2

is constant.
5.31. Show that the tangent plane meets the conoid

x = ucos v, y = usin v, Z = asin2v
in an ellipse.

5.32. Prove that the planes which are tangent to the surface z = xf(Y/x)
are concurrent.

5.33. Make up the equation of the tangent plane and normal to the
helicoid

r = I vcosu, vsinu, ku I.
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5.34. Make up the equation of the tangent plane to the surface

xyz = a3
•

5.35. Given that a surface is formed by the tangents to a curve C. prove
that this surface possesses the same tangent plane at all points of a
tangent to the curve C.

5.36. Given that a surface is formed by the principal normals of a curve
C. make up the equation of the tangent plane and the normal at an
arbitrary point of the surface.

5.37. Make up the equation of the tangent plane and the normal to
the surface formed by the binormals of a curve C.

5.38. Prove that the normal of a surface of revolution coincides with
the principal normal to the meridian and intersects the axis of rotation.

5.39. Prove that if all normals of a surface intersect one and the same
straight line, then the surface is a surface of revolution.

5.40. A ruled surface (see the definition in Problem 5.17) is said to be
developable if the tangent plane to the surface is the same at all points
of an arbitrary generator.

Prove that the ruled surface

R = r(u) + va(u)

is developable if and only if

r'aa' = O.

5.41. Prove that any developable surface may be partitioned into the
following parts:

(i) a part of the plane;
(ii) a part of a cylinder;
(iii) a part of a cone;
(iv) a part of a figure consisting of the tangents to a certain non-plane

line. In the last case, the indicated line is called an edge of regression.
5.42. Find the envelope and the edge of regression of the family of

ellipsoids

2 (X2
v
2) ;:2

ex ---;; + b2 + 7 = I,

where ex is the parameter of the family.
5.43. Find the envelope of the family of spheres constructed on the

chords parallel to the major axis of the ellipse

~ y2
- + - = I, Z = a
a2 b2

as on diameters.

38



5.44. Find the envelope and the edge of regression of the family of
spheres whose diameters are the chords of the circumference

x 2 + y2 - 2x = 0, Z = 0,

that pass through the origin.
5.45. Two parabolas are placed in perpendicular planes, possessing the

common vertex and the common tangent to the vertex. Find the envelope
of the family of planes which are tangent to both parabolas.

5.46. Find the envelope of the family of spheres with constant radius,
whose centres are placed on a given curve Q = Q(s) (canal surface).

5.47. Find the edge of regression of the family of spheres with constant
radius a, whose centres are placed on a curve Q = Q(s),

5.48. Find the envelope and the edge of regression of the family of
spheres with radius a, whose centres are placed on the circumference

x2 + y2 = b2
• Z = o.

5.49. Find the envelope and the edge of regression of the family of
spheres passing through the origin and whose centres are placed on the
curve

r = lu3
, u2

, u).

5.50. Find the envelope of the family of ellipsoids

x2 y2 Z2
+-+-=)

a2 b2 c2

whose semi-axis sum

a+b+c=/

is given.
5.51. Find the surface whose tangent planes cut off on the coordinate

axes line segments such that the sum of their squares equals a2
•

5.52. Find the surface whose tangent planes cut a tetrahedron of
constant volume 'a3 off the coordinate angle.

5.53. Find the envelope and the edge of regression of the family of
planes

xci + ya + Z = 0,

where a is the parameter of the family.
5.54. Find the envelope and edge of regression of the family of planes

xsino - ycosa + Z = aa,

where a is the parameter of the family.
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5.55. Find the envelope, the characteristics, and the edge of regression
of the family of osculating planes of a given curve.

5.56. Find the envelope, the characteristics, and the edge of regression
of the family of normal planes to a given curve.

5.57. Find the characteristics, the envelope, and the edge of regression
of the family of planes

rn + D = 0, 0 = o(u), D = D(u), 101 = I,

where u is the parameter of the family.
5.58. Find the developable surface through the two parabolas

(I) y2 4ax, z 0;

(2) ~ 4ay, z b.

5.59. Show that the surface x = cos v - (u + v)sinv, y = sinv +
+ (u + v)cosv, Z = U + 2v is developable.

5.60. Show that the surface x = u2 + 1/3 v, y = 2u3 + uv,
Z = u4 + 2/3 u2v is developable.

5.61. Given a paraboloid

x = 2aucosv, y = 2businv, z = 2u2(acos2v + bsin2v),

uvv+- u
l

) ,(hyperboloid of one sheet);

where a and b are constants, make up the equation of a curve on the
surface so that the tangent planes to the surface may form a constant
angle with the plane xOy along the curve.

Show that the characteristics of this family of tangent planes form a
constant angle with the axis z. Find the edge of regression of the envelope.

5.62. Find the edge of regression of the developable surface which
touches the surface az = xy at the points where it meets the cylinder
x2 = by.

5.63. Show that the developable surface passing through two circum­
ferences x2 + y2 = a', z = 0 and x2 + Z2 = b", Y = 0 intersects the
plane x = 0 in an equilateral hyperbola.

5.64. Calculate the first fundamental form of the following surfaces:

(I) r = 11IWS/lc'osv, asinucosv, asinv} (sphere);

(2) r lacos/lcosv, bsinucosv, csinv} (ellipsoid);

(3) r = [; (v + -;) cosu, ~ (v + -;) sinu, ~ (v + -;) }

(hyperboloid of one sheet);

[
a uv + I v - u

(4)r = ---,b--,c---
2v+u v+u
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(5)r= [;(V-+)COSU' ~(v-~)Sinu, ~(v-+)J

(hyperboloid of two sheets);

(6) r [v-vPcosu, v.vqsinu, ~2] (elliptic paraboloid);

(7) r [(u + v)-vP, (u - v).vq, 2uv l (hyperbolic paraboloid);

(8) r [avcosu, bvsinu, cv] (cone);

(9) r {a cosu, b sinu, v I (elliptic cylinder);

(hyperbolic cylinder).

5.65. Calculate the first fundamental form of the following surfaces:

(I) r = e(s) + Xe, e = const (cylindrical surface);

(2) r ve(s) (conical surface);

(3) r e(s) + Ae(s) (le(s)1 = I) (ruled surface);

(4) r e(s) + v(s)cost,? + f)(s)sint,? (canal surface);

(5) r I t,?(v)cosu, t,?(v)sinu, !/;(v) l (surface of revolution);

(6) r (a + bcosv)cosu, (a + bcosv)sinu, bsinvl (torus);

(7) r (vcosu, vsinu, ku I (minimal helicoid);

(8) r e(s) + AV(S) (surface of principal normals);

(9) r e(s) + Af)(S) (surface of binormals).

5.66. The first fundamental form of a surface is the following;

ds 2 = du 2 + (U
2 + a2)dv2

•

(i) Find the perimeter of the curvilinear triangle formed by the intersect-
ing curves

u = ± 1/2 av", v = I.

(ii) Find the angles of this curvilinear triangle.
(iii) Find the area of the triangle formed by the intersecting curves

u = ± av, v = I.

5.67. The first fundamental form of a surface is the following:

ds' = du? + (u 2 + a2 )d v2
•
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Calculate the angle at which the curves

u + v = 0, u - v = 0

intersect each other.
5.68. Find the equations of the curves which bisect the angles between

the coordinate lines of the paraboloid of revolution

x = ucosv, y = usinv, z = 1/2 u".

5.69. Find the curves intersecting the curve v const at a constant
angle () (loxodromes) on the surface

x = ucosv, y = usinv, z = aln(u + .../;;i - a2).

5.70. Given a surface

r = (usinv, ucosv, v},

Find:
(i) the area of the curvilinear triangle 0 ~ u ~ sinh v, 0 ~ v ~ yo;

(ii) the lengths of the sides of this triangle;
(iii) the angles of this triangle.
5.71. Let .,c be a curve whose equation is r = r(u), the curvature k(u),

and the torsion 1l(u), where u is natural parameter of the curve .,c. Let
S be the surface

r(u, 10) = r(u) + aJl(u)coSIO + a~(u)sinlO,

where P, ~ are the unit vectors of the principal normal and the binormal
of the curve .,c, respectively, a = const > 0, ak(u) < 1. One and the
same point on S is assumed to correspond to the coordinates (u, 10) and
(u, I" + 21r).

(i) Find the first fundamental form for the surface S.
(ii) Find the curves on S which are orthogonal to the circumferences

u = const.
(iii) Calculate the area of the region on the surface S bounded by the

circumferences u = U\, U = U2.
(iv) Using the result of (iii), find the area of the torus obtained by

rotating the circumference (x - b)2 + Z2 = a2, b > a > 0, about the
axis z

(v) Find the area of the surface S in that special case where .,c is an
arc of the helix x = rcost, y = rsinr, z = bt, 0 ~ I ~ 71", r > a, b ~ O.

5.72. Given a surface

r = (e(u)cosv, e(u)sin v, z(u)},

where e'(u)2 + Z'(U)2 = I, u\ < u < U2,0 < V < Yo, Vo < 271", prove
that it can be placed inside a cylinder x2 + y2 = f2 with arbitrarily small

42



positive radius e by bending itself. In bending, a self-covering of the sur­
face is possible.

5.73. Find the surface of revolution which is locally isometric to the
helicoid

r = (usinv, ucosv, v},

5.74. Show that the following helical surface (conoid)

x = ecosv, Y = esinv, z = e .+ v

covers (i.e., is locally isometric to) the surface of revolution (hyperboloid
of revolution)

x = rcos"" Y = rsine z = ~,

the correspondence of the covering points being given by the equations

'" = v .+ tan -1 e, r2 = e2 .+ 1.

5.75. Show that the helical surface

x = ecosv, Y = esinv, z = O(ln: -l- v)

covers (is locally isometric to) the surface of revolution

x = r COS"" Y = r sine z = 0..J2 In(r .+ .Jr2 02
) .

5.76. Show that any helical surface

x = ucosv, Y = usinv, z = F(u) .+ ov

covers (i.e., is locally isometric to) a surface of revolution so that the heli­
cal lines are transformed into parallels.

5.77. Prove that with a convenient choice of curvilinear coordinates
on a surface of revolution, its first fundamental form can be transformed
to the following:

ds2 = du 2 .+ G(u)dv2
•

5.78; Transform the first fundamental form of the sphere, torus,
catenoid, and pseudosphere to the following:

ds' = du 2 .+ Gtusdv".

5.79. A curvilinear coordinate system on a surface is said to be
isometric if the first fundamental form of the surface is, with respect to
these coordinates, as follows:

Find isometric coordinates on the pseudosphere.
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5.80. A right-angled triangle whose sides are arcs of great circum­
ferences of a sphere is given on the sphere. Find (a) the relations between
the sides of the triangle, (b) its area.

5.8t. A spherical lune is a figure formed by two great semi­
circumferences with common ends. Calculate the area S of a lune with
an angle C/ at the vertex.

5.82. Prove that any cylindrical surface is locally isometric to the plane.
5.83. Prove that any conical surface is locally isometric to the plane.
5.84. A Liouville surface is one whose first fundamental form can be

transformed to the following:

Prove that a surface locally isometric to a surface of revolution is a
Liouville surface.

5.85. Prove that any surface of revolution can be locally conformally
mapped onto the plane.

5.86. Calculate the second fundamental form of the following surfaces
of revolution:

(1) r = (Rcosucosv, Rcosusinv, Rsinul (sphere);

(2) r = (acosucosv, acosusinv, csinzz ] (ellipsoid of revolution);

(3) r = (acoshucosv, acoshusinv, csinhu ] (hyperboloid of revolution
of one sheet);

(4) r = (asinhucosv, asinhusinv, ccoshu) (hyperboloid of revolution

of two sheets);

(5) r (ucos v, usin v, u2
) (paraboloid of revolution);

(6) r (Rcos v, Rsin v, u I (circular cylinder);

(7) r Iucos v, usin v, ku I (circular cone);

(8) r (a + bcosu)cosv, (a + bcosu)sinv, bsinul (torus);

(9) r [acosh: cosv, acosh : sin v, u] (catenoid);

(10) r = [aSinucosv, asinusinv, a (lntan ; + cosu) ]

(pseudosphere).

5.87. Calculate the second fundamental form of the right helicoid

x = ucosv, y = usinv, Z = avo
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5.88. Calculate the second fundamental form of the catenoid

x "'{';2+'--;;'cos v,

y -JijZ-+ aZsinv,

z = oln(u + ~~2).

5.89. Calculate the second fundamental form of the surface xyz = 0
3•

5.90. Given the surface of revolution

r(u, .,0) = {x(u), e(u)cos'P, e(u)sin'P I. e(u) > O.

(i) find the second fundamental form;
(ii) find the total curvature K at an arbitrary point of the surface and

the dependence of the sign of K on the sense of convexity of the meridian;
(iii) calculate K for the special case e(u) = u,

(

0 + ...r;;z~7 ~)
x(u) ~ ± oln u - .,j(j2 - u2

, o > 0

(pseudosphere);
(iv) find the mean curvature H at an arbitrary point of the surface

of revolution;
(v) select the function e = e(x) for the special case x = u so that

H = 0 on the whole surface.
5.91. Given a curve e = e(u) with the natural parameter u, curvature

k = k(u) ;r. 0, and torsion x = x(u) ;r. O. Let T = T(U) be the unit
tangent vector of this curve. Find (a) K, (b) H for the surface of tangents

r(u, v) = e(u) + VT(U), v > O.

5.92. Find the expression for the total curvature of the surface whose
first fundamental form with respect to these coordinates is

ds2 = du" + G(u, vidv".

5.93. Find the total curvature of a surface whose first fundamental form
is

5.94. Find the total curvature of the surface given by the equation
F(x, y, z) = O.

5.95. Find the total and mean curvatures of a surface z = j(x, y).
5.96. Find the principal curvature radii of the surface

z
y = x tan -.

a
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5.97. Find the principal curvature radii of the surface

x COSy - (u + v)sinv,

y sinv + (u + v)cosv,

Z U + 2v.

5.98. Calculate the total and mean curvatures of the helical surface

x = ucosv, y = usin v, z = u + v.

5.99. Calculate the total and mean curvatures of the surface

x 3u + 3uv 2
- u3

,

Y v3 _ 3v - 3u 2v,

Z 3(u 2 _ v2 ) .

5.100. Show that the mean curvature of the helicoid (see Problem 5.7)
equals zero.

5.101. Show that the principal curvature radii of the right helicoid

x = ucosv, y = usinv, z = !(v),

where !(v) is an arbitrary analytic function of variable v, have unlike
signs.

5.102. Find the total and mean curvatures of the surface formed by
the binormals of a given curve.

5.103. Find the total and mean curvatures of the surface formed by
the principal normals of a given curve.

5.104. Let S be a certain given surface. Mark off segments of the same
length and direction on the normals to the surface S. The ends of these
segments describe a surface S* "parallel" to the surface S. If the equation
of the surface S is r = r(u, v), then the equation of S* is

Q = r(u, v) + an(u, v),

where n(u, v) is a unit normal vector of S.
Express the coefficients of the first and second fundamental forms of

the surface S* in terms of the coefficients of the first and second fun­
damental forms of the surface S.

5.105. Express the total curvature K* of the surface S* "parallel" to
a surface S in terms of the total and mean curvatures of the surface S.

5.106. Express the mean curvature H* of the surface S* "parallel" to
a surface S in terms of the total and mean curvatures of the surface S.

5.107. Make up the equation of the minimal surface S* "parallel" to
a surface S if for the surface S the ratio H/K = const.

5.108. Given a surface of constant mean curvature H. Segments of
length II2 H are marked off on all its normals. Prove that the total curva­
ture of the surface so formed and "parallel" to the given one is constant.
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5.109. Segments of length 1/.JK are marked off on all the normals
of a surface with constant positive total curvature K. Prove that the mean
curvature of the surface so formed is constant. Calculate it.

5.110. Prove that the total and mean curvatures at the corresponding
points of two parallel surfaces are related by the formula

A line on a surface is called a line of curvature if it has the principal
direction at each of its points. Lines of curvature are determined by the
differential equation

dv2
- dudv du"

E

L

F

M

G

N

o.

5.111. Find the lines of curvature on the surface

a
x = -(u - v),

2

b
y = -(u + v),

2

uv
Z =-.

2

5.112. Find the lines of curvature of the helicoid

x = ucosv, y = usinv, z = avo

5.113. Prove that, in covering (local isometry) the catenoid

x = .Ju2 + a2cos v, y = R+7sin v,

z = aln(u + ..Ju2 + a2
)

with the helicoid

x = ucosv. y usin v, z = av,

the lines of curvature are transformed into asymptotic lines.
5.114. Find the lines of curvature of the surface

r(u, v) = Q(u) + f(v)a + g(v) [T(U) x a),

where T(U) = r' (u), !T(U)! = 1, (T(U). a) O. [a] 1, a is a constant
vector.

5.115. A plane curve "y is given by an equation Q = Q(u). where U

is the natural parameter, k = k(u) its curvature (0 < k < lIa). " the
principal normal unit vector of "y. e the unit normal vector to the plane
in which the curve "y lies. A surface S is given by the equation

r(u, .,a) = Q(u) + a,,(u)cos.p + aesin.p.
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(i) Find the Gaussian curvature of the surface S.
(ii) Find the mean curvature of the surface S.
(iii) Find the lines of curvature of the surface S.
5.116. Find the lines of curvature of the surface

r(u, cp) = e(u) + av(u)coscp + afj(u)sincp,

where v and fj are the unit vectors of the principal normal and the binorm­
al to the curve e = e(u) having the natural parameter u, curvature
k(u) < I/a, and torsion x(u).

5.117. Find the lines of curvature of the surface

r(u, v) = [U(3V2
- u

2
- f), V(3U2 - v

2
- f), 2UV).

Find its total and mean curvatures at each point.
5.118. Prove that H 2 ~ K. When does the equality hold?
5.119. Let X and Y be orthogonal tangent vectors at some point of

a surface. Prove that

I
H = -(I(X, X) + I(Y, V»),

2

where 1(,) is the second fundamental form of the surface.
5.120. Assume that the first fundamental form of a surface is as

follows:

ds' = E du 2 + Gdv2
•

Prove that

I ra ( ~~) a ( ~~ ) 1
K = - 2-JEG la; YEO + a; VEO J.
5.121. Assume that two surfaces M 1 and M2 meet in a curve C. Let

k be the curvature of C, >"i normal curvatures of C in Mi, and (J the angle
between the normals of M 1 and M2. Prove that

esin2
(J = >"1 + >..~ - 2>"1>"2COS(J.

Two directions in the tangent plane of a surface which are determined
by two vectors a and b are said to be conjugate if CP2(a, b) = 0, i.e., if

La.b, + M(a l b2 + a2b l ) + Na2b2 = 0,

where a = (aI, a2), b = (bI, bz). A net of lines on a surface is said
to be conjugate if the tangent vectors to the lines of different families
of this net are conjugate at each point.
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A direction determined by a vector h is said to be asymptotic if \02(h,
h) = O. A line on a surface is said to be asymptotic if the tangent has
the asymptotic direction at each of its points. An asymptotic line is char­
acterized by the equality k; = 0 which is held at all its points. Asymptotic
lines are determined by the differential equation

L du: + 2M dudv + N dv' = o.

5.122. Find the asymptotic lines of the surface

z=a(; + ~).
5.123. Find the asymptotic lines of the surface z xy2.
5.124. Find the asymptotic lines of the surface

x = u2 + V, Y = u3 + uv,

Construct the projections of the asymptotic lines, passing through the
point u = I, v = 1/2, onto the plane xy.

5.125. Find the asymptotic lines of the surface

x = a(l + cosu)cotv, y = a(l + cosu), z = acosu/s;lIv.

5.126. Prove that for an asymptotic line on the surface, x 2 = -K
(where x is the torsion and K the total curvature).

5.127. Find the torsion of the asymptotic lines of the surface formed
by the binormals to a given curve.

5.128. Find the torsion of the asymptotic lines of the surface formed
by the principal normals to a given curve.

5.129. Show that the coordinate lines of the surface

a
x = - (u + v),

2

b
y = - (u - v),

2
z =

uv

2

are straight lines. Find the lines of curvature.
5.130. Show that the coordinate lines on the surface

x = !I(U), y = \Ol(V), Z = !z(u) + \02(V)

are plane and form a conjugate system.
5.131. Show that the coordinate lines on the surface

r = M(u) + Q(v)

are conjugate.
5.132. Prove that the sum of the normal curvature radii for each pair

of conjugate directions is the same at an arbitrary point of a surface.
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5.133. Prove that the product of the normal curvature radii for a pair
of conjugate directions attains its minimum for the lines of curvature.

5.134. Prove that the ratio of the principal curvature radii is constant
for the surface of revolution obtained by rotating a parabola about its
directrix.

5.135. Prove that if one of the lines of curvature of a developable sur­
face lies on a sphere, then all the remaining non-rectilinear lines of curva­
ture lie on concentric spheres.

5.136. Prove that the normal curvature of an orthogonal trajectory of
the asymptotic lines of a surface equals the mean curvature of the surface.

5.137. Prove that a line of curvature is plane if its osculating plane
forms a constant angle with the tangent plane to the surface.

We call a line whose principal normal coincides with the normal to
a surface at each of its points a geodesic line of the surface. There is
a unique geodesic line passing through each point of the surface and hav­
ing a given direction.

The length of the projection of the curvature vector kn onto the tangent
plane of a surface is called the geodesic curvature kg of a line placed
on the surface.

The geodesic torsion associated with a given direction is the torsion
of the geodesic line passing in this direction.

5.138. Prove that a geodesic line on a surface can be fully determined
by one of the following properties:

(i) The normal to a surface at each point of the line, where its curvature
is other than zero, is a principal normal.

(ii) The normal to a surface lies in the osculating plane of the line at
each of its points where its curvature is other than zero.

(iii) The geodesic curvature equals zero at each point of the line.
(iv) The curvature equals the absolute value of the normal curvature

at each point of the line.
(v) The rectifying plane coincides with the tangent plane to the surface

at each point of the line where its curvature is other than zero.
5.139. Prove that any straight line on a surface is a geodesic line.
5.140. Given that two surfaces touch each other along a line l, prove

that if t is a geodesic line on one surface, then it is geodesic on the other.
5.141. Prove that the differential equation of the geodesic lines of a

surface r := r(u, v) can be represented in the form Ndrd2r
:= 0, where

N is the normal vector of the surface.
5.142. Prove that geodesic lines of the plane are straight lines and only

they.
5.143. Find the geodesic lines of a cylindrical surface.
5.144. Find the geodesic. lines of a developable surface.
5.145. Find the geodesic lines of the circular cone x2 + y2 Z2.
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5.146. Find the geodesic lines of the helicoid

r == (ucos v, usin v, hv I.

5.147. Find the geodesic lines of an arbitrary conical surface.
5.148. Prove that the meridians of a surface of revolution are geodesic

lines.
5.149. Prove that a parallel of a surface of revolution is geodesic if

and only if the tangent to a meridian at the points where the meridian
meets the parallel is parallel to the axis of rotation.

5.150. Find the geodesic lines on the sphere.
5.151. Show that the geodesic lines of a surface whose first fundamental

form is

ds' == v(du2 + dv 2
)

are parabolas on the plane u, v.
5.152. Prove that a geodesic line is a line of curvature if and only if

it is plane. '
5.153. Prove that a geodesic line is asymptotic if and only if it is

straight.
5.154. Prove that the geodesic curvature of a line u == u(s), v == v(s)

on a surface r = r(u, v) can be calculated by the formula

kg = [mrr],

where m is the unit normal vector of the surface.
5.155. Find the geodesic curvature of the helical lines of the helicoid

r = (ucosv, usinv, avl.

5.156. Prove that the geodesic torsion of a line u == u(s), v v(s)
on the surface r == r(u, v) can be calculated by the formula

where m is the unit normal vector of the surface.
5.157. Prove the following statement: for a line on a surface to be a

line of curvature, it is necessary and sufficient that the geodesic torsion
should equal zero at each of its points.

5.158. Show that on a surface with the first fundamental form

ds2 = [cp(u) + 1f(v)] (du 2 + dv 2
)

(a Liouville surface) the geodesic lines are determined by the equation

du dv-====..,,-. ± .. = 0,
vcp(u) + a vy;(v) - a

where a is an arbitrary constant.
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5.159. Given a triangle T whose area is o and the sides are arcs of great
circumferences on a sphere of radius Ro, find the sum of the interior
angles of the triangle T.

5.160. Let T be a triangle whose sides are geodesic lines constructed
on a surface with constant Gaussian curvature K = - aZ < 0. Assuming
that the area a of T is given, find the sum of its interior angles.

5.161. Given that a surface S is obtained by a certain bending of a
J?- yZ zZ .

portion of the ellipsoid -z + -.-z + -z = I determmed by the
abc

inequalities x > 0, Y > 0, Z > 0, find the area u* of the spherical image
of the surface S.

5.162. Given that a surface R = R(u, v), UI < U <UZ, VI < V <

< Vz, has the first fundamental form ds' = du" + BZ(u, vtdv", find
the area u* of the spherical image of this surface.

5.163. Let 'Y be a closed geodesic line without self-intersections on a
closed convex surface S. Prove that the spherical image of the curve 'Y
divides the Gaussian sphere into two parts equal in area.

5.164. Given that ds" = de 2 + sinhze del in the geodesic polar coor­
dinates (e, cp) on the non-Euclidean plane, find the length s(e), geodesic
curvature kg(e), and rotation II(e) of the geodesic circumference
e = const. Calculate lim kg(e), lim II(e). Compare the results obtained

e-oo a-co
with the similar quantities for the Euclidean plane.

5.165. Given a plane PI with the metric dsz = du z + cosh2udvz,

- 00 < u < 00, - 00 < v < 00, and a plane Pz on which dsz = dez +
+ sinlr' e dcpz with respect to the geodesic polar coordinates (e, cp), prove
that the planes PI and Pi (with the first fundamental forms given on
them) are isometric.

5.166. Given that a surface S is defined by a vector function of the
form R = R(u, v) of class CZ

, verify that the quantity do z = (do, do),
where 0 is the normal unit vector of the surface S, is a quadratic form
with respect to the differentials du, dv (the so-called third fundamental
form of the surface S). Express do z in terms of the first and second fun­
damental forms of the surface S.

5.167. Prove that the sum of the squares of the curvature and torsion
of a geodesic. line is equal to -K on a minimal surface.

5.168. Prove that the plane and catenoid are the unique minimal sur­
faces of revolution.

5.169. Prove that among ruled surfaces, the minimal.are the plane and
the right helicoid.

5.170. Prove that for the mean curvature of a .surface S, the following
formula is valid:

do - do"
H = lim

a~O 2a do
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where da and do" are the corresponding elements of the area of the paral­
lel surfaces Sand S*.

5.171. Prove that the area of any portion of a minimal surface cannot
be less than the area of the corresponding portion of a parallel surface.

5.172. Prove that the limit of the ratio of the area of spherical represen­
tation of a surface S to the area of the corresponding region of the surface
S equals the total curvature of the surface in magnitude and sign.

5.173. Prove that if one of the principal curvature radii of a surface
is constant, then the surface is the envelope of a family of spheres with
constant radius whose centres lie on a certain curve.

5.174. Given that a circular cylinder is intersected by a plane not parallel
to the axis of the cylinder. what line will the line of intersection be trans­
formed into in covering (locally isometric mapping) the plane with the
cylinder?

5.175. Prove that if a material point moving across some surface is not
acted upon by external forces. then it is moving along a geodesic line.

5.176. Prove that in a locally isometric mapping of surfaces. geodesic
lines are transformed into geodesic.

5.177. Prove that two surfaces of the same constant Gaussian curvature
are locally isometric.

5.178. Prove that any surface of constant positive Gaussian curvature
is locally isometric to the sphere.

5.179. Prove that any surface of constant negative Gaussian curvature
is locally isometric to the pseudosphere.

5.1801.; Prove that all geodesic lines which are different from meridians
are closed on the surface S given by the equations

1
x = - cosu COS""

2

1 .
y = - cosu SIn",.

2

z

~ U ~
2

1r

2

5.181. Given the differential equation of motion of a point electrical
charge in the field of a magnetic pole, viz.,

r" (r) = C Ir(l)l- 3 [r{f), r' (l)], c = const,

prove that the path of the charge is a geodesic line of a circular cone.
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02

+ --2 is the Laplace operator.ov

5.182. Prove that the Gaussian curvature of the metric ds2

v)(du2 + dv 2
) can be represented in the form

1
K = --~ln~,

2~

;p
where ~ - -­- ou2

~(u,

5.183*: Prove that there are no closed geodesic lines on I-connected
surfaces such that the Gaussian curvature is non-positive at all of their
points.

6
Manifolds

6.1. Prove that an n-dimensional sphere S" determined in R" + 1 by the
equation xi + xi + ... + ~ = I is a smooth manifold. Construct
the atlas of charts for S",

6.2. Prove that the two-dimensional torus T2 obtained by rotating about
the axis Oz of a circumference lying in the plane Oxz and not intersecting
the axis Oz is a smooth manifold. Construct the atlas of charts.

6.3. Prove that the union of two coordinate axes in R" + 1 is not a
manifold.

6.4. Show that an atlas consisting of only one chart cannot be
introduced on the sphere S" C R" + 1.

6.5. Determine whether the following plane curves are smooth man­
ifolds: (a) a triangle, (b) two triangles with only one common point, viz.,
a vertex.

6.6. Prove that the n-dimensional projective space Rpn is a smooth (and
real-analytic) manifold.

6.7. Prove that the n-dimensional complex projective space cpn is a
smooth (and complex-analytic) manifold.

6.8. Prove that the graph of the smooth function Xn + I = ftx«, ... ,
xn ) is a smooth manifold.

6.9. Prove that the group SO (2) is homeomorphic to the circumference.
What manifold is the group 0(2) homeomorphic to?

6.10. Prove that the group SO(3) is homeomorphic to the projective
space RP3.

6.11. Prove that the groups GL(n, R), GL(n, C) are smooth manifolds.
6.12. What manifold is the set of all straightlines on the plane R2

homeomorphic to?
Form the equations of the following manifolds in R3

:
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6.13. The cylinder with a directing curve e = e(u) and a generator
parallel to a vector e.

6.14. The cone with the vertex at the origin and directing curve e =

e(u).
6.15. The surface made up of the tangents to a curve e = e(u).
6.16. The surface formed by a circumference moving so that its centre

is on a curve e = e(u) and its plane normal to the curve at each of
its points.

6.17. Prove that the Jacobian matrix of the composite of smooth map­
pings is the product of the Jacobian matrices of the factors.

6.18. Prove that the rank of a Jacobian matrix does not depend on
the choice of a local coordinate system.

6.19. Calculate the rank of the Jacobian matrix of the mapping

J(x, y) = (x, 0) : R2
--> R2

•

6.20. Let J: U --> R" be a smooth manifold of an open domain
U C R", and the Jacobian jaJI ~ 0 at a point p E U.

Prove that there exists an open domain V C U, P E V such thatJ(V) =
= W is an open set, JI v a homeomorphism, and the inverse mapping
([Iv) - I smooth.

6.21. LetJ: U --> Vbe a smooth mapping of open domains in R" which
has a smooth inverse mapping.

Prove that the Jacobian jail ~ 0 at each point p E U.
6.22. Set up explicit formulae for a smooth homeomorphism of the

n

open disk D" = (x ERn: L; xl < R 2 J 01110 the Euclidean space R",
;= 1

6.23. Prove that any smooth manifold has an atlas such that each chart
is homeomorphic to a Euclidean space.

6.24. Give an example of a smooth one-to-one mapping which is not
a diffeomorphism.

6.25. Construct a smooth function J(XI, ... , xn ) (of class C"') equal
to unity on a ball of unit radius, vanishing outside a ball of radius 2,
and such that 0 ~ J ~ 1.

6.26. Let M be a manifold, p E U C M a neighbourhood of a point
p. Prove that there exists a smooth function J such that 0 ~ J ~ 1,
J(P) = 1, J(x) = 0 on M -, U.

6.27. Let M be a manifold, A = .Ira closed set, and U:::> A an open
domain. Prove that there exists a smooth function j'such that 0 ~ J ~ 1,
.I1A = 1, .I1M/U = O.

6.28. Prove that any continuous function in R" can be uniformly ap­
proximated, as close as we please, by a smooth function.

6.29. Prove that any continuous mapping of smooth manifolds can be
approximated, as close as we please, by a smooth mapping.
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6.30. Let a torus T2 C R3 be formed by rotating a circumference about
some axis (standard embedding). Prove that coordinates x, y, Z are smooth
functions on the torus r.

6.31. Let a torus T2 C R 3 be standardly embedded in R 3
, and the

function f: T2 -> S2 associate each point pEr with a vector of unit
length normal to the torus T2 at the point p. Prove that f is a smooth
mapping.

6.32. Prove that a mapping f: S2 -> RpZ associating a point p on the
sphere S2 with the straight line which passes through the origin and the
point p is a smooth mapping.

6.33. Prove that two smooth structures on a manifold coincide if and
only if the spaces of smooth functions (with respect to these structures)
coincide.

6.34. Let M" be the solution set of the equations

gi(XI . . . . • XN) = 0, (i = 1, ... ,-N - n),

and the equality for the rank Ilagilaxjll = N - n be held.
Prove that M" is a submanifold. .
6.35. Let M" C RN be a submanifold. Prove that for any point p E M",

there exists a coordinate set Xii' ... , Xin such that the projection of RN

onto the subspace R" = (XiI" .. , xinl is a local diffeomorphism of a
neighbourhood of the point p of the manifold M" onto an open domain
in Rn

•

6.36. Let M" C RN be a submanifold. Prove that the manifold M" is
specified locally by a system of equations gi(XI, ... , XN) = 0
(i = 1, ... ,N - n), the equality for the rank ~agilaxj~ = N - n being
fulfilled.

6.37. Let M" C R N be a compact submanifold. Prove that there exists
a set of smooth functions flo ... , fk on R" such that the solution set
of the system of equations fl = fz = . . . = fk = 0 coincides with M"
and the rank of the Jacobian matrix Iaf;1aXj I equals N - n (k ~ N
- n).

6.38. Show that the stereographic projection of a sphere onto a tangent
plane from the pole placed opposite the point of contact is a diffeomor­
phism everywhere except the projection pole.

6.39. Prove that the spaces R" and R" are not diffeomorphic when
n ~ m.

6.40. Prove that the groups SL(n, R), SL(n, C) are smooth subman­
ifolds in spaces of real (or complex) square matrices of order n.

6.41. Prove that the group SO(n) is a smooth submanifold of the space
2 .

R" of all square matrices of order n. .
6.42. Prove that the groups U(n), SU(n) are smooth submanifolds in

the space Cn2 of complex square matrices of order n. .
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6.43. Show that the matrix mapping A --+ exp(A) is a smooth homeo­
morphism in a neighbourhood of the null matrix from the inverse image,
and a neighbourhood of the unit matrix from the image. Show that the
inverse mapping can be specified by the corres iondence B --+ In(B).

6.44. Prove that some of the Cartesian coordinates of the matrix
In(A - IX) can be taken as local coordinate systems in a neighbourhood
VA of a matrix A on each of the groups listed in Problems 6.40-6.42.
Show that coordinate changes are smooth functions of class C""respective
to the coordinate systems indicated.

6.45. The Riemann surface of the algebraic function w = ~P(z) , where
P(z) is a polynomial, is given by the equation w" - P(z) = O. Find a
condition for the roots of the polynomial under which the Riemann sur­
face is a two-dimensional submanifold in C2

•

6.46. Show that the projection of the direct product X x Y of two
manifolds X and Y onto the factor X is a smooth mapping.

6.47. Prove that a compact smooth manifold M" can be embedded in
the Euclidean space RN for a convenient dimension N < 00.

6.48. Prove that a smooth function on a compact smooth manifold
M can be represented as a coordinate under a certain embedding
Me RN

•

6.49. Prove that the product of spheres can be embedded in RN of
codimension 1.

6.50. Prove that if dim X < dim Y and j: X --+ Y is a smooth map­
ping, then the image of the mapping j does not coincide with Y.

6.51. Prove that a two-dimensional, compact, smooth and closed man­
ifold can be immersed into R3

•

6.52. (Whitney lemma.) Prove that a compact, smooth and closed man­
ifold M" can be embedded in the Euclidean space R2n + 1 and immersed
into R2n

•

6.53. Let j: X --+ Y be a smooth mapping of a compact and closed
manifold X" into a manifold yn. Let Yo E Y be a regular point of the
mapping j. Prove that the inverse image j-l(yO) consists of a finite
number of points.

Letj: X --+ Ybe a smooth mapping of smooth manifolds, and M e Y
a smooth submanifold. The mapping j is said to be transverse along the
submanifold M if for every point x E j-l(M), the tangent space TfIX)(Y)
to the manifold Y is the sum (generally speaking, not direct) of the
tangent space Tflx)(M) to the manifold M and the image iJj(Tx(X» of
the tangent space to the manifold X. Tho submanifolds M 1 and M2 of
the manifold X,are said to intersect transversally if an embedding of one
of them is transverse along the other.

6.54. Prove that if y E Y is a regular point of a mapping j: X --+ Y,
then j is a mapping transverse along y.
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6.55. Prove that the definition of a transversal intersection does not
depend on the choice of order in the pair Mj, M2.

6.56. Prove that if I: X -> Y is a mapping transverse along a subman­
ifold M C Y, then the inverse image/-I(M) is a submanifold of the man­
ifold X. Calculate the dimension of 1- I(M).

6.57. Investigate whether the fol1owing submanifolds intersect
transversally: (a) the plane xy and the axis z in R3

; (b) the plane xy and
plane spanned by the vectors 1(3,2,0), (0, 4, -I) I in R3

; (c) the subspace
V x (OJ and the diagonal of the product V x V; (d) the spaces of
symmetric and skewsymmetric matrices in the space of al1 matrices.

6.58. For what values of a will the surface r + T - r = 1 intersect
the sphere r + y2 + r = a transversally?

6.59. Let all the points of a mapping I: X -> Y be regular, and X,
Y compact manifolds. Prove that I is a locally trivial fibre map (or fib­
ration), i.e., the inverse image I-I(U) of a sufficiently small neigh­
bourhood of each point y E Y is homeomorphic to the direct product
U X I-I(y). In particular, if Yis a connected manifold, then all subman­
ifolds I-I(y), y E Yare pairwise homeomorphic.

6.60. Let I: S" -> Rpn be a mapping associating a point x E S" with
the straight line passing through the point x and the origin in R" + I. Prove
that all points of the mapping I are regular.

6.61. Let!: SO(n) -> S" - 1 associate every orthogonal matrix with its
first column. Prove that all points of the mapping I are regular. Find
the inverse image 1- l(y).

6.62. Let j": U(n) -> S2n - 1 associate every unitary matrix with its first
column. Prove that all points of the mapping I are regular. Find the in­
verse image I-I(y).

6.63. Show that the set Vn,k of all orthonormal systems consisting of
k vectors from the Euclidean space R" admits a smooth manifold
structure. Find its dimension. Show that Vn,1 = S" - I, Vn,n = O(n).

6.64. Show that the set G«.« of all k-dimensional subspaces in the
Euclidean space R" admits a smooth manifold structure. Find its
dimension. Show that Gn, l = Rpn - I.

6.65. LetI : Vn,k -> Vn,s, S ~ k be a mapping associating an orthonor­
mal system consisting of k vectors with its first s vectors. Prove that every
point for the mapping I is regular. Show that the inverse image I-I(y)
is homeomorphic to the manifold Vn - s, k - s-

6.66. Let I: O(n) -> Gn.k be a mapping associating every orthogonal
matrix with the subspace generated by the first k columns. Show that
all points for the mapping I are regular. Prove that the inverse image
r l(y) is homeomorphic to the manifold O(n tr: k) x O(k).

6.67. LetI : X x Y -> Mbe a smooth mapping, and mo E M a regular
point. Consider the family of mappings h : X -> M, h(x) = !(x, y).
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Prove that the point m« is regular for the mappings/y almost for all values
of the parameter y, i.e., when y ranges over an open, everywhere dense
subset of Y.

6.68. Solve Problem 6.67 if the point m« is replaced by a submanifold
N C M, and its regularity by transversality of the mappings along the
submanifold N.

6.69. Verify whether the following manifolds are orientable: (a) a
sphere S"; (b) a torus T"; (c) a projective space RP'; (d) a complex
projective space Cpn; (e) groups GL(n, R), U(n), SO(n).

6.70. Prove that the Klein bottle is a non-orientable, two-dimensional
manifold.

6.71. Prove that an arbitrary complex analytic manifold is orientable.
6.72. Let M be a manifold with boundary aM. Prove that the manifold

M can be embedded in the half-space (XN + 1 ~ 0) of the Euclidean space
R N + 1 so that aM lies in the subspace (XN + I = 0).

6.73. Let a boundary aM consist of two connected components
aM = M 1 U M2, M 1 n M2 = 0. Prove that the manifold M can be
embedded in RN x [0, 1] so that MI lies in RN x {O}, and M2 in
RN x {I}.

6.74. Prove that an orientable two-dimensional surface possesses a
complex structure.

6.75. Prove that the manifolds Sl X S2n - 1, S2n - 1 X S2n - I possess a
complex structure.

6.76. Prove that a compact closed odd-dimensional Riemannian man­
ifold of positive curvature is orientable.

A function w = !(Zl, ... , z"), i' = x" + iyk is said to be holomor­
phic if it is continuously differentiable and its differential is a complex
linear form at each point (z', ... , z").

6.77. Show that if! is a holomorphic function, then

aRe! _ aIm!
axk - ayk'

aIm! aRe!

ax" - ayk'

6.78. Let wi = /(Zl, ... , z") be a holomorphic vector function mapping
C" into C'". Find the relation between the real Jacobian matrix of this
mapping and its complex Jacobian matrix.

6.79. Prove that a holomorphic vector function j": C" -> C" produces
a local coordinate system if and only if its complex Jacobian is other
than zero.
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6.80. Show that S2 admits a complex analytic structure. Describe the
simplest atlas of charts explicitly.

6.81. Show that complex projective spaces cr admit a complex
analytic structure. Describe the simplest atlas of charts explicitly.

6.82. Identify S2 with Cpl.

7
Transformation Groups

7.1 Prove that all one-parameter smooth homeomorphism groups on
a compact manifold are in one-to-one correspondence with smooth vector
fields of point trajectory velocities.

7.2. Let X be a smooth connected manifold, and Xo, XI two arbitrary
points. Find a one-parameter group of smooth transformations «Jt such
that «JI(XO) ee Xi. Show that we can assume, without loss of generality,
all the transformations «Jt to be identity outside a certain compactum.

7.3. Give an example of a vector field on a lion-compact manifold
whose trajectories are not generated by the action of anyone-parameter
transformation group.

7.4. Let I; be a constant vector field respective to angular coordinates
on the two-dimensional torus T2

• Investigate under which conditions for
the coordinates of the field 1;, the integral curves are closed.

7.5. Generalize the previous problem to the case of the torus T", viz.,
let I; = (1;1, ... , I;n) be a constant vector field respective to angular coor­
dinates on the torus T", Prove that the closure of any trajectory is homeo­
morphic to the torus t", where k is the number of linearly independent
numbers e, ... , I;n over the field of rational numbers.

7.6. Let a finite group a act smoothly on a smooth manifold X. Prove
that if the action of the group a is free (i.e., each point X E X is trans­
formed into itself only under the action of the unit element of the group
a), then the factor space x/a is a manifold.

7.7. Show that the projective space RP is a factor space S" IZ2 under
a certain action of the group Z2 on the sphere S",

7.8. Show that the complex projective space Cpn is the factor space
S2n +l /s' under the action of the group SI on the sphere S2n + I.

7.9. Let a finite group a act smoothly on a manifold X, and Xo E X
be a fixed point under the action of any element of the group a. Prove
that in a neighbourhood of the point Xo, there is alocal coordinate system
with respect to which the action of the group a is linear.
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7.10. Generalize the previous problem to the case of an arbitrary com­
pact Lie group.

7.11. Prove that the set of all fixed points under the action of a finite
group G on a smooth manifold is the union of smooth submanifolds
(generally speaking, of different dimensions).

7.12. Let G be a Lie group. Show that the action of the group G on
itself via left (or right) translations is smooth.

7.13. Let a Lie group G act on itself via inner automorphisms. Prove
that the set of fixed points coincides with the centre of the group G.

7.14. Prove that the group of isometry of a Riemannian space is a
smooth manifold.

7.15. List all finite-dimensional Lie groups of transformations of the
straight line R 1

•

7.16. Find the group of all linear fractional transformations preserving
the disk Izi ~ I in the complex plane. Prove that this group is isomorphic
to the group SL(2, R)/Z2 and also to the group of all transformations
preserving the form dJ?- + dy 2 - dt 2 in R3(x, y, t). Establish a relation
to Lobachevskian geometry.

7.17. Prove that the connected component of the unit element of the
isometry group on the Lobachevski plane (under the standard metric of
constant curvature) is isomorphic to SL(2, R)/Z2. Find the total number
of components in the group of motions of the Lobachevski plane.

7.18. A solid ball is pressed in between two parallel planes (which are
tangent to it). With the planes moving (so that they remain parallel and
at the same distance from each other), the ball rotates without slipping
at the points of contact. Consider all motions of the ball induced by the
motion of the upper plane such that the lower point of contact of the
ball describes a closed trajectory on the lower plane, i.e., the point of
contact returns to the original position. What part of the group SO(3)
can be obtained by such.ball rotations (rotations of the ball are considered
after its centre returns to the original point)?

7.19. Prove that the isometry group of Euclidean space is generated
by orthogonal transformations and parallel displacements.

7.20. Prove that the isometry group of the standard n-dimensional
sphere is isomorphic to the group of orthogonal transformations of the
(n + I)-dimensional Euclidean space.

7.21. Prove that the groups Sp(l) and SU(2) are isomorphic (as Lie
groups). Prove that they are diffeomorphic to the sphere S3. Establish
the relation to quaternions.

7.22. Prove that in the algebra of quaternions, multiplication by a qua­
ternion A : x -+ Ax generates the transformation group SU(2). Prove that
the transformations of the form x -+ AxB, where A, Bare quaternions,
generate the group SO(4). Prove that SO(4) is isomorphic to the factor
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group S3 X S3/Z2, where S3 is supplied with the structure of the group
SU(2) == Sp(I). Find the fundamental group SO(4), and also SO(n) for
any n.

7.23. Prove that the Lie groups SO(n), SU(n), U(n), Sp(n) are
connected. Prove that there are two connected components in the group
O(n). Find the number of connected components in the group of motions
of the pseudo-Euclidean plane of index 1. Prove that the group
SL(2, R)/Z2 is connected.

7.24. Let us realize the group U(n) and its Lie algebra u(n) as subman­
ifolds in the Euclidean space of all square complex matrices of order
n x n and consider the natural embedding of unitary and skewhermitian
matrices in this space.

(a) Prove that U(n) C s2n
2

- I, where the sphere s2n
2

- 1 is standardly
embedded in R2n2 = Cn2 and has radius ..[ii.

(b) Prove that the Riemannian metric induced on the group SU(n),
which is considered as a submanifold of s2n

2
- I, coincides with the Car­

tan-Killing metric invariant on the group SU(n).
(c) Find the intersection U(n) n u(n) by considering these sets as

submanifolds in the space C n2
•

Solve similar problems for the groups O(n) and Sp(n).
7.25. Find the factor group ®/®o, where ® is the group of motions

of the Lobachevski plane (under the standard metric), ®o the connected
component of the unit element. Indicate all conformal transformations
of the standard metric.

7.26. Find all discrete subgroups of the group ® of affine transforma­
tions of the straight line R I.

7.27. Describe all discrete normal subgroups of the following compact
Lie groups: O(n), SO(n), SU(n), U(n), Sp(n).

7.28. Find all symmetry groups of all regular polygons. Find all
symmetry groups (groups of motions) of all regular convex polyhedra in
R3

• Indicate the non-commutative groups among them.
7.29. Prove that left-invariant vector fields on a Lie group G are in

one-to-one correspondence with the vectors of the tangent space Te(G)
to the group G at the unit element.

7.30. Prove that the Poisson bracket of two left-invariant vector fields
is also a left-invariant vector field, i.e., the commutator operation trans­
forms the space Te(G) into a Lie algebra.

7.31. Let ~ be a left-invariant vector field, and 'PIa one-parameter trans­
formation group associated with it. Prove that 'PI is a right translation
for any t, i.e., 'P1(g) = ghl> tl E G.

Let G be a Lie group, and x', ... , x" a local coordinate system in
a neighbourhood of the unit element (we will assume its coordinates to
be zeroes). Then the operation of multiplication induces the vector-valued
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dy (0).
dt

functionq = q(x,y) = xyx-ly-l,x = (x', ... ,x"),y = o-'. ... ,yn).
If the function q = qix, y) is expanded into Taylor's series, then it will
assume the following form:

i ~ i . k iq = ~Cjkx'Y + f2,
j,k

where f~ is an infinitesimal of the third order with respect to the coor­
dinates J!, /

The bilinear expression

r = ~c).khk rr = [t 11))
j,k

determines a certain operation (called the Poisson bracket of the vectors
~ and 11) over the tangent vectors in the unit element of the group G.
Thus, the tangent space Te(G) has been transformed into an algebra called
the Lie algebra of the Lie group G. Usually, it is denoted by the small
letter g.

7.32. Show that the following properties are fulfilled in a Lie algebra:
(a) [~, 111 = - [11. ~I;

(b) [[~, 1)], ~] + [(1), a, ~] + nr, n. 1)] = O.
7.33. Verify that an operation in a Lie algebra g is transformed into

the Poisson bracket of vector fields if a vector ~ is associated with a
(right-) left-invariant vector field.

7.34. Let x(t). y(t) be two curves passing through the unit element of
the group G,

dx
~ = - (0), 11

dt

Show that

7.35. Let -y(t) be a one-parameter subgroup of a Lie group. Assume
that 'Y intersects itself. Show that there exists a number L > 0 such that
'Y(t + L) = 'Y(t) for all t E R.

7.36. Let G be a compact, connected Lie group. Show that each point
x E G belongs to a certain one-parameter subgroup.

7.37. Let G be a compact group acting smoothly on a manifold M.
Show that there is a Riemannian metric on M such that G is the isometry
group.

7.38. Show that a commutative, connected Lie group is locally isomor­
phic to a finite-dimensional vector space.
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7.39. Show that a compact, commutative, connected Lie group is
isomorphic to the torus.

7.40. Show that a commutative, connected Lie group is isomorphic to
the product of the torus and a vector space.

7.41. Let a Lie group G be a subgroup of the matrix group GL(n,
C) C Cn2 = End(n, C). Show that the commutator operation in the Lie
algebra g of the group G, which is understood to be a subspace of End(n,
C), coincides with the usual commutator of matrices, i.e., [~,

1J] = ~1J - -rR, ~, 1J E g.
7.42. Describe the Lie algebras of the following matrix Lie groups:

SL(n, C), SL(n, R), U(n), O(n), Oin, m), Sp(n).

7.43. Prove that the operator Y: x -+ [j, Xl is determined by a skew­
symmetric matrix. Find the relation between the coefficients of this mat­
rix and the coordinates of the vector j.

7.44. Let Y, Z be two matrices of vector multiplication operators by
two vectors y, z. Prove that the matrix of the vector multiplication operat­
or by [y, z] equals [Y, Z] = YZ - ZY.

7.45. Prove that a finite group cannot operate effectively on R",

8
Vector Fields

8.1. Prove the equivalence of the three definitions of a tangent vector
to a manifold at a point P:

(a) tensor of rank (I, 0);
(b) differentiation operator of smooth functions at the point P;
(c) a class of osculating curves at the point P.
8.2. Find the derived function f at a point P in the direction of the

vector ~:

(a) f = ..JXZ +--y2 + Z2; P = (I, I, I), ~ = (2, I, 0);

(b)f= ry + xz2
- 2; P = (1,1, -1), ~ = (I, -2,4);

(c) f = xe' + ye' - Z2; P = (3, 0, 2), ~ = (1, I, 1);

x y
(d) f = - - -; P = (I, 1), ~ = (4, 5).

y x

8.3. Find the derivative of the function f = In(r + y2) at the point
P = (I, 2) along the curve y2 = 4x.

8.4. Find the derivative of the function f = tan - 1(y/x) at the point
P = (2, - 2) along the curve r + y2 - 4x = O.
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8.5. Find the derivative of the function/at the point P along the curve
'Y:

(a) / = x? + y2, P = (1, 2), 'Y : x? + y2 = 5;

x? 2
(b) / = 2xy +y2, P = (...{2, 1), 'Y : - + L = I·

4 2 '

(c) / = x? - y2, P = (5, 4), 'Y : x? - y2 = 9;
(d)/ = In(xy + yz + xz), P = (0, 1, I), 'Y : x = cost, Y = sinz, Z = 1;
(e) / = x? + y2 + Z2, P = (0, R, 1I'a/2), 'Y : x = Rcost, Y = Rsint,

Z = at.
x? y2 Z2

8.6. Find the derivative of the function / = -2 + -2 + ~ at an
a b L

arbitrary point P = (x, y, z) in the direction of the radius vector of this
point.

8.7. Find the derivative of the function / = 1/r, r = -.jx? + y2 + Z2

in the direction of its gradient.
8.8. Find the derivative of the function / = YZ~ in the direction of

its gradient.
8.9. Find the derivative of the function / = /(x, y, z) in the direction

of the gradient of the fqnctlon.
8.10. Let v be a vector differential operator in R3 whose components

are as follows: V = (!-,!-,~). Show that
ax ay az

(a) gradF = VF;

(b) divX = (V, X);
(c) rotX = [V X Xl.

8.11. Prove the formula

div(uX) = u div X + (X, gradu),

where X is a vector field, and u a function in R3
•

8.12. Prove the formula

rot(uX) = u rot X - [X, gradu).

8.13. Calculate divX[X x Xl.
8.14. Prove that the vector x = u grad v is orthogonal to rot X.
8.15. Show that

(a) div (rot X) = 0;
(b) rot rot X grad divX - ax,

5--2018
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0;

0;

X
- IXl 3'

8.16. Let X = (x, y, z), Show that

(a) div X = 3;

(b) rot X = 0;

(c) div C~3)

(d) rot (X
3

)

I~

I
(e) grad :­

[XI
Find a function <p such that X = grade.

8.17. Let v(x, y, z) be the field of velocities of a solid rotating about
some axis. Show that

(a) div(v) = 0;

(b) rot(v) = 2w,

where w is an angular velocity vector.
8.18. Let X = (x, y, z), and Y a constant vector field. Show that

rot[Y x Xl = 2Y.
8.19. Show that rot gradF = O.
8.20. Prove the formula

li(FG) = FliG + GtiF + 2(gradF, gradG).

8.21. Solve the equation rotX = Y if

(a) Y = (I, I, I);
(b) Y = (2y, 2z, 0);

(c) Y = (0, 0, f! - e");

(d) Y = (6y 2 , 6z, 6x);

(e) Y = (3y 2 , -3~, -(l + 2x»;

(f) Y = (0, 2cosxz, 0);

(g) Y = (-y/(~ + y2), x/(~ + y2), 0);

(h) Y = (yf!2, 2yz, - (2xyzeX2 + Z2».

8.22. Prove that to each smooth vector field on a manifold, there corre­
sponds a one-parameter group of diffeomorphisms 'Pt whose trajectories
are tangent to the given vector field.
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8.23. Show that the Poisson bracket of vector fields (as differentiation
operators) is a vector field.

8.24. Let CPt be a one-parameter group of diffeomorphisms associated
with a vector field ~. Show that

d
[71, ~I == dt (cp;t(rj) - 71)·

8.25. Let ~, 71 be two vector fields, and f, g two smooth functions.
Prove the formula

[f~, grjl == jg[~, 71] + g rj(f) ~ - jHg) 71·

8.26. Let ~, 71 be two vector fields, and cPt, 'if;t the one-parameter
transformation groups associated with them. Snow that if [~, 71] == 0, then
the transformations CPt and 'if;t commute.

8.27. Let V be a linear finite-dimensional space of vector fields which
is closed under the Poisson bracket operation, i.e., [~, 71] E V when
~, 71 E V. Show that V is a Lie algebra.

8.28. (See the previous problem.) Show that the Lie group G corre­
sponding to the algebra V acts on a manifold, each field ~ E V specifying
a one-dimensional subgroup of the group G whose orbits under this
action are tangent to the vector field ~.

8.29. Let P, Q be two arbitrary points of the disk D; eRn. Find a
diffeomorphism cP on R" such that cp(P) == Q, cp(x) == x, when x E D«.

8.30. Let ~ be a vector field on a manifold X; P E X. Show that if
~Ip ~ 0, then there exists a local coordinate system (.0, ... , x") in a
neighbourhood of the point P such that ~ == ii/axl

•

8.31. Construct three linearly independent smooth vector fields at each
point of the standard sphere 8 3

• Find the explicit forms of the integral
curves on these fields.

8.32. Construct the integral curves of the following vector fields on
the plane:

a a
(a) ~ x- + Ya/ax

(b) t a a
==y- X-'

ax ay'

a a
(c) t == x- - y ay;ax

a a
(d) t (x + y)- + Y ay;ax
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a a
(e) ~ (x - y) - + x-'

ax ay'

(0 ~ = xl ~ + y2~.
ax ay

8.33. Prove that the singular points (zeroes) of the vector fields
gradRe(f(z», grad 1m fez) coincide with the zeroes of the derivative R(z).

8.34. Find the integral curves of a flow VI (x) orthogonal to a flow V2(X),
where V2(X) = gradf(x), x E R2

, f(x) is the magnitude of the angle AxB
(A, B being certain two points of the plane R 2 and x a variable point).

8.35. Specify the quality characteristics for the integral curve
distribution of the flows VI = grad Re(f(z», V2 = grad Im(f(z» of the
complex-analytic functions fez) listed below. Find the singular points of
the flows VI, V2. Investigate the stability of the singular points. Specify
the quality characteristics of the behaviour of the trajectories of the flows
VI, V2 on the sphere S2 (extended plane R2 : S2 = R2 U 00). Specify the
resolution process of the singularity z = 0 of these vector fields for a
small perturbation of the original function fez) leading to a function g(z)
with all the singular points of the flows VI, V2 non-degenerate:

(a) fez) == zn (where n is an integer);

(b) fez) = z + liz (Zhukovski function);

(c) fez) = z + l/z2b (where b is an integer);

(d) fez) = z + 1/(z - 2);

(e) fez) = z4(2(z - 5)2 + 12z6
) (investigate in a neighbourhood of

the point z = 0);

(0 fez) == Z3(Z - l)loo(z - 2)900;

(g) fez) = 2z - Inz;
(h) fez) = 1 + Z4(Z4 - 4)44 (Z44 - 44)444 (investigate in a neigh­

bourhood of the point z = 0);

1
(i) fez) = - In[(z - 2i)/(z - 4)]3;

100

(j) fez) = l/(Z2 + 2z - 1);

2
(k) fez) = - + 211nz2

;

z

(I) fez) = ZS + 21nz;

(m) fez) = 2In(z - 1)2 - 4/3 In(z + 10i)3;

68



(n) !(z)

(0) !(z)

l/z3 - l/(z - i)3;

(2 + 5i/2)ln[(4z - 2)/(64z + i)];

(p) !(z) = (l _ il2)4ln (18Z - i) i
lOz + 1

8.36. Prove that the irrotational flow v = (P, Q), where P, Q are the
components of the flow on the plane R2(x, Y), is potential and
v = grad!(x, y) for a certain smooth function j" What can be said about
the potential of!, given additionally that the flow is incompressible, i.e.,
div(v) = O?

8.37. Let a vector field ~ satisfy the condition div(~) = O. Show that
the displacement operator along the integral curves is unitary.

8.38. Find all homotopy classes of the vector fields on the torus r-.
8.39. Prove that if a vector field X on the two-dimensional torus is

homotopic to d'Ph then it possesses a periodic trajectory.
8.40. Find the greatest number of linearly independent tangent vector

fields on a smooth closed surface M 2
•

8.41. Prove that the indices of two vector fields on an arbitrary two­
dimensional and closed surface are equal. Does the statement hold for
a manifold of any dimension?

8.42. Let m, n be the rotation numbers of the vector field on the torus
r', A = (m, n). Prove that this field has A periodic solutions (closed
trajectories).

8.43. (The Poincare-Bendixson theorem.) Prove that if an arbitrary
integral curve of some vector field on the plane is compact and contains
no singular points, then it is periodic.

8.44. Prove that if P on the plane is a limit point for some trajectory
of a vector field, then the trajectory passing through P is limiting for
the original trajectory.

8.45. Prove that the set of vector fields possessing only isolated singu­
larities is connected.

8.46. Prove that the sum of the indices at singularities of a vector field
on a compact and closed manifold is unaltered in smooth deformations.

8.47. Prove that the set of all integral curves of the vector field v(x)
= (x', -xO, x3, -r), where x = (xO, x', x", x3) E 83 : (Ixl = I) C R4 ,

is homeomorphic to the sphere 82
• Find the relation to the Hopf map

83 ~ 82 • How is this vector field related to quaternions?
8.48. Let v(x) be a smooth vector field on the plane R2

, L a smooth
self-intersecting contour on the plane R2

, j L the index of the contour L
in the vector field v(x), J the number of points where the field v and
contour L touch internally, and E the number of points touching
externally.
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Prove that if the number of all points of contact of the field with the
1

contour is finite, then h. ~ -(2 + J - E). Prove that the index of any
2

isolated singular point of a smooth irrotational vector field v(x)
= gradf(x) is always not greater than unity (note that this singular point
may, certainly, be degenerate).

8.49. How many solutions can the equation sinz = z have over the
field of complex numbers?

850 P a a . a a a . a Sh h f .. . ut - = - - /-; -:-: = - + 1-. ow t at a unction
az ax ay az ax ay

f is holomorphic if and only if ~k (j) == 0 for all k.
az

8.51. Show that a vector field ~ is holomorphic if and only if it has the

form ~ = ~ oj .!..." where a' are holomorphic functions, with respect to
az'

a local coordinate system (Zl, ...• z").

9
Tensor Analysis

9.1. Determine the type of the following tensors:

af
(a) Tj-.;

ax'

a2f
(b) Ti, = -.-. at those points where the gradient of the function f

ax'ax!
vanishes;

(c) r; i.e., the components of the matrix of a linear operator on a
vector space;

(d) Tij; i.e., the components of the matrix of a bilinear form on a vector
space.

9.2. Let

oj = [0,
I,

when i:;t. j

when i = j

Show that {oj I yields a tensor of type (I, I).
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9.3. Let (~ij l be a tensor of type (2, 0). Show that the numbers TJij

satisfying the condition ~ijTJjk == o~ yield a tensor of type (0, 2).

9.4. Show that if f: v,:' -+ V:.' is a linear mapping of tensor spaces,
then the mapping components yield a tensor of type (m, n).

9.5. Determine the dimension of the tensor space v,:'.
9.6. Show that any tensor of type (2, 0) can be decomposed uniquely

into the sum of a symmetric and a skewsymmetric addend.

9.7. Determine the dimension of the space Ak of skew-symmetric
tensors.

9.8. Determine the dimension of the space Sk of symmetric tensors.
9.9. Prove the formula

Ak(V. <±> V2) == <±> A",(Vd Q9 AI3(V2).
",+I3=R

9.10. Calculate the components of the fundamental tensor of the plane
with respect to a system of polar coordinates.

9.11. Calculate the components of the fundamental tensor of R3
:

(a) with respect to a system of cylindrical coordinates;
(b) with respect to a system of spherical coordinates.
9.12. Calculate the components of the fundamental tensor of the sphere

S2:
(a) with respect to a system of spherical coordinates;
(b) with respect to Cartesian coordinates on the stereographic

projection.
9.13. Assuming that the gradient of a function f is the composite of

two operations, viz., that of partial differentiation and that of raising
the indices, write the gradient of the function with respect to:

(a) a system of polar coordinates;
(b) a system of cylindrical coordinates;
(c) a system of spherical coordinates.
9.14. Find the gradient of the function f == In'\/'.r + y2 + Z2.

9.15. Derive the following formulae for the functions f and g with
respect to an arbitrary system of coordinates:

(a) grad(V) == Agradf; A == const;
(b) grad (f :I:; g) == gradf ± gradg;

(c) grad(fg) == fgradg + g gradf;

g gradf - f gradg
(d) grad(f/g) 2' g ;&. 0;

g

df
(e) grad(f(g» - gradg.

dg

71



9.16. Letf = f(u, v), where u, v are two functions. Show that gradf =
of of

= - grad(u) - - grad(v).
ou ov

9.17. Write the formula for the derivative of a function f with respect
to an arbitrary system of coordinates:

(a) in the direction of its gradient;
(b) in the direction of the gradient of the function.

9.18. Derive a formula enabling us to determine the greatest change
of a function f at a given point with respect to an arbitrary system of
coordinates.

9.19. Write a solid medium deformation tensor

with respect to an arbitrary system of coordinates using the fundamental
tensor. Write out separately similar formulae for the terms which are
linear respective to u',

9.20. Prove that the Christoffel symbols of two connections differ by
addends which are the components of a tensor.

9.21. Show that the covariant derivative along a curve depends on the
value of the Christoffel symbols of this curve.

9.22. Show that if two submanifolds osculate to some curve /" then
the parallel displacement operation does not depend on the choice of a
submanifold.

9.23. Show that the parallel displacement operation can be obtained
on a submanifold by passage to the limit of the composite of a parallel
displacement in the ambient manifold and the orthogonal projection onto
the tangent space to the submanifold.

9.24. Calculate the angle through which the tangent vector to a right
circular cone turns after parallel displacement along a closed curve.
Establish the dependence on the kind of the curve.

9.25. Calculate the angle through which the tangent vector of a sphere
turns after parallel displacement along a curve /' if:

(a) 'I is a parallel;
(b) 'I is made up of two meridians and a part of the equator which

is included in between them;
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(c) 'Y is made up of two meridians and a part of the parallel which
is included in between them.

9.26. Establish a dependence between the angle of rotation of the
tangent vector to a sphere after parallel displacement along a closed curve
'Y and the area of the region bounded by the curve 'Y.

9.27. Generalize Problem 9.26 to the case of a surface with constant
Gaussian curvature.

9.28. Prove that if the curvature tensor of a Riemannian manifold is
identically equal to zero, then the operation of parallel displacement
along a curve 'Y does not depend on a homotopy of the path 'Y.

9.29. Calculate the scalar curvature of the following Riemannian
manifolds:

(a) S2;
(b) the torus T2 embedded in R3

;

(c) the Lobachevski plane;
(d) the right circular cone;
(e) the cylinder;
(f) the group SO(n) with a bi-invariant metric.

9.30. Show that any two sufficiently near points on any compact,
Riemannian manifold can be joined by a geodesic line, the geodesic of
the least length being unique.

9.31. Describe the geodesics in the following Riemannian manifolds:

(a) R2
;

(b) the torus T2 under the flat metric;
(c) S2;
(d) the Lobachevski plane.

7
9.32. Let 2:;k = {ZT + d + d + z~ + Z~k - I 0 I n

n ["tl iz,,12= 1J be the Brieskorn spheres (k = I, ... , 28). Prove

that the Riemannian metric induced on these spheres (in embedding

2:;: ..... SY C C5 = RIO) is not a metric with positive curvature.

9.33. Prove that there always exist a pair of conjugate points on a com­
pact, I-connected manifold M", What happens if M" is not I-connected?
Is there a conjugate point on every geodesic 'Y(t) (the geodesics emanating
from one point)?

9.34. The following kinds of manifolds of strictly positive curvature
are known, being the classical symmetric spaces of rank I, viz., S", Rl?",
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cpn, Qpn, K 16
• Calculate the curvature (find the limits within which the

curvature varies) of R(a) on Cl?", Ql?", K 16
•

9.35. Let OJ be a Lie group, and (,)g a bi-invariant metric on OJ, where
g E OJ is the variable point on OJ.

Recall that a metric is said to be bi-invariant if it is preserved under
left and right translations, viz.,

Prove that it follows from the bi-invariance of the metric <,)g on OJ
that the form (,). is invariant under all transformations of the form
Adg : X -> gXg- 1•

9.36. Give examples of matrix Lie algebras G such that the quadratic
form (XY). = Tr(XyT) is non-singular, where X, Y E G, the bar denotes
complex conjugacy, and Tr transposing.

9.37. Let (,)g be a bi-invariant Riemannian metric on a Lie group OJ.
Let V be a symmetric Riemannian connection on OJ, compatible with
the metric (, )g. Prove that the geodesics of the connection V are the
following trajectories only: one-parameter subgroups of the group OJ and
their translations (left and right).

9.38. Let X be a left-invariant vector field on a group OJ. Prove that
the integral curves I'(t) of this field are left translations of a one-parame­
ter (i,e., one-dimensional) subgroup which passes through the unit element
of the group in the direction of the vector X(e), where X(e) is the value
of the field X at a point e E OJ.

9.39. Let X, Y be two invariant vector fields on a group OJ, and V
a symmetric connection compatible with a bi-invariant Riemannian
metric on OJ. Prove that Vx(Y) = 1/2 [A:"; YJ, where [X, YJ = XY - YX
(the Lie group being a matrix).

9.40. Let (,) be a bi-invariant metric on the Lie algebra G of a group
OJ, and [A:"; YJ = XY - YX the commutator in G. Prove that ([X, YJ,
Z) = (X, [Y, Z]).

Note. The operation X --> [X, YJ is sometimes denoted as
adv : X -> [A:"; YJ; then the required relation is written as

(adyX, Z) = - (X, adyZ).

9.41. Let OJ be a compact Lie group with a bi-invariant metric, and
X, Y, Z left-invariant vector fields on OJ. Prove that R(X, Y)Z = 1/4 [[A:";
Y], Z].
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9.42. Let ~ be a compact Lie group with the bi-invariant metric
(,), and X; y, Z, W left-invariant vector fields on ~.

Prove that

(R(X, Y)Z, W) = 1/4 ([X; YJ, [Z, Wl).

Let ~ be a compact Lie group, and X; Y two orthogonal unit vectors
(bi-invariant metric (,) is given on ~). We call the number u(X;
Y) = (R(X; Y)X;' Y) the sectional curvature determined by the
vectors X; Y.

Prove that u(X, Y) ~ 0 and u(X; Y) = 0 if and only if [X, YJ = O.
Hint: u(X, Y) = 1/4 ([X; Y], [X, YJ) = 1/4 II [X; YJ 11 2 ~ O.

10
Differential Forms, Integral Formulae,

De Rham Cohomology

10.1. Prove that if vectors VI, ••• , Vp E V are linearly dependent, then
T(Vl, ... , vp ) = 0 for any form T E AP(V*).

10.2. Prove that if forms 'PI, ... , 'Pp E V* are linearly dependent, then
'PI /\ ... /\'Pp = O.

10.3. Let 'PI, ••• , 'Pn E V*, and VI, ••• , Vn E V. Prove that

10.4. Prove that the element of volume equals .Jdet(g;j)dx l
/\ •• • r.dx",

where gij is the Riemannian metric with respect to the coordinates
(x', ... , x"),

10.5. Show that the exterior differentiation operation of a differential
form can be represented as the composite of the gradient covariant
component operation and that of alteration for an arbitrary symmetric
connection on a manifold.

10.6. Calculate the exterior differential of the following differential
forms:

(a) z2dx /\ dy + (Z2 + 2y)dx /\ dz;

(b) l3xdx + y2dy + xyzdz;



(c) (x + 2y 3)(dz /\ dx + 1/2 dyr.dxi;

(d) (xdx + ydy)/(x2 + y2);

(e) (Ydx - xdy)/(x2 + y2);

(0 j(x2 + y2)(xdx + ydy);

(g) jdg if, g being two smooth functions);
(h) j(g(x!, ... , x"»dg(x!, ... , xn ) .

10.7. Prove the validity of the formula

2(dw)(X, Y) = X(w(Y) - Y(w(X) - w([X, Y),

where W is a differential form of degree 1 and X, Y two vector fields.
10.8. Generalize the formula in 10.7 to the case of differential forms

of an arbitrary degree.
Given a scalar product on the vector space R", there are two isomorphic

operations. One of them associates each vector X with a linear form
W == V(X) such that (X, Y) = V(X)( Y). The other associates each
multilinear skewsymmetric form w of degree p with a form * (w) of
degree n - p as follows; let WI, ... , wn be the orthonormal basis
consisting of linear forms, and W = f, Wi! /\ ••. /\Wip' Then
* (w) = (- l)"jWjl/\ ... /\ Wjn _ p' where 0 is parity of the permutation
(iJ ... ipj l ... jn - pl.

10.9. Show that the following formulae hold for the space R3
;

(a) gradF = v- l(dE);

(b) divX = *d* V-1(X);

(c) rotX = - V* dt/" 1(X).

10.10. Show that Green's, Stokes' and Ostrogradsky's formulae are spe­
cial cases of general Stokes' theorem for differential forms.

10.11. Derive the formula of integration with respect to the volume
V bounded by a closed surface E:

LA:, al/l
(grade, gradl/l»dv = J j'P a;; do;

J::

where alan denotes the derivative in the direction of the normal to the
surface E.
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10.12. Calculate the surface integral tA,l" iN do with respect to a
.' 'j an

closed surface E:

(a) for I" == Z2, '" == x 2 + y2 - Z2 if E bounds the region x2 + y2 +
+ Z2 0:;; 1 and y ~ 0;

(b) for op == 2~, 1/; == x2 + Z2 if E bounds the region ~ + y2 0:;; 1
and 0 0:;; Z 0:;; 1;

(c) for op == 1/; == (x + Y + z)/V3 if r; is the sphere x2 + y2 + Z2 == r 2
;

(d) for op == 1, 1/; == eXsiny + esinx + z if E is the tri-axial ellipsoid

x2 y2 Z2
-+-+-==1.

0
2 b2 c2

10.13. Find the gradients of the functions with respect to cylindrical
coordinates:

(a) u ,/ + 2ecosop - eZsinop;

(b) u == eeos'l' + zsin2
'1' - e",

10.14. find the gradients of the functions with respect to spherical
coordinates:

(a) u r 2eosO;

(b) u 3r zsinO + ercos'I' - r;

(c) u eosO/r2
•

10.15. Find divX with respect to cylindrical coordinates:

(a) X == (e, zsine, e'l'cosz);

(b) X == ('I'tan-le, 2, _Z2eZ).

10.16. Find the divergence of the vector field X == (r 2
, - 2cos2

'1',

'I'/(r2 + 1» with respect to spherical coordinates.
10.17. Find the rotors of the vector fields with respect to spherical

coordinates:

(a) X == (2r + aCOS'l', - asinO, rcosO), a == canst;
(b) X == (r2

, 2cosO, -'1').

10.18. Verify that the following vector fields are potential with respect
to spherical coordinates (r, 0, '1'):

(a) X == (2cosO/r3
, sinO/r3

, 0);
(b) X == (f(r), 0, 0).
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10.19. Find the potentials on the following vector fields with respect
to cylindrical coordinates (g, l(J, z):

(a) X = (I, lIg, 1);

(b) X = (g, l(JIg, z);

(c) X = (l(JZ, z, gl(J);

(d) X = (- eesinl(J, eecosl(J1e, 2z);

(e) X = (ecosz, cosz, - gl(Jsinz).

10.20. Find the potentials on the following vector fields with respect
to spherical coordinates:

(a) X = (0, I, 0);

(b) X = (2r, lIrsinO, lIr);

(c) X = (<p2/2 , l(J/sinO, O/r);

(d) X = (cosesins, cosecose, - sine);

(e) X = (ersinO, e'cose/r; 2l(J/(l + l(J2)rsinO).

10.21. Calculate the circulation of the vector field X = (r, 0,
(R + r)sinO) with respect to spherical coordinates along the circum­
ference Ir = R, 0 = 11"/2).

10.22. Calculate the line integral along the line L of the vector field
X, both given with respect to cylindrical coordinates:

0,a, <p(a) X = (z, gl(J, COSl(J), L is the line-segment I g

o c e c u.
(b) X = (g, 2el(J, z), L is the semi-circumference I g = I, Z = 0,

o ~ l(J ~ 11");

(c) X = (eeCOSl(J, gsinl(J, e), L is the helix I g = R, Z = <p,

o ~ l(J ~ 211");

(d) X = (z, gz, g), L is the circumference I g = I, Z = 0);

(e) X = (gsinl(J, - g2z, (2), L is the circumference I g = R, Z = R);

(f) X = (ZCOSl(J, g, <p
2

) , L is I g = sine, Z = I).

10.23. Calculate the line integral of the vector field X along the line
L given in spherical coordinates:

(a) X = (e'cosO, 20cos<p, l(J), L = Ir = I, <p ~ 0, 0 ~ l(J ~ 11");

(b) X = (4r3tanl(J/2, 0l(J, COS2l(J), L = I l(J = 11"/2, 0 = 11"/4,

O~r~I);
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(c) X = (sin20, sins, rcpO), L = I cp = 7r12, r = lIsinO,

7r/4 ~ 0 ~ 7r12!;

(d) X = (rO, 0, rsinO), L = Ir = 1, 0 = 7r/4};

(e) X = (rsinO, OeB, 0), L = Ir = sin~, 0 = 7r12, 0 ~ cp ~ 7r);

(f) X = (0, 0, rcpO), L is the contour bounding the half-disk I r ~ R,

cp = 7r/4}.

10.24. Find the flow of the vector field X on the surface S given in
cylindrical coordinates:

(a) X = (e, - cose, z), S bounds the region I e ~ 2, 0 ~ z ~ 2};

(b) X = (e, ecp, - 2z), S bounds the region (e ~ I, 0 ~ cp ~ 7r12,

-l~z~l).

10.25. Find the flow of the vector field X on the surface S given in
spherical coordinates:

(a) X = (ilr2
, 0, 0), S encloses the origin;

(b) X = (r, rsinO, - 3rcpsinO), S bounds the region I r ~ R, 0 ~ 7r12} ;

(c) X = (r 2
, 0, R2coscp), S = Ir = R};

(d) X = (I; 0, 0), S bounds the region Ir ~ R, 0 ~ 7r12};

(e) X = (r2
, 0, R2rsinOcoscp), S bounds the region Ir ~ R,

o ~ cp ~ 7r12, 0 ~ 7r12).

10.26. Let!, : X x [0, IJ ---> Ybe a smooth mapping, and wa differen­
tial form on Y, dw = o. Prove that R(w) - !l"(w) = dO for a
convenient form 0 on X.

10.27. Prove that if a manifold X is contractible, then, for any form
w(dw = 0), the equation dO = w is solvable.

10.28. Let F be a vector field in a three-dimensional region W with
a smooth boundary aW, and n a vector normal to aw.

Prove that

f(dwF)dxdydz
W

f (nF)dA,
oW

where dA is the element of area on aW.
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10.29. (See the previous problem). Prove that

~(rotF, n)dA
s

I (fsdx, + /2dX 2 + /JdxJ),
as

where S is a smooth surface with a smooth boundary as.
10.30. Calculate the de Rharn cohomology groups of the following

manifolds: (a)S\ (b)S2, (C)RP2, (d)T2, (e)?", (I) the plane with exclusion
of a finite number of points,

10.31. Describe the differentials of left-invariant forms on a Lie group
in terms of the commutator in the Lie algebra.

10.32. Prove that the bi-invariant forms are closed on a compact Lie
group.

Prove that bi-invariant forms are not homologous to zero on a compact
Lie group.

10.33. Prove that there is a bi-invariant metric on a compact Lie group.
10.34. Show that the de Rham cohomology on a compact Lie group

is isomorphic to the space of bi-invariant forms.

10.35. Prove that each differential form on a complex manifold with
respect to complex coordinates z", .. , z"; Zk = xk + tv" is as follows:

where dz« = dzi, 1\ .•• 1\ dzi, dzi

10.36. Let X be a complex-analytic manifold of dimension n, and w
a holomorphic form of degree n. Show that the integral of the form w
along the boundary of an (n + I)-dimensional real submanifold in X
equals zero.

10.37. Derive the Cauchy theorem ~f(Z)dZ = 0 from Stokes' formula

'Y

for a holomorphic function in a region bounded by a curve 'Y.
10.38. Derive the Cauchy residue theorem from Stokes' formula.

10.39. Let f: M -+ N be a smooth mapping of orientable, closed, and
compact manifolds of dimension n, and wan n-dimensional differential
form on the manifold N.

Prove that J f*(w) = degf J w.
M N

10.40. Let p and q be two arbitrary polynomials in variables (z ', ... ,
z"), and a, k real numbers. Let there exist a differential form w such that
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dp A w == pdz, dw == adz, dq A W == kdz: Prove that d(p - k - Q q w) == 0
(where dz == dz ' A ..• A dz").

10.41. Let G == s', q> a curvature form, and w a connection form.
Prove that

(a) dq> == f*(w), dw == 0;

(b) ~w are integers for any closed cycle 'Y.

"
10.42. Prove that if ~ ware integers for any closed cycle, then there exists

't
a connection such that w is its curvature form.

10.43. Construct a connection in the fibration G -> GIH (where G is
a Lie group and H its subgroup) so that the form is invariant with respect
to all the motions.

10.44. Let M Z be a smooth, closed and compact manifold, gij the
components of its fundamental tensor, and K(x) the Gaussian curvature.
Let •

l(g; M 2
) == i

z
K(x)da(g).

M

Given that o(g)/(g, M Z
) == 0, derive the classical Gauss-Bonnet formula

~ rK(x)da(g) == ~ rK(x)da == x(Mz).
27r Jz 27r Jz

M M

10.45. Prove that one-dimensional de Rham cohomology groups are
isomorphic to the group Hom(JrlCn, R\

10.46. Let a smooth triangulation of a manifold M be given. Prove
that the Simplicial cohomology groups with real coefficients are isomor­
phic to the de Rham cohomology groups.

11
General Topology

11.1. Prove that any finite CW-complex can be embedded in a finite­
dimensional Euclidean space RN (of sufficiently large dimension).

11.2. If a compact. smooth and closed manifold is taken as a CW-com-
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plex, then the result formulated in the previous problem can be made
more precise, viz"

(a) prove that Mil can be embedded in the Euclidean space R211k
, where

k is the number of open balls D" forming a covering of Mil;
(b) prove that Mil can be embedded in the Euclidean space R"k, where

the number k has been defined in item (a).

] 1.3. Prove that any compact, smooth and closed manifold Mil

(a) can be embedded in the Euclidean space R 2 11 + J;
(b) can be immersed into the Euclidean space R 211

•

] ].4. Construct the immersion of the projective plane Rp2 into the
Euclidean space R J

•

]].5. Describe the set of nodes of the immersion of Rpz into R J

constructed in Problem 11.4. Indicate the multiplicities of the nodes, i.e.,
how many sheets of the surface intersect at each node of the surface.

] 1.6. Consider the immersion of Rp2 into R 3 described in Problem
11.4. Denote the image of Rp2 in R J by i(Rp2). Consider a line-segment
of length 2€ orthogonal to i(Rp2) with the centre at each point x E i(Rp2)
which is not a node of the surface, where € is sufficiently small. Since
i is a smooth mapping, the pencil of orthogonal line-segments obtained
can be additionally defined at each node. In doing so, we shall obtain
as many line-segments at each node as the multiplicity of the node is.
Consider in R J the set consisting of the ends of all the orthogonal line­
segments. Prove that it is the image of a two-dimensional sphere under
a certain smooth immersion into R J

•

] 1.7. Construct an example of a topological space not satisfying the
first countability axiom (resp. the second countability axiom).

11.8. Given two continuous functions j'(x), g(x) on the two-dimensional
sphere S2 such that !(x) = - !(rx), g(x) = - g(rx), where r is the
reflection through the centre of the sphere. Prove that these functions
have a common zero.

] 1.9. Construct an example of a topological space X such that a certain
of its subsets Y C X (indicate Y) is closed and bounded, but not
compact.

] I. ]0. Prove that a one-dimensional cellular complex is a space of type
K(7f, I), where 7f is a free group.

ll. ll. Prove that any finite simplicial complex is a subcornplex of a
simplex of sufficiently large dimension. In particular, it can be embedded
in the Euclidean space so that the embedding is linear on each simplex.

11.12. Prove that a contractible space is homotopy equivalent to a
point.

]1.13. Prove that a universal covering space of X is also a covering
space for any other covering space.
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11.14. Prove that any two spaces of type K (71", n) are weakly homotopy
equivalent.

11.15. Prove that

(a) S" II S* = sn+*;

(b) Sn/s* is homotopy equivalent to S" V S*+ 1, S" -, S* homotopy
equivalent to S" - *- 1 and S" _. k: diffeomorphic to S" - k '- 1 X R* + 1 if
Sk C S" is the standard embedding.

11.16. Prove that a function is continuous on a CW-complex if and
only if it is continuous on each finite subcomplex.

11.17. Let M = X x Y, where X, Yare two topological spaces. We
shall consider a set from M to be open if it is the product of open sets
from X and Y or the union of any number of such sets.

Prove that such a system satisfies all the axioms determining a topology
on the set M.

11.18. Prove that if a space X is both Hausdorff and locally compact,
while a space Y Hausdorff, then, for any space T, the spaces H(X x Y,
T) and H( Y, H(X, T) are homeomorphic, where H(X, Y) = yX

•

[lX f'b11.19. Prove that the standard fibre map EX -+ X (Serre I re map),
where X is a manifold, is a locally trivial fibre map.

11.20. Prove that there exists a homeomorphism of the Cantor
discontinuum onto itself commuting two given points.

11.21. Let a mapping f: E -+ F be a continuous mapping "onto", and
let E be compact. Prove that F is compact.

11.22. Prove that the n-dimensional sphere (n < 00) is compact. Is it
true for n = oo?

11.23. Let A, B be two connected spaces and A n B ;t'c 0. Prove that
A U B is connected.

11.24. Prove that if E, F are two connected spaces, then E x F is
connected.

11.25. Let f: E -+ F be a continuous mapping "onto", and E
connected. Prove that F is a connected space.

11.26. Prove that:

(a) the intervals 0 < x < 1, 0 ~ x ~ 1, 0 ~ x < 1 are connected;
(b) if A c R I is connected, then A is of the form a < x < b,

a ~ x ~ b, a < x ~ b, a ~ x < b, where a, b may assume the values
±oo.

11.27. Letf: E -+ F, E = A U B, A = A, B = B. Then fis continuous
if and only if Jl

A
and Jl

B
are continuous. If A ;t'c A; then, generally

speaking, this does not hold. Give an example.
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n + 1

11.28. Prove that J : E --+ F is continuous if and only ifJ- I (U) is open
for any open subset U C F.

11.29. Let J: X --+ Y. Prove that J is continuous if and only if the in­
verse image of every closed set is closed.

11.30. Prove that A U B = A U Band A (l B = A n B.

11.31. Let Int(A) == U IG C A: G is open}. Then p E Int(A) if and
only if there exists a neighbourhood U of the point p such that
U C Int(A), p E.If== n IF :J A : F is closed} if and only if we have
un :::r ~ 0 for any neighbourhood U ~ p.

11.32. Prove that the open disk (Ixl < 1) in Euclidean space is an open
set.

11.33. Let X be a locally path-connected metric space. Prove that if
X is connected, then X is path-connected.

11.34. Let X be a metric, compact and connected space. Can any two
of its points be connected with a continuous path?

11.35. Prove that the cube I" and sphere S" are connected.

11.36. Let G C [1 be an open set on a closed line-segment. Prove that
G is the union of disjoint open intervals.

11.37. Let X be a metric space. Prove that each of its one-point subsets
is closed.

11.38. Prove that if the product of two topological spaces is homeomor­
phic to the suspension of some topological space, then either both factors
or one of them is contractible to a point.

11.39. Let X be a compact space, Ya metric space, and J: X --+ Y a
continuous map. Prove that J is a uniformly continuous map.

11.4Q. Prove that if J: X --+ Y is a sequence of continuous mappings
and In uniformly converges to J(Y being a metric space), then J is
continuous.

11.41. Let X C Y, and Ya compact space. Prove that X is a compact
space if and only if X is a closed subspace.

11.42. Let A n B ;z! 0, and X = A U B. Prove that if A and Bare
connected spaces, then X is a connected space.

11.43. Prove that the cube r is a compact space.
11.44. Prove that the sphere SX> and ball D'" are homeomorphic to

cellular spaces.

11.45. Prove that the ellipsoid [ 2.: ~ =; 1] is homeomorphic

;= 1

to the sphere S".
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11.46. Prove that the ball [ L:: xI ::;; 1Jand the upper hemisphere

n + 1 ;= 1

[ L:: xf = 1, Xn + 1 ~ 0] are homeomorphic.

i~ 1

11.47. Prove that the cube t lXi/ ::;; 1, i == 1, 2, ... , n I and the ball
n

[ 2.: xf::;; 1] are homeomorphic. Prove that an open cube and an

;= 1

open ball are diffeomorphic.
11.48. Are the line-segment 0::;; x ::;; 1 and the letter T

homeomorphic?
11.49. Prove that the interval ( - 1, 1) is homeomorphic to the straight

line (- 00, 00). Prove that any two intervals are homeomorphic.

11.50. Are a ball and a sphere homeomorphic?
11.51. Prove that the Hamming metric on the n-dimensional cube

cannot be embedded in any R", i.e., there exists no embedding such that
the Hamming metric is induced by the standard Euclidean metric (the
cube being considered only as the set of its vertices, i.e., as a discrete
set, and then the distance e(a, b), where a and b are the vertices of the
cube, equals the number of different coordinates of these two vertices).

11.52. Let f: M 2 -+ S2 be a mapping of class C2 of a closed, smooth,
and compact manifold M 2 onto S2, f being open (i.e., the image of any
open set is open) and finitely multiple (i.e., the inverse image of each point
x E S2 is a finite number of points).

Prove that M 2 is diffeomorphic to the sphere S2. What can be said
about a similar mapping f : M" -+ S'"!

tt.53. Prove that a metric topological space satisfies Hausdorff separ­
ation axiom.

11.54. Is it true that the distance between two disjoint, closed sets on
the plane (straight line) is always greater than zero?

Recall that the distance between two subsets X and Y of a metric space
Z is the number e(X'; Y) == sup inf r(x, y) + sup inf r(x, y), where

XEX yEY YEY XEX

r(~ y) is the distance between two points x and y in the space Z. This
is not the only way of defining the distance between two subsets of a
metric space. Give other examples of the metric e(X'; Y).

tt.55. Prove that a set whose elements are closed subsets of a metric
space can itself be transformed into a metric space in a natural manner
by introducing a metric described, e.g., in Problem 11.32.
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11.56. Prove that any contracting mapping of a metric space is
continuous.

A mappingf: X -+ X of a metric space X into itself is said to be con­
tracting if there exists a real constant A < I such that e(f(x), f(y» ~

~ Ae(X, y) for any two points x, y E X.
11.57. Prove that any contracting mapping of a complete metric space

into itself always has a fixed point (which is unique).
11.58. Give an example showing that a condition for a metric space

to be complete (see Problem 11.57) cannot be discarded.
11.59. Show that a group of orthogonal matrices of order 3 x 3 is

a compact topological space.
11.60. Prove that the group of orthogonal transformations of the

n-dimensional Euclidean space is a compact topological space.
11.61. Prove that the group 80(3) considered as a topological space

(in embedding SO(3) in the linear space of all real matrices of order
3 x 3) is homeomorphic to RP3.

11.62. Prove that SO(n) is a connected topological space, and that O(n)
consists of two connected components. Prove that U(n) and SU(n) are
connected topological spaces.

11.63. Prove that the open disk J? + y2 < 1 and the plane R2(x, y)
are homeomorphic. Prove that the open square t ixl < I, )'1 < I) and
plane R2(x, y) are homeomorphic. Prove that the interval 0 < x < 1
and the open square {Ixi < I, lY! < II are not homeomorphic.

11.64. Prove that the group of unitary matrices U(n) considered as a
topological space is homeomorphic to the direct product of SI and SU(n)
(as topological spaces).

11.65. Prove that the group GL(n, G) considered as a subset in the
space of all complex matrices of order n x n is an open and connected
subset.

11.66. Prove that the group GL + (n, R) consisting of real matrices of
order n x n with positive determinants is a connected topological space.

11.67. Prove that the group GL(n, R) of real non-singular matrices of
order n x n is a topological space consisting of two connected
components.

11.68. Prove that a Moblius strip is not homeomorphic to the direct
product of a line-segment by a circumference.

11.69. Construct an immersion of a Mobius strip into Euclidean three­
dimensional space so that the boundary circumference of the former may
be standardly embedded in Euclidean two-dimensional plane. .

11.70. Prove that the set of all straight lines on the Euclidean plane
R2 is homeomorphic to a Mobius strip.

11.71. Prove that for any compact set KeRn, there exists a smooth
real-valued function f such that K := r 1(0).
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11.72. The group SO(3) is, naturally, embeddable, in the Euclidean
space R9 (each element of SO(3) is a real matrix of order 3 X 3). Prove
that, virtually, SO(3) C S8 C R9, where S8 is the sphere of radius ../3
standardly embedded in R9

• -

12
Homotopy Theory

12.1. Represent (a) the torus, (b) Klein bottle and (c) suspension of
a complex K as cellular complexes.

12.2. Prove that the topology of a CW-complex is the weakest of all
topologies respective to which all the characteristic mappings are
continuous.

12.3. Prove that a torus with a disk generated by a meridian are
homotopy equivalent to the wedge SI V S2.

12.4. Prove that a torus with a disk generated by a meridian and a
parallel are homotopy equivalent to the sphere S2.

12.5. Generalize Problems 12.3 and 12.4 to the case of the product
Sk X sr",

12.6. Prove the homotopy equivalence of the spaces (X x Sn)/(X v S")
and EnX.

12.7. Prove the homotopy equivalence

(a) E(X V Y) - EX V E Y,'

(b) E(X J\ Y) - E(X x Y)/(EX V Y).

12.8. Let IX;· A, B} be the space of paths starting at A and ending
at B, and A C R Prove that IX;· A, BI contains a subspace homeo­
morphic to A.

12.9. Letj: X ---> E be a continuous mapping of simplicial complexes,
and Y C X a subcomplex such that the mapping f is simplicial on it.
Prove that there exists a subdivision of the complex X such that it is
identity on Yand the mappingjis homotopic to a certain simplicial map­
ping q, the homotopy being constant on Y.

12.10. Let X be a simplicial complex, and S» the star of a vertex x EX.
Prove that any two simplexes of the star Sx meet in a certain face.

12.11. Prove that a simplicial mapping of simplicial complexes is
continuous.

12.12. Let X be a simplicial complex, and f > o. Prove that there exists
a subdivision of the complex X such that the diameter of each new sim­
plex is less than f.
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12.13. Let / be a mapping of the unit line-segment [0, 1] into itself,
and /(0) = 0, /(1) = I. Prove that there exists a homotopy which leaves
the endpoints of the line-segment fixed and deforms the mapping / into
the identity.

12.14. Is the vector space R" contractible to a point on itself?
12.15. Let a space X be contractible to a point on itself. Prove that

any two paths with the same endpoints are homotopic to each other (a
fixed endpoint homotopy).

12.16. Let a space X be contractible to a subspace Y, with the homotopy
leaving Y fixed (constant). Prove that any path in X with the endpoints
in Y is homotopic to a path wholly lying in Y (a fixed endpoint
homotopy).

12.17. Prove that any two paths are homotopic on the sphere S", n > I
(the endpoints are the same, and the homotopy is fixed endpoint).

12.18. Prove that any connected, cellular complex is homotopy equi­
valent to a cellular complex with one vertex.

12.19. Prove that the sphere S" - I can be represented as the union
(S' x D" -') U (D' + I X S" -r r - I) with the common boundary
S' x S" -,- I.

12.20. Consider the standard sphere S" - I in the Euclidean space R"
and two spheres embedded in it:

s:' = {X,+I = ... = Xn = OJ, Sn-,-I = {XI = .. , = X, = OJ.

Prove that any pair of points yES' - I, X E S" -, - I can be joined by
a unique arc on a great circle having no other points of intersection with
these spheres.

12.21. Find the topological type of the closed hyperboloid of one sheet
I' = {Xl + yl - Zl = I} in the projective space RP3

•

12.22. Cut a Mobius strip (embedded in R 3
) along its midline.

Is the manifold obtained orientable?
Repeat the cutting process several times. Describe the manifold

obtained (it is disconnected) and find the linking number of any two
connected components.

12.23. Prove that the space of polynomials of the third degree without
multiple roots is homotopy equivalent to the complement of a trifolium
in the sphere S3. Construct an explicit deformation.

12.24. Consider the set of points en with pairwise different coordinates.
Show that the space obtained has the same type as the Eilenberg-Macl.ane
complex K(7r, 1).

12.25. Construct an example of two spaces XI, Xl, which are not
homotopy equivalent, and also of two continuous one-to-one mappings
/: XI -> Xl, g: Xl -> XI such that the spaces themselves may not be
homotopy equivalent.
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12.26. Let h: X ---+ Xl be a continuous mapping, and the corre­
spondence <1>: {X', Yl ---+ {X, Yl be defined by the formula
<1>(0') = a . h.

Prove that the correspondence <1> transforms homotopic mappings into
homotopic.

12.27. Prove that the following homotopy equivalence holds:
~(S' x S"') - S·+I V S"'+1 V S·+"'+I.

12.28. Prove that the finite-dimensional sphere S'" is contractible to a
point on itself.

12.29. Prove that a connected finite graph is homotopy equivalent to

the wedge of circumferences vS I
.

12.30. Let a mapping p : X ---+ Y satisfy the covering homotopy axiom.
Prove that the inverse images of the points are homotopy equivalent.

12.31. Let a space X be contractible to its path-connected subspace A.
Prove that the space X is path-connected.

12.32. Fix two points Xo and XI in a space X. Let Y be the space of
paths starting at Xo and passing through XI. Prove that the space Y is
contractible.

12.33. Prove that the space of all paths (X; X; Xl is contractible to
X C (X; X; Xl with X held fixed.

12.34. Let a sequence of spaces X" C X" -+ I be given, and let X; + 1

be contractible to X n with X; held fixed.
Prove that the space X = U X. is contractible to Xo with X o held fixed.

n

12.35. Prove that any open n-dimensional manifold is homotopy equi­
valent to an (n - lj-dimensional complex.

12.36. Prove that if a space X is contractible to a subspace A on itself
with A held fixed, then A is homotopy equivalent to X.

12.37. Calculate the sets 7I"(SI x SI, S2) and 7I"(Sk X s":", S").
12.38. Find Cat I (Rpn) and Ca12(Rpn), where Cat I (RPn) and Cat2(RP")

are the minimal numbers of closed subsets Xi such that X = U Xi and

the embeddings Xi C X are homotopic to constant mappings.

12.39. Calculate Cat I (K) and Cat2(K) for the case of a sphere with
three identified points.

12.40. Let M 2 be a compact, closed, oriented, and 2-dimensional man­
ifold of genus h, i.e., M 2 is the sphere S2 with h handles. Find r:}M 2

(i.e., double suspension) up to homotopy type.
12.41. Consider some standard chart with non-homogeneous coor­

dinates XI, ••• , x; in Rpn. Find the homotopy type of

(a) Rpn -, .~k, where Sk = IXI + ... + xi+1 = I, Xk+2 = '" =

~ x" = 01;
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(b) RPn
" M~, where if ~ = (x2

1 + ... +X
2k

- 4+ I - ... - ~+ I
- I = 0, Xk + 2 = . . . = Xn = 0 I ;

(c) Sk and M~.

12.42. Consider a small ball D" in the open manifold R" x S" - k and
glue the projective space RPn in its place, i.e., identify points x and - x
on the boundary of the ball aDn = S" - I.

Prove that the space obtained is homotopy equivalent to
RPn - 1 V si:",

12.43. Given a topological manifold M" whose boundary is a topologi­
cal manifold P" - I, the boundary of P" - I being contractible to a point
in the manifold M",

(a) Prove that the manifold is contractible to a point.
(b) Prove that if the manifold P" - I is l-connected, then the manifold

M" is homeomorphic to the disk D" (assuming that P" - 1 is contractible
to a point in M").

(c) Give an example of a pair (M", P" - I) such that the manifold P" - 1

is contractible to a point in the manifold M", but M" is not homeomor­
phic to the disk D", As a corollary, prove that 1["1 (P" I) ~ O.

12.44. Find the homotopy type of the space C" \ A, where A = U Aij,
~ij = (x E Gn1x; == Xj}. ij

12.45. Calculate the number of mappings (up to homotopy):

(a) Rpn ---+ RPn;

(b) RPn + 1 ---+ RP n ;

(c) ERPn ---+ RP n
;

(d) ERPn ---+ Rpn+l;

(a ') Cl?" ---+ Cl?";
(b ') ctr : I ---+ Cl?";

(c') zcsr ---+ cr:
(d') ECpn ---+ csr: I.

12.46. Prove that

(a) Cat [join(X; Y)] = min [Cat(X), Cat( Y)]' where Cat is the Luster­
nik-Schnirelmann category (the spaces X and Y being connected).

(b) Find Cat(SI x S2).

12.47. Let spaces Xi, I:::;; i :::;; N, be path-connected, and
X = XI X X2 X ... X X N •

N

Prove that [Cat (Xi)] :::;; Cat(X) :::;; I + L: [Cat(Xi) - I].
i= I

12.48. (a) Calculate Cat(RPn
) ; Cat(r); Cat(Sm x Sn).

(b) Prove that if the sphere S" is covered by q closed sets (not necessarily
connected) VI. V2, ... , Vq , where q :::;; n, then there always exists at least
one set Vi such that it contains two diametrically opposite points of the
sphere S", viz., - x and x.
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12.49. Let Me R" be an arbitrary subset of Euclidean space (e.g.,
smooth submanifold), and let Rn C R" + I be the standard embedding.
Prove that the following homotopy equivalence holds
Rn+'\M"" E(Rn\M).

Reminder. Let X be a topological space, and X x I its direct product
by a line-segment. After identifying the "upper base" X x {II c X x J
with a point and the "lower base" X x (0 I c X x I with another
point, we obtain a factor space called the suspension EX of X.

12.50. The relation between the Lusternik-Schnirelmann category and
"cuplong" of a compex (or manifold). Let M" be a smooth, compact,
connected, and closed manifold. Consider the ring H*(Mn

; G), where
G = Z if M" is orientable, and G = Z2 if M" is non-orientable. Denote
by I(Mn

; G) the greatest integer for which there exists a sequence of
elements Xl, X2, ••• , XI of the ring H*(Mn

; G) (degx, > 0, I ~ o ~ I)
such that Xl /\ X2 /\ ••• /\ X/(M';G) ;t. 0 in the ring H*(Mn

; G). The
number I(M"; G) is denoted by cuplong (M"). Prove that

Cat(Mn
) ~ I(Mn

; G).

12.51. Prove that for any path-connected topological space X and any
of its points xo, the group 1l"t (OX, xo) is Abelian.

12.52. Prove that any contractible space is I-connected.
12.53. Prove that the group 1l"t (VAst) is a free group with A generators.
12.54. Prove that if X and Yare homotopy equivalent, then the isomor-

phisms hold: 1l"1(X) == 1l"1(Y) and 1l"k(X) == 1l"k(Y), k ~ 2.
12.55. Prove that 1l"l(XV y) = 1l"1(X) * 1l"1(Y), where 1l"dx) * 1l"t(Y)

is the free product of the groups 1l"t (X) and 1l"1 (Y).
12.56. Find the knot group of the trefoil in R 3 (and also in the sphere

S3) and prove that one cannot "untie" the trefoil, i.e., there exists no
homeomorphism of Euclidean space (or sphere) onto itself which would
transform the trefoil knot into the standardly embedded, unknotted cir­
cumference, i.e., trivial knot.

12.57. Find the knot group of a knot I' in R 3 given thus: the circum­
ference which represents the knot is placed on the two-dimensional
standardly embedded torus T2 C R 3

, on which it traverses its parallel
p times, and its meridian q times, p and q being prime to one another.
(The trefoil knot from Problem 12.56 can be represented as such a knot
I', where p = 2, q = 3.) Make out the role of the condition for the
numbers p and q to be prime to one another.

12.58. Let X = Y UwZ, where Y, Z, Ware finite CW-complexes,
W = Y n Z, W is path-connected, and X = YUwZ is the complex
obtained by gluing Yand Z relative to the common subset W. Calculate
the group 1l" I(X), given the groups 1l" I(Y), 1l" t(Z) and 1l"t (W). Consider the
case where W is disconnected separately.
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12.59. Given an arbitrary group G with a finite number of generators
and relations, prove that there exists a finite complex X whose fundamen­
tal group is isomorphic to G. Can a finite-dimensional manifold, e.g.,
four-dimensional. be selected as such a complex X?

12.60. Calculate the group 1l"1(.X), where X is the wedge of three
circumferences.

12.61. Construct a two-dimensional complex X whose fundamental
group equals ZlpZ. For which values of p can a two-dimensional,
smooth, closed, and compact manifold be selected as such a complex?

12.62. Calculate the fundamental group of the two-dimensional sphere
with three handles. Check this group on commutativity and find its
commutator subgroup. Calculate the fundamental group of the two­
dimensional torus.

12.63. Let a simplicial complex X have N one-dimensional simplexes.
Prove that its fundamental group has no more than N generators.

12.64. Prove that 1l"1(X) = 1l"1(X2), where X is a CW-complex and X2
its two-dimensional skeleton, i.e., the union of all cells of dimensions I
and 2.

12.65. Find 1l"2(X), where X = s' V S2. Is this group finitely generated?
12.66. Find the knot group of the figure-of-eight (i.e., wedge of two

circumferences).
12.67. Let j be a path in X, ex E 1l"1(X, xo), and j(O) = xo. Prove that

there exists a path g such that g(O) = Xo, g(l) = j(l) and jg - lEa.

12.68. Let X be a path-connected space. Prove that the group 1l" 1(X,
xo) is isomorphic to the group 1l"1(X, y) for any two points x, y E X.

12.69. Calculate 1l"1(X) and 1l"n(X), where X is the wedge s' V S",

12.70. Prove that if X is a one-dimensional CW-complex, then 1l"1(X)
is a free group.

12.71. Prove that the group G = Z ffi Z ffi Z ffi Z cannot be the fun­
damental group of any three-dimensional manifold.

12.72. Calculate 1l"1(Pg ) , where Pg is a two-dimensional, compact,
closed, and orientable surface of genus g.

12.73. Calculate 1l"1(TPg ) , where TPg is the manifold of linear elements
of a surface of genus g.

12.74. Calculate the fundamental group of the Klein bottle by
constructing the covering space with the action of a discrete group.

12.75. Let P be a two-dimensional surface with non-empty boundary
(i,e., open surface). Prove that 1l"1(P) is a free group.

12.76. Prove that if X is a CW-complex, then 1l"1(X) is a group whose
generators are one-dimensional cells, and the whole set of relations is
determined by the boundaries of two-dimensional cells.
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12.77. Let G be a topological groupoid with identity. Prove that G is
homotopically simple in all dimensions and, as a corollary, that 1I"1(G)
is an Abelian group.

12.78. Let X be a topological groupoid with identity, and G C 1I"1(X)
a subgroup. Prove that

(a) it is possible to introduce the operation of multiplication in XG so
that PG: Xc ~ X (where Po is the projection of the covering space XG
onto X) becomes a homomorphism;

(b) if X is a group. then XG (i.e., covering space relative to the subgroup
G) is also a group. Consider the example Zz ~ Spin(n) ~

~ SO(n), n > 2.

12.79. Prove that the following isomorphism holds

12.80. Prove that the groups 1I"i(X) are commutative when i > I for
any CW-complex X.

12.81. Demonstrate by way of example that the excision axiom does
not hold for the group 1I";(.x, Y) (the axiom being held for the usual (co)
homology theories), i.e., there exist pairs (X, Y) such that

71"i(X, Y) '7: In(X/Y).

12.82. Prove that for any path-connected space Yand any point Xo E Y,
the isomorphism holds 1I"g( y, xo) == 1I"g - 1(nxO' Y. wXo)' where w'o is the
constant loop at the point xo.

12.83. Prove that 11"1 (RPn) = Za, n > I, and 1I"k(RPn) = 1I"k(Sn),
n ;;:, I, k > 1, where Rpn is the real projective space.

12.84. Prove that if

(a) A is a contractible subspace in a space X (X and A being CW-com­
plexes) to a point Xo E A, then the homomorphism i. : 1I"n(A, xo) ~ 1I"n(X,
xo) is trivial when n ;;:, I, and when n ;;:, 3, the decomposition

holds;
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(b) i: X v Y ..... X x Y is an embedding, then the exact sequence is
given rise:

i

7I"g(X V Y) --*. 7I"g(X X Y) ..... O.

12.85. Prove that 71"1 (cpn) = 0; 71"2 = (cpn) = Z, n > 0;
7I"k = (Cpn) = 7I"k(S2fl + \ k ~ 2.

12.86. Prove that if a CW-complex X has no cells of dimensions from
I to k inclusive, then 7I"t(X) = 0 when i ~ k,

12.87. Let X, Y be two CW-complexes. Prove that 7I"i(X x y) =
= 7I"i(X) CB 7I"i(Y)' Calculate the action of 7I"'(X x Y) on 7I"1(X x Y).
Construct a universal covering of X x Y.

12.88. Find the homotopy groups 7I"q(Sfl) (0 ~ q ~ n) and prove that
7I"n(Sn) = Z, where S" is a sphere.

12.89. Prove that 7I";(S3) = 7I";(S2) when i ~ 3 and, as a corollary, that
7I"3(S2) = Z.

12.90. Prove that

(a) 7I"1(SO(3» = Z2, 7I"2(S0(3» = 7I"2(SO) = 0, where SO = I~SO(n);

(b) 7I"3(SO(4» = Z, 7I"1(U) = z, 7I"2(U) = 0, where U = limU(n) (em-
-'l-

beddings U(n) C U(n + 1) and SO(n) C SO(n + I) being standard);
(c) 7I"3(SO(5» = Z.

12.91. Find the groups 7I"g(SI V S\ g ~ O.
12.92. Calculate the groups 7I"1(X), 7I"n(X) and action of the group 71"1 (X)

on the group 7I"n(X) for the following cases: (a) X = RP n
; (b) X =

= SI V S"; (c) X = aB(~n + I), where B (~n + I) is the division ring of a
non-trivial O(n + lj-fibration of disks on SI.

12.93. [f a mapping f(X, A) ..... (Y, B) sets up the isomorphisms
7I"g(X) '" 7I"g(Y) and 7I"g(A) '" 7I"g(B) for all g, then it sets up the isomor­
phisms 7I"g(x, A) '" 7I"g(x, B) for all g.

12.94. Calculate the groups 7I"n-d~k), where ~k is the real Stiefel
manifold.

12.95. Prove that the groups 7I"k(sn) cannot become trivial, as k in-
creases, beginning with a certain number k .

12.96. Prove that 7I"3(S2) = Z, and 7I"n+ t(Sn) = Z2, when n ~ 3.
12.97. Find 7I"3(S2 V S2), 7I"3(SI V S2), and 7I"3(S2 V S2 V S2).
12.98. Calculate the one-dimensional relative homotopy group of the

pair (CP2, S2), where S2 == cpt C Cp2 standardly.
12.99. Prove that if:
(a) a three-dimensional, compact, and closed manifold M 3 is

l-connected, then M is homotopy equivalent to the sphere (i.e., M 3 is a
homotopy sphere);
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(b) M" is a smooth compact and closed manifold such that '7r;(Mn) = 0

when i ~ [~], then M" is homotopy equivalent to the sphere S",

12.100. Construct an example of a three-dimensional, closed, and
compact manifold M 3 such that M 3 is a homology sphere (i.e., it has the
same integral homology as S3), but '7r(M3) ,c O. Construct an example
of a finitely generated group G which coincides with its first commutator
subgroup.

12.101. Prove that the set of homotopy classes of mappings [S", Xl
is isomorphic to the set of classes of conjugate elements of the group
'7rn(X; xo) under the action of '7r1(X; xo) (X being a connected complex).

12.102. Calculate '7r2(R2, X), where R 2 is a plane and X a figure-of-eight
embedded into the two-dimensional plane.

12.103. Calculate '7r;(cpn) when i ~ 2n + 1.
12.104. Let '7rn(X) = 0, and a finite group G act on X and Y without

fixed points. Prove that there exists, and is unique up to homotopy, a
mapping f: Y ---+ X which commutes with the action of the group G.

12.105. Prove that [CpZ, S2] = '7r4(S2), where [X, Y] is the set of
homotopy classes of mappings of X into Y.

12.106. Let (X, A), X:J A, be a pair of topological spaces, and X
path-connected. Let A be the set of paths in the space X starting at a
certain point Xo and ending at points of the subspace A. Prove that '7rg(X;
A, a) == '7rg-1(A, Xa ) , where >-a is an arbitrary path from Xo to a E A.

12.107. Prove that the following conditions are equivalent to
n-connectedness:

(a) tro(sq, X) consists of one element when q ~ n (base-point preser­
ving maps);

(b) any continuous mapping sq ---+ X can be extended to any
continuous mapping of the disk D" + 1---+ X; q ~ n.

12.108. Prove that '7ro(X; !U"!Z) is an Abelian group, where X, Z are
two topological spaces, and OX is the loop space. Prove that OX is an
H-space.

12.109. Let A be a retract of X. Prove that when n ~ I, for any point
Xo E A, the homomorphism induced by the embedding

is a monomorphism, and when n ~ 2, determines the following
decomposition into the direct sum
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12.110. Prove that 7I"o(EEZ, X) is an Abelian group. Establish a relation
with 7l"o(Z, OOX).

12.111. Let TS" -+ S" be the standard tangent bundle over the sphere
S", Calculate the homomorphism a.: 7l"n(Sn) -+7l"n_l(sn-l) from the
exact homotopy sequence of this bundle.

12.112. Let)": X -+ Y be a continuous mapping (f(xo) = Yo). Prove that
the induced mapping L: 7l"n(X; xo) -+ 7l"n( Y, Yo) is a group
homomorphism.

12.113. Let

Y ::) Fo 7 Yo

1

X 7 Xo

be a fibration witn uxed points xo, Yo and fibre F. Prove that 7l"n( Y, Fo;
Yo) == 7l"n(X, xo).

12.114. Let E, X be two topological spaces, X path-connected, and
p : E -+ X a continuous mapping such that for any points x E X,
y e p - I (x), the isomorphism holds true

o, : 7l";(E, p-I(X), y) .:; 7l"i(X, x), i ~ 0

(for i = 0, 1, a set isomorphism is valid, the sets being stripped of the
group structure). Prove that for any points XI and X2, the topological
spaces p - I (XI) and p - 1(X2) are weakly homotopy equivalent.

12.115. Prove that for the homotopy groups of a pair (X, A) the exact
sequence is valid

••• -+ 7l";(A) -> 7l";(X) -+ 7l"i(X, A) -+ 7l"i-l(A) -+ •••

12.116. Prove that if X is a smooth, compact and closed submanifold
of codimension one in Euclidean space, then X is orientable.

12.117. Prove that if the fundamental group of a compact closed man­
ifold is trivial, then the manifold is orientable. Prove that if a manifold
X is non-orientable, then there is a subgroup of index two in 7l"1(X).

12.118. Prove that if X is a non-orientable space, then the suspension
EX is not a manifold.

12.119. Prove that the Euler characteristic X(X) of any compact, closed
manifold is trivial.

12.120. Give examples of

(a) a non-orientable manifold doubly embedded in another manifold
(whose dimension is one greater);

(b) an orientable manifold singly embedded in another manifold.
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12.121. Let Xl and X2 be two tori (meaning the solids), t : ax, -+ aX2
a diffeomorphism, and MJ = X1UjX2. Give examples of diffeomor­
phisms i such that the manifold M} is diffeomorphic to: (a) SJ,
(b) S2 x s', (c) RP3

•

12.122. With the notation of the previous problem, consider the
mapping

which is induced by the diffeomorphism between the solid tori XI and
Xz. It is obvious that the hornomorphism j', is given by the integral matrix

Prove that this matrix is unimodular and calculate the fundamental group
of the manifold M} in terms of the matrix i ..

12.123. Let X; be the space of polynomials inez) (of one complex var­
iable) without multiple roots. Find the groups 1I"dXn ) .

12.124. Prove that a finite CW-complex is homotopy equivalent to a
manifold with boundary.

13
Covering Maps, Fibre Spaces,

Riemann Surfaces

13.1. Letp: X-+ Ybe a covering map such thati.[1I"1(X, xo)J is a norm­
al subgroup of the group 11"1 (Y, Yo), p(xo) = Yo. Prove that each element
ex E 11"1 (Y, Yo) generates a homeomorphism 'P of the covering, i.e.,
p'P(x) = pix).

13.2. Let p: X -+ Y be a covering map, p(xo) = Yo. Prove that
p; : 1I"1(X, xo) -+ 1I"1(Y, Yo) is a homomorphism.

13.3. Let p : X -+ Y be a covering map, and p(xo) = Yo. Prove that
the induced mapping p. : 1I"1(X; xo) -+ 1I"1(Y, Yo) is a monomorphism.

13.4. Let p: X -+ Y be a covering map, and 1I"1(Y) = O. Prove that
each element ex E 1I"1(X) is determined by a homeomorphism of the space

Y onto itself, ex : Y -+ Y, and the diagramy~Cl;f' is commutative.

7--2018 p X P
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13.5. Let P : X -> Y be a covering map where the space X is connected,
and let F = p-I(yO) be the inverse image of a point Yo E Y, Xo E F.

Prove that F and 11" I (Y, Yo) are in one-to-one correspondence if 11'" I (X,
xo) = O.

13.6. Let p: X -> Y be a covering map, F: 12
-> Y a continuous

function, where 12 is a square, and I: II -> X also continuous, with
pf(1) = F(/, 0).

Prove that j" can be extended to the mapping G : 12
-> X, with pG = F,

G(/, 0) = 1(1).
13.7. Let P : X -> Y be a covering map, f, g two paths on X, and

1(0) = g(O). Let pI(I) = pg(l), and the paths pi and pg homotopic. Prove
that 1(1) = g(l).

13.8. Let P : X -> Y be a covering map, I, g two paths on X, and
1(0) = g(O). Does it follow from pI(l) = pg(l) that 1(1) = g(l)?

13.9. Let P : X -> Y be a covering map, f, g two paths on Y, and
j, g two paths on X such that pj = j, pi = g, ](0) = i(o).

Prove that if I and g are homotopic, then j and i are also homotopic.
13.10. Let P : X -> Y be a covering map, I a path in Y, and Xo a point

in X such that p(xo) = 1(0). Prove that there exists, and is unique, a path
g in X such that pg = I.

13.11. Prove that a covering map is a Serre fibre map.
13.12. Prove that any two-sheeted covering is regular. What purely

algebraic fact corresponds to this statement?
13.13. Prove that a three-sheeted covering of a pretzel (i.e., sphere with

two handles) is non-regular.
13.14. Let M 2 be a non-orientable, compact, smooth and closed man­

ifold. Prove the existence of a two-sheeted covering map p : M 2+ -> M 2
,

where M 2+ is an orientable manifold, and find M 2+ in explicit form. What
is the property of the fundamental group of a non-orientable manifold?

. Z2
13.15. Construct the covenng map S" -> RPn and prove that:

(a) RPn is orientable when n = 2k- I, and non-orientable when
n = 2k;

(b) 7I"l(RPn) = Z2, 7I"i(Rpn) = 7I"i(Sn) when n > I, i > 1.

13.16. Prove that a covering space is regular if and only if its paths
lying over one path in a basis are either all closed or all non-closed.

13.17. Let P : X -> X be a covering map. Prove that any path in X
can be covered in X in a unique way up to the choice of the origin of
the path in the inverse image, and the multiplicity of the projection p
is the same at all points of the base space.

13.18. Construct all coverings over the circumference and prove that
7I"1(SI) = Z, 1I'"i(SI) = 0 when i ;;" 2.
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Zk_1
13.19. Construct the regular covering map p: Pk --> Pz, where

k > 2 and Pk is a sphere with k handles.
13.20. Construct a universal covering of VAS I and prove that

lI"i(VAS I
) = 0 when i > 1. Find 11"1 (VAS I

) .

13.21. Construct a covering map 'P : g --> Pi, where Pz is a pretzel,
such that X is contractible to the graph. Prove, as a corollary, that

(a) a universal covering space Pi is contractible, Pz - K(lI", 1);

(b) if M Z is a two-dimensional closed manifold and 1I"1(Mz) an infinite
group, then M Z

- K(lI", 1) (i.e., homotopy equivalent).

13.22. Establish the relation between universal coverings over Pk (i.e.,
sphere with k handles) and the Lobachevski plane.

13.23. Prove that all covering maps of the torus TZ are regular and
find them. Construct an example of two non-equivalent, but homeomor­
phic covering maps of the torus TZ

•

13.24. Let X be a finite complex. Find the relation between G C 1I"1(X)
(arbitrary subgroup), x(X) (the Euler characteristic) and x(Xo) --> (Xo)
(covering map constructed relative to the subgroup G C 11"1 (X».

13.25. Construct a universal covering of the torus PI (i.e., sphere with
one handle) and Klein bottle (i.e., sphere with two cross-caps) and calcu­
late the homotopy groups of PI and Nz. Can the torus PI be a two-sheeted
.and regular covering of the Klein bottle? If so, find the covering and
calculate the image of the group 1I"1(PI ) in 1I"1(Nz) under the covering
monomorphism.

13.26. Prove that if 1I"1(Mn
) = 0 or 1I"1(~) is a simple or finite group

of order p ;If. 2 (where p is prime), then the manifold M" is orientable.
13.27. Construct the explicit form of seven smooth linearly independent

vector fields on the sphere S7. Use the algebra of octaves (Cayley
numbers). Construct the integral curves of these vector fields.

13.28. Prove that if k linear operators AI, ... , Ak are given in R" such
that Ar = -E and AiAj + AjAi = 0 (for all i, j), then k linearly
independent vector fields can be specified on the sphere S" - I C R",

13.29. If the homotopy groups of the base space and fibre of a fibre
space have finite rank, then the homotopy groups of the total space also
have finite rank, the rank of the q-dimensional group of the total space
not exceeding the sum of the ranks of the q-dimensional homotopy
groups of the base space and fibre.

13.30. Let the fibre map p : E --> B admit an image set of a section
x : B --> E, and eo = x(bo). Prove that when n ~ 1, the mapping p. is
an epimorphism, and when n ~ 2, it determines a decomposition into
the direct sum lI"n(E, eo) = lI"n(B, bo) (f) lI"n(F, eo).

13.31. Prove that if all the homotopy groups of the base space and

7*
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fibre are finite, then the homotopy groups of the total space are also finite
and their orders do not exceed the product of the orders of the homotopy
groups of -the base space and fibre of the same dimension.

13.32. Prove that the mapping p : EX~ X satisfies the covering homo­
topy axiom (Serre fibre map).

13.33. Prove that if "PI,2 : 21,2 ...... -¥ are covering maps and
Im(pI). = Im(p2)., then (XI, PI, X) and (X2,P2, X) are fibre homeomor­
phic, where [m(pj). C 7l"1(X)'

13.34. Prove that there exists a covering map p: X ...... X over any
connected complex X such that 7l"1(X) == 0 (i.e., existence of a universal
covering).

13.35. Prove that the set of vector bundles with a structural group G
over the sphere S" is isomorphic to 7l"n - I(G), and that the group G is
path-connected.

13.36. Show by way of example that there exists no exact homology
sequence of a fibration.

F
13.37. Let P : E ...... B be a locally trivial fibre map, and B, F finite com-

plexes. Then x(E) ~ x(B) x(F).

13.38. Given that a material particle moves with constant (in modulus)
velocity (a) on the torus T", (b) sphere S", find phase space for this
system.

13.39. Let P : E !. B be a fibre map with path-connected Band F.
Let Cat == Cat - 1 be a reduced Lusternik-Schnirelmann cate~y, i.e.,
eat (of a point) == O. Prove that cat(E) ~ CatE(F) cat(B) + Cat (B) +
+ CatE(F), where CatE(F) is a relative category of the fibre F respective
to E.

13.40. Prove that if p : X ...... Yis a Serre fibre map, then p is a mapping
"onto".

13~41. Prove that if p : X...... Y is a Serre fibre map, then p - I(YI) and
p - I (Y2) are homotopy equivalent for any YI, Y2 E Y.

13.42. Prove that the manifold of linear elements of a manifold Mis
a fibration with the base space M.

13.43. Prove that a locally trivial fibration (twisted product) is a Serre
fibration.

13.44. Prove that the space of paths EX whose starting point is fixed
in the space X is a Serre fibre space with the base space X.

13.45. Prove that)f M" is a smooth manifold, then the spaces of its
total and unimodular tangent bundles (fibrations) are orientable.

13.46. Prove that the direct product of topological spaces X x Y with
the projection onto one of the factors is a Serre fibration.
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13.47. Let p ..X -> Y be a covering map, p(xo) = Yo, and f, g two paths
~ch that 1(0) = g(O) = Yo,1(1) = g(l). Let Ig - I ER. (1r1 (X, xo» and let
f, g be two coverings of these paths. Prove that 1(1) = g(l).

(
e i'l'l 0.).13.48. Represent the torus T2 as T2 = (g I, where g = o e''l'2

Consider the following equivalence relations R:

(a) (ei'l'l, ei'l'2)R( _ei'l'l), e- i'l'2);

(b) (ei'l'1, ei'l'2)R( - e - ;'1'1, - e - ;'1'2);

(c) (ei'l'I, ei'l'2)R(e- i'l'l, e- i'l'2).

Find the space X = T2
/ R and calculate the image1.(1rl (T2» C 1rl (X),

where I: T2
-> X = T2

/ X is the projection induced by the relation R.
Is I a covering map?

13.49. How many fibrations are there of the following form:

(a) T3 -+ S: where T3 is a three-dimensional torus;

(b) T" -> SI, where T' is an n-dimensional torus (fibrations are
considered up to homotopy equivalence)?

13.50. Let C = A * B be the free product of arbitrary groups A and
B. Prove that for any subgroup M C C, the equality M = Al * B I * F
holds, where Al C A, B 1 C Band Fis a free group. Give a topological
proof using covering spaces.

13.51. Let ® be a l-connected compact Lie group, and a: ® -> ® an
arbitrary involutive automorphism (i.e.,~ = 1). Put ~ = (g E ®:a(g) =
= gj; V = (g E ®\a(g) = g-lj. Prove that ® = V~V, i.e., any element
g E ® admits a representation in the form

g = vhv, v E V, h E ~.

Prove that V == ®/~ (homogeneous space).
13.52. The following construction (by Cartan) is known. Let a : ® -> ®

be an arbitrary involutive automorphism of a compact connected Lie
group. Put ~ = (g E ® I a(g) = sl: V = (g E ®1U(g) = g-IJ. Then
V == &/~ and V C ® is a totally geodesic submanifold. Therefore, V
is a symmetric space. The submanifold V is called Cartan's model of the
symmetric space ®/~. Any symmetric space admits Cartan's model
(which is almost always uniquely determined).

(a) Prove that the projection p ..® -> V, where peg) = ga(g -1)
determines the principal fibration 0 -> ~ -> ® -> ®/~ -+ O.
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(b) Let V be Cartan's model, 1l"1(V) = 0, e E V, and e the identity
element in ®. Prove that if a point x E V is conjugate of e along a
geodesic 'Y(t) C V in the group ®, then the point x is conjugate of e
along 'Y in the manifold V C ® itself.

13.53. Prove that a compact, closed manifold M 2 with Euler charac­
teristic N can be represented as a (2N + 4)-gon such that some of its
sides are glued together to yield the word

(where OJ, Oz, ••• , ON + Z are the designations of the sides) in traversing
the sides one after another. Prove that the last factor is ON-+

12 if and only
if M 2 is orientable.

13.54. Classify compact, closed smooth and connected manifolds M
and calculate their fundamental groups in terms of the generators and
relations.

13.55. Prove that any orientable, two-dimensional, and compact man­
ifold is determined by a unique invariant, viz., the genus of the manifold.

13.56. Prove that any non-orientable, two-dimensional and compact
manifold can be represented as the connected sum of an orientable man­
ifold and several replicas of projective planes.

13.57. Describe the semigroup of two-dimensional manifolds under the
connected sum operation.

13.58. Calculate the homotopy groups 1l"i(Tg ) (i ~ I) of a two­
dimensional manifold Tg of genus g.

13.59. Let M Z be a compact, closed, oriented and two-dimensional
manifold of genus g. Find the homotopy type of 'f:,2M2•

13.60. (a) Prove that I{p2 \ D2 is diffeomorphic to the Mobius strip.
(b) What spaces is the sphere SZ. with a Mobius strip glued into,

homeomorphic to? with two Mobius strips?
13.61. Let s' x SI C R 3 be the standard embedding of the torus in

Euclidean space. Prove that there exists no homeomorphism of the pair
(R3

, SI x Sl) onto itself whose restriction to the torus is determined by

. ( 0the matnx
-1

13.62. Given two odd functions on the sphere S2, prove that they have
a common zero.

13.63. Let 'If be the fundamental group of a two-dimensional surface,
and f: 1l" ---> 1l" an epimorphism. Prove that f is an isomorphism.

13.64. Prove by three totally different techniques that there exists no
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continuous vector field without singular points (i,e., different from zero
at each of its points) on the sphere S2.

13.65. Let in C2 (z, w) the Riemann surface of the algebraic function
w = .JPn(z) be given, where the polynomial Pn(z) has no multiple roots.
Prove that this Riemann surface turns, after completing it with a point
at infinity, into a two-dimensional, smooth, compact, and orientable
manifold.

13.66. Find the genus of a two-dimensional manifold described in the
previous problem as a function in the degree n of the polynomial P«.

13.67. Can the two-dimensional projective plane RP2 be the Riemann
surface of a certain algebraic function w = w(z) in C2(z, w) in the sense
of Problem 13.65, i.e., after completing the Riemann surface with a point
at infinity?

13.68. Prove that the Riemann surface of an algebraic function in C2

is always an orientable manifold.

13.69. Investigate what happens to the Riemann surface of the function
w = .JPn(z) when some roots of the polynomial Pn(z) merge to yield
a multiple root. For example, what is the structure of the Riemann surface
of the function w = .JZ2~b)?

13.70. Describe the topological structure of the Riemann surfaces of
the following analytic functions:

w = V1+'<:, Z = w + 1Iw, z" + w" = 1.

13.71. Prove that the Riemann surface of the function w = lnz is
homeomorphic to a finite part of the complex plane.

13.72. Let p : X -> Y be a two-sheeted covering. Prove that any path
in Y can then be covered by precisely two paths.

13.73. Construct a universal covering space for the orthogonal group
SO(n).

13.74. Prove that any two-dimensional, closed, oriented and smooth
manifold can be locally isometrically covered by the Lobachevski plane
(which is supplied with the standard metric of constant negative curva­
ture). In other words, prove that the fundamental group of a surface of
the indicated form can be represented as a discrete subgroup (operating
effectively) of the Lobachevski plane isometry group.

Corollary. A two-dimensional, compact, closed, orientable, and
smooth manifold can be supplied with the Riemannian metric of constant
negative curvature.

13.75. What spaces can cover the Klein bottle?
13.76. Let Sg be a sphere with g handles. What Sh can cover S.?
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13.77. Prove that for any compact, non-orientable, and two­
dimensional manifold, there is precisely one compact, two-dimensional,
and orientable manifold which serves as its two-sheeted covering.

13.78. Prove that the Beltrami surface (i.e., surface of constant negative
curvature standardly embedded in R3

) can be infinitely-sheeted and
locally isometrically covered by a certain region lying in the Lobachevski
plane.

Find this region. Prove that it is homeomorphic to the two-dimensional
disk. Find the corresponding group of this covering (it is the group Z).

13.79. Can a two-dimensional torus be a two-sheeted covering of the
Klein bottle?

13.80. Calculate the permutation group of the sheets of the Riemann
surface of the algebraic function w = tifi arising in traversing around the
branch point of this function (point 0).

13.81. Let M 2 be an ellipsoid, and p one of its vertices. Consider all
geodesics emanating from the point p, Find the locus of the first con­
jugate points (i.e., mark the first conjugate point of p on each geodesic
and describe this set).

13.82. Prove that the fundamental group of a complete Riemannian
manifold of non-positive curvature contains no elements of finite order.
Prove that 7l"1(M) (where Mis a complete Riemannian manifold of strictly
negative curvature) possesses the following property: if two elements
commute (ab = ba, a, b E 7l"1(M», then a and b belong to the same cyclic
subgroup.

13.83. Prove that a closed, orientable Riemannian manifold M" of
strictly positive curvature and even dimension is l-connected.

13.84. (a) Prove that any compact, closed Riemannian manifold of
constant curvature Ais isometric either to the sphere S" or RP" (of radius
I/Y};,). Use Problem 13.83.

(b) Let M" be a compact, closed, l-connected, complete Riemannian
manifold, and C(I) the set of the first conjugate points of a certain point
IE M n

•

Prove that if M" is a symmetric space, then the complement M"I C(/)

is homeomorphic to the open disk.
13.85. Prove that a complete, non-compact Riemannian manifold of

positive curvature and dimension m, where either m = 2 or m ;;:: 5, is
diffeomorphic to Rm

•

13.86. Let x, y be two near points on the standard sphere S2, and a
function !(z) the area of the geodesic triangle with vertices at the points
x, y, z,

(a) Is the function !(z) harmonic on the sphere S2?
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(b) Investigate the case of the n-dimensional sphere (where !(z) is the
volume of the geodesic simplex whose one face is fixed, and z is a free
vertex).

(c) Investigate the same problem for the Lo .achevski plane.

13.87. Prove that if M" is a complete, l-connected Riemannian man­
ifold such that n is odd and there exists a point p on M", the set of the
first conjugate points of p being regular and each point of constant order
k, then k = n - I, M" is homeomorphic to the sphere S" (order of a
point is understood to be its multiplicity).

13.88. Let 'Y C R2 be a simple closed curve of length I bounding a
region G of area S (on the plane).

Prove that P ~ 41rS and that the equality holds if and only if 'Y is
a circumference.

13.89. Let 'Y C R2 be a closed curve (not necessarily simple, i.e., in
contrast with the previous problem, self-intersecting is possible). Prove

that P ~ 41r ~ w(x)dS, where the function w(x) is the number of rotations

R2

of the curve about a point x E R2
•

13.90. Is it true that if n(x, y) is the refractive index of a planar, transpa­
rent, isotropic, but non-homogeneous substance filling the two­
dimensional plane, then the integral curves of the vector field grad n(x,
y) (n = elv) are the trajectories of light rays? (Certainly, not only they.)

14
Degree of Mapping

14.1. Calculate the degree of the mapping fez) : SI -+ SI, where
fez) = Zk, Izi = 1.

14.2. Calculate the degree of the mapping j". S2 -+ s; wherertz) = z",
·z E C U (oo).

14.3. Let M" be an orientable, smooth, and compact manifold. Prove
that the homotopy class of a mapping M" -+ S" is fully determined by
the degree of the mapping.

14.4. Let!: s2n -+ s2n be a continuous mapping. Prove that there is
a point for which either lex) = x or lex) = - x.
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14.5. Let the degree of the mapping / : S" -> S" be equal to 2k + 1.
Prove that there exists a point x such that lex) = - /( - x). Prove that
there exists no even tangent vector field vex) without singularities (i.e.,
v( - x) = vex) has no zeroes) on the sphere S2p

- 1.

14.6. Let J, g: S" -> S" be two simplicial mappings. Prove that:

(a) the inverse image of each interior point consists of the same number
of points (meaning the difference between the numbers of positively
oriented and negatively oriented points);

(b) if J, g are homotopic, then the difference between the number of
positively oriented and negatively oriented points of the inverse image
is the same for the two mappings;

(c) if the difference between the number of positively oriented and
negatively oriented points of the inverse image coincides for the two map­
pings, then they are homotopic.

14.7. Let j": M -> S2 be a mapping of the normals of a closed surface
in R3

. Prove that J(w) = K(w') where wand w' are elements of area
and K the Gaussian curvature. Prove that 2 degf = ~Kdw and also equals
the Euler characteristic of the surface.

14.8. Prove that any continuous mapping of the ball D" into itself
always has a fixed point.

14.9. Let I : SU(n) -> SU(n) be a smooth mapping, and leg) = g3.
Find deg /.

14.10. Let/: M" -> RP be a smooth mapping of a connected, compact,
orientable, and closed n-dimensional (n < p) manifold in RP. Let v(/)
be the normal bundle of this immersion, and Sv(/) the associated fibre
bundle of spheres, i.e., Sv(/) = aI'(/) is the boundary of a certain
sufficiently small tubular neighbourhood of the submanifold
/(~) c RP. Let T: Sv(f) -> se:' be a usual Gauss (spherical)
mapping.

Find deg T (dimSI'(/) = p - I) if the Euler characteristic of the man­
ifold M" is known. Does deg T depend on the method of immersing M"
into RP? What happens if M" is non-orientable? Separately consider the
case where p = n + 1.

14.11. Given that a two-dimensional, orientable, closed, and compact
manifold M 2 of genus g is embeddable in the Euclidean space R3

, find
the minimal number of the saddle points (generally speaking, degenerate)
of the function /(p) = Z, P E i(M2

) , where i is an embedding and / the
height function.

14.12. Prove that non-degenerate critical points of a smooth function
on a smooth manifold are isolated.

14.13. Let/(x) be a function on a two-dimensional, compact, orientable
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surface of genus g (i.e., sphere with g handles) having a finite number
of critical points, all of them being non-degenerate. Prove that the number
of minima minus the number ofsaddle points plus the number of maxima
equals 2g - 2.

14.14. Let!: M" -. R be a smooth function on a smooth manifold.
Prove that almost every value of the function! is regular.

14.15. Prove that the alternating sum of singular (critical) points of
a smooth function !(x) (assuming that all its singularities are non­
degenerate) given on a smooth compact manifold does not depend on
the function (by the alternating sum, we understand

t (- li'm~, where n
~=o

dimM,

A the index of a critical point, and ms; the number of the critical points
of index A).

14.16. Let !(x) be a complex analytic function of one variable x. Prove
that the set of critical values of the function !(x) : S2 -. S2 has measure
zero.

14.17. Let M~ = {xJ(x) = c}. Prove that if M~ contains no critical
points of the function !, then M~ is a submanifold in M" and
codimM~ = I.

14.18. Prove that the notion of non-degenerate critical point of a
smooth function does not depend on the choice of the local chart
containing this point.

14.19. Show that for the standard embedding of the torus T2 C R3

(i.e., surface of revolution about the axis Oz), the coordinate x orthogonal
to the axis of rotation of T2 has only non-degenerate critical points.

14.20. (a) Construct functions with only non-degenerate critical points
on RPn and Cpn so that their values at all critical points may be different.

(b) Construct functions on Rpn and Cl?" such that!(x~) = A = ind(x~),

where x~ are non-degenerate critical points of index A.

14.21. Let F(x, y) be a non-degenerate bilinear form on R", Consider
a smooth function j'(x) = Fix, x), where ,x! = I, i.e., F(x, x) is a function
on the sphere S" - I C R", Let Ao ~ Al ~ ... ~ An _ 1 be all the eigen­
values of the form F (recall that all Ai, 0 ~ i ~ n - I, are real).

Prove that Ai are the critical values of the function Fix, x) on the sphere
S" - I. Find all the critical points of the function F(x, x). Prove that
Ai = inf Imax!(x) I, where Si are the standard i-dimensional equators of

s' xES'
the sphere S" - I.
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14.22. Prove that if a point p is a non-degenerate critical point for a
smooth function f(x) on a smooth manifold, then there exists a local
coordinate system in which the function f(x) in a neighbourhood of the
point p can be represented as a non-singular quadratic form.

14.23. Prove that if M; is a non-critical level for a function f(x) on
a manifold M (i,e., the levelhypersurface f(x) = c = const not containing
critical points for f(x», then the neighbourhood M; is diffeomorphic to
Mc x I.

14.24. If M CI and M C2 are consecutive critical levels, then the interval
between them is diffeomorphic to M; x I, where CI < C < C2.

14.25. If there are no critical levels between MCI and MC2 (i.e., level
hypersurfacesf(x) = const with critical points) and M CI and M C2 are non­
critical either, then they are diffeomorphic.

14.26. (a) Construct a smooth function f(x) having one point of
maximum, one point of minimum (both being non-degenerate), and ano­
ther critical point, perhaps, degenerate, on every compact, orientable,
two-dimensional, and smooth manifold M 2

• Find the relation between
such a function and the representation of M 2 as the Riemann surface
of a certain many-valued analytic function. Investigate the case of a non­
orientable two-dimensional manifold M 2 (e.g., case of the projective plane
IW).

(b) Construct a smooth function f(x) having only non-degenerate
critical points, precisely one point of maximum, precisely one point of
minimum and s saddle points (find the number s) on every compact man­
ifold M 2

• Construct the function so that it takes the same value at all
the saddle points. Investigate the non-orientable case. Indicate the relation
to the problem of point (a) and construct the confluence of all the saddle
points into one degenerate critical point.

15
Simplest Variational Problems

I

15.1. Prove that the extremals of the action functional Eb] = 11112dl
o

on a smooth Riemannian manifold M" (where oy(t)'are smooth trajectories
on M", 0 ~ 1 ~ I, and 1(1) is the velocity vector of the curve oy(/» are
geodesics.
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15.2. Establish the relation between the extremals of the length func-
I 1

tional L[r1 = FYdl and action functional E[-Y1 = 11-Y,2dl. Prove that any
o 0

extremal ro(t) of E[-y1 is that of Lb1. Prove that if so(t) is an extremal
of Lb1, then by replacing the parameter 1 = 1(1') by so(t), this trajectory
can be transformed into an extremal of E[r1.

15.3. Let S(f) = 11-JEO - P2dudv be a functional associating each
D

smooth function z = f(x, y) which is defined on a bounded region
D = D(x, y) C R2(x, y) (where x, y, z are Cartesian coordinates in R3

)

with the area of the graph of the function z = f(x, y). Prove that the
extrernality of a function fo relative to a functional S is equivalent to the
condition H = 0, where H is the mean curvature of the graph of z = f(x,
y) considered as a two-dimensional, smooth submanifold in R3

.

15.4. Prove the statement formulated in the previous problem for the
case of the (n - I)-dimensional graphs of x" = f(x 1

, ••• , x" - 1) in R".
15.5. Prove that the action functional E[-y1 and length functional L[r1

are related by the formula (L[-YD 2 ~ E[r1, the equality being held if and
only if r(t) is a geodesic.

15.6. Prove that the areal functional

SV1 = 11 -JEO - P2dudv

D

(where r = Ftu, v) is a radius vector in R3 depending smoothly on (u, v»

rr E + 0and Dirichlet's functional D[f'[ = JJ--2-- dudv are related by the

D

formula S[f'] ~ DlT1.
15.7. Remember that the radius vector r(u, v) determining a two­

dimensional surface M 2 in Euclidean three-dimensional space is said to
be harmonic if Ftu, v) is an extremal of Dirichlet's functional D[f'] =

= +~ i(E + O)dudv. Prove that if the mean curvature H of a

D

surface M 2 given by a radius vector r(u, v) equals zero, then local coor­
dinates (p, q) can be introduced in a neighbourhood of each point on
the surface so that the radius vector f'(p, q) in these coordinates becomes
harmonic.
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15.8. Construct an example of a harmonic radius vector r ..(u, v) such
that the surface M 2 C R3 described by it may not be minimal (i.e., so
that H;;. 0).

15.9. The Wirtinger Inequality. Let H be a hermitian symmetric positive
definite form in en, and ex: en -+ R2n a realification of en. Then

H -+ H R == (_SA ~), where H == S + iA, S and A are real

matrices and ST == S, AT == -A, H? == H.

The form S defines the Euclidean scalar product in RZn and the form
A an exterior 2-form w(Z) in RZn. For simplicity, we may assume that

W(2) == ~di' /\ dzk
• Consider the form o(Zr) == +~~_0c"!.., r ~ n.

r. r
k ~ I

(a) If WI, ••• , WZr is an arbitrary orthonormal basis in R Zn == en rela­
tive to the scalar product S == ReH, then

if and only if the plane L(w!, ... , WZr) generated by the vectors WI, •.• ,

WZr is a complex subspace in RZn == en.

Hint: Let r == I, and WI, Wz be an orthonormal pair of vectors. It is
required to prove that W(Wl, wz) ~ I, where W(WI, WZ) == A(w!, wz).
Consider

Hence, !H(w" wz) == IA(wt, WZ) ~ 'WI; Wz == 1. Now, let A(WI, WZ) == 1.
Then H(wt, WZ) == i, i.e., S(iWI, WZ) == 1. Since .wzi == iWl! == I, it follows
that wz == iwI, i.e., the two-dimensional plane spanned by w" wz is the
complex straight line. For r > I, the relation o(Zr)(W! - WZ) == vdetgij
should be used, where gij is the skewsymmetric scalar product defined
by the 2-form w(Z).

(b) Let W r C en, r < n (r being complex dimension) be a complex
submanifold in en (if W r is an algebraic submanifold, then singular
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points on Ware possible). Let V2r be a real submanifold in en such
that V U W == sz»: I, where Z2r+ I is a real (2r + I)-dimensional
submanifold in en whose boundary is V U W. Let K == V n w. Then
vOhr( V \ K) ~ vohr( WIK).

Note. This statement means that complex submanifolds W in the
complex space en are minimal submanifolds, i.e., after any "pertur­
bation" of V, the 2r-dimensional volume (vol») does not decrease.

Hint: The statement follows from the Wirtinger inequality (see above)
and Stokes' formula. In fact, consider the exterior 2-form

n

W == L: dzk
/\ dzk

,

k = I

and let

n(2r)
1

- w/\ ... /\w (r times).
r!

Since dw == 0, dn(2r) == O. It follows from Stokes' formula that

While integrating the form n(2r) with respect to a 2r-dimensional subman­
ifold, the expression of the sort n(2r)(WI, ••. , w2r)dx

1
/\ ••• /\ dx";

where WI, ..• , W2r is an orthonormal basis in the tangent plane to the
submanifold (with respect to the Riemannian metric induced by the
underlying Euclidean metric in en == R2n

) should be considered (in local
coordinates Xl, ••• , ~r). If the submanifold W is complex, then

If the submanifold V is of general form (i,e., real), then n(2r)(WI, ... ,

W2r) :,;; 1, i.e., 1n(2r) :,;; vol(V), which proves the statement.
v
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(c) Prove that the statement of problem (b) remains valid if en is re­
placed by any Kahler manifold, i.e., complex manifold supplied with an
exterior 2-form w(2) (non-degenerate and closed).

15.10. Consider functions of the form F(x 1
, ••• , x") on Rn(x l

, ••• ,

x") and the functional J IF] = ~!gradFldan, where D is the domain of
D

the functions F. Let Fo be an extremal of the functional J. Prove that
the level surfaces Fo (x', ... , x") = const considered as hypersurfaces
in Rn(x 1

, ••• , x") are locally minimal.



Answers and Hints

2
Systems of Coordinates

[
1 af I af 1 af]

2.2. gradf = HI aql' H2 aq2' H3 aq3 .

. 1 [a( a2.3. diva = -I H 2H3al) + -2(H3H l a2) +
H 1H2H3 aq aq

+ ~(HIH2a3)J, where ai, as, a, are the coordinates of the vector a.
aq

+ ~(HIH2 af)J.
aq3 H3 al

2.5. (a) The coordinate surfaces are: cylinders r = const, planes
'P = canst and planes z = const.

(b) HI I, H 2 = r; H 3 = 1.

2.6. (a) The coordinate surfaces are: concentric spheres r = const,
planes 'P = const and cones 0 = const.

(b) HI = I, H 2 = r; H3 = r sinO.
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I a( au)+ --- sinO- +
r2 sinO ao ao

2.7. (a) The coordinate surfaces are: cylinders of elliptic section and
foci at the points x == ±c, y == 0 when X == const, the family of confocal
hyperbolic cylinders J.l == const and planes z == const.

(b) HI == c ~,Hz = c ~,HJ = I.-..]7=-1 -..]~

- 0 Z r-: 0 3
2.8. (a) q' = .J2r sin -, q = v2r cos -, q == z.

2 2

(b) The coordinate surfaces are: parabolic cylinders with generators par­
allel to the axis z when }.. == const, J.l == const.

(c) HI = Hz == .J}!-+-;Z, H J == I.

2.9.

(a) x
(}.. + oZ)(J.l + 02)( 1' + oZ)

±
(b 2 _ 02)(CZ _ 02)

(}.. + bZ)(p. + bZ)(v + bZ)
y ±

(cz _ bZ)(oz _ bZ)

z = ±

1

2

1

2

(}.. + cZ)(p. + cZ)(v + CZ)

(02 - cZ)(bz _ cz)

(}.. - p.)(}.. - p), H2 == 1

RZ(A) 2
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(c) flu 4 [(IL - V)R(A)~(R(A)~) +
(A - IL)(A - V)(IL - v) aA aA

a ( au) a ( au)+ (v - A)R(IL) - R(IL) - + (A - IL)R(v) - R(v)-
aIL aIL av av l

2.10. (a) The coordinate surfaces are: prolate ellipsoids of revolution
a = const, hyperboloids of revolution of two sheets {3 == const and planes
cp = const.

(b) HI = H2 = c--Jsinhi~ + sin2{3, H3 = c sinha sin{3.

(c) flu [
I a ( au)--- sinho - +

sinho aa Ba

= o.+ _1 _a (sin{3~) + (_1_ + _1_) a
2u]

sin{3 a{3 a{3 sinh 2 a sirr' {3 acp2

2.11. (a) The coordinate surfaces are: oblate ellipsoids of revolution
a == const, hyperboloids of revolution of one sheet {3 = const and planes
cp = const passing through the axis z.

(c) flu

2.12. (a) The coordinate surfaces are: the tori a == const,

the sphere {3 = const,

and the plane cp = const;

8*
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a ( sinh o au)(c) ilu = - - +
aO' cosho - cos{3 aO'

a ( sinha au) aZu
+ aii cosho - cos{3 ai + -(c-o-s-h-O'--c-o-s{3-)-si-n-h-a -a-.p-2•

a

cosh 0'
------, H 3 = I.

cos{3
2.13. HI = H2 =

2.14. (a) The coordinate surfaces are: spindle-shaped surfaces of
revolution 0' = const

(e - c cotO'f + Z2

spheres {3 = const,

(b) H" = H{3
c

------,H'"
cosho - cos{3

c sinho

cosho - cos{3'

and planes e = const.

c
(b) HI = Hz = , H 3

cosh {3 - cos 0'

c sino

cosh {3 - cos 0'

(c) ilu a ( sinO' au) +
aO' cosh {3 cos 0' aO'

+ a ( sinO' au) +
a{3 cosh{3 - coso a{3 sinotcoshe

182 2
1\ - Po

2.15. HI = C Z ' Hz
A-I j82 _ l

c 2 ~
1 - Po •
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CAp..j8A2 - l 182_l
2.16. HI = C 2 ' H2 = C 2 ' H3

A -I l-p.

2.17. (a) HI = H2 = -J>!+ ?-, H3 = Ap..

(b) The coordinate surfaces are paraboloids A = const, p. = const of
revolution about the axis of symmetry Oz.

3
Riemannian Metric

3.2. Let the surface M 2 C R 3 be given by equations X, = Xi(P, q), i = I,
2, 3, and the variables p and q have a plane region as their domain. Let
the functions Xi = Xi(P, q) be real-analytic. The pair (p, q) can be regar­
ded as the coordinates of a point on the surface M 2

• A curve C on M 2

is given by the equations

p = p(t), q = q(t), a ~ t ~ b.

An element of arc length is expressed in terms of the vector x = (Xl,

X2, X.1) thus:

ds' = dxdx = (xpdp + xqdq) (xpdp + xqdq),

or

= Edp 2 + 2Fdpdq + Gdq2 ,

where E = (xp , xp ) , F = (xp , xq ) , G = (xq , xq ) .

Since the element of length ds' is always positive, W2 = EG - F2 is
also positive. Let us find the coordinate system (u, v) with the element
of arc ds' = A(u, v)(du 2 + dv 2

) . We have

(
- (F + iW) ) ( - (F - iW) )

ds' = ~Edp + .JE' dq ~Edp + ~E dq.

Assume that we can find an integrating factor (J = (JI + i(J2 such that
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(
(F + iW) )

a .JEdp + .JE dq

Then

du + idv.

(
r- (F - iW) )s vEdp + .JE dq = du - idv,

and, finally, 1012ds' = du" + dv". Assuming oj2 = II>.., we obtain the
required isothermal coordinates (u, v). Thus, we have obtained isothermal
coordinates by having found the integrating factor which transforms the
expression

(F + iW)
.JEdp + .JE dq

i~) dp + (au + i~) dq.
ap Bq aq

(F + iW)
0.JE

au . av
-+1-
aq aq

into a total differential. The differential du + idv can be written in the
following form:

(
au

du + idv = - +
ap

Further,

au av -
- + i- = a.JE,
ap ap

Eliminating a, we obtain

(
au av)E - + i- = (F +aq aq (

au av)
iW) a;; + i a;; ,

or

au
E­aq

au
F­

ap
av

W-,
ap

av
E­

aq
au av

W- + F-.
ap ap

Solving this system for the unknowns avlap and avlaq, we obtain

au au
F--F-

av ap aq
ap .JEG - p2

k
aq

Gk_F k
ap aq
-JEG~ F2

(1)
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Similarly,

ou
op

ov
E­

oq
.JEG

F!!..­
op

ou
oq

ov ov
F-- G-

oq op
-JEG - F2

(2)

Therefore, u satisfies the equation

OU ou ou ou
~ (Fa;; - Ea;;) + _0(Fa;; - Ga;;) 0

oq HI op HI

which is called the Beltrami-Laplace equation. Given a second family of
isothermal coordinates (x, y) in a neighbourhood of a point, we have
d? = JI.(d~ + dy"). Using the coordinates (x, y) instead of the coordinates
(p, q), we obtain E = G = JI., F = 0 and

OV OU OV OU
ox By ' a; = a;

Thus, the Cauchy-Riemann equations have been obtained, and hence
the functions U and v are conjugate harmonic functions, whereas the
function f = U + iv is analytic in z = x + iy. The Beltrami equation
assumes the form of the well-known Laplace equation 02U/O~ +
+ 02U/oy2 = O. A complex-valued function f(P, q) defined on M 2 is said
to be a complex potential on M 2 if its real and imaginary parts satisfy
equations (1). Thus, the real and imaginary parts of a complex potential
on the manifold M 2 determine isothermal coordinates in a neigh­
bourhood of every point on M 2 (the coordinates being local and not serv­
ing, generally speaking, the whole of the two-dimensional manifold;
while transferring from one point to another, the complex potential will
vary).

3.3 (a) Consider some curve cp = cp(fJ) on the surface of the sphere.
In moving along this curve, the compass needle forms an angle I/; with
the direction of motion determined by the relations

tan I/;
. do.?smO -_.-.

dO
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(The angle t/; is measured from the y axis clockwise.) We obtain on the
map:

dy

dx
= tan (t/; + ;) =

I
---

tan t/; (2)

It follows from relations (I) and (2) that

. dlp
sme­

de

dx

de

dy

de

ax

ae

ay

ae

ss. dlp
+ alP de

ay diP ,
+ --­

alP de

(~ + ~ d<P) diP sine =
se alp de de

ax ax dcp
----

se alp de
(3)

Since relation (3) must be fulfilled at the point in question for any value
of dcp/de, we obtain, by equalizing the coefficients of the same powers
of the derivative dcp/de on the right-hand and left-hand sides, that

ay
= 0, y = y(e), (4)

acp

ax
= 0, x = x(lp),

ae
(5)

. ay ax
-sme- - (6)

ae acp

It follows from (4) and (5) that the left-hand side of relation (6) depends
only on e, whereas the right-hand side only on cp; therefore, both sides
of this relation should be constant. We put this constant equal to unity.
Thus, in Mercator's projection, the mapping is given by the formulae

x = '1', y = _ r~ = lncot..!!-.Jsine 2

2 dzdi
3.5. ds = .

(I + ZZ)2
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3.6. ds'
dv' v2d'li

_ ~)2
+

- ~)(1 (1
c2 c2

3.7. ds' di + sinh2xd,/.

(de z + e2d,/)
3.8. ds' =

(l (1Z)2

3.9. (a) In polar coordinates,

(b) If the sphere has radius a, then

(c) ds' = aZ(dxz + sinhzxd,/), 0 ~ X < 00, 0 ~ <p ~ 2?r.

In case (a), 0> = (~ r~ ) , and the equation of the circumference is

ret) = R = const, <p(t) = t, 0 ~ t ~ h,

whereas the length of the circumference is

2".

L = ~ -Jli!dt = z-«.
o

The circle is given by the relations 0 ~ r ~ R, 0 ~ <p ~ 2'lf, and
z". R

its area equals S = ~ .\ rdrde = 7rRz.

o 0

(b) 0> = (aZ

O. ) , and the equation of the circumference is
o a2 smzlI

all(t) = R = const, a<p(t) = t, 0 ~ t ~ 27ra, 1I(t) = Ria, <p(t) = t/a,
whereas the length of the circumference is

L
. z R 1

Sin --dt
a OZ

121

2
. R

?rOSin -
a



The circle is given by the relations 0 ,;;:; aO ,;;:; R, 0 ,;;:; cp ,;;:; h, i.e.,

R

a
a2 sinO,

and the area of the circle is

271" R/a

S I Ia2
sinOdOdcp = ha

2
(I - cos ~) .

o 0

(c) ~ o2' ) , and the equation of the circumference is
a sinhv

ax(t)

and

R const, acp(t) t, 0';;:; f ,;;:; 271"a,

x(t) = Ria, cp(t) = t/a,

whereas the length of the circumference is

L

ha

JaJSinh
2

; ~2 dt
R

271"a sinh-.
a

The circle is given by the relations 0 ,;;:; ax ,;;:; R, 0 ,;;:; cp ,;;:; 271", i.e.,

R r: 2'o ,;;:; X ,;;:; -, 0';;:; cp ,;;:; 271", 'V g = a sinhv,
a

and the area of the circle is

s

21t' Ria

I I a
2

sinhxdxdcp

o 0
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4
Theory of Curves

4.1. (a) y2 = 2ax - 2C is the parabola with the axis OX and parameter
p = al. The curve opens leftward when a < 0, and rightward when
a> O.

(b) y = ce>»,

(c) (x - C)2 + y2 = a2 is the circumference with radius a and centre
on the axis Ox.

4.2. The condition for the length of the tangent to be constant is written
in the form

,------::c

(I)

We will consider the curve only in the upper half-plane and therefore put
)'1 = Y > O.

Consider the angle <{J, 0 < <{J < 7r determined by the condition

tan e = dyldx. (2)

Replacing dxldy in (I) by cot <(J, we obtain y/sin<{J = a, or

y = a sine.

Hence,

dy = a cos<{Jd<{J.

But it follows from (2) that

dx = cot edy,

Substituting the expression obtained for dy ; we obtain

~dx = a. de,SIn<{J

or

dx = a Ci~<{J - Sin<{J) d<{J.

Integrating termwise, we find

x = a (In tan ; + cos<{J) + C

This curve is called a tractrix.
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4.3. y
4.4. r
4.5. r
4.6. x

4.7. x

a3/(x2 + a2
) ; x = a cott, y a sin2t.

ae,
roek<P, where 'P = wt.
at - d sint, y = a - d cost.

r R + r
(R + r)cos - t - r cos --- t,

R R

y
. r

(R + r)sm - t
R

. R + r
rsm --- t.

R

4.8. x

y

(R

(R

mR)cosmt + mR cos(t - mt),

mR)sinmt _. mR sin(t - mt), m riR.

r(t)

4.9. The equation of the required curve is

r(t) = p.(t)a + b,

where b is a constant vector, and p.(t) the antiderivative of the function
A(t), C < t < d. Geometrically, the following cases are possible: a

d

straight line collinear with a if ~ A(t)dt diverges when 1 = c and 1 = d;

d

a ray with the direction of the vector a if I A(t)dt converges when t = c,

but diverges when t = d; a ray with the direction of the vector - a if
dIA (t)dt diverges when t = c, but converges when t = d; an open line-

d

segment collinear with a if JA(t)dt converges.
c

4.10. The equation of the required curve is

1
- t2a + tb + c,
2

where b, c are arbitrary constant vectors.
If b 7' 0, then this equation determines (with band c fixed) a parabola

with the axis whose direction coincides with that of the vector a. If b = 0,
then we obtain two coincident rays parallel to a.

4.11. (a) (r')2 [r' x al2;

(b) - (r', a) [r' X a12•

4.12. Apply the Rolle theorem to the function (a, r(t) - r(to».

124



4.13. Use the equality (r2(t) - rt(t))2 = const, where r[, r2 are radii
vectors of the moving points and t is time.

r '
4.14. Put - = A, A(t) being a function continuous on the segment

r
[a, b] and having the same sign on it. We have t - Ar = 0, whence
r = ae iAd T

• Since the derivative of the function e lAdl equals Aei>'dl, it does
not change sign on the segment [a, bJ, i.e., e iAclt is a monotonic and
continuous function of t.

4.15. Applying the method of solution of the previous problem, we

have r ' = aej>'dT, whence

0.r I = 2r,2 - rr" + r 2
2r'

r'

- r= I r:

r = a i ejAdldt + b.

The derivative of JeiAdTdt equals er" > 0; therefore, Jel>.dld! is a
monotonic increasing function of ! E [a, b].

4.16. r ' = {<p', <p + t<p'}, r " = (<p", 2<p' + t<p"), [r ' x r "] =
= 2<p,2 - <p<p". The given equation determines a straight line if and only
if 2<p,2 - <p<p" = 0. Solving this equation, we find <p = lI(a! + b).
where a and b are constants.

° dr dro dro
4.1.,. r = rr • - = r'ro + r --. Since rO Icose, sin II' l. --

drp drp drp

dro
( - sin e, cos II' I, i.e., - is obtained from rO by rotating it through

drp

+ 1f12. Denote the vector obtained from rO by rotating it through + 1f12
by fro]. Therefore,

dr
- = r's" + r[ro).
drp

Furthermore,

d2r
-- = r"ro +
drp2

[
dr d

2rJ
d<p X d<p2

r" =

Putting r' = w, we find

dw dw-- = --r'
de dr

dw
w-­

dr '

dwwr __ + r2

dr
0,

wdw

rdr
+ I 0.
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Put wZ = p, ? = q, then dpldq = 2plq + 1. Solving this equation, we

find that p = al - q, or W
Z = ar" - rZ

, 1" =r~. Substituting
1/1' = ~, we easily obtain

I
- = C I sin(cp + Cz),
r

where C I and Cz are arbitrary numbers.
4.18. F = Fr = mr". Differentiating, we obtain A'r + Xr' = mr'";

therefore, the vectors r ', r", r " are coplanar.
4.19. The radius vector e of an arbitrary point of the centre surface

can be determined by one of the relations:

e = rl + A[rn = rz + J.![ril,

rl - rz + A[rn = J.![ri] ,

(r, - rz)r:! + A[r{]r:! = 0,

(rz - rl)r:!
A =

;lr{ x ril

Therefore,

(rz - rl)r:! [ re = rl + , ,rd,
I[fl x rz]

and in coordinates,

(xz - x,)x:! + (yz - YI)Y:! ,
~ = XI - Yl,

xiy:! - x:!yi

(Xz - XI)X:! + (yz - YI)Y:! ,
YI - XI.

x!y:! - x:!y!

(rz - rl)r:! .
4.20. Consider the vector A[r!], where A = . If this vector

I[r{ x ri]

is marked off from the end M I of the rod, then its end will fall on the
instantaneous centre of rotation. The projections of the vector >.[ril onto
the vectors rz - rl and [rz - rd are equal, respectively, to

A[rl](rz - rl)

irz - rl
and

A[ri][rz - rd

Therefore, the equations of the centrode are:

(rz - rl)r{ [r{ x (rz - rl)]
X =

[rl x ri]:rz - rll
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Y

or

x

Y

(rz - r,)ri r[(rz - r,:
I[rl x ri!: ;rz - ril '

yi I
yz - YI

{(Xz - xI)xi + (yz - Ydyi J {(xz - x,)x{ + (yz - YdY{ I

I
xi yi 1--./(xz - xIF-+- -<.Y;--=- j'-,)2
xi yi

4.21. R = rl + P = rl + ~a + 1/[a], where a = rz - rl, ~ = const,
1/ = const (point M being rigidly connected with the rod) and
R' = ri + ~a' + 'I)[a']. Since la: = Irz - rl: = const, a' 1- a. Therefore.

a' = s[a], ri - ri = s[rz - rr],

(r2 - r{)[ri] = s[rz - rd [ri],

[ri]ri = s(rz - rt)ri,

s =

Thus:

i[r{ x fi]'

(rz - rt)ri

1

>..

a' =
1

- [a], [a']
>..

1

>..
a,

R' = ri + 1- [a] - !!.- a
>.. A

I
- (>..ri + Ha] - 1/a).
A

On the other hand,

r = R - Q = rl + ~a + 1/[a] - rl - }t[ri] = ~a + 1/[a] - A[ri].

[r] = Ari - Ha] - 1/a;

therefore,

,1 1
R = -[r], w

>.. >..
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4.22. r" II r, [r, r"] = 0, [rr']'
and

[rr"]. Therefore, [rr '] = a = const,

[ar"]
I

-3 [[rr']r]
r

(r' r2
- rtrr ")

r3

Thus,

:t [far'] + A ~] 0,

r
tar'] + A- = b = const.

r

Multiplying both sides of this equality by r and noticing that [ar']r =
= a[r'r] = - a2, we have: - a2 + Ar = br. The motion is in the same
plane perpendicular to the vector a (since it folIows from the relation
[rr '] = a that ar = 0). Introducing a polar coordinate system on this
plane and making the pole coincident with the origin of the radii vectors,
while directing the polar axis along the vector b, we obtain - a2 + Ar =

= br COS"", whence r = a2/(A - b cos e) is a curve of the second order.

4.23. u2(d2~ + u) = -~, u= IIr, c = const.
d"" me

In the case of the Newtonian force, F = - km/r' = - kmu", whence

d2u
--2 + U = CI (CI = k/c2

) .

d""

4.25. The circumferences whose centres are placed on the straight line
passing through the origin of the radii vectors and collinear with the vec­
tor w, whereas the planes of these circumferences are perpendicular to
the indicated straight line.

4.26. The straight lines along which the planes perpendicular to the
vector e intersect with those passing through the straight line drawn thro­
ugh the pole 0 and collinear with the vector e.

4.27. Introducing Cartesian rectangular coordinates with the axis Oz
collinear with the vector e, we have ae + fer] = - yi + xj + ae, and
the given differential equation assumes the fallowing form: x' = - y,
y' = x, z ' = a. We find from the relations x' = - y, y' = x
that ~ + y2 = C1 is the family of circular cylinders whose axes coincide
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with the straight line passing through the origin of the radii vectors and
collinear with the vector e. Furthermore,

dx

dz

y dy

- --;;' dz
x

a

whence

xdy - ydx

dz

adL.
x

.x2 + yZ xdy - ydx (I yZ),a
.x2 + 7 dz,

a

dz, and z + Cz a tan - I L.
x

I, where a and b are the semi-axes of the4.36.---

is the family of right helicoids whose axis is the axis of the cylinders
mentioned above. The integral curves are helical. r'inally, z = at + C3 •

Now, to express x, y, z in terms of t is easy from the relations obtained.
4.28. Semi-circumferences touching the axis Oz (which is collinear with

the vector e) at the origin.
4.31. 7r / 4 and 7r/2.
4.32. tan - 13.

xZ

given ellipse.
4.37. xy = ±s/2, where s is the given area.

J¥asz
4.38. y = ax' + 3 --, where the parabola is given by the equation

16

y = axz, and s is the area of a segment.

4.39. (x _~)z + yZ = (I tan ~) z, where ex is the given

cos-
2

angle, and I the semi-perimeter of the triangle.

xZ yZ
4.40. - + - = I, where a is the radius of the given circumference.

aZ 2az

4.41. r

9-2018
II cos' V, I sirr' v I, where I is the given semi-axis sum.
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4.42. x = ..!!..- (3 COSy - cos3v), y = ..!!..- (3 sinv - sin3v) is a hypo-
4 4

cycloid.

1 ~ . .
4.43. xy = ± - v c, where e IS the given area.

2

4.44. (x - ef + y2 = 402, where a is the major semi-axis of the ellipse,

e = -Ja2
- b2

•

[r']
4.45. Q ± r ± a-.

!r'l

4.46. Q = r + [r'] r"]I'
I[r' x

and in coordinates,

X,2 + y'2
~ = X - y' ----'--­

x'y" - xrv'

X,2 + y,2
'II = Y + x' ----'--­

x'y" - xry'

4.47. A cardioid.

4am(1 + m). t y2
4.48. (I) I; (2) sin -; (3) -;

1+2m 2 a

4 «J (I + «J2)3/2

(6) -3 a cos -2; (7) a 2
2 + «J

(8) 3aisint cosr].

2 3
4.49. (I) Icosxl; (2) 1/6; (3) - 1r; (4) ---

a 8alsintl2'

2 + «J2
4.50. (I) 2 3/2;

a(1 + «J)
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I
FXX Fxy r, I

mod r; Fyy Fy

r, r; 0

(F; + F;)312

4.51. k =
---:----:'-::-:::--

[ (
oQ oQ ) (oP oP ) ]P Q- - P- + Q P- - Q-
oX oy oy ox

(pl + Q2)312
4.52. k = --'=--..:...-------=---:---------::-c:-:':---::.-----''---=-

4.53. (1) 5 =

x

(2) 5 = r.Jl + y'2dx = _1_ [(4 + 9X)312 - 8];J 27
o

x

(3)5 = r~1 + y'2dx = .!......Jl + 4r + -.!....In(2 - x + .Jl + 4r);J 2 4
o

x

r ~-JT+7-(4) 5 = J~ 1 + y,2dx = ,,1 + r + In x - Vi - In(Vi - 1);

1

'"
(5) 5 = )

o

,2 + (!!!-) 2d<{' = 4a sin ~;
d<{' 2

(6) 5 = ) .JX ' 2 + y'2dt = 4a(1 - cos ~);
o

(7) 5 =

(8) 5 = 2d 8a. t+ y' t = -sm-;
3 2

9*
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~ ~X'2 30 . 2(9) S + y,2dt = -Sill t;
2

0

x

(10) S = i ~I + y'2dx

0

I .JI+e2x
-

~1 + e2x + -In - .-J2 - In(-J2 - I);
2 .Jl+e2x+

(ll) s = i ~X'2 + y,2dt = 0 In sint.

../2

4.54. f(ex) + f" (ex).

4.55. (1) R 2 + 4s2
- 60S = 0;

[
36R2 ] 3

(2) (27s + 8)2 = 4 + 9 ----,
(27s + 8)2

(3) s = +J~4lF -1 + ~2R + : In [J~4lF -1 + ~TRJ.
(4) The parametric natural equations are

~1 + ~ - 1 x
s = ~ I + ~ + In and k = ----

x (1 + ~)312'

(5) R = a + s2/a;

(6) The parametric natural equations are
- 1 ~e2x_

s = ~x + -In F 2 and k
2 l+e X+I

b

a - b

. b 0 - b )
t- cos t;

a - b b
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(3) r [ icos ;;2 ds, i sin ;;2 dS], a clothoid;

o 0

(4) x

(5) r

(6) r

alntan I: + ~I'y

[ ; (sin4t + 2 sin2t),

{a(2t + sin2t), a(2 -

a .
--, a catenary line;
cost

- ; (cos4t + 2 cos2t)] ;

cos2t)}, a cycloid;

(7) r = {a(cost + t sint), a(sint - t cost)}, the evolute of the
circumference;

(8) r = [a cost, a In tan I: + ~ I-a sint] , a tractrix.

4.57. p = Irnl. Assume that rn > O. Then p = rn. Hence

dp . . dr-- = rn + rn = -rrk = -rrk = -rrk = -r- k,
~ ~

whence the required relation.

4.58. Rewrite the equation (Q - ro - RonO)2 = R'ij in the form
(Q - ro)2 - 2Rono(Q - ro) = 0 and consider the function 'I'(s) = (r ­
- ro)2 - 2Rono(r - ro). We have '1" (s) = 2(r - ro)r - 2Ronor,

'1" (so) = 0, '1''' (s) = 2 + 2kn(r - ro) - 2Ronokn, '1''' (so) = 0,
,;'" (s) = 2kn(r - ro) - 2k 2r(n - no) - 2Ronokn + 2RonokT,
'1'''' (so) = - 2Roko ~ 0; therefore 'I'(s) changes sign when s crosses thro­
ugh so, and since 'I'(s) is the index of the point on the circumference,
the proposition has been proved.

4.59. See the solution to the previous problem. We have

'I"(so) = 'I'''(so) = 'I''''(so) = 0,

'I'(4)(S) = 2kn(r - ro) - 2kkr(r - ro) - 4kkr(r - ro) -

- 2k3n(r - ro) - 2k2 - 2Ronokn + 2Ronokkr + 4Rnokkr+

+ 2Ronok 3n,

2Roko ~ O.

Therefore, the index of a point on the osculating plane does not change
sign in crossing through so.
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da 1
4.60. - = k = -- ds = ji(a)da

ds j(a) , ,

x = ) coscxf(a)da, y = ) sinaj(a)da.

4.61. da/ds = IIR, j'(R)dRlds = l/R, ds = Rj'(R)dR.

x = ) cos[f(R)]Rj' (R)dR,

y = ) sin[f(R)]Rj' (R)dR.

4.62. x = ) cosof" (a)da, y = ) sincxf' (a)da.

4.63. x = ) cos [f(s)]ds, y = ) sin [f(s)]ds.

ro
4.64. R = r + (rn)o - (rr)r).

2kr 2 + rn

4.65. R
[r'r]

r + --::----=----=---_::_ {[r' r][r ' ] - (rr ' )r' ).
[2r 2r', r"] + [r'r]r,2

eo
4.66. R = r + - (o(eo) - r(er»).

2k

If the curve is given by an equation r = r(t), then,

[r', e]
R = r + 2[r', r"] ([r', e] [r'] - (r', e)r').

If the curve is given by an equation y = j(x), then

x = x _ [m - If'(x)f j'(x)
2f" (x)

Y = !(x) + 1m - If' (X)]2

2f" (x)

(m - If' (x»(l + mj' (x»

2f" (x)

(m - If' (x»(l + mj' (x» j' x),
2f" (x) (

where I = (I, mI.
4.67. (x + 1)/2 = (y - 13)/3 = z16, 2x + 3y + 6z - 37 = O.
4.68. u = -1 at the point A. The tangent is (x - 3)/6 = (y + 7)1

(- 17) = (z - 2)/7. and the normal plane 6x - 17y + 7z - 151 = O.
4.69. u = 1 at the point A. Since r'(1) = 0 and r"(I) = (2, 2,

12) ~ 0, the direction of the tangent is determined by this vector, or (1,
I, 6) collinear with it. The tangent is (x - 2)/1 = yll = (z + 2)/6, and
the normal plane x + y + 6z + 10 = O.

4.70. 9x - 27y - z + 7 = O.
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4.71. For the osculating plane we find the equation ex - ay = be ­
ad not containing the parameter u. Substituting the expression for x, y
in terms of u in this equation, we obtain an identity, whence the curve,
in fact, lies in its osculating plane.

4.72. The osculating plane is 6x - 8y - z + 3 = 0, the principal nor­
mal x = 1 - 31A, y = I - 26A, Z = 1 + 22A, and the binormal
x = 1 + 6A, y = 1 - 8A, Z = I-A.

4.73. The tangent is

r = (a cost - Aa sin t, a sint + aA cost, b(A + t»),

The normal plane

ax sint - ay cost - bz + bZt 0,

The binormal

r = (a cost + Ab sint, a sint - Ab cost, bt + Aa),

The osculating plane

bx sint - by cost + az - abt 0,

The principal normal

r = {(a + A)COSt, (a + A)sint, bt).

4.74. The tangent is x = I + 2A, Y = -A, z = I + 3A,
The normal plane 2x - y + 3z - 5 = 0,
The binormal x = I - 3A, y = - 3A, z = 1 + A,
The osculating plane 3x + 3y - z - 2 = 0,
The principal normal x = I - 8A, Y = 11A, Z = 1 + 9A.
4.75. The tangent is

sr, aFj

X=x+>-.
ay az

aFz aFz
ay az

Y = Y + A
aFz aFz
az ax
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oFl of!
ax oy

z z + >-.

oFz oFz
ax oy

The equation of the normal plane is

X-x Y-y Z - z
sr, oFl er, o.
ax oy oz
aFz aFz sr,
ax oy oz

4.76. Having chosen a convenient coordinate system, we shall write the
equations of the Viviani curve in the form

~ + yZ + ZZ = aZ, (x ;)z+ yZ = :z,
or ~ + yZ + ZZ = aZ, ~ + yZ - ax = O.

To make up the parametric equations, we put

a a
x - - = - cost

2 2 '
a .

y = -smt.
2

Then

~ ~ t
- (l + cosr)" + - sinZt + ZZ = aZ, z = a sin -

4 4 2

(sign can be omitted, since if 211" is added to t, then x and yare unaltered
and z changes sign). Thus, .

[
a a.. t]r = - (l + cost), - smz, a sm - .
2 2 2

The equation of the tangent is

[
a . a., . t , t]r = - (l + cos t) - >-. sm t, - sm t + 1\ cos t, a sm - + 1\ cos - ,
2 2 2 2

that of the normal plane
t

x sint - y cost - Z cos - = 0,
2
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of the binormal

r = [; (l + cost) +

a . tT smr - >.. cos 2 (1

. 1
>.. sm - (2 + cost).

2

+ cost), a sin ~ + 2>"J'
of the principal normal

r = [; (l + cost) + >..[-cos2 ~(l + cost) - 2 cost]'

a. >... ). t \. t]- smr -- - sm/(6 + cosr), a sm - - 1\ sm - ,
2 2 2 2

and that of the osculating plane

1 1
sin - (2 + cosrjx - cos - (I + costlY + 2z

2 2

a . t
- sm - (5 + cost) O.
2 2

4.77. s = 5at.
4.78. s = 8avi.
4.79. s = 9a.

4.80. s = 10. The curve has four cusps with ds/dt changing sign at
the points t = 0, 7r/2, 7r, 37r12.

4.81. r =

4.82. r

4.83. r

[
s . s bS]

acos.1a2 + 2,asln. 1 2 2'./2 2"
'I b v a + b v a + b

[
S + .J3 s+.J3

.J3 cos In .J3

s+.J3. I s+.J3 s+.J3]
.J3 sin n .J3 ' .J3 .

[~ 2- In (2- + 12 + S2)].
~~' .J2' .J2 -..j 2
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4.84. T = f I - a sin t, a cos t, b j,
"a2 + b

2

P = {- cos t, - sin t, O},

(3
1

.Ja2 + b2 Ib sin t, - b cos t, a),

k
a

12t, -1,3t2
)

4.85. T = ,
.J1 + 4t 2 + 9(4

p =

(3

.J(i -9~ (zt + 9?)1- + (3t + 6t 3
)2 '

I - 3t, - 3t2
, I}

"11 + 9(2 + 9t4
'

k
2(1 + 912 + 9t 4

) 1/2

(1 + 4(2 + 9t4 ) 312 ,
1{ = 3

4.86. T

[ - sint, cost, cos +}
JI + cos

2 ~

r-cos2~(1 + cost) - 2 cost, -~sint(6 + cost), -sin~}l 2 2 2

[
t ]2 1 /

- cos" - (I + cost) - 2 cost + - sirr' t(6 + cosr)" + sin2-
242

(3 - I 2 rsin L (2 + cost), - cos L (1 + cost), 2},
- -..J 13 + 3 cos t l 2 2

k
a

13 + 3 cost
,-------:3' 1{

2 (1 + cos! ~)
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t
5)

= +JI
cos "2 (cos t -

. Z t
4.87. (I) k + Sill -, x

4(3 - cost)2

.J2 -.J2
(2) k

te' + e·-I)z '
x

te' + e- ')z '

2t -2t
(3) k

+ 2tz)z '
x =

+ 2tz)z '(I (I
.J2

(4) k
3et '

x - 3et ;

I
(5) k == )(

3(tz + Ii '

4

25 sint cost

3

25 sint cost'
(6) k == ----

4.88. y = l.

4.89. R = ..!..-(~ +
2 a

~)Z
z.x-2'

4.90. k
-Jy"Z + Z"Z + (y'z" - y"z')z

-J(I + y'Z + Z'Z)3/Z

yrz." - y'" z"
)( = ---,,-----=---;:-----''------;:

y"Z + Z"Z + (y'z" - y"z')z'

II, y', z'l
T - --;=~~i;=~"",.

- -JI + y'Z + Z,Z'

l-z'z" - y'y", r" -z'(y'z" - y'z"),y'(y'z" -z'y")+z" I
" =t=~====:;=~======'==~~==~='======'

-J(z' Z"- y'y"f+ [y" - z'(y'z" - y'z")]z+ [z" +y'(y'z" <z'y")f

fJ = (y'Z" - Y"Z', -z", y"l
-J(Y' z" - y" Z')2 + Z"Z + y,,2'
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4.91. The two families of curves are:

(a) yZ + ZZ const, xy az;

and
(b) x2 + ZZ = const, xy = az:

4.92. Let the equation of the sphere be of the form:

r = (a cosv cosu, acosvsinu, asinv).

Then the equation of the loxodrome is

u = tans In tan (: + ;),

where 0 is the given angle.

.,. == cosO{ -sinv cosu - sinu tans, -sinv sinu + cosu tanO,cosv);

II = cosO [ cosu COSy + tanv sinu tanf _ cosu tanZO,
tanZO cosy

+---
cos'v

sinu COSy

COSy
sinu Z ]-- tan 0 - tan v tanOcosu, - sin v ;
COSy

[
sinu, - cosu, tano]

cos v

k
cosO

a

tan 0
x =

a(coszv + tanzO)'

u cotO

..[f+7i2
4.93. v = Ce .

1 r'r"r'" 1
4.97. - , and in the special case, - kix'.6 I[r' x r"][ 6 .

4.98. The necessary and sufficient condition is e' -;t. 0, e' ee' 0,
while the equation of the envelope

e'e'
r = e - --- e.

e'z
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4.99. When a = b.
4.101. i' = T, r = kv, of = - k 2

T + kv + kx(3.

4.103. ev = C, e( - kr + x(3) = 0,

evk = (; )"e(3 + ~ ev = 0, e(3

er - ...!:.. ef:J
k

k 2 + x 2

C----

k(;Y

0,

(1)

(2)

Differentiating once again, we obtain the required relation. Note that
in view of the above relations, we may assume

x k 2 + x 2 k 2 + x 2

e = k k(;)' T + V + k(;)' e.

If the relation is held

then this vector is constant. This constant vector e forms with the vector
v an angle whose cosine equals l/iel = const.

4.104. er = 0, kev = 0; hence either k = 0 (straight line) or
ev = 0; if ev = 0, then e( - kr + x(3) = 0, whence x = 0 (plane line).

4.105. e/3 = 0; xe» = 0; hence x = 0, since, if the inequality x =F 0
were held, we would have ev = 0, e( <kr + xf:J) = O,keT = 0, er ;;t. o.
Therefore, k = 0, and the line is straight.

4.106. &= -xv = 0, x = O.

4.108. (a) Let a be a unit vector with a fixed direction. Then

ar = cosv (v = const).

We have (ar)" = aT = 0. Therefore, kav = O. Excluding the case where
k= 0 (i.e., of straight lines), we obtain

av = 0.
Therefore, the normals are perpendicular to the fixed direction.

Conversely, if v is perpendicular to the fixed direction, then equality
(1) holds.

(b) Let x ;;t. O. It follows from (2), with the use of the third Frenet
formula, that

a~ = 0,
whence a(3 = const.
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Conversely, differentiating this formula, we obtain (2).
(c) Differentiating (2), we obtain

ker = }(a{J,

whence

k a{J
= const.

x ar

Conversely, it follows from the first and third Frenet formulae that

T {J
0,- + =

k x

whence

)( )(

-T + {J o -T + 13 = const = a.
k ' k

Multiplying scalarly by JJ, we obtain aJJ = O. Therefore, condition (2) has
been fulfilled.

4.109. Take into account that

..... (4) k 5 ( X ).
rrr = T'

and use the previous problem.

5
Surfaces

5.1. r e + ve.
5.2. r ve.
5.3. r e + ve'·
5.4. r Q(s) + JJ(s)cos.., + {J(s)sin..,.
5.5. r (..,(v)cosu, <p(v)sinu, 1/;(v) I.
In the special case, r = (f(v)cosu, j(v)sinu, v I.
5.6. r = (a + bcos v)cosu, (a + bcos v)sinu, b sin v I.
5.7. Let the moving straight line coincide with the axis Ox at the initial

moment, and the second line in question with the axis Oz. Then the
equation of the right helicoid is of the form

r = (v cosu, v sinu, kul,

where v is the distance of a point of the helicoid from its axis (i.e., the
axis Oz), and u the longitude of the point.
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5.8. If the equation of the helix is given in the form

Q = fa cosu, a sinu, bu l.

then the vector n = f - cos u, - sin u, 0 J is the principal normal vector.
Hence, the required equation

r Q - An = (a + A) cosu, (a + A)sinu, buJ

(v cosu, v sinu, buJ

is that of a right helicoid.
5.9. r = Q(s) + A(n(s)cos<p(s) + b(s)sin<p(s)J. where <p(s) is an

arbitrary function of the variable s.
5.10. The normal plane to the circumference Q = (a cosu, a sinu, OJ

is determined by the vectors n = (cos u, sin u, 0 J and fO. 0, I J. The
vector lying in the normal plane and inclined at the angle u to the vector

, n is a = n cosu + k sinu. Therefore, the equation of the required surface
is

r fa cosu, a sinu, OJ + va

lacosu + vcoszu, asinu + vsinucosu, v sinu}.

Eliminating the parameters u and v, we find

cos2u

X = a cosu + --- z
sinu

cotu(a sinu + z cosu),

x
y = a sinu + z cosu,

y

XZ )2+- ,
Y

(ay + XZ)2,

a surface of the fourth order.
I

5.11. R = - (r(u) + Q(v) J
2

5.12. r = (v, acosu cosh :' asinu cosh :], where uis the

longitude and v the oriented distance from a point of the surface to the
gorge section of the catenoid.

5.13. r = (a In tan (: + ~) - a sint, a cost cosu, a cost sinu] .
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5.14. The equation of the given straight line is fl

that of the ellipse

fZ = {a cos v, b sin v, 0 l ,

Furthermore,

(u, 0, hI, and

fZ

fZ

{u - a cos v, - b sin v, h), u - a cosv

10, - b sin v, h J,

0,

and the required equation of the conoid is

r = {a COSY, b sinv, 01 + A{O, -b sinv, h j

Ia cos v, b(l - A)sin v, Ah j.

Eliminating the parameters A and v, we obtain the implicit equation of
the conoid

(1-~) (~- 1) Z _ L = O.
aZ h b Z

5.15. fl = Ia, O. U), fz = [0, v, ;;J. fl - fz = [a, - v, u - ;: J'

or

u -

r

VZ VZ

- = 0 u = fl - fz = (u, - v, 0 I,
2p' 2p

[ 0. v, --.C] + Ala. -v. OJ = faA, v(l - A), --.C],
2p \.. 2p

5.16. The parametric equations of the given circumferences are

fl = (a(l + cosu), O. a sinu), fz = (0, a(l + COSY), a sinv].

We find

fl - fz = {a(l + cosu), - a(l + cos v), a(sinu - sin vj }.

We have sinu - sinv = 0, whence

(I) v = u + Zk«,

(2) v = 'If - u + 2k7r.

In the first case, we have

fl - fZ = la(1 + cosu), -a(l + cosu), OJ II {I, -1, OJ,
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and thus obtain the elliptic cylinder

e (a(I + casu), 0, a sinuj + h{ 1, -1,01

{a (1 + casu) + h, -h, a sinuj.

In the second case,

f! - f2 = (a(1 + casu), -a(I - casu), 0),

and the second surface making up the given cylindroid is determined by
the equation

R (a(1 + cosu), 0, asinuj +

+ )..{a(I + casu), -a(1 - casu), 01

(a(1 + )..)(1 + casu), -a}..(1 - cosu), a sinu}.

Eliminating the parameters X and u, we obtain

Z4 + Z2[(X - y)2 - 2a(x + y») + 4a 2xy = O.

5.17.fl = [~'U,OJ,f2= [-~,o,vJ'
2p 2p

[_U_
2
_;_p_V

2_.,
u, - vJ.

The condition for this vector to be collinear with the plane y - Z = 0
is given by the relations

u + v = 0, v = - u, r, - f2 = (u 2/p, U, u),

and the required equation is the following:

r = [;;, u, oJ + v [ :2 ,u, uJ = [;; (I + 2v), u(I + v), uvJ.
Eliminating the parameters u and v, we obtain y2 - Z2 = 2px, a
hyperbolic paraboloid.

5.18. The equation of the axis Oz is of the form: r1 (0, 0, uland
the equation of the given curve

f2 = [b cos v, bsin v, , a
3

. J;
b: COSY SIn V

hence

10-- 201 H

[
a3

b cos v, b sin v, ----­
b2

COSY sinv
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u {b COSY, b sinv, O},

r [0, 0, 2 a
3

• ] + >"(b COSY, b sinv, 0)
b cosy smv

= [M cos v, 'Ab sinv, 2 a
3

• ].
b cosy smv

Eliminating the parameters 'A and v, we obtain

b2xy Z = a3(~ + y2).

5.19. (a + ub - e)n
,n(e - a)

0, u = -=-_~

nb

n(e - a)
a + ub - e = b - (e - a),

nb

R = e + 'A [ n(e n~ a) b - e + a].

5.20. Take the equations of the given ellipses in the form:

f. (a, b cosu, c sinu), f2 = (-a, c cos v, b sinv),

fl - f2 = (2a, b cosu - c COSY, c sinu - b sin v},

csinu - bsinv = 0,

c . ± _1 I.'Jb2 u_- '-c-f sl'n2 -usinv = - smu, COSy = "D-
b b '

f. - f2 = l- b cosu ± ; .Jb2
- c~ sin2u, 0].

The required equation is

R = (a, b cosu, csinu) + v [2a, b cosu ± ; .Jb2
- c2 sin2u:o]

or

R = (a + 2av, b cosu) + v [b cosu ± ; .Jb2
- c2 sin 2u, c Sinu]

5.21. The equation of the axis Oz is p = (~' 0, v}, and we find

e P = (u, u2
, u3

- v I, u3
- V = 0, v = li3,

P = (O, 0, u3
) .
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The required equation is

r == p + v(e - p) == (0,0, u 3 j + v(u, u", 0) == (uv, u2v, u 3
) .

5.22. r == (bv, av cosu, (b + a cosu)(1 - v) + a sinu).
5.23. The equations of the given straight lines are e == (u, I, I) and

p == (I, v, OJ. The equation of the straight line passing through two
arbitrary points of these straight lines is the following:

r == (I, v, OJ + A(U, I, I).

For the point where this straight line meets the plane xOz, we have:

V+A==O, A== -v,r== (I,v,O}-v(u,I,I} == (I-uv,O,-vl.

This point must lie on the circumference

x == cose, Y == 0, z == sine.
Therefore,

1 - uv == cos e, v == - sin 10,

whence

1 - coSIO I"
u == == -tan-

-sinlO 2

It remains to make up the equations of the straight line passing through

the points ( - tan ; , I, 1) and (I, - sin 10, 0). Finally, we obtain:

r == (I, -sin\O, 0) + ~((l, -sin\O, OJ - [-tan ;,1, I])

[I + ~(l + tan ;), -sin\O - ~(l + sin \0), -~].
5.24. r == (a(cos v - u sin v), a(sin v + u cos v), b(u + v)}.
5.25. C2(~ + y2)2 == a2(~ _ y2)(Z + C)2.

5.26. We will assume that rectangular Cartesian coordinates (~, 1]) are
given on the plane 1r. Then the equation of the curve e == e(u) can be
written in coordinate form thus: ~ == Hu), 1] == 1](u). In addition, we
assume that the straight line AB is the axis z in space and that the axis
1] of the moving plane 11" slips along it. For the appropriate choice of the
axes x, y and positive directions on the coordinate axes, we have:

R(u, v) == (Hu)cos v, Hu)sin v, 1](u) + av l ,

5.27. R(u, v) == r(u) + av(u)cos v + al3(u)sin v, where v and 13 are
the principal normal and binormal unit vectors to the curve r == r(u),
and the points (u, v) and (u, v + 271") regarded as identical.
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5.28. lake the point of intersection of the normals to be the origin
-of the radii vectors. Then

r • f u = 0, r . f v = 0,

. whence f2 = const. Therefore, the given surface is either a sphere or a
part of a sphere.

5.29. The volume of the tetrahedron is 90 3/2 .
5.30. The tangent plane is determined by the equation

__x_ + y + z = 0 2.

U sin v U cos v .,j0 2
- u2

The required sum equals 0
6•

5.31. The equations of the line of intersection in curvilinear coordinates
are U = UICOS(V + vl)/cos2vl (except for the generator v = VI), where
UtI VI are the coordinates of the point of contact. The parametric
equations of the same line in Cartesian coordinates are

cos(v + VI) cos(v + VI)
X Ul cos V, Y = UI sin v,

cos2vI COS2Vl

z = 0 sin2v.

The equation of its projection on the plane xy is

~ + y2 = Ul (x COSVI - Y sin VI).
COS2Vl

Since the projection is a circumference, the line itself (being a plane line)
is an ellipse.

5.32. The equation of the tangent plane is

Z - xf = ~ - ~ f') (X - x) + (Y - y)f', or

Z = ~ - ~ f') X + Yf',

and all the tangent planes pass through the same point, viz., the origin.
Besides, it is also clear from the fact that the given equation determines
a cone with vertex at the origin (z being a homogeneous function in x
and y).

5.33. The tangent plane has the equation

kx sinu - ky cosu + VZ - kuv = 0,

and the normal

r = (v cosu + }"k sinu, V sinu
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x y Z
5.34. - + + = 3.

x Y Z

5.35. Let the equation of the curve C be Q = Q(s). The equation of
the surface is as follows: r = Q + AT, where T is the unit vector of the
tangent to the curve C. We find that

ar
- = T + »k»,
as

ar [ar arJ8>: = T, 8>:';;; = Ak{3;

1',
ar

r = Q + AI',

when s = const (i.e., at the points of the same tangent), this vector has
the same direction (for then (3 = const), from which it follows also that
the tangent plane to such a surface at all points of the curve C is the
osculating plane to this curve.

5.36. The equation of the surface is

ar = T + A(<kr + x(3),
as

[~, ~J = (I - Ak)(3 - AXT.
as aA

The equation of the tangent plane is

(R - Q - Ap)«(3 - Ak(3 - AXT) = 0,

or

and that of the normal

R = Q + AI' + H(3 - AxT).

ar ar
5.37. r = Q + A(3, ;;; = T - AXp, 8>: (3,

[~ ~J = -I' - AXT.as' aA

The equation of the tangent plane is

(R - Q - A(3)(p + AxT) = 0,

or

(R - Q)(I' + AxT) = 0.

The equation of the normal is

R = Q + A(3 + HI' + AxT).
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5.39. If a is the direction vector of the given straight line, and the origin
of the radii vectors is taken on it, then the vectors r, a,

[
ar arJ' .and -, - he III the same plane, while
au av

r> [a, [::' ::JJ = 0.

Hence,

But this equality can be written as the vanishing of the functional deter­
minant, viz.,

ar2 a ar2 a
- - (a . r) - - - (a • r) = 0,
au av av au

from which it follows that the entities r2 and a . r are in the functional
dependence

r 2 = !(a . r),

Choosing the axis Oz along the vector a, we obtain XZ + y2 = !(z), a
surface of revolution.

5.42. 4z2 (~ + ~:) = I, the edge of regression being imaginary.

2 0
2

2 2 25.43. x + 2 2 Y + Z = 0 .
a + b

5.44. The envelope has the equation (XZ + y2 + Z2 - X)2 = XZ
+ y2, and the edge of regression degenerates into the point (0, 0, 0).

5.45. Taking the equation of the parabolas in the form y2 = 2px, z = °
and y2 = 2qz, x = 0, we obtain the equation of the envelope in the
form y2 = 2px + 2qz, i.e., a parabolic cylinder with --Jp2 + q2 as a
parameter.

5.46. (R - e)2 = a2. Differentiating with respect to s, we obtain
(R - e~7 = O. Hence R - e = Ab + u»: Since (R - ef
= a2, A + p,2 = a', and we can put

A = a COSip, p, = a sin e

so that the equation of the envelope is

R = e + a(b cose + v sine),
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5.47. The edge of regression is a curve whose points are obtained by
intersecting the curvature axes of the curve e = e(s) with the corre­
sponding spheres of the given family.

5.48. The equation of the family is the following:

(x - b COScp)2 + Y - b sin2
cp + Z2 - 02 = 0,

and the envelope is a torus whose equation may be obtained by
aF

eliminating cp from the equations F = 0 and -- = 0; (.r + y2 + Z2 +
acp .

+ b2 - 0
2)2 - 4b2(.r + y2) = 0 is a surface of the fourth order. The

edge of regression when 0 > b is reduced to the two points

(0, 0, ::I: .J 0
2

- b2
)

or one point (0, 0, 0) if 0 = b.
5.49. The equation of the family is as follows

.r + y2 + Z2 - 2u 3x - 2u 2y - 2uz = O.

We shall find the envelope by eliminating u from this equation and from

3u 2x + 2uy + Z = O.

Thus, the equation of the envelope is:

3x[9x(.r + y2 + Z2) 2zyf + 2y[9x(.r + y2 + Z2) - 2zy)

- (l2xz - 4y 2) + z(l2xz - 4y 2f = O.

The edge of regression is found by adjoining another equation to the
two indicated above, viz., 6ux + 2y = 0, or 3ux + y = O.

Hence, u = - y/3x, and the equation of the edge of regression is the
following

27.r(.r + y2 + Z2) - 4y 3 + 18xyz = 0, y2 - 3xz = O.

The edge of regression can also be obtained in parametric form:

[
2U3 -6u

4
6U5

]

r = 9u4 + 9u2 + l' 9u4 + 9u 2 + l' 9u4 + 9u 2 + 1 .

5.50. .r13 + y2l3 + Z2l3 [213.
5.51. .r/3 + y2/3 + Z2l3 = 0 213.

5.52. xyz = 2/9 0
3.

5.53. The envelope is y2 = 4xz, and the edge of regression is degener­
ated into a point, viz., the origin.

5.54. The characteristic is x = o(cosa + a sina) - Z sino, y =
= o(sina - a coso) + Z coso, and the edge of regression is a helix

x = 0 coso, y = 0 since, z = aa.
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5.55. Let Q = Q(s) be the equation of the given curve. The equation
of the family of the osculating planes is

(r - Q)b = o.
Differentiating with respect to s, we obtain (r - Q)r = O. The charac­
teristic is the tangent

(r - Q)b = 0, (r - Q)JI = O.

The envelope is r = Q + h, i.e., the surface formed by the tangents
to the given curve. Differentiating the relation (r - Q)JI = 0 once more,
we obtain (r - Q)b = O. Hence, taking into account the relations

(r - Q)b = 0, (r - Q)JI = 0

we have

r = Q,

i.e., the edge of regression is the given curve.
5.56. The characteristics are the curvature axes of the given curve, and

the envelope is the surface formed by the curvature axes. The edge of
regression is the curve described by the centres of the osculating spheres
of the given curve.

5.57. rn ' + D' = 0, r = an + {In' + Alnn'],

ex = rn = -D, {:J =
rn' D'

The equation of the envelope is

tr «
r = -Do - -- + A[nn']n,2

(with the parameters u and A). The characteristics are straight lines
u = const. The edge of regression is found by solving the equations

rn + D = 0, rn' + D' = 0, rn " + D" = 0

for r, viz.,

(rn) [n'n"] + (rn') [n"n] + (rn") [nn']
r =

nn' n"

D[n'n"] + D'[n"n] + D"[nn']

nn'n"
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5.58. The envelope of the family of planes tangent to both parabolas.
The equation of the family is

(

0/ 4a
3

) 4a
3

Xa - 2aY - - + -- Z + -- ~ 0,
2b ba a

where a is the parameter of the family.
5.59. The vector of normal is n = (u + y)(i sin v - j cos Y + k) is

parallel to the vector i sin Y - j cos Y + k, which is unaltered if the par­
ameter Y remains constant. Hence, the lines Y = const are rectilinear
generators of the surface, and u + Y = 0 is the edge of regression, since
the modulus of the vector n vanishes at each of the points of the surface.

5.61. The equation of the curve is u = const and the edge of regression
is

x 2(a - b)u COS2y, y = 2(a - b)u sin3y,

z = 2u2[(a - 2b)cos 2y + (b - 2a)sin2y].

5.62. x = 31, Y = - 312
/ b, z = - 13

/ abo
5.63. The required developable surface envelops the family of planes

Xx + YH- - ~ + Z Ja
4

- ~ = a2
,

b2

where x is the parameter of the family.
5.64. (I) r2(cos2y du 2 + d y2);

(2) (a2 sin2u + b2
COS

2U)COS2Y du" +
+ 2(a2 - b2)sin u cosu sin v cos y du dv

+ (a2 cos! u + b2 sirr' u)sin2v + c2 cos2
Y1dv";

(4) [( a2(y2 - 1)2 + 4b2y2 + C
2(y2 + If ldu2 +

(u + y)4

+ 2 (a 2(u2 - 1)(y2 - I) - 4b2uy + C2(U2 + 1)(y2 + I) ldudY +

+ (a 2(u2 _ 1)2 + 4b2u2 + C2(U2 + 1)2}dy2];
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+ +(b2
- a2)sinu cosu (v - :3) dudv +

+ [+(1 + :z)\a2cosZu + bZsinzu) + :Z (1 - :z)]dVZ;

(6) (p sin2u + q coszu)vzduz + 2(q - p)sinu cosu dudv

+ (p cos2u + q sinzu + v2)dvz;

(7) (p + q + 4vz)duz + 2(p - q + 4uv)dudv + (p + q + 4uz)dvz;

(8) v2(a2 sinzu + bZcoszu)du z + 2(bz - a2)sinu cosu dudv

+ (az coszu + bZsin2u + c2 )dv2
;

+ b2 cos2u)du2 + dv";

5.65. (1) ds' + 2redsd'A + d'A2
;

(2) v2ds2 + 2vredsdv + eZdvz;

(3) (r + x ::) zdsz + 2erdsd'A + d'Az;

(4) ((l - k coscp)z + x2Jds2 + 2xdsdcp + dcpz;

(5) cp2du 2 + ('1',2 + 1/t,zJdvz;

(6) (a + b cos vfduz + bZdvz;

(7) (v2 + kZ)duz + dv";

(8) ((l - >'k)z + xz>.zJdsz + d'Az;

(9) (1 + >.zx2)dsz + d'Az.

5.66. (1) The curves u = ± 1/2 avz, v = I intersect at the points

A(u = 0, v = 0); Btu = 1/2 a, v = 1); C(u = - 1/2 a, v = I);

the differentials of curvilinear coordinates on these curves being related
by the formulae:

du = avdv for the curve AB with the equation u
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1
--avz,

2 '
du = - avdv for the curve AC with the equation u

dv = 0 for the curve BC with the equation v = 1.

Substituting these values in the first fundamental form, we obtain

ds' = aZ(1I4 v4 + vZ + I)dvz, ds = (112 vZ + I)dv for the curve
AB;

dsZ = aZ(1I4 v4 + vZ + I)dvz, ds = (112 vZ + I)dv for the curve
AC;

dsz = du", ds = du for the curve BC

lt remains to evaluate the integral between the limits determined by the
coordinates of the points A, B, C; viz.,

V= 1

AB = AC = a J (112 vZ + I)dv = 7a/6,
v=o

U = IIZa
CB = J du = a.

U= -IIZa

5.67. cosO

10
Thus, the perimeter of the triangle equals - a.

3

(2) cosA = I, cosB = 2/3, cosC = 213, i.e.,

A = 0, B = C = cos - I 2/3.

(3) S = a
Z [~ - ~ + In(1 + Y2)].

1 - aZ

I + aZ '

5.68. v [
I.-JU

Z + I I ]
± .-JU Z + I + - In I : I + const.

2 .-Juz +

5.69. v = tanO In [u + ~;;Z) + const.

5.70. (1) 1/4 (vij + sinh2vo);
(2) vo, sinh vo, Y2sinh vc:
(3) 7r12, 7r/4, 7r/4.

5.71. (I) ds2 = /Il - ak(u)cosr,o]z + [ax(u»)Zjdu Z +
+ 2azx(u)dudr,o + aZd<{?;

(2) r,o(u) = - Jx(u)du;

(3) 27raluz - ull;

(4) 47rzab;
(5) 27rza.-J",-2,-----+-b---.-z.
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5.72. Consider the family of the surfaces
v

R(u, v, I) = (e(u, I)cos -, ij(u, I)sin v/t, z(u, I»),
I

where

ij(u, I) = le(U), z(u, I) = .\VI - 12e'(uldu, I ~ I >0.

5.73.R(u, <,0) = (--.fC:+--;;zcos<,O,VI+--;;zsin<,O,ln(u + Vi + u2»),
or

Rtz, <,0) = [coshz cOS<,O, coshz sine, z},

This is a catenoid, a surface of revolution of the catenary curve
x = coshz.

5.75. Hint: The first equation determining the correspondence between
points is as follows:

,2 = e2 + a2.

5.78. For the sphere ds2 = du" + R2 cos2(uIR)dv2,

for torus ds' = du" + (a + b cos ~) 2dv",

for catenoid ds2 = du" + (a2 + u2)dv2,

for pseudosphere ds2 = du2 + e - 2uladv".

Hint: u is the natural parameter of the meridian.
5.79. ds2 = dif + e-2uladli2.

Putting u = V, v = ae"la, we obtain

a2

ds" = - (du 2 + dv 2).
v2

5.80. (a) If a and b are the sides containing the right angle of a right­
angled spherical triangle, c its hypotenuse, and R the radius of the sphere,
then the following relation is held

cosc/R = cosaiR cosblR.

(b) Let A, B be the angles opposite to the sides a and b. Then

S = R2(A + B - 11"12).

5.81. S = 2aR2
, where R is the radius of the sphere.

5.83. Hint: Take the equation of a conic surface in the form r = ve(u),
where ie(u)1 = I, and compare its first fundamental form with the quad­
ratic form of the plane in polar coordinates.
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2
(du2 + u2dv2);

(5) -J
1 + 4u 2

(6) Rdv';

ku
dv":(7)-J

1 + k 2 '

(8) bdu" + cosu(a + b coeusdv";

1
(9) - - (du2 - a2dv2);

a

(10) - a cotutdu" - sin2u dv2
) .

5.87. - 2adudv/-J u2 + a2.

2a
3 [y

5.89. -J 6 :?- - d:?-
X4y4 + a ( + y2) X

(Q'X" - Q"x')du2 + QX'd,/
5.90. (1) 2 2

(x') + (12')

x'( "x" - e"x')
(2) K = 12 .

Q[(X')2 + (Q')2f

K > 0 if the convexity of the meridian is directed from the axis of
rotation; K < 0 if the convexity of the meridian is directed towards the
axis of rotation; K = 0 if the meridian has a point of inflexion or if
it is orthogonal to the axis of rotation (when 12 ;t:. 0).

(3) K = - 1, when x ;t:. 0; K is undetermined, when x = 0;

(4) H = Q(Q'x" - Q"x') + x'[(X')2 + (Q'f] .
2Q[(X')2 + (12')2]3/2
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1
(5) e(x) = - cosha(x - xo),

a

where Xo and a > 0 are arbitrary constants (catenoid).
5.91. (a) K = 0;

)(

(b) H = --.
2kv

3uu ffi
5.92. K = - ffi·

5.93. K -1.
5.94.

3xyF 3xzF 3xF

3yyF 3y zF 3yF

3'l'F 3zzF 3zF

3yF 3zF 0

where

p = 3xz, q = 3yz, r 3xxz, S 3xyz, 3yyz.

x2 + yZ + aZ

5.96. ± ----'----
a

1
5.97. - = 0,

s, Rz
1

5.98. K = -
(2u z + l)z'

(u + v)V2·

H = _ 2(1 + u
Z

)

(2uz + 1)3/2·

H = O.
4

5.99. K = - --=-----­
9(uz + vZ + 1)4'

5.102. r = e(s) + u(j(s),

H=
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5.105. K* =

5.104. r* = r + am, r'tJ = ru + am u , r~ = r. + am., .

E* = r*~ = r~ + 2arumu + am~ = E - 2aL + a2(2HL - EK).

Similarly,

F* = (I - a2K)F + 2a(aH - l)M,

G* = (I - a2K)G + 2a(aH - I)N,

L* = aEK + (I - 2aH)L,

M* = M - a(2MH - FK),

N* = N - a(2NH - GK).

K

5.106. H*
H - aK

H
5.107. r* = r + - m.

K

5.108. K* = 4H2 = const.

1
5.109. H* = - -.JK.

2

du 2

5.111. 2 2
a + b2 + U

o.

5.112. v ± In [u + .Ju2 + a 2l = const.

5.114. u const, v = const.

k COSIO
5.115. (1) K = - ----'--

a(1 - ak COSIO)

(2) H = - (1- ak COSIO)2;

(3) u = const, II' = const.

5.116. u = const, II' = 100 - ~}{(u)du.
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5.117. The lines of curvature are u ± v = const,

4
K - - H = O.

- (3u 2 + 3v 2 + 1/3)4'

5.122. (1) The rectilinear generators are y/x const;

1 1
(2) ---;1 - 7 = const.

5.123. (1) The rectilinear generators are y const;

(2) ~y = const.

5.124. The equation of the asymptotic lines is

(1) u = const;

(2) US = v2(C - yiN.

5.125. v = const,

cos2u cosv
= const.

(1 + COSU)2

5.126. (J = ±B on the asymptotic line. Therefore, ,,2 = (~:) 2. We

select a coordinate system (u, v) in a special way so that the following
conditions may be fulfilled at the point u = Uo, v = vo under consider­
ation: (1) the lines u = const and v = const have principal directions;
(2) E(uo, vo) = G(uo, ve) = l. Then Fiu«, ve) = 0 due to the
orthogonality of the principal directions and n, = - k,Ru , n, = - k2R v

by the Rodrigues theorem. Therefore,

(
dB )2 = (BU du + BV..!!!...-)2 = kfdu

2
+ k~dv2

ds ds ds ds2

Let tp be the angle between the line v = Vo and asymptotic direction.
Then with respect to this direction du/ds = cose, dv/ds = sine because
E = G = 1, F = O. On the other hand, we find from the Euler formula
that

k, cos2
tp + k2 sin2

tp = O.

Finally, we have

-K.

160



5.128.
x

(1 - kU)2 + U2X2 .

5.129.
U + -Ju 2 + a2 + b2

-Jv 2 + a2 + b2 = const;
v +

5.143. Assume that the rectilinear generators are parallel to the axis
Oz. Then the equation of the surface can be written in the form

r = I(u)el + \O(u)e2 + ve3,

where u is the natural parameter of the directing line. We will seek the
equation of the geodesic in the form

v = v(u).

Then

N = [ru , rvl = 10' ei - I' e2,

dr = (f'el + lO'e2 + v'e3)du,

d2r = (f"el + lO"e2 + v "e3)du 2,

and the equation for determining the geodesic lines is

(*)

10' -I' 0

I' 10' v'

I" 10" v"

or
(10,2 + f'2)V"

Since 10,2 + 1'2

0,

(10' 10" + I'f")v' o.
1, we have

Thus, v" = 0 and v = CIU + C2. The vector equation of the family
of geodesics is

r = I(u)el + lO(u)e2 + (ClU + c2)e3,

whence

./"-....
coss = cos(ru , OZ)

11-2018

~.
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Therefore, the geodesics found are generalized helices. Besides, the
rectilinear generators are also geodesics which were not induded in the
general solution, since their equation cannot be represented in the form
(*).

5.144. Let the equation of a developable surface be in the form

r = e(s) + UT(S),

and let 0 be the angle at which a geodesic intersects a rectilinear generator
S = const. If k is the curvature of the curve R = e(s), then the differential
equation of the geodesic is

du
- - uk cotO + 1 = O.
ds

It is a linear differential equation of the first order integrable by
quadratures.

5.145. The equations of the geodesics are

r
[

C cos v C sin v C J
. Cl ± v' . Cl ± v' . Cl ± v .

sin ~ sm ~ sm~

5.147. Consider the equation of a cone in the form r = up(v) and
assume that Ip I = 1, Ip • I = 1. Then the equations of the geodesics are
of the form

r = C 1 p(v).
sin(C - v)

5.150. Great circumferences of the sphere.
5.154. By the Meusnier theorem, the curvature radius R of the curve 'Y

at a certain point equals the projection of the geodesic curvature radius Rg

,( = 1/kg) onto the osculating plane of the curve 'Y, i.e., R = IRg cos 0 I;
the vector e = [t, m] is the unit vector lying in the tangent plane to the
surface, and orthogonal to 'Y; n is the unit vector of the principal normal
to the curve 'Y;

IcosOI = lenl, kg=klcosOI =klenl ';·Ieil = l ttm l = lmrr l .

5.155. kg = U /(u 2 + a 2) .
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5.158. Considering vas a function of u along a geodesic, we obtain the
following differential equation for the geodesics:

or

2('1' + ~) '!~_~ = _ '!.~ (,!!,)3 + d1f; (dduUV)Z
du z du du du

d<P dv d1f;- - + -- ,
du du du

Integrating this relation, we obtain the required equations.

5.159.1f" + a/R6.
5.160.1f" - aZa.
5.161. o" 1f"12.

5.162.0*
"2 U2

J dv J IBuu(u, v)1 duo

VI U 1

5.164. s(P) = 21f" sinh o; kg(P) = coth p - I as p - +00;
Il(P) = 21f" cosh p; Il(P) - +00 as p - +00. On the Euclidean plane,
s(P) = 21f"p;kg(p) = lip - Oasp - +00;I1(p) = h.

5.165. First, we establish that the metrics defined on PI and P zhave the
same curvature K = - I. Then we introduce semi-geodesic coordinates
(~, 71) on the plane Pz so that:

(I) the geodesics are the lines 71 = const and ~ = const;
(2) ~ is the natural parameter of the line 71 = 0;
(3) 71 is the natural parameter of the line ~ = O.
Then dsz = d~z + B2(~, 'Y/)d'Y/z, with B~~(L 71) = B(~, 71),

B(O, 71) = I, B~(O, 71) = O. It follows from these equalities that
B (~, 71) = cosh ~ .

5.166. dn z = 2H(n, dZR) - Kds",
5.167. Apply the Frenet formula it = - kt + xb. For the geodesic line

(m = n), we have

(~~Y= ed7Y= k
Z

+ x
2

•

On the other hand,

(:7Y = 2H' II - K' I,
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where I and II are the first and second fundamental forms of the surface.

When H = 0, we have (~;) Z = -K, and therefore, k Z + )(z = -K.

5.168. If the equations of a surface of revolution are written in the form

x = .p(u) cos v, y = .p(u) sin v, Z = u ,

then the vanishing of the mean curvature implies that

I + .p. Z - .p'.P" = o.
Putting p = d.p/ du and considering .p as a new variable, we obtain

Z dp d.p
I + p -.pp . - = 0,

d.p .p

I
.. d(ln (1 + pZ»,
2

whence

cZ.pZ = + pZ.

With respect to the original variables,

d~/Mi~ = du,

(l + uZ)!'(u) = a, !,(u) = a/(l + u z).

Integrating this equation, we get

f(u) + b = Z + b = a tan - 1 u.

Therefore,

u = tan (z + b)/a, y/x + tan (z + b)/a,

which is an implicit equation of the right helicoid

x = ~ cos I), y = ~ sin I), z = an - b.

5.170. Let the coordinate lines coincide on the surface S with the lines
of curvature. Then

r: = (l - ak1)ru ' r; = (l - akz)rv '

Therefore, the coefficients of the first fundamental forms of the surfaces
Sand S * are related by the formulae

E* = (1 - akt)zE, G * = (1 - akz)zG, F" = P = o.
Hence,

da* (I - ak1)(l - akz)da,

and
do - do"

lim
Q- 0 2ada

164



5.171. Let S be a minimal surface, and S * a surface parallel to it, the
distance between them along the normal being equal to a. As it follows
from the previous problem, the corresponding elements of the areas of
the surfaces S * and S are related by the formula

do" = (I + a 2K)da,

where K is the Gaussian curvature of the surface S. Therefore,

Bdo" = Bdo + a 2 BKda.
D D D

Since K :( 0 on the minimal surface,

Bdo" :( Bda.
D D

5.174. Take the axis of the cylinder to be the axis Oz and place the axis
Ox in the sectional plane. Then the equations of the cylinder assume the
form

x = a cos t, Y = a sin t, Z = u,

and the equation of the sectional plane is

z = Ay.

Cut the cylinder along a generator intersecting the axis Ox, and place it on
the plane xOz. Since after the superposition, the part of the abscissa is
played by the length of an arc of the perpendicular section of the cylinder
s = at, the equation of the required line is

z = aA sin S
a

i.e., a sine curve.
5.175. The general equation of the motion of a point across the surface

is of the form

d 2r
m- 2=F+Rm-ItIRlt,

dt

where F is an external force, R the normal reaction of the surface, It the
coefficient of friction, t the unit tangent vector to the trajectory, and m
the unit vector of the normal to the surface. Since
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K==

when I' == 0, the equation assumes the form

m (t!ZS t + (qs)zqt) == Rm - plRIt.
dt Z dt ds

Multiplying it scalarly by It, m), we obtain

dt dr dZr
tm -- == - m - - == 0,

ds ds ds z

i.e., the point moves along a geodesic.
5.177. Take a semi-geodesic coordinate system on the surface. Then

ds z == du z + G(u, v) dv z.

On the line u == 0, we have -.fG Iu = a == 1. Besides, we obtain from the
equation of geodesic lines that

~~ I == o.
au u = 0

In the semi-geodesic coordinate system,

1 aZva
:.ro -a~-2 .

If K == 0, then

aZ-.fG
-- == 0
auz '

and the solution of this equation satisfying the initial conditions indicated
above is vo == 1. Therefore, for all surfaces of zero Gaussian curvature
the first fundamental form can be reduced to the form

dsz == du z + dv 2 ;

hence, all of them are locally isometric to each other.

1
If K == Z (a == const), then

a

VG == cos u
a

ds Z == du z + cosz u dv z.
a

If K ==
1

-z (a == const), then
a

ds Z == du 2 + cosh? u dv z.
a
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5.180. The surface S can be obtained by bending the hemisphere so that
the two halves of its boundary circumference may overlap each other, and
then glue the surface along these semi-circumferences, from which it
follows that the geodesics on the surface S not passing through its singular
points (ends of meridians) become closed after traversing around the sur­
face twice (i.e., after increasing 'P by 47r).

5.182. It follows from the formula

HKda + ) kgds = 27l"
D L

when kg = 0 that

HKda = 27r.

D

And this equality cannot be valid if K ,;;; 0 at all points of the surface.

6
Manifolds

6.1. As the atlas of charts, the sets Uk± determined by the inequality
ut = [xk > OJ, Uk- = [xk < OJ should be taken. As the coordinate
functions, all Cartesian coordinates except z, should be taken in the chart
U

k
± .

6.2. Notice that T 2 is homeomorphic to the Cartesian product
S I x S I, and reduce the problem to the previous when n = I.

6.3. Any neighbourhood U of the origin 0 can be split into at least 4
connected components, while discarding the point 0, which is impossible
on a manifold.

6.4. The sphere S" is a compact space.
6.5. (a) Yes. (b) No.
6.6. The space Rpn is the set of collections (xo: X I : ... : xn ), where

Xi E R, Ex? *- 0, with the equivalence relation (xO:xl:'" :xn )
~ (Axo: AxJ : ••• : Axn ). Introduce a real analytic structure on Rpn. To
this end, cover Rpn by a set of n + I charts. Consider the collections
(xo: X J : ••• : x n ) such that Xi *- O. The set of such collections can be
naturally considered identical with Rn , viz.,

(xo: X J : ••• : x
n

) _ (~ll., ... ,xi-.J. , Xi + ~ , ... , xn ) .
Xi Xi Xi Xi
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It is easy to see that the definition of this correspondence is correct. It re­
mains to consider the functions of transition from the i-th chart to the

i-tho Let x%) be the k-th coordinate of the collection (Ao: Al : ... : An) in
the i-th chart, and x?) the l-th coordinate in the j-th, respectively (let, for
simplicity, i < i). Then

v) v)
(i) _ x I (i) _ Xi + I (i) _

Xl -(j)"'" Xi - - v) , ... , Xj - v)
~ ~ ~

Thus, the transition functions are not only smooth, but also real and
analytic.

6.7. See Problem 6.6.
6.8. The atlas consists of one chart with coordinate functions

(XI"" ,xn )·
6.9. Represent the elements of the group SO (2) as rotations of the plane

through a certain angle about the origin. The group 0(2) is homeomor­
phic to the union of two replicas of S J.

6.10. Represent the elements of the group SO(3) as rotations of the
space about a certain axis through a certain angle.

6.11. The groups GL (n, R), GL (n, C) are open sets of the space of all
matrices.

6.12. A cylinder.
6.17. Use the rule for differentiating a function of a function.
6.19. 1.
6.20. Apply the implicit function theorem.
6.22.

Vi = Rx/-..fl+ [x1·

6.23. Use Problem 6.22.
6.24. y = x 3•

6.25. Use the function y = e - l/x
2•

6.26. Use the function from the previous problem.
6.27. Let IVzl be an atlas of charts sufficiently fine for the following

conditions to be fulfilled: if A n Vex *- 0, then Vex C V. Let 11"" I be a
partition of unity, subordinate to the covering 1V" I.

6.28. Use the average operation

j(x)dx.

Ix -' yl < r.

Put j = L <{!", where the summation is over all indices a for which

A n u" *- 0.
6.30. The composite of smooth mappings is a smooth mapping.
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6.31. Write formulae explicitly expressing the coordinates of the nor­
mal in terms of local coordinates on the torus.

6.32. Homogeneous coordinates on the straight line depend smoothly
on local coordinates on the sphere and local coordinates on Rp2 are ex­
pressed in terms of homogeneous coordinates.

6.33. Coordinate functions are a special case of a smooth function in a
manifold.

6.34, 6.35, 6.36. Use the implicit function theorem.
6.37. Use Problem 6.36 and partition of unity ..
6.38. Using local coordinates, calculate the rank of the Jacobian matrix

of the mapping.
6.39. Use the properties of the rank of the product of two matrices.
6.40,6.4]. 6.42. Consider the group GL (n, R) of all square matrices of

order n with non-zero determinants. Each matrix from GL (n, R) can be
associated with a vector from the space Rn2

, while the mapping
det: Rn2

- R is a continuous function. Therefore, the group GL (n, R) is
an open subset in Rn2

• Any open subset is a smooth manifold.
Definition. A linear group is said to be algebraic if it can be singled out

of the group GL (n, R) by some set of algebraic, i.e., polynomial, rela­
tions among matrix elements.

Theorem. Any algebraic linear group G is a Lie group.
Proof. Consider the space M(n, R) of all square matrices of order n

with elements in R. Let J be the ideal, formed by all polynomials
vanishing on G, of the ring S of polynomials on Min, R). By the Hilbert
theorem [5], there exist polynornialsj'[, ... ,fa E J (forming the ideal J)
such that any polynomial f E J can be represented in the form f =
= [f"g". where g" E S (a = I, ... , a). Let p be the rank of the Jaco­
bian matrix (af,,/axij) (having a rows and n 2 columns) when (xij) = E.

Lemma. The rank of the matrix (af,,/axij) equals p at all points of the
group.

Let A E G. For any polynomialf E S, we put (Af) (X) = f(A -IX),
X E M(n, R). The transformationf - Af is an automorphism of the ring
S, transforming the ideal J into itself. Therefore, the polynomials
Afl , ••• ,Afa are generators of the idealJ as well as offl , ••• ,fa' We
have

Al, = E f(3g,,(3' f" = E (Af(3)h Oi(3'

~ "
where g"ll' h,,(3 E S. At the points of the group G, we have

a(Af,,) L af(3 af" L ~(A.tfi) h (3
aXij

a -- g,,(3'
aXijxij aXij oas »

~ ~
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(1)

from which it follows that the ranks of the matrices (a(Afex)laxij) and
(afex I aXij) are equal at all the points of the group G. On the other hand,
the rank of the matrix (a(Afex )Iaxij) at the point A equals the rank of the
matrix (afex laxij) at the point E, i.e., equals p. Therefore, the rank of the
matrix (afexlaxij) at the point A equals p, and thus the lemma has been
proved.

Now, let d be a minor of order p, not vanishing at E, of the functional
matrix (afex laxij)' Assume, for definiteness, that it is contained in the first
p rows. It has been proved that all the minors bordering it are identically
equal to zero on the group G, i.e., belong to the ideal J. Similarly to the
proof of the classical matrix rank theorem, we obtain

p

d ~f~= ~
aXij 1.J

(J= 1

where gex(3 E S, a = I, ... , a. Consider the set G of matrices satisfying
the equations j", = ... = t, = O. It is obvious that G C G. By the im­
plicit function theorem, there exists a neighbourhood U of the unit matrix
in M(n, R) such that the intersection GnU can be given parametrically,
the number of parameters being equal to d = n 2 - p. We can see to it
that d does not vanish on U, and the range of parameters is connected.
Let (xij(t» beacurveinG n U,with(x(i(O» = E. When a = 1, ... ,
p, dfexldt = 0 along this curve. We obtam from (I)

where a is any index. The unique solution of this system, with the initial
conditionsfex(O) = 0, is the zero solution. Therefore.y', = 0 for all a,
i.e., GnU = Gnu, which shows that G is a Lie group.

The group SO (n) in question is a Lie group (consequently, a smooth
manifold), since it is an algebraic group. Its relations are

L aijakj = 0ik' det (aij) = 1.
j

The dimension of the group SO(n) equals a(n - 1)12. Consider the case
of the groups U(n) and SO(n). Every linear transformation over e with
the matrix A can be treated as a linear transformation over R. This
transformation will have the following matrix with respect to the basis
el' ... , en' iet' ... , ie; (where et, ... ,en are .basis vectors in en):

(
Re A

-ImA
ImA).
ReA
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The group GL (n, C) is a subgroup of the group GL (2n, R). Therefore,
the theorem proved can be applied to the groups of linear transformations
of en. Note that V(n) is the group of linear transformations of en, pre­
serving the hermitian metric. The group SV(n) C V(n), det A = 1 if
A E SV(n). The condition for unitarity is written with respect to the or­
thonormal basis thus:

L uikajk = 0ij'

k

In the passage to real coordinates, we obtain symmetric relations for the
matrix elements. It follows from what has been considered previously that
the group V(n) is an algebraic group. The group SV(n) is also algebraic
and singled out of the group V(n) by the additional equation det A = 1.

6.43. Calculate the rank of the Jacobian matrix of the mapping.
6.45. All the roots are of multiplicity one.
6.47. Since M" is compact, it can be covered with a finite number of

charts each of which is homeomorphic to the open ball o», Let there be a
covering of charts Va ee D" (where x~, ... ,x~ are local coordinates).
Thereby, each point x E M n is put into correspondence with the collection
of its coordinates in D", This is a smooth mapping I. Extend I to the
whole manifold M" by constructing a new covering with the charts Wa ,

Va CWo" and also constructing the functions 10' (x) = 0 when x If Wa ,
la(x) = Ion Va' 0";; 10' ,,;; I. Suppose there were k charts in the cover-
ing. Then, to each point of the manifold, we assign the nk-dimensional
vector

V ( I» ,(i) ( ) ,(k)()J 1.(i)() - 1. ( ) ix- I (x····'Jn x,···,Jn x, 0' X - axxa'

Under such a mapping, one-to-one correspondence is not achieved at
those points x, y which belong to Wa" Va' since here we smoothen the
functions in an arbitrary manner. To eliminate this defect, construct
another covering Va CWo" Perform the same constructions for the
coverings Wa and Va as for Va and Wa to obtain the collection of func­
tions g2). Then the correspondence

x - [gP)(x), ... , g~k)(x)J E R2nk

is one-to-one.
6.49. Verify that the neighbourhood of S" C R" + 1 is diffeomorphic to

S" x R I, and apply the method of induction.
6.50. Apply the Sard lemma.
6.51. Use the two-dimensional surface classification.
6.52. Prove, at first, that the manifold M n can be immersed into R2n • It

is known that any compact, smooth manifold M" can be embedded in
RN

, where N is a sufficiently large number. We assume then that
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M n c;.. RN • We shall decrease the dimension of N by projecting M" along
a certain vector ~ onto its orthogonal complement. Under these projec­
tions p~, there may appear points at which the smoothness of p~ is
disturbed, i.e., such points at which the tangent space Tx(Mn) contains a
vector 11 parallel to the vector ~.

Thus, for the projectionp~ to be a smooth mapping at every point, the
vector ~ should be selected so as not to belong to the tangent space (at any
point x E M n). The tangent space Tx(Mn) is diffeomorphic to Rn

, but
since we are interested in the directions of the vectors only, the manifold
of directions is Rpn - I. The dimension of all the tangent directions is not
more than n + (n - I) = 2n - I. If N - 1 > 2n - I, then a direc­
tion independent of all the directions of the tangent spaces to the
manifold M (i.e., not contained in them) can be chosen in the space
RpN - 1. Select one of such directions and project along it. This pro­
cedure is repeated while the inequality 2n - 1 < N - 1 is fulfilled.
Finally. when 2n - 1 = N - I, this reasoning will not hold for the first
time. since the existence of a convenient direction no longer follows from
the dimension inequalities. Thereby. it has been proved that N can be
lowered to 2n (at any rate), i.e., the manifold M n is immersed into the
space R2n• Let us now prove the existence of the embedding
M" <; R2n + I. For the immersion. it is sufficient to ban all the directions
(as projected) in the tangent spaces to the manifold. Now. we have to ban
possible self-intersections which can arise under a projection. i.e., ban all
the chords of the form (x, y) parallel to the projecting direction p~. The
space of chords is the space of pairs (x, y), where x E M", y E M", Con­
sider the mappingj: (x, y) - RpN- I. The mappingj is not smooth,
since singular points appear on the diagonal .1 in M" x M n . Restrict
the mapping j to M n x M n" .1, where .1 = [(x, x):xEMnl.
dim(Mn x M n " .1) = 2n. Now j is a smooth mapping. Consider the
image j(Mn x Mn"M C RpN- I. Close this image in RpN- I;

dim 1m j is unaltered under this operation (note that under the closure
operation, the directions from the tangent spaces are necessarily taken in­
to account). Furthermore, if N - I > 2n, then we project, similarly to
the investigation of immersion, along any direction ~ not belonging to
1mj. Thereby, we decrease the dimension of the space by unity and con­
tinue the process whileN - I > 2n. WhenN - I = 2n. a "free" direc­
tion may not exist.

6.53. The zero-dimensional compact manifold consists of a finite
number of points.

6.54. Since the pointy is a zero-dimensional manifold, its tangent space
vanishes.

6.55. In this case. the condition for transversality is equivalent to the
subspaces TM1 and TM2 generating the whole tangent space of the am­
bient manifold.
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6.56. Use the implicit function theorem.
6.57. Transversally in aU the cases.
6.58. a "* 1.
6.59. Construct linearly independent vector fields which are normal to

the fibres under a certain metric, and then construct the required
homeomorphisms by means of motions along the integral curves.

6.60-6.62. Calculate the rank of the Jacobian matrices of the mappings
in local coordinates.

6.69. (a), (b), (d), (e): orientable;
(c) orientable when n is odd; non-orientable when even.
6.70. Represent the Klein bottle as a square whose opposite sides are

identified, and transfer the basis consisting of the tangent vectors along
the midline.

6.71. A manifold is said to be orientable if there exists a collection of
charts such that the Jacobians of all the transition functions are positive
(i.e., there exists at least one such collection of charts for the manifold).
Let 'Pij be a transition function of variables z I, ... , z", and
a'Pij /az Ol

"" O. Let A be the Jacobian of the transition function 'Pij' and
A = (aU)' The mapping A can be considered as a linear operator
en - en. The realification of the mapping I : GL (n, C) - GL (2n, R)

(B -D)will assume the form/(A) = RA = DB' where A = B + iD.

We take the basis e l , •.• ,en' iel' ... .ie; in R2n
• Let us prove the for­

mula det RA = Idet A 12 by induction on n. When n = 1, for
A = a + bi, we obtain

Let the statement be proved for k ~ n. We now prove it for k = n + 1.
Reduce the operator A to the Jordan normal form (the determinant re­
mains unaltered):

0), where ei = (O,IJ,
en

e l 0
"'en

al
o "r a; + I
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where

D = Id (a
2+ib

l e l 0 )1 2

n et • • '.,o . an+ibn 'en_I

Let us calculate det R A by expanding it along the last row:

detR A = (_1)3n+ 3b det (ale,!. -b l .• )
n+1 b 'ae •

I,.. I I. ••

(

a ie l -bl. ) _ 3n+3 b 3n+3+ an+ldet ". '. - (-I) bn+ 1( - n+I)(-I) Dn
b l aiel

", ". + a~+IDn = (b;+1 + a~+I)Dn'
Thus, we have introduced a collection of charts such that in changing the
coordinates (the change being smooth)

(z I' ... ,zn' ZI' ... , Zn) - (x I, ... .x", y I, ... ,yn)

(realification) the Jacobians of all the transition functions are positive.
6.74. We obtain from the existing classification of two-dimensional,

closed, differentiable manifolds (which are orientable), that all of them
are spheres with g handles, i.e., surfaces of genus g. Each of such
manifolds is the Riemann surface of a certain polynomial vp;;(ii without

multiple roots, where g = [n - ~ l The function w = ffn(z) is

complex and analytic; therefore, by taking z and w as coordinate patches,
we obtain an atlas with a complex and analytic transition function.

6.75. Obviously, a complex structure can be introduced only on even­
dimensional manifolds. Let I' be a group operating on C">, (0) and
generated by the transformation z - 2z. Consider the factor space
relative to z - 2z. It carries a complex structure induced by the structure
of the space C">, (0) and is homeomorphic to S2n- I X S I. Therefore,
S2n- I X S I also has a complex structure. There exists a fibration
S2n- I X S2n - I _ Cpn - I X Cpn - I with the fibre
F = S I X S I = T 2• The fibre and base space have a complex structure
(proved). A complex structure on Cl?" can be defined by means of a form
which is the restriction of the hermitian form on C n to the sphere S 2n - I:

dS 2 = f.dzkdi* - (r.zkdi!) (r.i!dz k).

This form is obtained from the form on Cpn - I, since the former is in­
Sl

variant with respect to the action of S I, where S2n- I - Cl?" - I. We
define the action of S I thus: .

(z", ... ,zn-I)eia _ (eiaz O, .. .),
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Zk _ vi = eiazk,dw = eia(dzk + iOl.ZkdOl.), dw k = e-ia(di! - iOl.zkda),

r.dwkrIc;i = r.dzkdz* + iOl.('f.(zkdi! - z*dzk»dOl. + 0I.
2d Ol. ,

r.wkdwk = r.zkdi! - iadcc, r.wkdwk = r.zkdzk + iccda .

Therefore,

r.dwkd"Wk - (r.wkd~k)(r.;,ldwk) = r.dzkd£k - (r.zkdzk) (r.i!'dz k),

Let zk be the coordinates of the first factor Sm- I, and z 'j of the second
factor Sm - I. Let

Vkj = [(Z,Z')E Sm-I x Sm-I: zkz,j"* OJ.

The sets Vkj form an open covering of the space Sm - 1 X Sm - I, In­
troduce complex coordinates

on each set Vkj , where v is a vector from en, and tkj are determined
modulo I. Therefore, tkj is a point of the torus T(I, 'Y) obtained by glulna
together the opposite sides of the parallelogram constructed on the vec­
tors I and 'Y. Thus, we have 2n + I coordinates in Vkj which determine
the mapping f: Vkj - em x TO, 'Y). The mapping f is a homeomor­
phism: The quantities kW', t" '5, tkj uniquely determine the coordinates:k

and zlJ. In fact,

Iz'z' - 1 = --
I Zk 12 I.

The quantities Iz ,j I are determined similarly (uniquely). Besides,

In Zk = Inlzk I + i arg Zk,

whence

27ft kj = -i(lnlzkl + 'Y lnl z v l) + argzk + 'Yargz·j.

If IZk I and Iz·j I are known, then arg Zk and arg z·j can be found (..,. has
been chosen so that 1m 'Y "* 0). Consequently, Zk and z 'l are also deter­
mined uniquely. The transition function in Vkj n Vuv is complex and
analytic because it is determined by the formulae:
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tuv :::: tkJ' + .1_ (In kWu + 'Y In .w'V).
2~i J

Thereby, a complex structure has been introduced on S" - I X S 2n - I.

This construction introduces a complex structure on any product
S2p-l x S2q-l,wherep,q > °and can be different.

6.76. If two piecewise smooth paths co' c l : [a, iJ] - M" are freely
homotopic, then, in traversing them, the orientations are either both
altered or both unaltered. There is the shortest periodic geodesic in each
free homotopy class of paths on M n . We can now prove the required
statement. It is clear that it suffices to give the proof for a connected
manifold M n . Let p E M n . It suffices to prove that in traversing any
smooth loop with the origin and end at the point p, the orientation in the
space TpMn is unaltered.

Assume the contrary, i.e., that there is a smooth, closed path with the
origin and end at the point p, and, in traversing it, the orientation in
TpMn is altered. Then there exists a non-trivial periodic geodesic
c : [0, I) - M n which is freely homotopic to this path and shortest in its
free homotopy class. Let c(o) :::: c(l) :::: q E M n• Then the parallel
displacement along the geodesic c induces an automorphism 7 reversing
!!Ie orientation on the subspace Mql. C TqM orthogonal to the vector
c(O). Since c is a geodesic, 7 is an orthogonal automorphism, and since
dim Mql. = n - 1 :::: 2k, there exist two-dimensional Euclidean spaces
E" ... , Ek invariant with respect to 7 such that
Mql. :::: E, (±) ... (±) Ek . It is clear that

det 7 :::: II det 71 E; :::: - 1,

and then the relation det 7/E;:::: - 1 is fulfilled for a certain i so that 7

reverses the orientation on E;. But then 7 has a non-zero fixed vector u,
i.e., 7U = U "* 0. Now let Y be a parallel vector field along c, for which
y(0) :::: YO) :::: u, Then there exists an open interval Y E R containing
zero such that e Y (t) lies in the domain of the exponential mapping exp on
M n for all e e I, t E [0, 1]. We define V: [0, 1] x I - M" by the equality
V(t, e) :::: exp (eY(t). Let L (e) be the length of the curve V(t, e). Then,
since c is a geodesic, L '(0) :::: 0. It follows from Y being parallel that
Y' :::: °and < Y, c> :::: 0. Since e - V(t, e) is a geodesic for any

I

t E [0, I],L °(0):::: -) <R(Y, c)c, Y>dt, whereR is the Riemann ten-
o

sor of the manifold M", If follows from the curvature along the geodesic
c being positive that L °(0) < 0, and, therefore, L has a relative max­
imum on c, i.e., c is not shortest, which is a contradiction.
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6.78. If A is a complex Jacobian matrix, then the real Jacobian matrix
is

(
Re A

-ImA
ImA).
ReA

6.79. Use Problem 6.78.
6.80. Changing the coordinates Z2 = liz" we obtain that the atlas

consists of two charts.

7
Transformation Groups

7.1. Use the theorem on the existence and uniqueness of a solution to a
system of ordinary differential equations of the .irst order.

7.2. Construct a vector field such that one of the trajectories may join
the points Xo and Xl and that it may be trivial outside a certain
neighbourhood of this trajectory.

7.4. The ratio of the coordinates of the field ~ should be a rational
number.

7.6. Select an atlas of charts so fine that each orbit may intersect an ar­
bitrary chart at no more than one point.

7.7. The action of the group Z2 on the sphere Sn should be given by the
formula x - -x.

7.8. The action of S 1 on S2n+ 1 C C is given by the formula

(A,X)- Ax, AES I C C I .

7.9. Use the differential of the mapping determining the action of an
element of the group G.

7.18. Fix an orthonormal coordinate 3-frame leI' e2' e3J in R3
. An ar­

bitrary state of the described system is uniquely determined by a point
x E S2 and the velocity vector j;-(x) E Tx(S2), where
Iv(x)1 = C = const = O. It is obvious that the mapping x- x,
iI(x) - iI(x)/c is a homeomorphism, x is the unit vector in R3 emanating
from the point 0, and v (x) is a unit vector in R3• Shift the origin of v(x) to
the point O. This transformation is the identity on the vectors "X- and v (x),
and xand yare orthogonal. Let y be a vector in R 3 such that Iii = I, it
is orthogonal tox and ii, and the system kl.'~' e3] is oriented in the same
sense as [x, ii,il. Obviously, the mapping x, v - [x, v, y1is a homeomor­
phism. All systems [x, ii, iJ are in one-to-one and continuous cor­
respondence with the matrices associated with the linear transformations

12 -2018
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(1)

(2)

(3)

(4)

in R3, which map the orthonormal coordinate 3-frame !e l, e2' e3] into the
orthonormal coordinate 3-frame lx, ii,y]. These matrices form the group
SO(3) : A E SO(3) => AA t = E, and det A = +1. Thus, the space of
the states of the system under consideration is homeomorphic to the
manifold SO(3). Any orthogonal transformation of R3 preserving the
orientation is a rotation about a certain axis in a plane perpendicular to it
through an angle 'P, where - 1r < 'P < n .

Therefore, all elements of the group SO (3) are in one-to-one and con­
tinuous correspondence with the points of a ball of radius 1r in R3 whose
diametrically opposite boundary points are considered to be identical. It
remains to show that the ball glued in this manner is homeomorphic to
RP3. In fact, R p3 = S3/Z2 where S3 is standardly embedded in R4.

Therefore, Rp3 can be considered as a hemisphere of S3 placed in the
region with x t ~ 0 and with the diametrically opposite boundary points
considered to be identical:

S3 n [xl = OJ = !(0,X2,x3,X4)E R4 : (x 2)2 + (x 3)2 + (x 4)2 = II

which is homeomorphic to the sphere S2 of radius tc ,

7.21. Let us prove that if A E SU(2), then

A = ( ~ ~): lal 2 + 1{31 2 = l,a,{3EC.
-{3 a

Let ~ :) E SU(2). Then

lal 2 + 1{31 2 = 1

a')' + {36 = 0

1')'1 2 + 101 2 = 1

det A = ao - {3,), = 1.

Substituting a = -{306 from (2) in (4), we obtain - f!.. (101 2 +
')'

+ 1')'1 2) = I,or')' = -!3,whencea = X.Ontheotherhand,

where (ql' q2) = Req1Q2' It is easy to see that Iql = 1, since, for
ql = q2 = 1, we have 11'q12 = 1, i.e., Iql = 1. Conversely, if
Iql = 1, then ta,«. q2q) = (qt' q2)' Thus, Sp(1) consists of quater­
nions of length 1, i.e., S3 C Q = R4. Further, .

q = a + ib +}c + kd = (a + ib) + }(c - id) = ZI + }Z2'
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whereZlandZ2ECCQandlzl12+ Iz21
2 = Iql2. Iflql = I,then

IZI 12 + IZ212 = 1. Let us arrange for a homomorphism c,o of Sp (l) into

SU(2),viz.,c,o(q)=c,o(ZI+jZ2)= (ZI £2), Iz 11
2+ Iz 21

2 = 1.
-Z2 ZI

It is obvious that the element c,o(g) belongs to SU(2). It is easy to verify
that c,o is an isomorphism.

7.23. It suffices to show for the group G = SL (2, R )/[ ± E I that any
element of the group G can be joined to ±E. Let AI' A2 be the eigen­
values of the matrix A. Then either .(a) AI' A2 E R, A2 = AII, since
detA = ±I, or (b) A2 = AI' AI = e'", A2 = e-1<P. Consider case (a).
With respect to the basis consisting of eigenvectors, the matrix A has the

form A' = CAC- I = (~ ~-I). We can assume that A > O. Con­

struct a path)' : I - G

(
0 - t) +to)

)'(t) = o (A(I - t) + t)-I .

Consider case (b). There exists a basis on the plane with respect to which
A is of the form

(

COS c,o
A' = CAC- I = .

sm e

-sin c,o).
cos c,o

Construct a path)': I - G

(

COS( I - t)c,o -sin(l t)c,o).
)'(t) =

sinfl - t)c,o costl t )c,o

7.25. Consider a model of the Lobachevski plane L 2 in the upper half­
plane (1m Z > 0 in the complex notation). The metric is of the form
ds2 = (dx2 + dy2)/y2, or, in complex terms, ds2 = dzdz/(£ - z)2.
Consider the linear fractional transformations of C I into C I, keeping the
upper half-plane fixed (i.e., transform it into itself). These are transfor­
mations of the form

G = [w = ~; : ~ ; a, b, c, d e R, ad - be = 1J.
This transformation class preserves the metric, but there are other
transformations preserving it. E.g., the transformation w = - Z which is,
evidently, a motion, but does not belong to the group G, at least because
it is not an analytic function. Similarly, it is easy to verify that the whole
class of transformations of the form

H = [w = (az + b)/(ez + d);a,b,e,dER,ad - be = -IJ
12*
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preserves the metric. The group of motions of the Lobachevski plane con­
sists of transformations of forms G and H only. In fact, G U H is a
group, G U H = ~ acts on the Lobachevski plane L 2 transitively. Con­
sider a subgroup S of the group ~ (i.e., subgroup of transformations
keeping a pointi fixed) and a certain motion h : L 2 - L 2, h (i) = i, We
prove that h E S. We shall show that the motion keeping i fixed is fully
determined by its action in the tangent plane at the point i. Let h , g be two
motions, and h * = g : TiL 2 - TiL 2. Then the transformations hand g
act on the geodesics passing through i in the same way; therefore, coincide
on them, and since any point of L 2 can be joined to i with a geodesic,
h = g on L 2. It remains to establish that, for any a E 0(2), there exists
an element g E ~ such that g* = a. Let g(z) = (az + b)/(cz + d) E

E ~ , g * : R2
- R2

. The differential g * is realified multiplication by
g '(i), where g '(z ) denotes the derivative with respect to complex variable
z , viz., g "(r) = lI(ci + d)2. Let

a = cos(-.pI2), b = -sin(-.pI2), c = sin(-.pI2), d = cos(-.pI2).

Then g '(i) = cos e + i sin e , i.e., it is a rotation of C 1 through the
angle .p. In the case of symmetry, consider the transformation w = - Z
whose differential is a symmetry, and then apply a linear fractional
transformation which carries out a rotation. Now, let h be an arbitrary
motion and h (i) = zo. Due to the transitivity of the group ~ , there exists
an element g E ~ such that g(zo) = i, The motion g' h e S, i.e.,
g' h (i) = i, The subgroup G is a connected subgroup containing the
identity element. The transformation w = - zdoes not belong to G.
Therefore, the group G is a subgroup of index 2 of the group ~ .

7.27. Consider the cases n = 2k + I and n = 2k. The group 0 (n ) is
disconnected and is the disjoint union of two path-connected com­
ponents, viz., 0 + (n), i.e., the collection of matrices with det = + I, and
0- (n), i.e., the collection of matrices with det = - I. When
n = 2k + I, the unit matrix E E 0 + (n), and the matrix - E E 0 - (n).
Consider a discrete normal subgroup H of 0 (n). The element ghg - 1 E H
for any h e H, and any g E O(n). Ifg E 0 + (n), theng can be joined toE
with a continuous path .p(t) so that .p(O) = g, .p(l) = E. Ifg = 0 - (n),
then the elements g and - E can be joined with a continuous path f(t) so
that ~(O) = g, ~(l) = - E. It is possible to construct two mappings M (t)
andN(t) such thatM(t) = .p(t)h.p-l(t), andN(t) = ~(t)hrl(t) for
g E 0 + (n) and g E 0 - (n), respectively. Then

[

M (O) = ghg- 1 = Ii,
M(l) = h, [

N (O) = ghg- 1 = 'ii,
N(l) = h.
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The elements Ii and h are joined with a continuous path which lies in H
wholly. Since H is discrete, we obtain that h = Ii, i.e., ghg- t = h for
any h e H, g E O(n).

(The Schur Lemma.) Let pI : G - GL (VI)' pZ : G - GL (Vz) be two
irreducible representations of a group G, and let! be a linear mapping of
the space VI into the space Vz such that pZ(S)! = ! pI (S) for each S E G.
Then (a) if pi and pZ are not isomorphic, then! = 0, (b) if VI = Vz'
pi = pZ, then! is a homothety (i.e., multiplication by a certain number).

The mapping o: O(n) - O(n) C GL(Rn) is an irreducible representa­
tion, since reflections with respect to each of the axes can be considered.
These are matrices of the form

(
1" '- 1 0)
o "'1'

where - 1 is placed at (i, i). All such transformations are contained in the
group 0 (n). Collectively, they keep fixed only the point (0, 0, ... , 0).
Besides R" and 0, there are no other invariant subspaces in R", Applying
the Schur lemma and using ghg - 1 = h for any h E H we obtain that h is
a scalar matrix. But there are only two scalar matrices in 0 (n), viz., E and
-E. It is they that make up the discrete normal subgroup of O(n).

Consider the case n = 2k. The matrices E and - E E 0 + (n) are a
subgroup of a discrete normal subgroup H of 0 (n). We show that H con­
tains no other elements. 0 + (n) contains no other elements from H, since
H n 0 + (n) is a discrete normal subgroup of 0 + (n), but only the group
± E can be that in 0 + (n). The reasoning is similar to the previous. We
prove that 0 - (n) contains no elements from H. Assume that
h EO - (n) n H. Then ghg - 1 = h for any g EO + (n). The matrix h can
be reduced to block triangular form with an odd number of eigenvalues
- 1 by a certain orthogonal transformation of the basis with determinant
+ I. If dim Rn > 2, then, by an even number of transpositions of the
basis vectors, the diagonal elements can be interchanged. Generally
speaking, we will obtain a new matrix then, i.e., ghg- 1 =/:- h. E. g., we in­
terchange - I and the block; if there is no block, then we interchange - 1
and the block formed by + I, + 1. In the case where n = 2, we have only
two kinds of matrices to which any matrix from 0 - (n) can be reduced by
an orthogonal transformation of the variable, viz.,

G_~) and (-~ ~).
Then

(
COS 'I' sin '1') (1 0)

- sin 'I' cos 'I' 0 - 1 =/:- (
1 0) ( cos e sin '1').
o - 1 - sin 'I' cos 'I'
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Therefore, there are no elements from the discrete normal subgroup of
0- (n).

7.28. Theorem. Any group of motions of finite order N in R3 is isomor­
phic (assuming that the action has no kernel) to one of the following
groups: eN' a cyclic group; DN , a dihedral group; T, the tetrahedral
group; W, the hexahedral (octahedral) group; and P, the dodecahedral
(icosahedral) group.

Proof. Let I' be a finite rotation group of order N. Consider the fixed
points (poles) of all transformations from r different from the identity
transformation. Let the multiplicity of a pole p (number of transforma­
tions from I', leavingp fixed) be equal to". The number of operations dif­
ferent from the identity transformation 1 and leaving the pole p fixed
equals " - I. Let IgJ be the set of points into which the pole p is
transformed under the action of elements from the group r. Then IgJ is
an orbit consisting of points equivalent to each other. The number of
points g equivalent to p equals N I". In fact, the multiplicity of g also
equals". The transformation L, E I' reduces pinto g; (i = I, ... , n).
Let S" ... , Sv be transformations leaving the point p fixed, and

All these transformations are different, each element g E r is contained in
this set, and Ir I == N, i.e., N == nv for any orbit N == ne == "e' where c
is a certain orbit. Consider all pairs (S, p), where S E r are fixed on p,
and S "* I. The number of such pairs equals, on the one hand, 2(N - I),

and, on the other hand, L ("c - I)n c ' viz.,

(because if N = I, we shall have a trivial group). Therefore, "c ;" 2, and,
from the evident relations, we get that 2 :( c :( 3. The following cases
are possible:

I. c = 2. Then 21N = 1/"1 + l/"z' 2 = NI"I + NI"z = n l + n z,

n\ == nz = I.
Each of the two classes of equivalent poles consists of one pole of

multiplicity N, i.e., we have obtained a cyclic group of order N of rota­
tions about one axis.

2. c = 3. Then 1/"1 + I/"z + 1/"3 = 1+ 2IN'''1 :( "z:( "3' At least
one"; = 2.Let"l = 2.Thenl/"z+ 1/"3= 112+ 2IN.Thenumbers"I'
"z cannot be greater than or equal to 4, i.e., "z "" 2 or 3. (a)"1 = "z =
= 2, N = 2"3' "3 = n, a dihedral group DN ; (b) "1 = 2, "z = 3,
1/1'3 = 1/6 + 21N. Then the following cases are possible: "3 = 3,
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N = 12, the tetrahedral group T; 1J3 = 4, N = 24, the hexahedral group
W; 1J3 = 5, N = 60, the dodecahedral group P.

The dodecahedral group T contains two classes of poles with four poles
of multiplicity 3, I T I = 1 + 4· 2 + I· 3 = 12. The generators and
relations of the group T are abc = adb = aed = bde =
= 1 (a, b, e, d being rotations about all four vertices through the angle
271"/3), a3 = b 3 = c 3 = d 3 = 1. Let e,f, g be rotations about the axes
Ii' and ef = fe = g. To T, reflections may be added. Let h be an im­
proper rotation, and he = eh, a' h = ha 3 - i (i = 0, I, 2). With all the
improper motions added, we obtain I T I = 24. The cube and octahedron
possess the same group of motions I WI = 1 + 3· 3 + 1· 6 +
+ 4· 2 = 24. We have one class of six poles of order 4 (the vertices of the
cube), eight poles of order 3 (the centres of the faces), and twelve poles of
order 2 (the midpoints of the edges) for W. T is a subgroup of W. This is
obvious from geometry (the tetrahedron can be inscribed in the cube).
The relations are a4 = b 3 = e2 = d 2 = 1 (where d is a reflection);
aid = da 4 - i, bid = db 3 - i,ed = dc .oc = b, Ipi = 60 are only pro­
per motions. With the reflections added, we obtain I pi = 120. The
subgroup of proper motions in P is isomorphic to A 5' It has twelve poles
of order 5 (the vertices of the icosahedron), twenty poles of order 3 (the
centres of the faces) and thirty poles of order 2 (the midpoints of the
edges). This group is commutative only partly. The relations in the
dodecahedral group are

abede = I, bkef" Ii - 1 = 1, aidk - 1h - 1 = I,

ci-1g-1eh = I, bh-1f-1dg = I, ag-1k-1ef= I,

or

bee = l,bkei- 1 = I,i = k,ci-1g-1e = l,b = g-l,g-lk-1e = 1.

Eliminating g and k , we get

bee = 1, biei - 1 = I, ci - 1be = 1, bie - I = 1.

It follows from the relations bee = I and biei" I = 1 that i = cb , and
from biei- 1 = 1, ci-1be = 1 and i = eb that bebe- 1b2e- 1 = 1 and
eb -le-1be-1b -I = 1. From all the relations obtained, we deduce the
statement of the complete non-commutativity of the group P, i.e.,
P = [P, p]. Another variant of the corepresentation is

be = eb-1b-1eb- 1, eb = bcb t t cbb, a 5 = b 3 = abab = 1,

where a is the rotation about the axis of order 5, a = (12345), b the rota­
tion about the axis of order 3, b = (452) and P = A 5'
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7.45. Let G be a finite group operating effectively on R", i.e., if
xg = x, X E R", g E G, then g = e. The group Zk generated by the ele­
ment g also operates effectively on R". Consider the space x = G IZk '

where x - y if y = g'«, gEZk; 7l"t(X) = Zk' 7l";(X) = 7l";(Rn) = 0
when i > 1, since R" - X is a covering map. Therefore, X is homotopy
equivalent to K(Zk' 1), i.e., to a lens space. But the homology K(Zk' 1) is
different from 0 in an infinite number of dimensions, whereas X has no
cells of dimensions greater than n. Thus, substantiating the statements:
(a) if a discrete group G acts on Rn without fixed points, and
X o = R" IG is the set of orbits, then the natural mappingp: R n - X o is
a covering map; (b) 7l" 1(Xo ) = G (the proofs of statements (a) and (b) are
left to the reader), we complete the proof.

8
Vector Fields

8.2. (a) m IS; (b) 3V2\ 17; (c) v313' /3; (d) - 2/5.
8.3. 3v2/5.
8.4. 1/4. {3
8.5. (a) 0; (b) 2 --- (Y2 + 3); (c) 0; (d) - 2; (e) 7l"a 21~2.

3
8.7. l/r 2•

8.8. 1.
8.9. (gradj, grad g).

8.21. (a) (0, x, y - x);

(b) (0, 0, y2 - 2xz);

(c) (0, eX - xe"; 0);

(d) (0, 3x2, 2y 3 - 6xz);

(e) (0, -x(x + y2), x 3 + y3);

(f) (0,xz 2 + yzex 2
, - 2xYz);

(g) (sinxzlx, 0, -sinxzly);

(h) (xzI(x2 + y2),yzl(x2 + z2), -1).

8.22. Use the existence and uniqueness theorem for a solution of a
system of ordinary differential equations.

8.23. Investigate the action of the Poisson bracket on the product of
two smooth functions.
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8.26. Consider the case, where ~ = a/ax'.
8.33. Let Zo = Xo + iyo be a singular point, and

f(z) = u(z) = iv(z), au I au I
Bx (xo, Yo) = By (xo, Yo) = O.

Since

::I(xo. Yo) = ~; I(XO.Yo) = t I(xo' Yo) = - :: I(xo. Yo) = 0,

f;(zo) = O. Letf;(zo) = 0, i.e.,

au av
- (zo) + i -- (zo) = 0,
ax ax

au av
- (zo) = m (zo) =
ax ax

au
-- (zo) = O.ay

Then grad Ref(zo) = O.
8.31. Represent the sphere S3 as the group of quaternions of unit

length.
8.34. We shall seek the integral curves only in the half-plane lying over

the straight line AB. The level curves for the functionf(x) are the arcs of
the circumferences for which the line-segment AB is a chord. The vector
gradf(x) is orthogonal to the level curve. Therefore, the vector or­
thogonal to it is tangent to the level curve, i.e., a circumference, and all
the arcs of the circumferences described are the integral curves of the flow
VI (x).

8.35. (a) The integral curves of the vector field grad (Re zn) are the
level curves of the conjugate function 1m z" = r" sin ne . The unique
singular point of the field v = grad(Re z") is z = 0, sincej" (z ) = 0 only
at this point. The point z = 0 is the case of a degenerate saddle

point. Let us give a small perturbation to the function z" - n (z - [;i)'

i= 1

Then the singular point splits into n - I non-degenerate saddle points of
the second order. Consider the behaviour of the integral curves near to
one of the singular points. Expanding the function in Taylor's series, viz.,

f(z) = f(a;) + j'(a;) (z - a;) + ... , wherej'(ai) = 0,

we see that the expansion starts from a term of the second order, since
f"(ai) "* 0 (non-degenerate critical point);f"(ai) "* 0 if and only if alI ai
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are multiples of !,(a), but this is not true, since all c, are different.
Therefore, we have, near to the point ai' that f(z) = k(z - a)2 +
+ O(Z2), i.e., the saddle point is non-degenerate. If the equality
f"(ai) = 0 were valid, then we would have the case of a degenerate
singular point (i.e., saddle point of the third or higher order).

(b)f(z) = z + liz;

Re (f(z» = p cos <p + cos <pIp = (p + lip) cos ';?;

1m (f(z» = p sin e - sin .pIp = (p - lip) sin e ;

(z = pe''').

A singular point is at the origin, since the function liz is discontinuous.
The derivative of the function f(z) equals I - lIz 2, i.e., the singular
points are z = 1, z = - I. Both points are non-degenerate. Consider the
integral curves for Im f(z), emanating from and returning to the singular
points, i.e., the separatrices (p - lip) sin .p = c (c = 0 at the point
(1,0». Thus, (p - lip) sin e = 0, whence e = K7r, or p = I. Hence,
we find the separatrices viz., the unit circumference consisting of two
separatrices, and the real axis consisting of four separatrices. In the case
of grad[Re(f(z»], the separatrices are given similarly, by the equation
(p + lip) cos <p = 2, and have the shape of two loops tangent to each
other.

(c)f(z) = z + liz 2. Consider grad[Re(f(z))]. The integral curves of
this flow are the level curves of the function Im(f(z»

sin 2<p

~2

(in polar coordinates on R2 ) . Similarly, we seek the level curves of the
function Re(f(z»:

cos 2<p
Re(f(z» = r cos e + ;'2

(d) f(z) = z + lI(z - 2). The singular points are z = I, z = 2,
z = 3. In a neighbourhood of the point z = I, !'(z) = - 2(z - I) (the
first term in Taylor's expansion). This is a singular point, a saddle.
Similarly, the singular point z = 3 is also a saddle point. In a
neighbourhood of the point z = 2, the expansion in Laurent's series of!'
is !'(z) = - I/(z - 2)2 + .... Therefore, the integral curves of this
flow in a neighbourhood of the point z = 2 have the form of the integral
curves of the flow grad[Re(l/(z - 2»].
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O.

(e)f(z) = Z3(z - 1)IOO(Z - 2)900. The singular points, i.e., zeroes of
the derivative j Tz ), are the following: z1 = 0, a saddle point of the sec­
ond order; z2 = I, a saddle point of the 100-th order; Z3 = 3, a saddle
point of the 900-th order; Z4, 5 '" (l109 ± 1093)12006, non-degenerate
singular points.

Locally, in a neighbourhood of each singular point, the integral curves
play the role of saddle points (degenerate or non-degenerate at the points
z4 '" 0.008, z5 '" 1.09) of the corresponding order.

(f) f(z) = I + Z4(Z4 - 4)44(Z44 - 44)444. In a neighbourhood of
z = 0, f(z) can be replaced by !(z) = I + 4444444Z4. The qualitative
behaviour of the curves in a neighbourhood of the point z = 0 is never­
theless unaltered. But adding a constant does not change the form of the
trajectories. Therefore, the function jjfz ) = cz 4, c = 444. 4444, where
z '" 0, can be considered. The equations of the trajectories are of the
form cp" cos 4p = k. The point z = 0 is a degenerate singular point,
which, after a slight disruption, splits into four non-degenerate points.
More precisely, g(z) = c(z - [;I)(Z - f:2)(Z - G3)(Z - G4) is a slight
disruption of the functionf(z).

(g) f(z) = 1/100 In[(z - 2i)/(z - 4»)3. At the points z = 2i and
z = 4, we have logarithmic singularities. Apart from them, there are no
other singular points.

(h)f(z) = I/(Z2 + 2z - I). To simplify the notation, we perform a
translation w = Z + I. Then f(w) = l/(w2 - 2). The singular points
are w = ..f2, w = -v2. The singular points of grad[Re(f(z))) coincide
with the zeroes of j'(w), i.e., w = 0, a singular point (it is non­
degenerate, sincef" (w) "* 0).

(i)f(z) = 2/z + 21 In z2. The singular points are (0, 0), (1121, 0). The
separatrices are the curves 21l{J = sin l{J12 and the axis x from 0 to + 00.

U>f(z) = Z5 + 2 In z, The singular points are z = 0, Z5 = - 2/5, the
vertices of a pentagon. At these points,f(z) - kz 2, k "* O.

(k) f(z) = 2 In(z - 1)2 - 4/3 In(z + lOi)3. The singular points are
z = 1, z = - 10i,j'(z) "* 0 for all z,

(I) f(z) = I/z 3 - l/(z - i)3. The singular points are z = 0, z = i
(the poles of the third order). Differentiating,

j'(z) = _ 3 + _ I
Z4 (z - i)4

We obtain four other points:

z = i/(~3 - i),z = i/(~3 + I),
4, 4r:; [ 4r.;: 4[ , r-'

Z = (V3i + v3)/(l + v3),z = (v3i - v3)1(l + v3).

The integral curves behave at infinity as the integral curves of the flow
grad[Re(llz4»), i.e., as the integral curves of a pole of order four.
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8.36. Let the flow v = (P, Q) be irrotational, i.e.,

aQ. ;: 0
ax ' or

aQ
ax

Let us find a functionf such that P = aflax, Q = aflay. To this end,
we integrate the first relation with respect to x between 0 and x, viz.,

x

f(x, y) = .r Pdx + g(y). To find g(y), we integrate the latter relation

o
with respect toy, v i>.

af
Q(x, y) = ay (x, y) =

Xi ap
dx + g'(y)

ay
o

x

rso dx + g '(y) = Q(x, y) - Q(O, y) + g '(y),J ax
o

Thus, Q(x, y) = Q(x, y) - Q(O, y) + g '(y). Therefore, g '(y) =
= Q(O,y), i.e.,

y

g(y) = .r Q(O, y)dy + C.

Consequently,

x y

f(x, y) = \. P(x, y) dy + .\ Q(O, y) dy + C.

o o

Let 1'1 and 1'2 be two paths from (0, 0) to the point (x, y) in the plane
(x,y). Consequently, if rot v= 0, then

.r Pdx + Qdy = j' Pdx + Qdy.

Therefore,

f(x,y) = .\ Pdx + Qdy + C,

where I' is an arbitrary path from (0, 0) to (x, y).
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Besides, let the flow be incompressible, i.e.,

lex, y) = .\' P dx + Q dy + C.

Consider the flow

v ' = (Q, P), rot y' = o.

Therefore, the field v ' is potential. Thus, there exist functions a (x, y)

and b(x, y) such that v= grad a(x, y), v ' = grad b(x, y). Since
div v = div v ' = 0, we obtain that a(x, y) and b(x, y) are harmonic
functions, i.e., l:ia == l:ib == O. Consider the function! = a + ib, It is
complex and analytic, since the Cauchy-Riemann equations are valid,
viz.,

aa
ax

ab aa
= P(x, y),ay oy

ab
ax

Q(x, y).

Such a function! is called a complex potential of the flow.

8.39. Hint: d<pz is homotopic to d<{J, .

8.47. Consider the differential equation in R4

x = Ax, where A

The required set consists of the integral curves of this equation, which
belong to the sphere. It is clear that xU) = eA Ix(O). If R4 is regarded as
C Z, then the integral curve passing through a point (z, ' zz) E S 3 is of the
form te" Zl' eitzz), since eAt may be written in the complex notation as

follows: (~it ~it). Let us assign to this trajectory the point (z,: zz)

belonging to CP 1. The definition of this correspondence is correct
because any other pair (Z3: Z4) lying on the same trajectory differs from
(z1: zz) only by the factor eit , and therefore, determines the same point of
CP 1. It remains to note that the mapping is one-to-one and continuous.
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9
Tensor Analysis

9.1. (a) (0, I); (b) (0,2); (c) (I, I); (d) (0, 2).
9.5. If k = dim V, then dim V;' = ken + »:

I
9.14. grad! = - _. .:':__.._ (x, y, z).

,,;x 2 + y2 + Z2

9.25. (a) Use Problem 9.22 while replacing the sphere by the cone.
(b) The meridians and the equator are geodesic lines.
(c) Apply (a) and (b).
9.28. Perform covariant differentiation with respect to the parameter 0'

which parametrizes the family of curves.
9.39. Hint: The integral curves of the left-invariant vector field X are

left translations of a one-parameter subgroup, i.e., geodesics. Therefore,
we may assume that X = -y, where -y is the vector field of the velocities of
the geodesic )'(1). Since, by the definition of a geodesic, V/)') = 0, for
any left-invariant field X, we have Vx(X) = O. In particular,
V x + y(X + y) = 0, i.e., V x Y + V yX = O. On the other hand,
Vx Y - VyX = [X, Yj. In fact,

. k . k . (0 y
k

k ) . (OX k
k )X'V.y = y'VX'=X' -- + yfJr. - yl . + xPr·

I I ax' Pi ax' 1'1

since r~i = rt (the connection is symmetric). The required statement
follows from the system: V x Y + V yX = 0 and V X Y - V yX =
= [X, Y].

9.41. Hint: The invariant definition of a curvature tensor is of the form
R(X, Y)Z = VXVyZ - V[x.y]Z. Since Vy )' = 1/2[X, Y],weobtain

I I
R(X, Y)Z = . ([X, [y, Z]] - [Y, [X, Zm - [lX, Y], Z].

4 2

Taking into account the Jacobi identity.

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0,

we get

I
R(X, Y)Z = [lX, YJ, Z].

4
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10
Differential Forms, Integral Formulae,

De Rham Cohomology

10.6. (a) - 2(z + I)dx /I dy /I dz; (b)yzdx /I dz + xzdy /I dz; (c) 6ydx /I

/I dy /I dz; (d) 0; (e) 0; (f) 0; (g) df /I dg; (h) O.

10.7. Reduce the problem to the case of constant coefficients.

10.12. (a) -47l"/15; (b) -7l"/3; (c) 47l"R 3/3; (d) O.

10.13. (a) (2(P + cos <p). - (2 sin <p + :Z cos <P ). e- z sin <P ).

10.14. (a) (2r cos O. - r sin O. 0);

(
2 cos 0 sin 0 )

(b) - - 3 • - .. 3 • 0 .
r r

10.15. (a) 2 + zip cos <p - e" sin z:

(b) <P tan- I p + <P 2 - (Z2 + 2z)e z .
p 1 + p

2 1
10.17. 4r - - cos2 <p cot () +-- .

r r (r 2 + I) sin e
1

10.19. (a) p + '{J + Z + c; (b) . (p2 + ",,2 + Z2) + c; (c) p<pz + c;
2

(d) e" sin <p + Z2 + c; (e) p<p cos z + c.

1
10.20. (a) rO + c; (b) r 2 + <p + 0 + c; (c) (r<p2 + (2) + c;

2

(dj r cos e sinO + c; (e)e'sin() + In (1 + <p 2 ) + c.

10.21. 47l"R 2•

10.22. (a) I; (b) 7l"2; (c) 27l"R; (d) 0; (e) -27l"R 4; (f) n .

10.23. (a) 7l"2; (b) I; (c) 7l" + ~2 - I; (d) 7l"; (e) 0; (f) O.
4 2

10.24. (a) 247l"; (b) 7l"12.

27l" 7l" R5
10.25. (a) 47l"; (b) - R 3; (c) 47l"R 4; (d) 27l"R 3; (e) R 4 -

3 2 3
10.30. (a) HI(SI) '= R 1; (b) H 2(S2)

'= R 1; (c) H k(Rp2) '= O. k ;?: I;

(d)H 1(T2)
'= R 2;H 2(T2)

'= R I; (e) dim H k (Tn) '= C); (f) dim HI '=

'= k , where k is the number of points excluded.
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11
General Topology

11.1. Note that the open ball B" and punctured sphere S" are
homeomorphic. We prove the statement by induction on the dimension
of the complex. If the dimension n = 0, then the statement is evident. Let
the statement be held for all numbers less than n. Then, by the inductive
hypothesis, the (n - I)-dimensional skeleton Kn - I of the complex in
question is embeddable in the Euclidean space RN . This means that con-
tinuous real functions j'[tx), ,fN(x) are given on K"" \ such that
(fj(x), ... ,fN(x»"* (f\(Y), ,f,(y»whenx "*y. LeteJU = 1,
... , k) be all n-dimensional cells of our complex. Then the functions
fi(x) are defined on the boundary of each cell eJ(we denote it by eJ). Let
eJ be homeomorphic to the interior Bn of the closed ball D", We may
assume then that the functions 1, (x) are given on or-, e». Their con­
tinuity is preserved, but they may not be one-to-one now. Let us extend
these functions from tr:-; Bn to Bn (i.e., from eJ to eJ) as follows. Let
zeBn,andz"* O. Weput1,·(z) = IzIJi(zl/zl).lfz = O,thenweset
fj(z) = O. Thus, we have extended the functions f i to continuous func­
tions on the whole complex K. Now, we define

g~ (x), ...• g~ I- \ (x).

We put g~ (x) so 0 (s = 1, ... , n + 1) outside eJand

(gjl (x), ... , g~ (x), g~ + J (x )

(
X l . I I X n )= Sill 7r X , ••• , sin 7rIXI, cos 7rIXI + 1 on e'[.
Ixl Ixl

We define F : K - R N
-t- k(n + 1) by the equality

F(x) = (fl(x), ... , fN(x);gl(x), ... ,g~-r ,(x), ... ,g1(x), ...

. . . ,g~ + \(x».

The mapping F is thus one-to-one, and the statement proved.
11.4. A section of the Klein bottle by a plane should be considered so

that there may be two Mobius strips. Then this plane should be lifted
(while discarding one Mobius strip), thereby carrying out the boundary
circumference deformation represented. When this circumference
becomes free of self-intersections and turns into the standardly embedded
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circumference, it should be glued to the two-dimensional disk. Consider­
ing the surface obtained in lifting the plane and which is the trace of the
circumference deformed, we get an embedding of Rp2 in R3.

11.5. The set of the points of self-intersection is homeomorphic to the
wedge of three circumferences 5 1 V 5 I V 5 I. The vertex of this wedge is a
triple self-intersection point, and any of its points different from the
vertex is double.

11.6. The boundary M 2 of the normal tubular neighbourhood of radius
c constructed is, obviously, projected onto Rp2 (two endpoints of the
normal line-segment are sent to its centre lying on RP2). Thus, M 2 is a
smooth, two-dimensional, compact, and closed manifold and a two­
sheeted covering of the projective plane. If we prove that this manifold is
connected, then we shall prove thereby that it is a two-dimensional
sphere, since 52 is the unique two-sheeted connected covering of RP2.

To establish the connectedness, it suffices to consider two points on M 2

which are the endpoints of the same normal line-segment, and find the
path on M 2 joining these two points. To construct such a path, it suffices
to consider a point Ton Rp2 which is the centre of the line-segment under
consideration, and take on Rp2 a closed path starting and ending at the
point T and such that the orientation of the two-frame slipping along the
path and always tangent to Rp2, changes in moving along it. Then, by
adding to this frame a third vector orthogonal to Rp2 and considering the
trace of this vector which is cut out by the frame in moving continuously
along the closed path, we obtain the continuous path on M 2 joining the
two selected points.

Note. The embedding of the two-dimensional sphere in Euclidean
three-dimensional space helps to prove a remarkable topological fact,
viz., the possibility of "turning the two-dimensional sphere in R 3 inside
out". This task is outside the scope of our course, and we confine
ourselves to a short sketch only. The embedding of 52 indicated is such
that admits interchanging the exterior and interior of the two-dimensional
sphere while remaining in the regular embedding class. In fact, it suffices
to consider a smooth deformation of the two-dimensional sphere along
the normal vector field determined by the normal line-segments described
above. In doing so, the interior and exterior surfaces of the sphere inter­
change.

11.7. Consider a vector space over R with a basis of the power of the
continuum. We introduce the following topology on it. Consider the
"cube" B == Ix: - 1 < x", < J for all u J, where X(X are the coordinates of
the vector x, and the cross-section B is of finite codimension, viz.,

B,,;3 ..0 == B n \x" == 0, x j3 = 0, ... ,xo == O].

13-201H
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We call the sets B"iLo the neighbourhoods of the point O. It is obvious
that the point 0 has no countable base for the neighbourhoods in such a
topology, i.e., the space constructed does not satisfy the first countability
axiom, nor does it satisfy the second, since the first axiom is a corollary to
the first.

11.8. Consider the mapping F : S2 - R2, x - (j(x), g(x», where
F(S2) C R2 is the image of the sphere. The image F(S2) is a set sym­
metric about the point (0, 0), since if (a, b) E F(x), then
(-a, -b) = F(rx). Assume that (0, 0) E F(S2) and project the plane
with the exclusion of the origin onto the unit circumference. In polar
coordinates, where this projection can be written in the form
h (rei",) = e'", Then h (F(S2» is a certain centrally symmetric set on the
unit circumference S 1, where h (F(S2» is the image of the connected set
S2 under a continuous mapping h . F. Therefore, it is also connected. It is
obvious that a connected, centrally symmetric set on S 1 must coincide
with S I. Further, h (F(S2» must be l-connected as the image of the
I-connected set S2, which is contrary to the equality h(F(S2» = SI.

11.9. As the space X, take a space /2 whose elements are sequences of
real numbers x = (xl' X2' ... , Xn ' ... ) satisfying the condition IIx2 11 =

= L IXn 12 < 00. As the space Y C X, take a sphere in X, i.e., the set

n=J

of x such that IIxll2 = 1. Consider a sequence of points Xi in Y, so that
unity is at place i, and the other coordinates are zeroes. This infinite
seguence has no limit point, since IIxi - x} = v2 for all i.], Therefore,
Y is not a compactum.

11.11. Let e1 , ••• , e, be the vertices of the complex K. Take the points
e;, ... ,e; in general position in R2n + I, i.e., any} points are linearly in­
dependent when} :( 2n + 2. To each skeleton

T = lei ... ei I E K,
o r

we assign the simplex

T ' I' 'I R2n + I= ei ... ei E .o r

This simplex exists, since due to the points e;, ..., e; being in general
position in R2n + 1 and inequality r :( n , the points ei~, ... , ei~ are
linearly independent. The simplexes form a complex isomorphic to the
complex T', since to each vertex, there corresponds one and only one
vertex from K.

The complex K is a triangulation. To prove this; it suffices to show that
no two simplexes T/, T/ E K ' intersect. Let ei~' ... , ei be the vertices of
T/, and ejo' ... , ejq those of T/ (some of the vertices fnay be common).
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Let eko' .... ei, be all the points which are the vertices of at least one of
the simplexes T/ and T/ . The number of these points r + 1 satisfies the
inequality

r + 1 ~ (p + I) + (q + 1) ~ (n + I) + (n + I) = 2/1 + 2.

Since the points e; . . . . ,e\,' are in general position in R2n \' I. the points
eko' ...• ei; are the vertices of a certain degenerate simplex To of dimen­
sion not higher than 2n + I. The simplexes T/ and T/ are two faces of
To' and therefore, do not intersect each other if different.

11.19. The main fact to prove is to sh.ow that any two fibres O(xo. x)
and O(xo' y) are homeomorphic for any points x and y from the space X.
We assume here that X is a connected manifold, x and y two points from
X, and O(xo, x) the space of continuous paths from the base point Xo to x,
We should be able to assign to each path "Y from Xo to x, a path v ' from Xo
to y so that this correspondence may define a fibre homeomorphism. On
joining x and y with a path S we consider a tubular neighbourhood U (s)
of the path S and define a diffeomorphism <PI : U(s) - U(s) which is
identity outside U (s) and sends the point x to a point s (r ) E S, where
o ~ t ::::; I, s(O) = x, s(l) = y. As to the rest, the diffeomorphism <PI is
arbitrary. The family i<pll (0 ~ t ~ I) determines a homotopy in the
manifold X. In constructing the homotopy, we have used the fact that X
is a manifold. Now, we define the homotopy

f' : O(xo,x) - O(xo'y), f(r(t» = 'PI"Y(t)·

It is easy to verify that this mapping establishes a homeomorphism be­
tween the spaces O(xo' x) and O(xo' y).

11.22. The existence of a convergent sequence in any infinite sequence
of points on a finite-dimensional sphere follows, e.g., at least from this
fact being valid for infinite-dimensional sequences on the unit line­
segment. Each vector is specified by a set of n + 1 real numbers (coor­
dinates of the vector). It is clear that we use here the finiteness of the
number of coordinates. An infinite sphere is non-compact: it is easy to
find a sequence from which a convergent one cannot be singled out. E. g.,
the endpoints of the unit vectors of an orthonormal frame can be taken as
such a sequence. Since the distance between any two of such (non­
coincident) points equals ";2, a convergent sequence cannot be singled
out.

11.34. No. If a topological, metric and compact space is connected,
then it is not necessarily path-connected, the well-known example being
the set of points on the plane (x, y) specified as follows:

f = sin ~ ] u :(x = 0; - 1 ::::; y ::::; 1)1.
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12
.Homotopy Theory

12.2. Axiom (W). If K is a CW-complex, then the set F C K is closed if
and only if, for all cells e'[, the full inverse image (f'f)- I (F) C Bq is
closed in B", Assume that there are two topologies in the space X: :V" I
and! VaI, We will say that I V,31 ;;;. iVa I (stronger) if for any point x EX
and any VS 3X, there is Va 3X such that V"o C Vso'

Assume t~at apart from t~e topology determined by axiom ( W), there
is another topology! V" 1 in the CW-complex. Take an arbitrary point
x E K, i.e., a point belonging to the CW-complex, and V"o 3 X. A
neighbourhood is the union of mutual1y disjoint open intersections
(e7 n Vao)' Consider the full inverse image U?) - I (Vao)' It is open in Bq
(this fol1ows from the continuity of the mappings j'j). Therefore, for the
complement (K'-.. V"o)' the ful1 inverse image U[)-I (K'-.. V"o) is closed
in Bq for al1 e'[. It follows from axiom (W) that (K'-.. V"o) is closed in K.
Therefore, V" is open in the topology determined by axiom (W), i.e.,
V" belongs toOthe system of open sets determined by ( W).

1°2.21. The Klein bottle.
12.26. Let (XI' c¥2 E H(X', Y), c¥1 - (X2' This means that there exists a

homotopyF: X' x 1- YsuchthatF(x,O) = c¥1(x),F(x, 1) = (X2(x).
Put F' = F' 'P. Then F' : X x 1- Y, r«, 0) = F(h(x), 0) =
= (XI(h(x», F'(x, I) = F(h(x), I) = (X2(h(x». Therefore,
c¥l'h - c¥2'h.

12.28. Let SOO = lim s«, where Sn + I is the suspension of S", The
n r- co

sphere SOO so defined is a CW-complex. Consider (X E 7ri(Soo) andf E ex :
f : S' - S'", f sending the base point in S' to the base point of SOO. Let
f : K - L be a continuous mapping of a complex K into a complex L, the
map being cel1ular on the subcomplex K I C K. Then there exists a map
g: K - L such that (a) f is homotopic to g; (b) g is cellular on K;
(C)f1kJ == g Ik j ; (d) the homotopy connectingf and g is the identity on
K 1• Therefore, there exists a mapping homotopic tof which transforms S'
into the i-dimensional skeleton of SOO, i.e., into s', but Si C s' + 1 C SOO.
Consequently, g: s' - s'+ I. Since 7ri (S n ) = °when i < n , any map­
pingf E ex E 7ri(Soo) is homotopic to the mapping sending the whole of S'
to the base point of S" (i.e., constant mapping). This means that the map­
ping f : s' - SOO is homotopic to constant. The mapping f has been
chosen arbitrarily. Therefore, 7ri(Soo) = 0.

If X and Yare cel1 complexes and a mappingf: X - Y induces the
isomorphism of all the homotopy groups, then f is a homotopy
equivalence. We take the mapping SOO - * asf. The isomorphism of the
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homotopy groups is induced, since all of them are zero. Therefore, the
sphere S'" is homotopy equivalent to a point, and S" contractible to a
point.

12.30. Let p - I (xo) = Fo' p " I(XI) = F" and "'o:Fo - X an embed­
ding. Then p - "'0: Fo- XOE Y. Join x., to x. with a path, i.e., arrange for
a homotopy between the mappings of. the fibre Fo into Xo and xI' viz.,
>/It: Fo - Y, >/It (Fo) = 1'(1), where l' is our path. Then it follows from the
covering homotopy axiom that there exists a covering homotopy (family
of mappings "'t :Fo - X) such that (p' "'t)(Fo) = l'(t), i.e., t»: "'1)(Fo)
= 1'(1) = xI' from which it follows that "'] (Fo) C Fl' Thus, we have
constructed the mapping,1'''' 1 : Fo - F I by means of the path 1'. We now
prove that 1''1'1 depends only on the homotopy class of the path 1', i.e., if
1'1 is homotopic to 1'2 then I' "'1 is homotopic to 1'2'1']. Note that the con-

I ..
structed mapping Fo - F 1 does not depend on the choice of a covenng
homotopy in the sense that any two such mappings are homotopic. In
fact, let 'l't and ~t cover >/It. Then the mapping '1']: Fo - F1 is homotopic to
'l'o:Fo - Fo' '1'0 = >/1 o whereas the latter is homotopic to >/II :Fo - Fl'
Now, let the family of paths I't be given. We shall show that I' '1'1 is

h
. 0

homotopic to '1'1' We have t e mappmg
1'1

1'0'1': Fo x I - X; (P' l' o'l')(Fo x l) = 1'0'

In Y, there exists a homotopy of l'°into 1'1 which can be covered by a
mapping et> : (Fo x l) x I - X such that et> I (F: x !) x ° = l' o<P and
et> I (Fox l) x 1 = f t with (p . f)(Fo x l) = 1'1' Th~refore, the mapping f t
can be taken as a covering map for all v 1J, = 1'1'1'1' Then et> I (Fo x 1) x I is
a homotopy between 1'1'1', and 1'2'1'1' Note furthermore that the mapping
(_ I')X I : F I - Focan be constructed similarly by means of the path (-1').
It remains to prove that the mapping (-I')X, °1''1'1): Fo - Fo is homotopic
to the identity. But this mapping can be considered as the one induced by
the path l' + (-1') which is, evidently, homotopic to a mapping into a
point.

12.37. Let Sk X S" - k be a cell complex with only four cells, viz., eO,

ek, en - k, en. Consider the mapping f : Sk X S" - k - S", where
f(eo) = * is a certain point in S", We take the latter as the zero­
dimensional cell in S",

By the cellular approximation theorem, there exists a map
g: Sk X S" - k - S" which is cellular and homotopic to f, the equality
f(eo) = g(eo) being held on e" and the whole homotopy connectingfand
g coinciding on eO C f. Since S" consists of only two cells, viz., the zero­
dimensional (* ) and n-dimensional, then, under the mapping g, the cells
ek and en - k are transformed into a point on S", We obtain that the map­
ping g may not be equal to a constant only on the n-dimensional cell.
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Therefore, all the mappings Sk X Sn - k - S" differ only by a certain
mapping of the n-dimensional cell into Sk X S" - k, and then into S",
which transforms the whole boundary into a point on Sn (due to the path­
connectedness of S", the choice of a point is immaterial). But they are
mappings of type S" - Sn (more exactly, a one-to-one correspondence
can be established between 7f(Sk X S" - k, S") and 7r(Sn, Sn».

12.49. Let (x I, ... , x") - (x I, ... , x", 0) be the standard embed­
ding Rn - R" + I (in the form of a hyperplane). Consider two points
A = (0, ... ,0, 1) and B(O, ... ,0, - 1) in Rn + 1 and construct cones
CAM and CBM with vertices at the points A and B, respectively, and a
common base H C R". Then any deformation of the subset R">, H in Rn

can be extended to a deformation of the subset [(Rn" H) in R" + 1.

12.50. Assume the contrary, viz., let cat(Mn ) < /(Mn ; G), i.e., that
there exists a covering of M" by closed sets X l' ... ,Xk ,k < / (M"; G)
each of which contracts on M n to a point. Due to Poincare duality,
Hk(M n ; G) == H n - k (Mn; G), to the cocycles xI' ... ,x, there corre­
spond cycles YI' •.. , Y, and to the product h = XI /\ •.. 1\ x, (of the
cocycles x I' ... , xI) there corresponds the cycle a = Yin ... n Y,
which is the intersection of all the cyclesY I' ... ,Yt- Since the Poincare
duality operator D is an isomorphism, the intersection y. n ... ny, =
= CI is different from zero (i.e., the cycle CI is not homologous to zero).
Since each subset Xi (I ~ i ~ k) is contractible on M n to a point,
H* (Mn; Xi) = H* (Mn) (where * > 0). Therefore, the cycle Yi E

E H * (Mn
) can be assumed to be homologous to the cycle Y, E

E H * (Mn; Xi)' i.e., the carrier of the cycle v, lies in u»>. Xi (I ~ i ~ k).
Hence, it follows that the intersectionj , n ... n Yk (homologous to the
intersection YI n ... n Yk) lies in the complement of (the union)
XI U ... U X k; the more so, Y1 n . .. n Yk n n
n Y, c Mn"(X I U ... U X k ) = 0, since XI' ... , X k forms a
covering of M n. Since the intersection of the carriers of the cycles YIn
n ... n Y, = 0, the corresponding product of the cocycles XI /\ ••• 1\

1\ x, = 0, which contradicts the condition that Xl 1\ ... /\ XI "" 0, and
the theorem is thus proved.

12.51. Consider the fibration (E, p, X), where E is the space of all paths
of the space X starting at the pointxa' andp the mapping associating each
path with its endpoint. The total space E is considered here in the
compact-open topology. The fibre of this fibration is the space nx = nxo
of all loops of the space X at the point xo' It is easy to see that the space E
is contractible on itself to a point (each path is contractible on itself to the
point xo)' Therefore, 7rn (E) = 0, and the homotopy sequence of this
fibration
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generates the isomorphism 7rn (flx ) "" 7rn + I (X). In particular,
7rl (flx o) "" 7r2(X), The group 7rn (X ) is

o
Abelian when n ;3 2.

12.52. Definition. A space X is said to be contractible if the identity
mapping X - X is homotopic to the mapping X - X sending all X to a
point.

Definition. A space X is said to be I-connected if 7r I(X) = O.
Since X is contractible, there exist 'Pt : X - X, 'Po being the identity

mapping X - X, and 'PI the mapping X - Xo E X. Since the definition
of a fundamental group does not depend on a base point (up to isomor­
phism), let -y: I - X be an arbitrary path on X, -y(0) = -y(l) = XO,
0(7) == XO, 0: I-X. The same homotopy 'Pt : X - X stipulates that the
loops -y and 0 are homotopic. Thus, any two paths on X are homotopic,

. i.e., 7r 1(X) = O.
12.53. We prove that (a) any element from 7r I(8~) (where 8 ~ is the

wedge of circumferences) is representable as the finite product of
elements 1/;; I and 1/", where 1/" E 7r I (8~) is the class of the mapping t;
(which is the standard embedding); (b) such a representation is unique up
to cancelling the factors 1/" and 1/;; I placed in a row.

(a) This is equivalent to 7r I (8~ ) being a free group with the generators
1/", <X EA. Consider the mapping j: S I - 8 ~. Represent each cir­
cumference S 1 and S (~ E 8 ~ as the sum of three one-dimensional
simplexes P, Q, Rand P", Q", R". By the simplicial approximation
theorem, the mappingj is homotopic to a simplicial mapping F of a cer­
tain subdivision of the complex S I into 8 ~ . Multiply the mapping F on
the right by a homotopy 'PI' where 'Po is the identity mapping, 'PI

transforms Pc<' R" into a base point and stretches Q" to the whole of S(~.
We obtain a mapping F homotopic to the original. The mapping F either
transforms each of the equal parts, into which S I is divided, into a point
or winds it round one of S ~, <X EA. The class of such a mapping in
7r I (8~) is the product of elements of the form fI", I/(~ I, and e (identity
element of the fundamental group), i.e., the constant mapping class.

(b) The product I/~}I' . . fI~x~ (cs = ± I, k ;3 1), which has no fI" and
fI;; I in a row, is not equal to the unit element in 7r I (8~), i.e., there exist
no relations in 7r I (8~). Under the covering map 7r: T - X, the inverse
image of each point 7r(x) = D is found to be in one-to-one cor­
respondence with the cosets of the group 7r 1(X) relative to the subgroup
7r*(7r1(T».lnparticular,ifx1,x2ET,XEX,7r(xl) = 7r(x2) = x,andS
any path from Xl to x2' then the loop 7r(S) with vertex at the point X is not
hornotoni h . L C'! f.k homotopic to zero: ot erwise, XI = x2' er 1/ = 1/"1' . . I/"k' were
I/~. is a loop traversed in the direction of a circumference of the wedge ac­
cording to the sign of ci . Take k + I replicas of the wedge, and place
them one over another. We take 1/" in the first and second wedges, cut
out a line-segment in both replicas, and join their ends "crosswise", while
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extending the projection 71" to them. Similarly, we join the second wedge
to the third by using 1]~~, etc. If there are two identical letters in the word
1] one after the other, then two line-segments of the same circumference
should be cut out. In doing so, the second operation precedes the first if
ei = 1, and follows it otherwise. We obtain a (k + lj-sheeted covering
of B~ ' the path 1] being covered by a path starting at the lower point, and
ending at the upper. This loop is not homotopic to zero.

12.54. Letf: YI - Y2 andg: Y2 - YI be two homotopy equivalences,
i.e., g·f - Idyl;f'g - Idyz• We define the mappingsf*--':7I"1(YI)­
- 71"1 (Y2) andg * : 71"1 (Y2 ) - 71"1 (YI)(if a: S 1 - YI, a E a E 71"1 (Y1) ,

then!", is the class of the loop j": a : Sl - Y z). Sincej", . g* = (j' g),
f*' g*: 71"1 (Y2) - 7I"1(Y2) and g* 'f*: 7I"1(YI) - 7I"1(Y1) are isomor­
phisms,whence7l"1(Y1) = 71"1 (Y2 ) ·

12.55. Let 71" I(X) * 71" 1(Y) be the free product of 71" I(X) and 71" 1(Y).
Let XY be two universal coverings of X and Y, respectively. Let X obe a
base point of X, Y and the wedge X V Y. We construct the following
covering: taking X, we consider p - I(xo)' where p : X - X is a covering
map, and glue Y at each point x~ E p - I(xo)' We identify xb" with x~'
where zj, is a certain point from p \ I(xo) and p , : Y - Ya covering map.
At each remaining point from p]" (xo)' and to each replica of Y "glued",
we glue X in this manner, etc. The projection p ": (X V Y) - X V Y is
defined in a natural manner, viz., each replica of Y is mapped into Yvia
»', and each replica of X into X viap. It is obvious that the space obtain­
ed is a covering ofX V Y. Consider the fundamental group X V Y, points
t 1 and t2 in X V Y such that t I' t2 E (p ")- I(xo)' and a path ex. Under the
projection p", this path will be transformed into a certain loop a
representing the class of ex in 71" 1(X V Y). Note that it follows from the
construction of the covering map and X and Ybeing l-connected that the
path from t l to t2 is unique up to homotopy.

Let Ii E 71" 1(X V Y) be decomposed in terms of the generators ei E

E 71") (X) and 6j E 1r1 (Y), i.e., a = ef/6Jiefi ... 61; , Then this
representation is unique up to the relations in 71"1 (X) and 11"1 (Y). In fact,
let jj = eft 61z1 ... efn61n- 1, where 1 is the constant loop at theInn _
point x., and not all ek and as equal zero (we take a reduced word). Then (3
can be realized as a path in X V Y which, as it is obvious from the form of
the covering map, is not closed; therefore .. jj "" 1. Thus, we have obtain­
ed that 11" I(X V Y) = 71" I(X) * 11" I(Y). The same result follows from the
van Kampen theorem on expressing the fundamental group of a complex
in terms of the fundamental groups of its subcomplexes and their intersec­
tions.

12.56. Definition. If K is a knot, then the fundamental group
11" I(R3" K) is called the knot group. .

Let us find the corepresentation of this group. Consider the upper (or
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lower) corepresentation of the trefoil knot. Let PK be its projection. The
points K, (i = 1, ... , 6) divide the knot into two alternating classes of
closed, connected arcs, viz., the class of overpasses and the class of under­
passes. Let AI' A 2' A 3 be the overpasses, B l' B2. B 3 the underpasses, and
F 3 the free group with the generators x.j , z. We call a path v in R2 simple
if it is the union of a finite number of closed straight line-segments, its
origin and endpoint do not belong to PK, and it meets PK in a finite
number of points which are not the vertices either of PK or v. We
associate each path vwith v'* E F3 : v" = xIi ... xI! ' where Xi

k
are the

generators of the free group, f:k = 1 or f:k = - 1 depending on how v
passes under Ai

k
• The upper corepresentation of the group 7l'1 (R3" K) is

of the form

(1)

where ri = vt are the relations. The upper corepresentation determined
by formula (1) is known to be the corepresentation of 7l'1(R3"K). The
loops vI' v2 ' v3 around the overpasses (x, y, z are the generators) satisfy
the equalities

We have obtained the corepresentation (x,y, z; x = y<;y-I,y = zxz- I,

Z = xyx- I). Substitute z = xyx- I, then

(2)

Thus, 7l'1(R3"K) = (x, y; xyx = yxy). It is impossible to untie the
trefoil knot, since its type is different from the trivial knot type. If two
knots K' and K" have the same type, then their complementary spaces
possess coincident fundamental groups. The group G = (x, y;
xyx = yxy) is not the infinite, cyclic group Z. In fact, a homomorphism
(} : G - 83 can be constructed, where 83 is generated by the cycles (12)and
(23).

Let K' and K" be two connected subcomplexes of a connected
n-dimensional, and simplicial complex K, each simplex from K belonging
to at least one of these subcomplexes. Their intersection D = K' n K"
is neither empty nor connected. Let F, F', F", FD be the fundamental
groups of the complexes K, K', K", D. We take 0 ED as the starting
point of the closed paths. Then each closed path of the complex D is, at
the same time, a path of the complexes K' and K". We refer here to the
well-known van Kampen theorem. The group F is obtained from the free
product F' x F" if each pair of elements of F' and F" corresponding to
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the same element of PD are identified, i.e., assuming these elements to be
equal, we thereby add relations to the generators of the groups P' and
P".

We now find the fundamental group of the "helical" knot defined as
follows. Draw generators on the lateral surface of a circular cylinder at
the distance of 27r1m from each other, and then rotate the upper base
through 21rn1m. Then, identifying the bases, add one point at infinity
(00) and thereby turn R3 into S 3• Remove from S 3 all the points belonging
to the tubular neighbourhood of the knot. We obtain a polyhedronK, the
complement of the knot. Divide S 3 into two parts by the torus which con­
tains the "helical" knot. The complex K is then divided into two solid tori
each of which has been stripped of the knot tubular neighbourhood on
the surface. We take one solid torus as K', and the other (with the point
at infinity) as K". The fundamental group F' (resp. P") of the
polyhedron K' (resp. K ") is a free group with one generator A (resp. B).
The generator A can be represented as the midline of the solid torus of the
polyhedron K (the same be done with B). The intersection D of both the
solid tori is a twisted annulus. The fundamental group D is also free with
one generator which we take to be the midline of the annulus. The group
P' 0 P" is a free group with the generators A andB. For an appropriate
orientation of the paths A and B, the path C considered as an element of
the group P' equals Am, and as an element of the group p", it equals e»,
We obtain the relation Am:=: B n. Thus, the corepresentation of the
group 1rj (S3" 'Y) is !A, B; A 2 = B 3J, where v is the trefoil knot.

The two corepresentations of the fundamental group of the trefoil knot
obtained are equivalent. We leave the verification of this proposition to
the reader.

12.58. We choose the point 0 belonging to Was the starting point of the
closed paths. Then each closed path of the complex W is, at the same
time, a path of the complexes Z, Y, i.e., to each element of the group
1r I (W) there correspond an element of the group 1r j (X) and an element
of the group w.j Y). We represent Z, Y, Was simplicial complexes. Join
each vertex of X to 0 with a path. If the vertex lies in W, then the path
may be drawn in W wholly (because of the connectedness). A simplex of
an arbitrary dimension of the complex X belongs either to Z (but not to
Y) or Y" Z or Y n Z. The set of all simplexes is thus divided into three
disjoint subsets Z, -y, W. The generators ui of the group 1r I (X) can be put
into one-to-one correspondence with the edges of the complex X. In ac­
cordance with that simplicial complex to which this edge belongs (2, Yor
W), we redesignate c, intozi,y; or Wi' respectively. Thus,1r j (X ) has as its
generators those of the fundamental groups 1r j (Y) and 1rI (Z) (the
generators of 1TI (W) being included in those of 1r ;(Z) and 1Tj (Y». The
relations in the group 1r1(X) are in one-to-one correspondence with the
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edges and triangles of the complex X. Since the complex X has been sub­
divided into three subsets, these relations also get into three classes. Let us
write out the relations:

'Pj(Wj,Z j) == 1 (inZ),

'P/(w j , Yi) == 1 (in Y>.

>/;j(W j ) == 1 (in W).

(1)

(2)

(3)

Relations (3) are defining relations for the group 7l"\ ( W), relations (2) and
(3) for the groups 7l"\ ( Y) and 7l" \ (W), relations (I) and (3) for the groups
7l"\ (Z) and 7l"\ (W). and relations (1), (2), (3) for the group 7l"1(X). These
relations can be rewritten in the following manner:

(2')

(3 ')

Relations (1') and (2') determine the free product of the groups 7l"1(Z)
and 7l"\ ( Y). and (3') implies that these elements of the groups 7l"I (Z) and
7l" \ ( Y) corresponding to the same element wj of the group 7l"I ( W) must be
identified. In proof, we have used the fact that W is connected, since
otherwise the statement derived for the group 7l" I (X) is incorrect. E.g .•
Z == Y == 1 (a line-segment), W == SO, X == S1, 7l"\(X) == z,
7I"\(Z) == 7l",(Y) == e.

12.78. It is known that for any subgroup G C 7l"\ (X), there exists a
covering map p: XG - X such that 1m 7l"* (71" \ (XG» == G. Introduce
multiplication on X G • Let eE p - \ (e), where e is the unit element in X,
and X,Y E XG . Join e to x and y with paths xt and Yt ;xo == e, XI == X.
Yo == e.Y\ == y. Letp(x) == x,andp(y) == y. Thenxandyarejoinedto
e with the pathsp(xt) == x t andp(Yt) == Yl' respectively. These two paths
can be multiplied together in X. i.e., we can consider the path
Zt == x t X Yt which joins e to the point z \ == Z == xy. Let z, be liftable to
Zt in X G' and X x y == Zt : It remains to verify the correctness of the
definition. The following statement can be proved. Let X be a groupoid
with identity. and a, /3 E 7l"1(X, e). Then a/3 == a X /3, meaning
multiplication in 71" I (X, e) on the left-hand side, and multiplication in X
on the right-hand.

We omit the proof leaving it to the reader. The correctness of the
definition follows from this statement immediately.
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12.79. Whenp > 0 and q > 0, for any n < p + q - I, the isomor­
phism holds: 7rn(SP V sq) "" 7rn(SP) + 7rn(sq). Since the pair
(SP x S", sP v sq) is a relative (P + q)-dimensional cell, it follows
from proposition I (see below) that 7rm(SP X s«, se v sq) = °when
m < p + q. Therefore,

7rm(SP V sq) = 7rm(SP) + 7I"m(sQ).

If for the triple (X, A, xo), the pair (X, A) is a relative n-dimensional cell,
then 7rm (X, A, xo) = 0 when 0 < m < n. The proof is left to the reader.

12.81. It follows from the Freudenthal theorem that the excisign
homomorphism 7rm ( U , Sn) - 7rm(Sn + 1, V) is an isomorphism when
m < 2n, and an epimorphism when m = 2n, where U and V are the
north and south hemispheres of Sn + I. We find 7r3(D2, iJD 2):

.. . -7rn(iJD2)-7rn(D2)-7rn(D2,aD2)- 7rn _ l (iJD 2) ... -.

When n = 3, we have 71"3 (iJD 2) = 7r3(S I ) = 0, 71"3 (D 2) = 0, 7r2(iJD2) =
= O. Hence, 7ri(D2) "" 7r3(D2, iJD 2) = O. From the exact sequence,
7r3(S2) = 7r3(S ,D2) = Z.

12.82. The proof follows from the exact homotopy sequence of the
Serre fibration.

12.83. The proof follows from the cellular representation of the projec­
tive space, and from the investigation of the standard covering map.

12.85. Let us prove that 7rI (Cpn) = 0, where Cpn is a cell complex
having one cell in each even dimension, i.e., having no one-dimensional
cells. By the theorem on the fundamental group of a cell complex with
one zero-dimensional cell, we obtain that 7r1(Cpn) = 0. Further, the
sphere S2n + 1 fibres over ce: with the fibre S I. In fact, let S2n+ 1 C
C C" + 1 (standard embedding). The point (z I' , zn + I) E s2n+ 1 if
and only if I: Iz,12 = 1. Further, Cl?" = [(ZI' , zn + I) up to
multiplication by X, i.e., }-.(ZI' ... ,zn + 1) = (ZI' ,zn + I)J. Set the
mapping p: S2n + I - Cpn, P(ZI' ...) = (ZI' ). It is continuous,
and its image is the whole space CPn' Over the point from Cl?", the
following set of points from S2n + 1 "hangs": let (ZI' ... ,zn + I) E err.
then

f- I (z I' .•. ,zn + I) = ki<P(z l' ... ,zn + I)J C S2n + I,

where f- I is the full inverse image, and 0 ~ 'P ~ 271". In fact,
ei

<P 1(z J" " ,zn+ l)ande i
<P 2 (ZI " " ,zn+ I) are the same point in csr.

but if <p 1 * 1<'2' then these are distinct points in S 2n +. I. Therefore, the
mapping p : S2n + I - Cpn is a fibre map. It now remains to apply the
exact homotopy sequence of the fibre map.
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12.86. The statements follow from the cellular approximation theorem.
12.87. Let Px : X X Y - Y, P y : 'X X Y - Y be two projections.

Set the homomorphism <p : 11"j(X x y) - 11"j(X) (B 11"j(Y); viz.,

(aj e is a homomorphisrru efc + iJ) = (px.(a + (3),py.(a + iJ» =
= (Px.a,py.a) (B (Px.iJ,Py.iJ) = <p(a) (B <p(fJ).

(b) <p is a monomorphism. Let <p(a) = 0, i.e., Px. a = 0, P y' a = O.
Therefore, if;x = Pxoa : Sn - X is homotopic to a constant mapping,
i.e., there exists if;Xl : Sn - X such that if;XO = if;x» "if;Xl = *. Then we
set the homotopy <Pr thus: <pr(a) = (if;X,(a), py.(a» when t = 0,
<pr(a) = a when t = I. <Pr(a) is a mapping of S" into
(*)x YCXx Y,(*,py.(a»E11"n«*) X y)=1I"n(y)·Butpy.(a)
is a contractible spheroid, i.e., a is contractible.

(c) <p is an epimorphism. Let iJ E 11"n (X), 'Y E 11"n (Y). Then a = (fJ, 'Y) is
transformed into iJ (B 'Y under <p.

• • PI Pz •
Let there be two universal covenngs: £1 - X, £z - Y. Consider the

mappingp. x Pz: £1 X £z - X x Y, (PI X P z ) (e I x ~ z) =
= (Ple\ x pzez). We assert that this is a covering. The proof is left to
the reader.

Let'YIE11"I(X'~O),'YzE11"](Y'YO),aIE11"n(X, xo), a zE11"n(Y' Yo),
and a homotopy F, along the path 'Y I of the spheroid a] be given so that
FO(a l ) = al,F](al) = 'Ydad, Fr(al)E11"n(X, 'Y1(t». Similarly,
<P(t): <Po(az) = a z, <PI (az) = 'Yz[az], <Pr(az) E 11"n( Y, 'Yz(t». Define a
homotopy along the loop 'Y = (-y I (B 'Yz)(t) into X x Y of the spheroid
a = (al (B az)asFr(al) X <Pr(az). Then FI(a l ) x <PI(aZ) =
= 'Ydad (B 'Yz[az]· Thus, hi (B 'Yz][a] (B a z] = 'Ydad (B 'Y z [a z] .
But since any loop 'Y and any spheroid from X x Yare of the forms
'YI (B 'Yz and a] (B az for certain v , E 11"](X),'Yz E 11"1(Y)' al E 11"n(X),
Q:'z € 11"n (Y), then the action of 11" I(X X Y) on 11"n (X X Y) has been fully
determined.

12.89. Use the Hopf map S3 - SZ. It is arranged as follows:

S3 = [(ZI'ZZ): Iz]1 2 + Izzlz = l]ECZ,SZ = cr',
i.e.,

SZ = !<ZI' zz) : (l..zl' l..zz) - (z]' zz)]·

We obtain the fibre map S3 - SZ. The exact sequence may be written for
this fibre map, viz.,

..• - 11"i(S I) - 11"i(S3) - 11"i(SZ) - 11"i _ I (S]) - •..
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From the properties of the sequence, 1fj(S3) = 1fj(Sz) when i ~ 3. By
the Freudenthal theorem, the homomorphism 1I"j_ t(Sn- ,) - 1I"j(Sn) is
an epimorphism when i ~ 2n - 2, and an isomorphism when
i < 2n - 2, i.e., the homomorphisms

1I",(S') - 1I"Z(S2) - 1I"3(S3)

are isomorphisms. Therefore, 1I"3(S3) = Z. Since 1fj(S3) = 1f;(Sz)
(i ~ 3), 1f3(SZ) = Z.

15
Simplest Variational Problems

15.1. It suffices to consider the Euler equations for the action func­
tional and write these equations in local coordinates. In doing so, use ex­
plicit formulae for the Christoffel symbols.

15.2. The Euler equations for both functionals should be written out,
and then the behaviour of the functionals when changing the parameter
(i.e., time) on the extremal solutions considered. The required statement
follows from the length functional being invariant under parameter
changes and the action functional being not invariant.

15.3. The proof is reduced to the direct computation: the Euler equa­
tion in Cartesian coordinates should be written out, and the explicit for­
mulae for the mean curvature used (the mean curvature is calculated for
the graph of a smooth function).

15.4. The proof is similar to that in Problem 15.3. This analogy is based
on the codimension of the graph of the function being equal to unity in
both problems. Therefore, the mean curvature tensor is given by one
function only (by the mean curvature itself).

15.5. Use the classical inequality

15.6. Square the integrands and compare them.
15.7. Use local Beltrami-Laplace equation theory and write the equa­

tion in a curvilinear coordinate system. It follows from the theory that
conformal coordinates can be always locally introduced on a two­
dimensional surface (given by analytic functions), while adding the condi­
tion that the mean curvature equals zero transforms these coordinates in­
to harmonic.
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15.8. For example, the function r-(u, v) = (u, Y, U2 - y
2 ) .

15.9. (c) The calculations performed in point (b) are of local character,
which enables us to carry them out in a neighbourhood of each point on
the Kahler manifold. On the contrary," Stokes' formula is valid for any
smooth manifold (recall that the Kahler exterior 2-form is closed).

15.10. By the implicit function theorem, one of the coordinates, e.g.,
x», can be expressed (on the level surface Fa = const) as a smooth func­
tion of the other coordinates. Substitute this function in the Euler equa­
tion for the extremal of the functional J.
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