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PREFACE

Ta1s book consists of a short course of applied mathematics
which assumes only a knowledge of the calculus and the funda-
mentals of statics and dynamics. It is based on lectures which
I have given in the University of Tasmania, where all students,
whether their main interests are in mathematics or not, are taught
in the same classes. In it I have attempted, by choosing for de-
tailed study the mathematics of problems of obvious practical
importance, to provide a course which is more interesting and
useful to physicists and engineers than the more academic ones,
but which at the same time gives as good a training for mathe-
maticians.

It is intended for students at the intermediate stage at which
the normal practice is to develop mathematical skill by an
intensive study of comparatively difficult problems in statics
and dynamics. In place of this it offers & comprehensive course
on ordinary differential equations and the subjects in which they
occeur, including the theory of vibrations, electric circuit theory,
elasticity, and selected physical problems, as well as particle and
rigid dynamics. In addition, it contains an introduction to par-
tial differential equations and their applications, together with
topics such as special functions, Fourier series, Fourier and
Laplace transforms, and numerical methods, which are required
for their solution. An introduction of this sort seems to me to
make subsequent teaching at a higher level much easier, and it
has also the great advantage of providing a proper mathematical
background for students of physics and engineering who may
study no more mathematics.

Applied mathematics at this level consists mainly of applied
differential equations, and thus it seems proper that so much
of the theory of differential equations as is needed should be
regarded as a part of applied mathematics and taught in it with
an eye to applications, rather than as academic pure mathe-
matics. Accordingly, in the first three chapters I have given a
short and self-contained, but fairly complete, treatment of
ordinary differential equations, with many physical problems
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as examples. This is followed in Chapter IV by a long account
of mechanical problems leading to ordinary linear differential
equations ; these are mostly vibration problems and are useful
for developing manipulative skill, apart from their technical
importance. In Chapter V similar problems in electric circuit
theory are discussed and the analogy with mechanical problems
developed ; here, again, the object is to study the mathematics
which arises in electrical problems rather than to develop the
theory of the subject in detail, although in fact most of the
important topics are covered, including the impedance of com-
plicated circuits, servomechanisms, and triode oscillations as far
as van der Pol’s equation.

Chapter VII begins with non-linear problems in particle
dynamics and electric circuit theory, including a discussion of
the oscillations of non-linear systems by the method of Kryloff
and Bogoliuboff: it concludes with the conventional problems
of particle dynamics in two and three dimensions, most space
being devoted to the motion of charged particles in electric and
magnetic fields. Chapter VIII contains a relatively brief treat-
ment of rigid dynamics as far as the gyroscope ; this is included
because of its increasing importance in control systems. An
account of the elements of potential theory and the nature of
the motion of a dynamical system is given in Chapter IX, which
concludes with Lagrange’s equations. Both vector and Carte-
sian methods are used in these chapters, a brief account of the
elements of vector algebra having been given in Chapter VI.

Boundary value problems are considered in Chapter X, in
particular those arising in the bending of beams. These provide
many interesting examples and serve as an introduction to
matters such as eigenvalue problems and the use of the delta
fanetion.

The last four chapters complete the design of giving an intro-
duction to more advanced topics. Fourier series and integrals
and their applications to initial and boundary value problems
are treated in Chapter XI. Ordinary linear differential equa- -
tions with variable coefficients are treated briefly in Chapter
X1I, where an outline of the properties of Bessel and Legendre
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functions is given and the occurrence of Mathieu’s equa.tlon in
vibration problems is sketched.

In Chapter XIII an introduction to partial differential equa-
tions is given. The important equations in two variables are
derived and solved in interesting special cases, and the various
methods available for their solution described. At the end of
the chapter the corresponding equations in two and three dimen-
sions are discussed, and the use of Bessel and Legendre functions
in their solution indicated.

Finally, because of the growing importance of numerical
mathematics, the principal interpolation formulae are given in
Chapter XTIV, together with a short account of step-by-step and
relaxation methods for the solution of ordinary and partial
differential equations. _

* The pace of most of the text is leisurely, but it is increased
towards the ends of the chapters where more difficult matters,
such as moving axes, Fourier integrals, etc., are introduced.
These, of course, may be omitted if desired. As remarked earlier,
a knowledge of the fundamental principles of statics and dy-
namics is taken for granted and these are not restated in the
text. In the case of topics such as vectors, bending moments,
and moments of inertia, which probably will already have been-
studied in statics, those parts of the theory which are needed
are covered relatively briefly. No knowledge of electric circuit
theory beyond the meanings of fundamental quantities such as
capacitance and inductance is assumed. Other subjects are
developed ab initio when required. A collection of some three
hundred examples, containing answers, has been included. These
have been constructed as far as possible to correspond to prob-
lems of practical interest and at the same time to give training
" in mathematical manipulation.

It is a pleasure to acknowledge the assistance of many friends
who have discussed the project with me, and also that of the
University of Tasmania in extending my leave of absence to

enable me to complete the work.
J.C.J.
20 May 1950
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I

ORDINARY DIFFERENTIAL EQUATIONS
AND THEIR OCCURRENCE

1. Introductory

Mosr of the problems of applied mathematics with which we
shall be concerned involve differential equations. The first step
in the solution of such problems is the setting up of their differen-
tial equations together with any other conditions which may
have to be satisfied; the second step consists of the solving of
these differential equations; and the third and last step of
expressing the solutions in a simple form from which physical
conclusions can be drawn or numerical calculations made.

A working knowledge of the theory of differential equations
is thus an essential preliminary, so in this chapter a brief accountt
of the common types and the way in which they arise is given,
followed, in the next two chapters, by the standard methods for
their solution.

2. Definitions ,

Any relation between the independent} variable z, the depen-
dent variable y, and its successive derivatives dy/dex, d2y/dx2,...,
ete., is called an ordinary§ differential equation. The order of a
differential equation is the order of the highest differential
coefficient occurring in it. Thus, for example,

3
%Zm(j—g) ty—o, (2)

1 For fuller treatments see, for example, Piaggio, Differential Egquations
(Bell); Forsyth, Treatise on Differential Equations (Macmillan) ; Ince, Ordinary
Differential Equations (Longmans).

1 When discussing the theory of differential equations we shall take the inde-
pendent variable to be 2 and the dependent variable y. In applications the
symbols for dependent and independent variables are determined by the prob-
lems. It is assumed throughout that y has derivatives of all the orders involved
for all values of z.

§ If there are two or more independent variables the equation is a partial
differential equation: these will be discussed in Chapter XIII. Until then we
shall usually omit the word ‘ordinary’.

5206 B
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and | (@) —I—y( ) +y=0, (3)

da?
are all second-order differential equations.

All the differential equations we shall need will contain only
rational integral algebraical functions of the differential coeffi-
cients (fractional powers of y and x may sometimes appear), and
in such cases the degree of the highest differential coefficient
involved is called the degree of the equation. Thus (1) and (2)
are both of the second order and the first degree, while (3) is
of the second order and the second degree.

In the same way, we may have systems of simultaneous
ordinary differential equations for several variables y, z,... in
terms of a single independent variable x.

3. Ordinary linear differential equations

By far the most important type of differential equation with
which we shall be concerned is that in which all terms are of at
most the first degree in y and its derivatives. This is called an
ordinary linear differential equation, and its general form for
the nth order is

ao(ﬂ«) +a1(x) p 1-I- ta n—l(x)——+an(9«')y* $(x). (1)

The quantities ag(x), a,(x),..., a,(x) are called the coefficients;
often they are constants, in which case the equation is referred
to as an ordinary linear differential equation with constant coeffi-
cients; if they are functions of z it is an ordinary linear differen-
tial equation with variable coefficients.

Equation (1) will also often be described as an inhomogeneous
linear differential equation to distinguish it from the correspond-
ing equation with ¢( x) = 0, namely

@) 2 ta@) Tt a0 P @y =0, @)

which is called a homogeneous linear differential equation. The
reason for this nomenclaturet is that all terms of (2) are of the

1 This usage is common in many branches of mathematics, but the term
‘homogeneous’ is often also used for certain special types of differential
equation ; cf. § 25 and Ex. 2 on Chapter II. These, however, are not of much
importance in applied mathematics and no confusion will arise.
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same kind, that is, containing y or its derivatives, while (1) con-
tains the term ¢(x) which is of a different kind.

Equations (1) and (2) have fundamental properties which
distinguish them from all other types. Considering the homo-
geneous equation (2) first, suppose that y, and Y, are two
different solutions of it, so that :

dn dn-1

ay@) ot F @) Bt e, @y, = o, (3)
dn dnr-1

an() G+ ay(®) Lt ey, = 0. (4)

Then if ¢; and ¢, are any constants, it follows, by adding c,
times (3) to c, times (4), that c,y,+c, Y also satisfies (2). That
is, if we know two solutions of (2), any linear combination of

-these is also a solution. And, similarly, if y,, y,,..., ¥, are n
different solutions of (2), the general linear combination of these,

namely QY teayat - Yn,
where c,, c,,..., ¢, are any constants, is also a solution. This
result does not hold for the inhomogeneous equation (1).

The important result for the inhomogeneous linear equation
(1) is that if y, is a solution of it with a funection ¢;(x) on the
right-hand side, y, a solution with ¢,(z) on the right-hand side,
and so on, then y,+y,+-...+y, satisfies
ra@P Wy o,y = b@ ot bae). 5)
don T 0 oS+ Fa, )y 1 wo -, (x).
This follows by adding the equations of type (1) for y, to y,.
It will appear subsequently that, in many of the applications we
shall make, ¢(x) refers to the cause and y describes the effect,
and the above result then implies that, if the equations governing
the problem are linear, the effects of a number of superposed
causes can be added. This result is often referred to as the
Principle of Superposition.

If any powers or products of y and its derivatives oceur in a
differential equation it is described as non-linear and neither of
the above results hold for it. For example, if %, and y, satisfy

dy .y
¥ Ty=0 (6)

ao(x)
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neither c,y,+c,y,, nor even c,y,, satisfy (6) because of the
product term y(dy/dx).

The distinction between linear and non-linear differential
equations is of fundamental importance. Broadly speaking, it
will appear that the solution of the ordinary linear differential
equation with constant coefficients (homogeneous or inhomo-
geneous) is a relatively easy matter; the ordinary linear differen-
tial equation with variable coefficients is more difficult, but its
theory is well known and special equations of importance have
been extensively studied; much less is known about non-linear
differential equations, and there is no comprehensive general
theory of them—a number of special types can be solved, but
equations which arise in practice often donot belong to these and
have to be solved by processes such as successive approximation.
Inany practical problem the first question to study is that of
whether the differential equations involved are accurately linear
(in which case a complete solution should be attainable), or are
approximately linear (that is, if the terms which make them
non-linear are small and can be neglected for a first approxima-
tion), or are non-linear. In the next sections we shall make a
preliminary survey of the simplest equations which will arise
later and discuss them from this point of view.

4. The differential equations of particle dynamics

The simplest equations arise in problems on motion of a
particle of mass m in a straight line. Here, if y is the position
of the particle at time ¢, Newton’s second law gives

day

Mmoo = foree.' (1)
The force is in general a complicated function
dy

of position, time, and velocity. In many cases it simplifies
further into an expression of type

1)+o(3) +he0, ®)
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so that the differential equation (1) becomes

dy _ dy
s =6 +o( ) +0. @
If f(y) = ky and g(dy/dt) = k' dy/dt, where k and %’ are con-
stants, this becomes an inhomogeneous second-order linear
differential equation and thus easy to solve. This is an impor-
tant special case, since f(y) = ky occurs in the theory of small
oscillations, but usually
8-+

dt dt

is only a very rough approximation to the truth.

It appears that the problems of particle dynamics will usually
be non-linear, but that linear equations will be encountered in
approximations to systems of importance.

5. The differential equations of electric circuit theory

" The charge @ on a condenser of capacitance C in a closed
circuit containing inductance L and resistance R satisfies the
differential equation [cf. Chap. V]

da2Q aQ 1
LW-FRE—-I-@Q:O, (1)
where L, R, and C are constants. This is a linear second-order
differential equation with constant coefficients. The same re-
mark applies to more complicated circuits—the equations of
electric circuit theory are (very nearly) accurately linear, in
contrast to the equations of dynamics which are only linear
in rather special cases.
Of course non-linear equations do arise in electric circuit

theory (and, in fact, are so important that they have stimulated

much modern theoretical work), for example, if the inductance
has an iron core, L in (1) is not constant but & complicated
function of d@)/d¢. Again, if the circuits contain vacuum tubes
the equations are only approximately linear, and in some prob-
lems, such as oscillator circuits, the non-linearity is of funda-
mental importance.
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6. Differential equations appearing in other problems of

applied mathematics

In the development of most branches of applied mathematics,
differential equations are deduced from first principles at an
early stage of the subject. For example, the fundamental
differential equations of bending of beams are deduced in § 80
and those for steady flow of heat in § 16. We give below some
examples of the method of writing down differential equations
for practical problems. Others will be found in the examples on
Chapters II and II1I.

Ex. 1. The atoms of a radio-active substance A change into atoms of a
substance B at a rate k times the number of atoms of A present.

Let n be the number of atoms of 4 present at time ¢, then the statement

above is equivalent to the differential equation
dn .
5= —kn. (1)

Ex. 2. The atoms of the substance B of Ex. 1 change into atoms of

another substance C at a rate k, times the number n, of atoms of B present,
This statement gives the differential equation
d
= kn—lyny, (2)

and the equations of the problem are the pair of equations (1) and (2).
If the substance C also changes, another equation is added, and so on.
More complicated equations of the same type appear in chemical kinetics,
genetics, ete.

Ex. 3. Mass M of water of specific heat unity is so well stirred that its
temperature T is constant throughout the mass, it loses heat at a rate H times
the difference between its temperature and the temperature T, of its sur-
roundings.

The differential equation is

aT k
M= = —H(T-T,). (3)

Ex. 4. The rate of loss of heat in Ex. 3 18 H' times the difference T*— T}.

Here in place of (3) the differential equation is

M%Z; — _H{(TA—T%) (4)

and -is non-linear.
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Ex. 5. Water of specific heat unity and temperature T, flows into a bath
at the rate of m c.c. per sec. If T is the temperature of the water in the
bath, and T; that of its surroundings, heat is lost from the bath at the rate
H(T-1T)).

Suppose M is the mass of water in the bath at time ¢, then M satisfies

aM
W = m. (5)
Also the quantity of heat M T in the bath at time ¢ satisfies
2 (MT) = mT,—H(T-T,) (6)
. ar
or, using (5), ME-Q-mT = mTy—H(T—T,). (7

The pair of equations (5) and (7) are the differential equations of the
problem.

7. The occurrence of differential equations in geometry
Differential equations often occur as the expression of some
geometrical property of a curve.
For example, if we require the slope, dy/dx, at a point of a
curve to be k times the ordinate at the point, we have

dy _
= ky. 1)

Or if we had required the curvature at a point to be k times
the ordinate at the point we would have

%y dy\2\3
=+ ()]

. )\ L, dy\?)3
or, squaring, (d—xz) = k% ‘ 1+(% } , (2)
. an equation of the second order and second degree. Equations

of this type appear in the theory of finite flexure of thin rods.

8. The elimination of arbitrary constants from a func-
tional relation
Suppose we have a connexion between y and x involving a
number of arbitrary constants, e.g.
Y = c e %cyem, (1)
where ¢, and c, are arbitrary constants, that is, are independent
constants which may have any numerical values.
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Differentiating, we have

g% = —c,e%—2c,e7 22, (2)
% = ¢, e T44c e, (3)

+From (1), (2), and (3) we can eliminate ¢, and c,, since adding
(1) and (2) gives

and adding (2) and (3) gives

Cy €22,

+ dx2
Thus dzy -|— 2y (4)

It appears that a differentml equation of the second order has
been formed by eliminating the two arbitrary constants ¢, and
¢, from (1) and its first two derivatives. This differential equa-
tion is satisfied by all the functions (1), whatever values the
constants ¢, and ¢, may be given.

In general it can be shown [cf. Ince, loc. cit., p. 4] in much
the same way that, if we are given a relation

f(x’ Y;Cp5e0sC) = 0 (5)
between z, y, and n arbitrary constants, differentiating succes-
sively » times gives n relations between x and y and its deriva-
tives and the constants, and from these and the original equation
C15.--s €, €an be eliminated, giving a differential equation of

order n
dy dry
F(x Y g dx") 0. (6)

9. The complete primitive of a differential equation

In § 8 it was found that by eliminating the two arbitrary con-
stants ¢, and c, from § 8 (1) we arrived at the differential equa-
tion § 8 (4). Looked at from another point of view this states
that y given by (1) satisfies the differential equation (4) what-
ever values the constants ¢, and ¢, may have, or that § 8 (1) is
a general solution of § 8 (4) containing two arbitrary constants.
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In the same way § 8 (5) is a general solution of the nth-order
differential equation § 8 (6) containing n arbitrary constants.

It can be shownt that the general solution of an nth-order
differential equation of any degree contains n arbitrary con-
stants; this solution is called the complete primitive of the dif-
ferential equation. Any solution derived from it by giving the
constants particular values is called a particular integral. In
some types of non-linear equation it happens that a solution
can be found which cannot be derived from the complete primi-
tive in this way; such a solution is called a singular solution.

10. Determination of the arbitrary constants. Initial and
boundary value prohblems

In§ 9 it has been seen that the general solution of a differential
equation of order » contains  arbitrary constants; this is all the
information that can be extracted from the equation itself.

In order to specify a practical problem mathematically, addi-
tional information has to be provided. For example, considering
the dynamical problem of § 4, we have the differential equation
§ 4 (4) which determines the way in which the motion is changing
at time /; this is a second-order equation and, as in § 9, its com-
plete primitive will contain two arbitrary constants. In the
dynamical problem there will also be some information about
the way in which the motion was started; for example, if the
motion begins at ¢ = 0 we will be given the position y and the
velocity dy/dt at this time. These give two equations to deter-
mine the two arbitrary constants in the complete primitive.

For example, suppose we have to solve

Z—Z+3%+2y=0,. Q)
with y = 1 and dy/dz = 0 when = 0. We have seen in §8
that the complete primitive of this differential equation is

Y = c e %tc e,
1 The general theory of differential equations is a matter of some difficulty,

the hardest points to discuss being the existence and nature of solutions. Cf.
Ince, loc, cit., chap. iii.
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The information that ¥y = 1 and dy/dx = 0 at x = 0 gives

¢te =1,
¢,+2¢, = 0.
Therefore ¢, = 2, ¢, = —1, and the required solution is

y = 2e-T—e 22,

Problems such as these in which we have to find a solution
of a differential equation for all positive values of x which
satisfies certain conditions at z = 0 are called initial value
problems. Clearly the problems of dynamies and electric circuit
theory are of this type.

In another and equally important class of problem a solution
of a differential equation is required in a restricted region, say
0 < z < @, and the arbitrary constants in the complete primi-
tive are to be found from a knowledge of y, dy/dz, etc., at the
boundaries x = 0 and x = a of the region. Such problems are
called boundary value problems. For example, the solution of
()withy =0atx=0andy=1latr=ais

e~T—eg—2C

Y=o



"

II

ORDINARY
LINEAR DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

11. Introductory 4

It was remarked in Chapter I that many important problems
of applied mathematics lead to ordinary linear differential
equations with constant coefficients. Since explicit solutions
of these are easily obtained, such problems form the core of
the theory and are studied first in detail.

In this chapter we give first the classical methods of finding
the general solution containing n arbitrary constants of the
equation of order n. Then the case of simultaneous differential
equations is discussed, and finally the determination of the
arbitrary constants in initial and boundary value problems.

The chapter concludes with a brief account of the Laplace
transformation method of solving linear differential equations
with constant coefficients and given initial conditions. This is
a completely alternative approach to that of §§ 12-15 and may
be omitted if desired. It is perhaps simpler to learn and teach
than the classical methods, but at the same time these are so
much part of the common language of mathematics that it is
impossible to omit them, and in the sequel they will usually be
used. The advantages of the Laplace transformation method
increase with the complexity of the problem, and it will occa-
sionally be used to solve relatively complicated problems, in
particular, transient problems involving several simultaneous
differential equations.

12. The operator D
In the study of linear differential equations with constant
coefficients it is convenient to use the symbol D for the opera-

tion of differentiation, so that
dy
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Again, we write D2y for D(Dy), so that

- — p[%) _ ¥y
Dty = D(Dy) = D) = 7%, (2)
and, similarly, when n is a positive integer,

Dry = D(Dny) = 1Y, (3)

It follows that when m and n are posnlve integers
Dn(Dry) = Driny, @)
so that D operating on y obeys the index law.
Also, if @ and b are constants,

Day) = Loy =a¥ — apy, ®)

Diay+bz) — ai‘?ﬁ+b_z — a Dy+b Dz, 6)

so that the orders of multiplication by a constant and the opera-
tion D may be interchanged.

Thus, provided we are considering only the operations of
differentiation and multiplication by constants,} the operator D
may be treated like an ordinary number. For example

2-"+2b W 1 bty = (D4 25D+ boyy
= D(D-+b)y+b(D-+by
= (D+b).

In the same way, the so-called general differential expressmn
of order n, namely

an dnr— dr—
y+ ldx” 1+ ‘den 2+ +any’ (7)

where a,,..., an are constants, may be written
(D*+a, D*1+-...+-a,_, D+a,)y, (8)
and for shortness this will usually be written
f(D)y,
where f(D) = D*+a,D"-1+...+a,. 9)
t But if varigbles enter this is not the case, for example D(zy) = xDy+y.
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Now suppose that ..., a, are the roots {(not necessarily all
real or different) of the equation in «

fla) = a™+a;, 014 4-a, = 0. (10)
Then f(«) can be factorized in the form

fl@) = (a—ay)(a—ay)...(a—a,), (11)
and the general differential expression (7) or (8) may be put in
theform  fDy = (D—a(D—ay)...(D—a)y. (12)

That this is equivalent to the form (7) follows on multiplying
out and using the results (4) and (5). '

As remarked above, the roots «,, as,..., o, need not all be
different: if «; is an r-ple root, o, an s-ple root, and o, an m-ple
root, (12) may be written

SD)y = (D—0y)(D—ay)f...(D— o, )my. (13)

The general homogeneous linear differential equation of order
7 may now be written

f(Dy = o, (14)
where f(D) is defined by (7) and (9); the equation (10) is called
the auziliary equation for this differential equation, and the first
step in the solution of the differential equation is to find the
ro0ot8 ay,..., o, Of (10), that is, in effect, to express the operator
f(D) in the form (13).

As remarked earlier, the simple results given above apply only
to the operations of multiplication by constants and differentia-
tion. If variables enter, the ordinary laws of differentiation have
to be used, for example

D(zy) = «Dy-+y,

D¥xy) = xD*%+2Dy,
etc., and the simplicity is lost. General results are obtained by
using Leibnitz’s theorem, viz.

D™(yz) = yDrz+-"C, DyDr-1z+... 42Dy, (15)
We now prove three simple theorems which are of great im-

portance in the sequel. These are all proved only for the case in
which the function f(D) is a polynomial in D.
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TaeoREM 1. If f(D) is a polynomial in D and k is a constant,

then f(D)ekr = f(k)ek= - (16)
and f(D){J% e"’”} = ek, (17)
For Dekr = ek,

D2ekx — 2eke
ete. Therefore
f(D)e= = (D*+a, D*14...+a,)er

= (k" +ta, k" 1+...4a,)ek=

= f(k)e*=.
(17) is, of course, equivalent to (16) and is stated here for
reference.

TaEOREM 2. If f(D?) is a polynomial in D?, then

sin sin .
D? wr = f(—w? w. 18
fD%) 0w = f(—at) 2 (18)
For D?sinwxr = —w?sin wz,
D?coswr = —w?cos wz,

ete., and adding results of this type as in the proof of Theorem 1
gives (18).

TrEOREM 3. If f(D) i3 a polynominal in D, and k is a con-
stant, then — f(D)fekey} = ekaf(D-+E)y (19)
and JD+kyy = e*f(D)erey}. (20)

It follows from Leibnitz’s theorem (15) that

Dr(eksy) = e¥eDry 10, D(eh=) D=1y + ..y D(ek?)
— ek Dy -G, kD Yy + ...+ kmy}
= &k2{(Dr 70, kDP-14-7C, k2DP=2 ..+ kn )y}
= ek={(D-+k)y"y}.
Adding results of this type as in the proof of Theorem 1 we get
F(D)ekey} = eH={f(D+Ey},

as required. The alternative form (20) which allows f(D--k)y to
be expressed in terms of f (D) operating on e**y is also often useful.
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13. The homogeneous ordinary linear differential equa-
tion of order n
As in § 12 this may be written

f(D)y = (D*++a,D"-14...4-a,)y = 0. (1)
Also as in § 12, we call the equation .
fle) = a®+a,0m14...4a, = 0 (2)

the auxiliary equation and find its roots. If it has an r-ple root
oy, an s-ple root «,, ete., (1) may be written

(D= (D—ag).. D—a, )™y = 0. 3)
We consider first the simple case of the first-order equation
dy -
a; —q Y= 0:
or (D—ao)y = 0. : (4)
Obviouslyt Y = ¢, en?, (5)

where c, is any constant, satisfies this, and since it contains one
arbitrary constant is the general solution. :

Next suppose that the roots a,..., o, of the auxiliary equation
f(e) = 0 are all different, so that (3) takes the form

(D—0,)(D—atg)...(D—at, )y = 0. ()

Clearly if y satisfies

(D—o)y = 0 )
it also satisfies (6). By (5) the solution of (7) is
Cp, €% 7, (8)

In the same way, since the order of the operations
(D—a,),..., (D—ay,) in (6) may be interchanged in any way,

C eM%, caenT ¢ eOnT, (9)
where ¢y, c,,..., ¢, are any constants, are all independent solutions

1 Alternatively, integrating with respect to « gives

or In y = a, x4 constant.
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of (8). And, by the fundamental property of a linear differential
equation derived in § 3, the sum of these solutions, namely

Clea‘z+czea'z+"'+cneaﬁx’ (10)

is also a solution of (6); since it contains n arbitrary constants
it is the general solution.

Ex. L. (D*+3D+2)y = 0.

The auxiliary equation is
a?4+30u+2 =0,
and its roots are —1 and —2. Thus the solution is
y = Ae—*4 Be~%*,

where A and B are arbitrary constants.

Ex. 2. (D*4-2D+-5)y = 0.
The auxiliary equation is
a?+2a-+5 =0,

and its roots are —1-4-21,
Thus the solution is
Y= Ae——z+2'ix+Be—z—2iz, (11)

where A and B are arbitrary constants. This form of solution
is not the most useful one and it is usually better to express it"
in real form. Using the result
e+ — cosx--tsinz,

(11) becomes

(A B)e~% cos 2z+i(A — B)e~*sin 2x
and, since 4 and B are arbitrary, A+ B and i(4— B) are also
two arbitrary constants which may be taken as the fundamental

constants in the general solution. Thus the solution may be
written "y == Ce~"cos 2x+ Ge~sin 2x. ' (12)
Alternatively, it may be put in the form

y = KEe-*cos(2x+ F), (13)

where £ and F are arbitrary constants.
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From the point of view of pure mathematics, that is, of finding
a solution of the equation with two arbitrary constants, (11),
(12), and (13) are all equally good answers. In the application
to practical problems the subsequent work may be simplified by
choosing the most suitable form to begin with, so it is desirable
to bear all three types in mind and not to write down solutions
always in one standard form. For examples of this see §16 (11)
and Exs. 13 and 14 on Chapter II.

Ex. 3. (D*—1)y = 0.
The roots of the auxiliary equation are -+ 1, so the solution is
‘ y = Ae®+ Be2,
or, alternatively, y = Ccoshz+- Esinhz.
Ex. 4. (D*—1)y = 0.

The auxiliary equation is a4—1 = 0, and its roots are 11, :l:i.v The
solution is . .
y = A coshz+ Bsinhx 4 Ccosz+ Esinz,
or one of the other forms discussed above.

Ex. 5. (D4 + 4wty = 0.

The auxiliary equation has roots w(+1+414), and the solution is
Y = e**(4 cos wz - Bsinwa)+e~«%(C cos we -+ E sin wz),
or, alternatively,
Y = A, e""cos(wx+0,)+ B, e=% cos(wz+6,).

Ex. 8. (D*+3D2+6D+6)y = 0.
The auxiliary equation is
a’+3a24-6a4-6 = 0,
and, like many equations that arise in practice, does not have simple
roots and must be solved numerically. To two places of decimals the

roots are —160 and —0-7041-814,
Thus the solution is )
Y = Ae 18024 Be~07102 0ag(1-81+ O).

Passing now to the general case (3) in which the auxiliary
equation has repeated roots, it appears that any solution of

(D—oy)y =0 (14)
will satisfy (3). Now, by § 12 (20), this can be written in the form
enTDr{e~ Ty} — 0, (15)

5206 o}
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Thus e-%%y must be a function whose rth differential coefficient
is zero, that is, a polynomial of degree r—1, so that

y = e 4+ 4, 2+...+A4, 271, (16)
and since this contains r arbitrary constants it is the general
solution of (14).

Adding results of this type, it follows that the general solution
of (3), containing r+4s+...4m = n arbitrary constants, is

y= 4ot+4,2+...+A4, 2 e 4
+H K+ K z+ ...+ K, x™1)e%”, (17)

Ex. 7. (D—1)}D—2)y = O.
The solution is y = (4 + Bx+ Cx?)e*+ Ee®,
Ex. 8. The general second-order equation
(D24 2bD+c)y = 0.
The roots of the auxiliary equation are —b-4/(b*—¢). The solution is
eba{ A=) | Be#vb™0)}  if b2 > ¢,
(A4 Bx)e®® ifb? =c,
Ae % cos{z,f(c—b%)+ B} if b2 < c.

Finaﬂy, we note an alternative approach to the theory which
will often be useful. Suppose we have to solve the equation

f(Dyy =0 (18)
and we seek a solution in which y is proportional to e**, say
y = Ae**. Substituting in (18) gives, using §12, Theorem 1,

Ae*=f(x) = 0.

Thus « must be a root of f(«) = 0, which is just the auxiliary
equation (2). If the roots of this equation are all different, com-
bining all solutions of this type gives the general solution (10).

If the roots are not all different, suppose that « is an r-ple root,
so that the equation is of the form

(D—a) F(D)y = 0. (19)

We now seek a solution of the form y = Y (z)e**, where Y (x)
is a function of « instead of a constant as before. If this is to
satisfy (19) we must have

(D—ay F(D){Y (z)e=s} = 0,
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or, by § 12, Theorem 3, .

e (Do) DY (x) = 0. (20)
(20) will be satisfied if we choose Y(x) so that DY (z) = 0,

that is Y(2) = Ag+-Ayz+..+ A4, o,

where A,,..., 4,_, are constants.
Thus we have the solution

(Ag+d 4.4 A4, xr-1)ex=
as in (16).

14. The inhomogeneous ordinary linear differential equa-
tion of order n
The general form of this is

f(Dy = (=), (1)
where f(D) is a polynomial in D as in § 12, 13, and ¢(z) is any
function of z.

The first step in the solution is to find, by the methods of §13,
the general solution y, (x) containing  arbitrary constants of the
homogeneous équation corresponding to (1), namely,

f(Dy = o. 2
¥1() is called the Complementary Function of (1).

Next we find a function of «, say y,(z), which satisfies (1);
methods for doing this will be discussed below. This function
Ya() is called a Particular Integral of (1).

The sum of the complementary function and a particular

ntegral, viz. 42(2) + () (3)
is the general solution of (1) containing » arbitrary constants.

To prove this we notice that it contains n arbitrary constants
since y,(x) does, also it satisfies (1) since, substituting,

SO (@) +yu(2)} = F(D)yyy (%) +f(D)y(x) = $(x),
since y,(x) satisfies (2) and y,(x) satisfies (1).
It must be emphasized that any function whatever which
satisfies (1) can be taken as a particular integral; many different
particular integrals could be written down, but these differ by



20 ORDINARY LINEAR DIFFERENTIAL EQUATIONS om.xx

terms already included in the complementary function. Also if
$(x) is the sum of several functions, say,

$(@) = $1(@)+ .. i(a), |
a particular integral of (1) is the sum of particular integrals of
forr = 1,...,m..

We now have to study in detail methods for finding a particu-
lar integral of (1) when ¢(x) has one of the common forms: a
constant, a polynomial, a trigonometrical or exponential func-
tion, ete. There are many methods of doing this, but here we
shall adopt the very simple one of seeking a particular integral
gimilar in form to ¢(x). Thus if $(z) is a polynomial in z, we
shall seek a polynomial for the particular integral; if ¢(z) is €%,
we shall seek a particular integral with €% as a factor, and so on.
(1) ¢(z) a constant c

If the differential equation is

(D*4-a, D1+ ta,)y =c, (4)
where a, # 0, the constant
cla, (5)
satisfies it and so is a particular integral.
If f(D) has a factor D so that the differential equation is
(D*+a, D*-1+...+a, D)y =c, (6)
and we choose y so that
@ Dy=c (7)
it will also satisfy (6). To satisfy (7), ¥ has to be a function
which, when differentiated r times, gives the constant c/a,_,;
the simplest such function is

cx”
Y= . (8)
a, ,r!
Ex. 1. (D2+4-3D+2)y = 1.

By (8), } is a particular integral.
The complementary function is

Ae% 4 Be™®,
Thus the general solution is
3+ Ae 24 Be™®.
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Ex. 2. . DND+1)y = 1.

The particular integral is to be a function which when differentiated
twice gives 1, that is, $x2.
The complementary function is

A+ Bx+Ce =,
Thus the general solution is
" A+ Bz+3at4Ce .

(ii) $(z) @ polynomial P(x) of degree k in
We seek a particular integral in the form of a polynomial. If
the differential equation is

(Dnta, D™+ ta,)y = B), (9
with a,, # 0, we assume for the particular integral a polynomial
of degree k with unknown coefficients. The coefficients are found
by substituting this in the left-hand side of (9) and comparing
coefficients with B,(x).

Ifa, = ... = a,_,.; = 0, thedifferential equation has the form
(Dn_i_aan—l_'__"_i_an_'Dr)y = Pk(x), (10)
and we must assume a polynomial of degree (k--r) for the
particular integral, so that, when this is substituted in (10),
there will be powers of z up to the kth on the left-hand side.
Ex. 3. (D D+1)y = x+a34-23. (11)
We seek a polynomial particular integral
Y = A2®+ Ba?4-Cx+ E.
If this is to satisfy (11) we must have
(64x4-2B)+ (3422 4-2Bz+ C)+(42*+ Bat+4-Cx+ E) = r4x2 423,
Equating coefficients of 2, 2, z, and the constant terms on the two
sides gives A=1,
344+B =1,
64A+2B+C =1,
2B+C+E = 0.

Solving, successively, gives 4 = 1, B = —é, C=—1, E=35,and
the required particular integral is
23— 222 — x| 5. )

Adding the complementary function gives the general solution
Z8— 25—z + 5+ Fe 1 cos(32v3+ Q).
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Ex. 4. D¥D+1)y = 1425 (12)

We must assume a polynomial of the fifth degree for y so that terms
in z® will occur after it has been differentiated twice. Assume

y = Ax®+ Bx*+ C’x"%Em’—{— Fx+G.
If this 18 to satisfy (12) we must have
(60422424 Bz +6C)+ (20423 + 12Bx?+ 6Cx+ 2E) = 1428,
Equating coefficients we find
A4 =4, B = -1, C=1, E= —4§.
There is no restriction on F and G, so we may take them to be zero.
Thus a particular integral is
Fort —wt 2t —fat
The complementary function is
Hz+4J+Ke™=,

where H, J, K are arbitrary constants. If we had not taken F = G = 0
above, the terms so obtained would have been of the same type as Hx -+ J
in the complementary function.

The general solution is

ot — it at—a2 L He4-J 4 Ke™®.
(iii) ¢(x) the exponential e** where f(a) 7~ 0
We require a particular integral of
f(D)y = e*=. (13)
As remarked earlier, we seek for a particular integral a solu-

tion of (13) of the same type as the right-hand side of (13), i.e. |
we seek a solution .y = Yess, (14)

‘where Y is a constant. Substituting in (13) we require
Yf(D)ess = eaz,

or, using § 12, Theorem 1,
Yf(a)err = eo=,

1
Thus Y =——,
fl(a) ‘
and the required particular integral is
1 e, - (15)

f@)
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This argument breaks down if f(a) = 0: this case is discussed
in (vi) below.
Ex. 5. (D*+43D42)y = cosh3x = }e3* 4 je32,
Using (15), a particular integral is

2565 4 Jooe,
The general solution is

79e*+ je3% 4 Ae2- Be 2.
(iv) ¢(x) the sine or cosine of wx, provided Jw) £ 0
Suppose that Y is a particular integral of
f(D)y = et=, ' (16)
found as in (iii): this will be a complex function of z, say
Yi(#)+4-iY,(x). Substituting this in the left-hand side of (16), and

using the result €' — cos wx 1 8in we, (17)

gives S(DYY(x)+2 f(D)Y,(2) = cos wx-+isin we.

Equating real and imaginary parts on the two sides we see that

the real and imaginary parts of Y, respectively, are particular

integrals of f(Dyy = cos wz, (18)

and f(D)y = sinwz. (19)
Thus to find a particular integral either of (18) or (19) we find

the particular integral

faw © 20)
of (16) as in (15), and pick out its real part if a particular integral
of (18) is required, or its imaginary part for (19).

In the reduction it is usually best to use the modulus-argument
notation for a complex number. If, as in Fig. 1,

2 = -}y (21)
is & complex number, # is called the real part of z, written R(z);
y is called the imaginary part of z, written I(z); and 2* = x—1y
is called the conjugate of z. The modulus of z, |z, is defined by

2| = J(@*+y?), (22)
and the argument of z, argz, is the angle 8 defined by any two

of sin = L cosf = = tanO:%. (23)

|z’ 21’
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Since y = |z[sin @ and « = |z|cosf, the use of this notation

enables us to write the complex number z in the form
’ 2 = 2+iy = [2|(cosf+isinB) = |z]ei. (24)
The specification of the angle 8 in (23)needs

z some care; it is equivalent to the statement
thatt
7 argz = tan-1(y/z) ifz >0, ’, (25)
argz = w-t+tan~y/z) ifxz <0
o x X where ﬁa.n—l(y/x) is the angle between —}n
Fre. 1. and 47 whose tangent is y/x.
Ex. 6. (D34-4D*+ 5D 4-2)y = cosws. (28)

We find the particular integral of

(D3+4-4D+ 5D+ 2)y — ¢iw=,
By (15) this is

! elor — ! - givz,
(fw)*+4(iw)?+ 5iw -+ 2 (2—4w?)+4(bw—w?)
Now let Z and 8 be the modulus and argument of the complex number
(2—4w?)+ (5w —w?), (28)
these may be written down by (22) and (25). Then (28) may be written
(2—40?)+i(bw—w?) = Zeid,
Using this, (27) becomes

(27)

4 (we—0)
[ .
Z

For the particular integral of (26) wo need the real part of this, namely

% cos(wx—8). (29)

The form (29) of the particular integral is probably the most useful for
applications. A form involving coswz and sinwz may be obtained by
putting in it the values of Z and § obtained from (28); alternatively this
form may be obtained from (27) by multiplying it above and below by
the conjugate of the denominator; this gives

[(2—4w?)— (5w —w?)][cos wx +1 sin wx]
(2—40w?)%+ (5w —wd)? :

t The student is warned against the common practice of writing tan—1(y/x)
in place of arg z in general formulae in which the sign of x is not known—this
may lead to errors. The value of § defined above is ambiguous by a multiple
of 27, The angle 0 such that —x < < = 18 usually used, and is called the
principal value of the argument.
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The real part of this is
(2—4w?)cos wr+ (5w — wd)sin we
(2— 40P+ (bw—awd)? )

(v) $(x) of the form e** cos wx or e2*sin wa, provided f(a-+1iw) £ 0 |

In this case we proceed as in (iv), finding a particular integral

of J(D)y = ea+iom (30)
and taking its real or imaginary part as required.
Ex. 7. (D*+D+1)y = ¢%sin wz. (31)

As in (iii) the particular integral of
(D’+D+l)y = e(o+iw)z
1
(@+iw)4(a+iw)+1
1
= @ FaF1—aw¥) ti(w T 2aw)

is
e (6+iw)n

e(‘H“iW )z

1
= — gl Ye—i8
= - gl@Hw)z—i0, (32)

where Z and 6 are the modulus and argument of
(@*+a+1—ow?)+i(w+ 20w).
Taking the imaginary part of (32) gives ag a particular integral of {31)
1 .
‘ 7 ¢ sin(wz— é).
Adding the complementary function, the complete solution is

% e**sin(wr—8)+ Ae~ 1 cos(3aV3 4 B).

(vi) ¢(x) of the form e3= with f(a) = 0. This includes the case in
which $(x) is gin wz or cos wz with f(iw) = 0
Since f(a) = 0, f(D) must have D—a as a factor so that the
differential equation will be of the form
(D—ayF(D)y = e, (33)
where F(a) £ 0.
For a particular integral we seek a solution of this of the form
y = Y(z)er= (34)
in which the quantity ¥ (») multiplymg e®* is a funetion of z
instead of a constant as in (14). If thisis to satisfy (33) we must
have (D—ay F(DYY (z)e*} = eo=,
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or, by § 12, Theorem 3,
e=D"F(D+a)Y (x) = e°®.
That is, Y (x) is to be a function such that
' D F(D+a)Y(z) =1,
and the finding of such a function was discussed in (i).

Ex. 8. (D—a)(D—b)y = €.
Assuming a particular integral
y = Y(x)e®®

and substituting in (36) gives
(D—a)(D—b){Y (x)e’®} = e2®,
Using § 12, Theorem 3, this becomes
D¥D+a—b)Y(z) = 1,

CH, II

(35)

(36)

- . x?
and this is satisfied by Y(z) = m .
Thus the required particular integral is
wz eax
%a—b)° -
Adding the complementary function, the general solution of (38) is
found to be .
d ax ba
{A+Bx+ 2(a—b)} ef% - Ceb=,
Ex. 9. (D?+n2)y = sin(nz+P).

We seek a particular integral of
(DM +n2)y = eHnztd)
of the form y = Y(x)eine.
Substituting in (38) gives
(D+in)(D—in){Y (x)ein?} = ednz+h),
or, using § 12, Theorem 3,
D(D+2in)Y (z) = €.

.. . %
This is satisfied by Y(z) = e
so the required particular integral of (38) is
r
Z_ gi(nztp)
B

(37)

(38)

The imaginary part of this, which is a particular integral of (337), is

x
~on cos(nz+B).
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Adding the complementary function, the general solution of (37) is

A cos nz - Bsinnz— g—b cos(nx+B).

(vii) &(x) of the form e?*P,(x), where P(x) is a polynomial in x
The differential equation is

f(D)y = e=By(x). (39)
For a particular integral we seek a solution of (39) of the form
y = Y(x)ee=,

Substituting in (39) and using § 12, Theorem 3, as before,
gives the equation for Y (x)

_ f(D+a)Y (x) = P(x). (40)
The finding of ¥ (z) from (40) was discussed in (ii).

(viii) §(x) any function of

We consider first the first-order equation

(P—a)y = Pl), (41)
and seek a particular integral )
y = Y(x)err®, (42)

Substituting (42) in (41) and using § 12, Theorem 3 gives
e DY (x) = (x).

z

That is Y(z) = j e~ nid(¢) dé, (43)
‘and the required particular integral of (41) is
. ,
en? f e~ nfh(£) dE. (44)
In the same way, a particular integral of
) (D—~ay)y = () (45)
is found to be the repeated integral
4 7
e® f dy f e~atd(£) dE. (46)
Next consider the equation
(D~} (D—on)y = (). (47)

As before, we seek a particular integral of type
y = Yy(zjem™. (48)
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Substituting in (47) and using § 12, Theorem 3, as before, gives
D(D+oy—)Yy(@) = e~ (),

T

or (D+um—a)¥y(@) = [ e=sth(¢) dg. (49)

(49) is of the same type as (41), so that, by (44), '

x n
Yy(w) = etcaon)® [ eler—samdy [ e-catd(¢) df. (50)
From (48) and (50) the required particular integral of (47) is
x n
e“:“fe(ur‘ﬂa)‘n d-,7 J- e—¢16¢(§) df (51)
x x
eu,x ey _ ea.m s

= 2 [ a2 [ g a2, (52)

on integrating by parts.
For the equation (D3 +nt)y = $(z), (63)
the particular integral (62) becomes
x

1 f sinn(z—£)d(£) dé. (54)

The method leading to (562) may be extended step by step, and it is
found that the particular integral of

(D—ay)(D— o). D—atn)y — (@) (55)
is Zl e f e d(£) dE, (56)
where By = (ay—0t)o(cy— 2 )(0y— oy 1)erety — k) (57)

provided, of course, that a;,..., «, are all different.

These results allow particular integrals to be written down for any
form of ¢(x). For the simple explicit functions discussed earlier this
method is slower than those already given, but the general formulae are
occasionally useful.

15. Simultaneous ordinary linear differential equations
with constant coefficients

The solution of these follows from the theory of §§ 12-14, but
with minor complications. To illustrate, we discuss the system
of three equations for u, v, w in terms of =

F(Dyu+ Gy(Dyv+ Hy(Dyw = ¢,(x), (1)
Fy(Dyu+Gy( D)o+ Hy(D)w = 0, ' (2)
Fy(DYyu+Gy(Dyv+ Hy(D)w = 0, (3)
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where F(D), etc., are polynomials in D. We write
AD)=| /D) G(D) HD) (4)
F(D)  GD)  HyD)
FB(D)  GD)  HyD)
and use small letters f,(D), fo(D), ete., for the cofactors of F(D),
Fy(D), ete., in this determinant. Because of the properties of D
proved in § 12 there is an important (but not a complete) analogy
between the solution of the system (1) to (3) and that of the
corresponding system of algebraic equations in which D is re-

placed by a pure number.
In particular, if we assume

v=hHD)W, v=gD)V, w=h(D)V, (8)

where V' is a function of x to be determined, (2) and (3) are
satisfied automatically since, from the properties of the deter-
minant A(D), -
fl(D)Fz(D)+91(D)Gz(D)+h1(D)Ha(D)
= J1(D)Fy(D)+9,(D)Gy(D)~+hy(D)Hy(D) = 0.

Also (1) becomes ADY = ¢,(x), (6)
which is an ordinary inhomogeneous equation for ¥ and can be
solved as in § 14. When ¥V has been found, %, », and w follow
immediately from (5). Before discussing this procedure further
we give an example.

Ex. 1. (D+1ju—p = o2,

Dy+(D+1w = 0,
—2u+(D—3q = 0.
For these, (8) becomes
(D*~1)D—2)Y = ¢,
and it follows that '
V = Ae %+ Be* 4 Ce®®— e,
Then from (5)

4 = (D*—3D)V = 44e~*—2Be*—2Ce?*— 5S¢z, )

Y = —(2D+2)V = —4382—603”’—'%‘3-”’ (8) »

w = 2DV — —24e~%+42Be? 1 4Ce?® | }e—2=, (9)
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All of u, v, w are expressed in terms of the three arbitrary con-
stants in the solution for ¥. This raises the question of the num-
ber of arbitrary constants to be expected in the solution of a set
of simultaneous differential equations, and the result{ is that
this number is in all cases the degree, N, of the highest power of D
in the expansion of A(D), that is, just the numberf which appears
in V. In general, the solution of » first-order equations will con-
tain n arbitrary constants, the solution of » second-order equa-
tions 2z, and so on, but in special cases the number may be less.

Ex. 2. (L, D+ RyJu+MDo = 1, (10)

: MDu+ (L, D+ RByjp = 0, (11)
with L, L, = M?2. Here, using this condition,
. A(D) = (Ll RB,+ R1 Lz)D+ R1 R,,
and, writing « = R, R,/(L; Ry+ B; L),
1
R, R,

V= + de—o®,

Then by (5)
wu = (Ly D+ Ry)V = (1/R))+(R,— Lyx)de "%,
v = —MDV = MAxe*.

Because of the relation§ L, Ly = M?, A(D) is of the first order in
D and the solution contains only the one arbitrary constant 4. If
L, L, # M? there will be two arbitrary constants.

The method described above is due to Routh.| If ¢,(z) = 0
it determines the complementary function of the set of equa-
tions, and in addition, as set out above, it determines the
particular integral for the important case in which one of the

+ The proof is complicated, cf. Ince, loc. cit., § 6.4.

1 It is essential that this number should appear also in the final solution.
If it happens that f;(D), g,(D), hy(D), and A(D) all have a common factor, say
(D—a), a term Ae*® will appear in V but not in «, v, or w, and the solution so
obtained is not the most general one. The general solution in such cases can
usually be found by seeking a solution of the homogeneous equations in terms
of the cofactors of another row, e.g. u = Fi{D)V, ete., and combining the
results. See Ex. 4 at the end of the chapter.

§ This is the case of ‘perfect coupling’ in & transformer. If L, times (10) is
.subtracted from M times (11), an algebraic equation is obtained. In cases of
this type a differential equation of lower order than those given can always be
found in this way.

|| Advanced Rigid Dynamics (ed. 4, 1884, p. 156). An alternative method
of finding particular integrals is given by Goodstein (Math. Gazette, 33 (1949),
30) together with some discussion of simultaneous equations in general.
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equations is inhomogeneous. If all are inhomogeneous, that is,
if (2) and (3) have terms ¢y(x) and ¢s(x), respectively, on their
right-hand sides, a particular integral of the whole set is the sum
of the particular integrals for the three cases

é1(x) # 0, $a(x) = ¢y(x) = 0; $a(x) #£ 0, $1(x) = dy(x) = 0;
and $a(x) # 0, &y(x) = $a(x) = 0.
The first of these is that found above, the others are found in

the same way using cofactors of the second and third Tows,
respectively, in (5).

Ex. 3. (D+1ju—v = e, (12)
Dv+(D+ 1w = 4z, (13)
—2u+(D—3)w = o. (14)

The complementary function and the particular integral for the system
with 4z replaced by zero have been found in Ex. 1. For the present
example we have to add to this the particular integral of (12) to (14) with
e~%* replaced by zero. To find this, we assume

u = (D-3)V, v = (D+1)D-—3)V, w=2V, (15)
and we require the particular integral of
(D*—1)(D—2)V = 4x,
which is V = (2x+1). Then by (15) the required particular integral is
U= —6r—1, v=—6x—7, w = 42+2, and the complete solution of
(12) to (14) is obtained by adding these values to (7) to (9), respectively.

The more usual method of solving simultaneous equations is
by elimination: it may be used with advantage in simple cases
such as the following.

Ex. 4. (D+5)’u+2’0 = x, (16)

(D—1u+Dv = 1. (17)
Here, if u is known, v can be written down from (16). To find u, we
eliminate v by differentiating (16) which gives
D(D+-5yu+2Dy = Dz = 1,
and subtracting twice (17) from it. This gives
(D*+3D+42)u = —1.
The solution of this is
%= Ae*4 Be~ 2}
Then from (16)
v = 3o~ HD+5)u
= H2x+45)—24e~*— 3 Be—3=,
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In all cases a process of elimination can be performed to give
a differential equation for any one of the variables, say %, which
will be of the form AD)u = (), (18)

where i(x) is a known function of  and A(D) is the determinant
(4) of the system. The solution of (18) will involve N arbitrary
constants, and as remarked on p. 30 this is the total number of
arbitrary constants in the solution. Now in general the other
variables will not be expressible directly in terms of » asin Ex. 4
and have to be solved for separately, each having its own equa-
tion of type (18), and in solving these equations additional con-
stants will be introduced. These cannot be independent of the
earlier ones, and connexions between them have to be found by
substituting the solutions in the original equations.

16. Problems leading to ordinary linear differential
equations
Problems on dynamics and electric circuit theory will be given
in subsequent chapters; here we give a few in other fields.

Ex. 1. The problem of §6, Ex. 2.
Writing D for d/dt, the equations to be solved are

(D+km = 0, n
(D+Ey)ny—kn = 0. S @)
The solution of (1) is n = Ae ¥, (3)

where 4 is an arbitrary constant. Putting (3) in (2) gives
(D+ky)n, = kAe™*¢,
of which the solution is
ekt BeFat, (4)

o A4
1 —k

provided ¥, # k. The constants 4 and B can be determined from the
initial conditions. Suppose that at ¢ = 0 there were N atoms of 4 and
none of B. That is, n = N, n; = 0, when ¢ = 0. Substituting these
values in (3) and (4) gives A = N, B = —kN/(ky—k).

Ex. 2. The problem of § 6, Ex. 3. The initial temperature of the water T,.
We have to solve M%-{-HT = HT, ' (5)

with T = T, when ¢t ='0.
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The general solution of (5) is
T = T+ Ae~RHiM,
- and to make T' = T, when ¢t = 0 we must have
A =TT,

Ex. 3. Steady flow of heat in a uniform rod.

We take the z-axis in the direction of the rod, and suppose it to be so
thin that its temperature 7' at x is constant across its cross-section. If a
and K are the area and thermal conductivity of the rod, it is known
from the theory of conduction of heat that the rate of flow of heat along
it at the point z is

koL (6)
T dx

per unit time. Also we assume that the rod loses heat from its surface
to its surroundings at the rate HT per unit time per unit surface area
at any point,

Now consider the element of the rod between z and x4-8x. Heat flows
into this across the face = at the rate (6); it flows out across the face
z+ 8z at the rate

aT . d*T

—Ka~d—x--—Ka7x—2-3z, (7)

neglecting terms in 8«%; and if p-is the perimeter of the rod, heat is lost
from the surface at the rate
HpT béz. (8)
Since the temperature in the rod is steady, the amount of heat flowing
into the element must be equal to the amount flowing out, that is, by
(6), (7), and (8),
@T -—&’ T=0 9)
dz* Ka )
The differential equation (9) has to be solved with given boundary
conditions. Suppose, for example, that the end = = 0 of the rod is at
temperature T, and the end = l at T,. The general solution of (9) may

4 -
be written T = Asinhpz+ Bsinhp(l—z),
where p* = Hp/Ka, (10)
and 4 and B are arbitrary constants. The conditions at the ends give
T, = Bsinh pl, T, = A sinhpul,
and we get finally
T Ty sinhu(l—2)+ T} sinh ux
sinh ul :
Ex. 4. Heat is generated within a slab 0 < x < 1 of solid at the rate

a+bT per unit time per unit volume, where a and b are constants and T
8 the temperature.

We consider the case in which there is no flow of heat over the plane
5296 D

1y
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z = 0, and flow at a rate H times the temperature over the plane z = 1.
That is, as in (6)

aT
%— == 0, X = O, (12)
ar

~K— = HT, =z=1 (13)

We calculate the steady temperature under these conditions. The
differential equation for 7' is
aT b a
wTrT= g
this may be obtained by an argument similar to that of Ex. 3 or by
putting 8T/at = 0 in § 108 (21).
The general solution of (14) is

(14)

T = ASinwx—{-BOOwa-—g, (15)
where w? = b/K.
The boundary conditions (12) and (13) give
4 =0,
wKBsinwl = HBcoswl—Ha/b.
' Hacoswzx a

Thus, finally, T =

bHcoswl—wKsmawl) b (16)
If b is small, @ is small and the denominator in (18) is positive. But
the denominator decreases as b increases, and is zero when w is the

smallest root of Kotanwl = H. (17)

Thus if b, H, 1, ete., are connected by this critical relation the steady
temperature becomes infinite. Physically this means that heat is being
produced more rapidly than it can be conducted away through the solid.
An effect of this sort always appears in questions involving explosions
or spontaneous combustion, but in fact heat is usually generated at rates
such as ae*T or ae~*/T which lead to more difficult non-linear equations.

Ex. 5. Parallel flow in a heat interchanger.

Suppose that two fluids are flowing steadily in the direction of the
z-axis on either side of a thin partition. The fluids are supposed to be
so well stirred that their temperatures are constant in any plane
Z = constant. Let M; be the mass of the first fluid in contact with
unit area of the partition, ¢, its specific heat, u, its velocity, and 7T’ its
temperature at x; let M;, c,, u,, T} be the corresponding quantities for
the second fluid.

The partition is supposed to be such that the rate of flow of heat
across it at any point, in the direction from the first fluid to the second,

® o —Ty) (18)
per unit time per unit area, where b is a constant.



§16 WITH CONSTANT COEFFICIENTS 35

To find the differential equations satisfied by T} and 7, consider the
first fluid in the region between 2 and z+32z. Heat is carried into this
region at the rate Mo, T, (19)
per unit time, per unit width normal to the direction of flow, and is
carried out of it over the plane z+8x at the rate

Myuy e, T\ + M, u, c, %T‘ ox. : (20)
Also heat flows through the partition at the rate
(T, —1T}) 8. (21)

Since the flow of heat is assumed to be steady, the rate of flow of heat
into the region must be equal to the rate of flow out, that is, by (19),
(20), (21)

Myu,c, %Sx—i-b(l'l—ﬂ}) Sz = 0.

Therefore Iy dd—zl-f-Tl—T, =0, (22)
where ky, = M, u,c,/b.
In the same way, considering the second fluid we should have
daT,
ky ZA—(T—T) = 0, (23)
where ky = M, uyc,/b.
Adding (22) and (23) gives
ar, . dT,
kl jd;l +k2 ﬁ = ( 24)

Any two of (22)-(24) may be taken as the differential equations of the
problem. Suppose that the ‘hot fluid’ enters at temperature T' and the
‘cold fluid’ at zero. Then we have to solve (22) and (23) with

TN=T1T, Ty=0 when 2 = 0. (25)
(24) and (25) give immediately
by Ty+ky Th=FkT, (26)

and substituting (26) in (22) gives
A  ktky,, r
T Tk, TR (27)

The solution of this with 7} = T when = 0 is

T
—_— — (Foyt-heq )oK
T i kz{kl—{-k,e vHEs)afkaks) (28)

and 7; follows from (26). The temperatures of both fluids tend to
ky T'/(ky+k,) for large values of x.
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17. Heaviside’s unit function and Dirac’s delta function
Heaviside’s unit function H(x) is defined by J
Hx)=0, <0
Hx) =1, z> 0}'
It has an ordinary discontinuity

(1)

s — at the point x = 0 and was defined
fa) & to facilitate the representation of
o a functions which have such discon-
~ tinuities. The graph of H(x— a) is
(6) shown in Fig. 2(a).
o - |la 2a .
For example, the function
H(x)—H(z—a)
(c) ‘/l/l/]/ is unity in 0 < x < a, and zero
5 for x < 0 and = > a.
w The function
8 :
4 q n H(x)sin 4 H(x—m)sin{x —)
o€ .
Frc. 2 has the value sinz for 0 <o <

and is zero for x < 0 and x > =.
The ‘square wave’ of Fig. 2(b) is represented by

H@+23 (—1yHa—ra), @)
and the saw-tooth wave of Fig. 2(c) by
r— i H(x—ra). (3)
r=1

Periodic functions of forms such as these are of considerable
importance in modern technical practice. _

Sinee H(x) has only an ordinary discontinuity it is integrable
and may be used in formulae involving definite integrals—the
results again may often be expressed simply in terms of unit
functions. Thus

fH(‘f—a)d§=0, r<a
0

b

= (x—a), z>a
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which may be written

f H(¢—a) d¢ = (x—a)H(x—a). (@)
0
Similarly
f E—ayHE—a) it = — @—ar Ha—a).  (5)
0

Particular integrals of differential equations of type
f(D)y = ¢(x),

where ¢(z) contains Heaviside functions, may be written down
from the integral formulae of § 14 (viii). For example, a par-
ticular integral of

(D*4-nty = H(z—a)

is, by § 14 (54),

;b f sinn(e—E)H(E—a) dé — hl“z (1—cosn(@—a)H(z—a).
° (6)

The particular integral (6) is available for all values of z.
~ Using the ordinary method we would have to treat the regions
z < a and x > @ separately.

In all the above formulae, only integration of H(x) has been
in question and offers no difficulty. But care is needed in
formulae involving differentiation: the differential coefficient
of H(z) is zero except at z = 0, where it is not defined. It may
be regarded as being the function 8(x) defined below.

The Dirac delta function. This is not a mathematical function
at all in the usual sense of the term. Its use is to represent
symbolically an ideally concentrated quantity (such as a con-
centrated load on a beam, or an impulsive force in dynamics)
in the same way that Heaviside’s unit function was used to
represent a discontinuous quantity.

We define the delta function 8(z) as the limit as € —> 0 of the
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function{ A(z) shown in Fig. 2 (d) defined by
Ax) =0, zz<0
Alx) =1le, 0<zx<e }, (7)
AMx) =0, a>¢ '
or, in terms of the unit function,
H(z)—H(x—e)

o(x) = lim
€0 €

(8)

Thus 8(x) is very large in a vanishingly small region to the
right of x = 0 and is zero elsewhere. Also from (7)

fA(x)dx:lfdx=l,
€
—® 0

for all e however small. As ¢ — 0 this becomes

«©0

f 8(x) do = 1. (9)

In the same way

f A¢—a)dé =0, z<a

=1, x>ate
so that, in the limit as ¢ — 0,
x
f 5(¢—a) df = H(z—a). (10) -
"Also, if f(x) is continuous in the range a << x < a-¢,
© a+e
f Aw—a)f(@) dz = L f @) de
-% Ea
= flatf¢), 0<O<1, (11)

by the first mean value theorem for integrals. In the limit as
€ — 0, (11) becomes

[ f@¥(z—a) dz = f(a). (12)

t There are many other functions which possess the properties of §(z) in the
limit as a parameter tends to zero. For example, the continuous function
(1/ent)oxp[ — 23/€] has often been used.
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Since the & function is defined by a limiting process, all opera-
tions on it except the very simplest will involve the interchange
of order of limiting processes and be difficult to justify rigorously.
This justification can be supplied by comparatively advanced
mathematics, but here we shall simply use the function as a
convenient short notation and regard results obtained by its
use as suggested rather than proved. Many interesting results
may be obtained by treating 8(z) as an ordinary function with
the properties (9), (10), and (12), and these can usually be
verified by more conventional analysis. For example, a par-

ticular integral of (D2 +n)y = S(z—a) (13)
is, by § 14 (54)
}zfsinn(x—f)b‘(f—-a) d¢ = 0, r<a
0

sinn(xr—a), x >a

RN

This may be written
}z sin n(x—a)H (x—a). (14)

An important use of the & function is in the passage from a
continuously varying quantity to a discrete or concentrated one.
Suppose, for example, that formulae have been derived for the
behaviour of a beam with a continuously varying load w(x) per
unit length. A concentrated load W at the point = a may be
treated by putting w(z) = W S(x—a)
in the formulae.

18. The Laplace transformation method

This is a method for the solution of an ordinary linear differen-
tial equation with constant coefficients (or of systems of such
equations) with given values of the function and its derivatives
atx = 0.

We define the Laplace transform 7 of a function y of z as

@

g = [ ereyds, (1)
0
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where p is supposed to be a real positive number sufficiently
large to make the integral (1) convergent. § is a funetion of p, -
and to emphasize this we shall sometimes write it as #(p).

We begin by calculating the Laplace transforms of the com-
mon functions that will be needed.

If -
1
Yy = 17 1,-=fe_pxdx=_; (2)
p
0
?/ = H(.Z,'—a), y — f e—px dx — 51 e—ap; (3)

Yy = d(z—a), §= f e P*3(x—a) dr = e—op; (4)

1

. (5)
p—a

0
@0
y =e*, y=fe4p—“ndx=
’ 0

(6), in which o may be real or complex, may be used to give
the transforms of coswx, etc. Thus if

= COBwx = }etwr} Je-iwz,

_ 1 1 »
= p—iw) T3 tiw) — prtat ©
Proceeding in this way, or quoting the results as known
definite integrals, we can construct a table of Laplace trans-
forms containing all those needed for the solution of differential
equations of the types discussed in this chapter.
This table can be extended by a simple theorem.

Turorem 1. If §(p) is the Laplace transform of y, then §(p-+a)
18 the Laplace transform of e-ory.

This follows immediately since

f ePre~aty dx = f e~P iy dy = G(p+a).
0

0
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g
1 1/p (7)
n!
x" 5”-*7’ n=20,1,2,.. (8)
H(z—a) }—1) —ap (9)
d(x—a) e—op (10)
1
ex® pTa . (ll)
neae n! 0,1,2 12
xhe m, n=20,1,2,... (12)
. w
SN wx m (13)
p
cos wT m (14)
. ¢ 4
sinh ax P—ad (15)
P
cosh oz P (16)
xr . P
) 1
é—t;)—a(smww—wchwa) m (18)

As an example, (12) above follows immediately from (8) by
this theorem. Also from (13) and (14), respectively, it follows

that
e
(P+a)+w?
B
R xS

is the transform of e~**gin wz,

is the transform of -2 cos wz.

(19)

(20

Next we need a theorem on the Laplace transforms of the

derivatives of a function.

TueorEM 2. If y, Dy,..., D"y are continuous SJunctions of z,
and Yo, Yy1s.es Yn—y are their values when x = 0, then

P5—¥
PJ—pYe—1
P—P¥o—PY1— Y,

18 the transform of Dy,
”» bRl Dzy’
" bRl 'Dsy’

pﬂg'—pn‘lyo_p”~2yl"'—"yn—l » . -D"y-

(21)
(22)
(23)
(24)
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These results follow immediately by integration by parts.
Thus the Laplace transform of Dy is
vz W go — [yeve)” e Py d = pij—1
o 0 = [ye )7 +p y dx = pj—1,,
1]
since y, is the value of ¥y when z = 0. Again

-2

d? dy]” 3 dy on
fe—m Zi—x% de = [e—w d—‘m/] +p f e~px (-l‘—; de = p*—py,—y,.
0 0

(23) and (24) follow in the same way.
Suppose, now, that we wish to find the solution of

(D*+a, D"+ A-a,)y = $(z) (25)

which has the values y,, ¥y,..., ¥,-1 of ¥, Dy,..., D*'y when
z = 0. We take the Laplace transform of both sides of (25),
using (21) to (24) in the left-hand side, and writing down the
Laplace transform of ¢(x) from the table. We thus obtain

(p"+a,p" 4. +a,)j = $+an—l Yo+ u_o(PYo+Y1)+- .+
@ Yot "yt Ypa) (26)

The equation (26) is called the subsidiary equation correspond-
ing to the differential equation (25) and its initial conditions.
With a little practice, particularly for first- and second-order
equations, subsidiary equations can be written down imme-
diately. :

(26) gives 7, the Laplace transform of the solution y. If ¢(x)
is one of the common functions appearing in the table, 7 is a
quotient of polynomials in p, the degree of whose numerator is
less than that of its denominator. Thus if the roots of the

equation prta,p*1+...+ta, =0 (27)

are known, § can be expressed in partial fractions. When this
has been done, y can be found from § by looking up each fraction
in the table of transforms (using Theorem 1 if any of the fractions
have general quadratic denominators). The result found in this
way is certainly the unique solution of the problem since there
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is a theorem (Lerch’s theorem) which states that if two con-
tinuous functions have the same Laplace transform they must
be identical.

The equation (27) is the auxiliary equation § 12 (10) in the
present notation: naturally, whatever method of solving the
differential equation is used this equation will appear.

It will be noticed that the whole of the algebra of the solution
consists of the expressing of § in partial fractions: if the roots
of (27) are all different this may be done by the formula+

0 _ % fla) 28
9(p) Zl g'(x)p—a) (28)
N 1 [e=wiip) 29
Hp— [ g(p) L:a,’ 29)
where o,..., a, are the roots of

provided these are all different (but not necessarily real).
Systems of simultaneous linear differential equations with
constant coefficients may be treated in the same way.

Ex. 1, (D*4-n?)y = sinwz, w #n,

with ¥y = yo, Dy = y,, when x = 0.
The subsidiary equation is, by (13) and (22),

(p*+n?)g = ﬁﬁﬂ)yﬁyx-

PYot+Ys

w { 1 1
pl_l_na °

p2+n’_—p’ +w?
Therefore, by (13) and (14),
_ 1
y= n{w?—n?)
Ex. 2. (D*+-2xD+n2)y = 0
with y = y,, Dy = y,, when x = 0.
The subsidiary equation is
(P*+2xp+02)F = pyo+y1+ 26y,
. (P+x)yo + Y11+KY, .
P+ +(n—i?) T (p+r)+(nP—x?)
T Gibson, T'reatise on the Calculus (1906), § 120.

J+

Thus g = "

2_n2

{w sinnx—nsinwa:}—kyocosnx-}-%‘ sin nx.

Thus g =
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Therefore, by (13), (14), and Theorem 1,

Y = e® {y,, cﬁsx(n’—xﬂ*-}-%‘)’—g sinm(n'—x’)*},

provided n3 > &3.
Ex. 3. (D+1)y+Dz =0
(D—1)y+2Dz = e= |

with y = yg, 2 = 0, when 2 = 0.
The subsidiary equations are

(p+1)G+pZ = y,,
_ - 1
(Pp—1)g+2pz = m**—%-

Solving, for example, for 7, we get

g= Yo 1
p+3 (p+1)p+3)
Yo 1 1
T p 373 T2p ey
Therefore Y = (Yot e 3*—Je =,

EXAMPLES ON CHAPTER II

1. Solve the following differential equations

(i) (D*+2D+4)y = 8.
(ii) D¥(D*4-nd)y = 1.
(i) (D3+4D3+5D+2)y = 4+ 2z-+ 222,
(iv) D¥D*—a?)y = x—2a2.
(v) (D?*43D24+3D+2)y = 1+e 2.

(vi) (D*+4-2D*+ D+ 1)y = e,

(vii) (D*—D—2)y = sinwz.

(viii) (D?+D*--D—1)y = cos 2x.

(ix) (D*4n?)ly = e **sinfx.

(x) (D+1)y = ¢%cosx.

(xi) (D+1)y = 1—e=.

(xii) (D?—4)y = cosh 2. .
(xiii) (D+1)(D*+nt)y = sinnz. Ve
(xiv) (D3%4-2D+2)y = e~*sinwx.

(xv) (D+1}D+2)y = (1+=z)e=.

(xvi) (D3*+4)y = zsina.

(xvii) (D*+n?ly = 2—2(x—a)H(x—a).
(xviii)) (D—1)u—2v = e%; —2u4(D—1)p = 1.
(xix) Du—v = 0; Dv—w = 0; Dw—u — 0.
(xx) (D?*—4D)u—(D—1)v = et*; (D+6)u+(D3— D)y = 0.
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The solutions are as follows:
(i) Ade=cos(xV3+B)+2.
(ii) A 4 Bz Ca+28/6n% + E cos(nz -+ F).
(iii) x*—4x+ 84 (A4 Bx)e®+4Cet=,

. 1 1
(iv) lea,x‘—aa x’+; 2*+ A+ Bz 4 Ces + Ee—o%,

(v) Ae -\ Be~#*cos(3axv3+0)+}+e=.
(vi) Ae V7524 Be=0132 005(0-Tdax + C) + Fyete.
Aer* Be (it 2??_::,: +u;cos 2z
(viii)) Ae*4 (B4 Ox)e—*—(cos 2x+ 2sin 2x)/25.
. , (0 4-n?—B%)8in Bz 4- 208 cos B
(1x) ACOS(M‘I'B) T ( (a’—f—i’-—-pf;:-f-haﬁﬂ' B

(vii)

(x) Aé‘”+e‘“ sinx.
(xi) 14-(A+Bxr—3as)e ™. .
(xii) A4 cosh2x+ (B4 }x)sinh 2z.
(xili)) Ade*4 (B—m) smm:+(0

Cco8 nx.,

)
T 2n(1+n?)
(xiv) (4d—}z)e*cosz+ Be®sinz.
(xv) (A+4at)e -+ Be 2,
(xvi) Asin2v+Bcos 22+ jxsinz—§cosz.

(xvii) A4 sinm+Bcosnx+’%—~’% {n(xr—a)—sinn(z—a)}H(z—a).

, (xvill) u = —%—e%(24+3}— }x)+ 2B,
v = §+2(4 —kr)e %4 2Bes=,
(xix) w = Ae®—}(B+CV3)e~t*cos j2v3—}{C— BV3)e-i#5in 323,
v = Ae®*{(Bcos xv3+Csin jzv3)e—iv,
w = Ae*— }(B—Cv3)e~12cos §xv3 — {(C+ Bv3)e#sin jaov3.
(xx) u = 24e=+2Ce** -6 Ee’% -+ Eete,
v = —b5Ae*—TBe*— 806t — 9 Fed% — Jet®,

2. Solve #*D%y-+ 42Dy + 2y = 2. Equations such as this in which all
terms are of the type 2"Dry are known as ‘homogeneous’ or *‘Euler’
equations and can be reduced to linear equations, and thus solved, by
the substitution 2 = e!. The solution is y = Ax~'+ Bx—? 4 2/6.

3. SBolve the following with initial values Yos Y15--- of y, Dy,..., ete.
(i) (D+1YD+2)y = e-=.
(i) (D*+nt)y = sinnx.
(iii) (D+1u—(6D+Tw = 1; u(D—1)p = 0.
The solutions are
@) (n+2y+2—1)e*—(y,+y,— 1)e~22.
. 1 .
(ii) (2—n' +%) sin ne 4 (yo—%) cosna.
(i) w = —F+(12v,— 3uy+§)e2" 4 (duy— 12v,—$%)e %=,
V= —}+(4vg—uy+ )63 4 (uy— 3uy— })e3=.
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4. Solve the equations
(D+1)u+2Dv+4D*w = O,
(2D +1yu+Dv+4D2w = 0,
: 3Du+tv+w = 0,
with w = 1, v = w = Dw = 0, when z = 0. If the method of §15 is
used note that this is the exceptional case referred to in a footnote.
The solution is 10u = 9e—3% — 4eb* | 5e®, 100 = 9~ 1% | 28et% — 2567 — 10,
w = 1+4e*—2el=,
5. (i) Show that if § is the Laplace transform of y, §/p is the transform
of

fy(f) d§.
0

(ii) Show that if §(p) is the Laplace transform of y(xf, J(p/w) is the
transform of wy{wz).

(iii) Show that if § and Z are the Laplace transforms of ¥ and z, #Z is
the Laplace transform of

[ oo 26 — [ yera—8) at.
0 0

The proof depends on a change of variable in the double integrals.

(iv) Using (iii) and § 18 (28), deduce § 14 (56).

6. A tank contains volume V of water, initially at zero temperature.
Water is run off from it at a constant rate of volume » per second, and
replaced at the same rate by water at temperature T;. Show that the
temperature at time ¢ is T (1—evHT), )

7. Two tanks A, B, each of volume V, contain water at time ¢ = 0.
For ¢t > 0, volume » of solution containing mass m of solute flows into 4
per second; mixture flows from 4 to B at the same rate; and mixture
flows away from B at the same rate. Show that the mass of solute in

B at any time is (mV [o)(1— etV ) —mie=o!IV

8. A substance 4 changes into a substance B at a rate a times the
amount of A present; B changes into C at a rate § times the amount
of B present. If initially only A is present and its amount is a, show
that the amount of C at time ¢ is

a+a(fe~*t—ae)/(a—P).
9. If the probability of an event happening in the interval (¢, t+8t)

is A 8t, independent of ¢, and P,(#) is written for the probability of n
events happening in time ¢, it is known that Fy(0) = 1,F,(0) = 0, and

dPyt dB,(t
;t( ) = _AR); dt( ) AP, ()—APH), n=1,2,3,...
Show that

Pty = e,  PB@t) = Me™™, P,(t) = (At)re—At/n!,
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10. y;, Y3, Ys,... are the number of atoms present at time ¢ of the
elements of a radioactive series in which the 7th element decays into the
(r+-1)th at a rate A, times the number of atoms Yy present. If y, = N,
Y3 = Y3 = ... = 0 when ¢ = 0, show (preferably by using § 18 (29)) that
at time ¢

o
: B
where Be = Au—A)e Q1= A)(Ag 1 —A,)--- (A —A,).

11. In an epidemic the rate at which healthy people become infected
is « times their number, the rates of recovery and death of sick people
are, respectively, § and y times their number. If initially there are N
healthy people and no sick ones, show that the number of deaths up to

time ¢ is ayN(o—d+det—ced){ed(c—d)},
where ¢ and d are the roots of (z+a)(z-+B4-y)—af = 0.

12. Mass M, of a perfect conductor of specific heat c,, initially at
temperature T, is placed at £ = 0 in a calorimeter containing mass M,
of water, of specific heat unity, at zero temperature. Heat is exchanged
between the mass M, and the water at a rate k, times their temperature
difference, and heat is lost by the water at a rate ky times its tempera-
ture. If T, and T, are the temperatures of the mass M, and the water,
show that

D+a)Ty—aT, = 0, (D+b+e)Ty—bT, = 0,
where b = k)/M,, ¢ = ky/My, @ = k;/M,¢,. If A; and A, are the roots of
o4 (a+b+c)utac = 0, show that these are both real and negative,

and that T, = bT(eMt—eht)/(A,—A,).

18. If the end x = 0 of a uniform rod of length I, which loses heat
from its surface at a rate H times its temperature, is held at temperature
T, and there is no loss of heat at the end £ — I, show that the tempera.-
ture at the point 2 is T, cosh u(l—x)sech ul, in the notation of § 16, Ex. 3.
Deduce that the ratio of the heat removed by a long thin cooling fin of
thickness d on a surface to that which would be removed from the area
at its base if it were not present is (2/ud)tanh ul.

14. If a thin wire is heated by electric current the differential equation

for its temperature T is

,
1
¥ = N\ Ay A,y 2 a e
=1

a@T o,

0T = —k,
where £ is a positive constant depending on the current, and b% — ak—ut,
where « is the temperature coefficient of resistance and u? is defined in
§ 16 (10). If the ends « = 0 and 2 = 2I of the wire are at zero tempera-

ture, show that ,

T k {cosb(l—x)_ 1}

= cos bl

if b > 0, and find the corresponding solutions for 2 = 0 and b? < 0.
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15. In a counterflow heat exchanger the only changes from the con-
ditions of § 16, Ex. 5, are that the partition extends fromax = O0tozx = a,
and that while the first fluid is admitted at z = 0 at temperature T' and
flows in the direction of x increasing as before, the second fluid is
admitted at x = a at zero temperature and flows with velocity wu, in
the direction of z decreasing. Show that, with the notation of § 16, Ex. 5,
and writing o = (ky—k,)/k, ks,

T, = Tk, e —kg e~ %}k, e~ —kp} ",

16. (i) Defining D! as the operation of indefinite integration, show
that D'D—"y = y but that this is not true of D"D'y.

(ii) Let f(D) be the polynomial D'(ay D*+a, D" 14-...+a,), where
a, # 0, and let (by+b, D+...+b, D¥) and Ry(D) be the quotient and
remainder obtained by expanding (@, D*+...+a,) in ascending powers
of D as if D were an ordinary algebraic variable. Show that if Fy(z) is
a polynomial in z of degree k

F(DYD " (by+by D+... + b DY) Py(2)} = Fi(x).
(iii) If f(D)and Py(x) are defined in (ii), show that a particular integral
of f(D)y = Py(x) can be found by writing this symbolically as
1
F(D)
expanding 1/f(D) in ascending powers of D, and operating on By(x) with
this series. Find particular integrals of Ex. 1, (i)—(iv) in this way.

17. The conventional method of finding a particular integral of
f(D)y = %P, (x), where F(z) is a polynomial in x, is to write this
symbolically in the form {1/f(D)}e**P(z) and to proceed as if § 12,
Theorem 3 held for this expression. If f(D) has the form (D—a)¢(D)
where ¢(a) # 0 this procedure gives

1 a ez ‘ 1 }
(D=ay$(D) {er=Pi(x)} = e Wm)Pk(Z) ’
and the latter is evaluated as in Ex. 16.

Verify, by using Ex. 16 and § 12, Theorem 3, that the result obtained
by this formal procedure is in fact a particular integral. Discuss the
special cases k = 0 and r = 0 independently. Solve Ex. 1, (v)-(xvi) in
this way.

18. Deduce § 14 (58) formally by expanding 1/f(D) in partial fractions
by the formula § 18 (29). Verify, by operating on it with f(D), that the
result so obtained is a particular integral.

B(=),



I11

DIFFERENTIAL EQUATIONS OF
THE FIRST ORDER

19. Introdactory

In Chapter I the importance of the fact that the ordinary linear
differential equation of any order with constant coefficients was
easy to solve was stressed, but the fact that many of the equa-
tions arising in applied mathematics are non-linear was noted.
Equations of the first order occupy an important position
because a number of non-linear equations, as well as the general
linear equation of this order, are easily soluble.

In this chapter the commonest types are considered briefly
and a few examples from fields other than dynamics are studied.

The general equation of the first order and degree may be
written dy
f@,9) = +9@.y) = 0, BN

and its solution will contain one arbitrary constant. We shall
usually write C for an arbitrary constant when it occurs.

20. Equations in which the variables are separable

If f(z,y) and g(x,y) in the general equation § 19 (1) are
both of the form ¢(z)¢(y), the equation may be written

P Y — o). 1)
Integrating this gives the solution ;
[P dy = [ @) dat-c. (2)
Ex. - :ctanyg—‘g—l =0,
This may be written tany Z—Z = a—t

Integrating we have f tany dy = J@f .
That is,t —Incosy = Inz+4-C.
Or zcosy = A.

1 The notation In x for log, z will always be used.
5296 E
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21. Problems leading to first-order equations with the
variables separable
Many of the problems of particle dynamics are of this type.
Here we give some other examples.
Ex. 1. The problem of § 6, Ex. 4.
The differential equation to be solved is
aT

— = —H 4 __ /P4
M= = —H/(T*—TY).

The solution is

H't aT
—ﬂ+0=f'ﬁ:'?p‘a

{ e
2T’ 21:,(1' Ty 2T 1) T’+T'
1 T-7, 1T

by R

Ex. 2. The law of mass action.

This states that, if in a chemical reaction n, molecules of a substance 4,
1y molecules of a substance B, ng of C, and so on, combine to form any
number of resultants according to the formula

ny A +ny B+4+ng C+... = any number of resultants, (1)

then the rate of the reaction, that is the rate of increase of the amount
transformed, is proportional to

(a—z)"(b—y)"s(c—2)™..., 2)

where a, b, c,... are the amounts of 4, B, C,... initially present, and
Z, Y; 2,... are the amounts of 4, B, C,... transformed up to time . The
quantities z, y, 2,... are connected by (1), thus, for example,

x/n, = yn, = zfng = ... (3)
For the second-order reaction
A+ B — any resultants,

(2) gives d_x = k(a—z)(b—=z),

where k is a known constant. Therefore .

dx
[ = kre
The solution of this for which = 0 when ¢t = 0 is
‘ 1 a(b—zx)
In bla—zx)

= kt. (4)
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For the third-order reaction
2A + B —> any resultants,

dx

@ = k'(a—2z)*}(b—=x).

(2) becomes

The solution of this for which x = 0 when ¢ = 0 is

1 ‘2x(2b a) lnb(a' 2z)

@—26) {ala—2z) T " a(b— x), k't.

Finally it should be remarked that a unimolecular reaction leads to a
linear equation with constant coefficients, and that a chain of such
reactions leads to a chain of such equations similar to those of § 6, Ex. 2.

Ex. 3. Ionization and recombination.

If a gas is ionized so that the number n of electrons per unit volume
is equal to the number of positive ions, the rate at which electrons and
positive ions recombine to form neutral molecules is

an?, )
where « is a constant called the coefficient of recombination.

Suppose that ions are produced at a constant rate I per unit volume-

for ¢ > 0 in an initially un-ionized gas. Then n satisfies
d
o _ I—an?. ,

dt

The solution of this is

That is PR tanh—ln(i‘)*+ c,
a 1
and since n = 0 when ¢ = 0 gives C = 0, we get finally
n = (é)% tanh t(al ).

Ex. 4. Flow of liquid in an open channel.
If liquid is flowing along a channel in the direction of the z-axis, its
depth h at z satisfies the differential equation
dh ., W*—H?

dx = " W—aHY ®
where 4 is the (small and constant) slope of the channel, « is a constant,
and H is a constant depending on the quantity of water flowing (it is the
depth of a rectangular channel which gives the same flow). All the cases
h 2 H and o 2 1 may occur, so there are many different possibilities.
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Putting » = mH, the solution. of (5) is

r mé—
E = m3 dm+0
= m—(1—a)p(m)+C, ‘
where
dm 1. m24+m+4-1 _12m+1
$(m) = _fm'-"—l =8P o1y +«/3 N3 ° (6)

The function ¢(m) is called the ‘backwater function’.

22. The first-order linear equation
The most general first-order linear equation is

dy _
3;6+Py = @, (1)

where P and @ are functions of z.
In the homogeneous case, @ = 0, this becomes the separable
equation 1dy

ydz = =P, (2)

the solution of which is
Iny = — f Pdx+C,
or y = Ae-IPdz, (3)
where A is a constant.
The equation (1) may now be solved by a general method,
‘variation of parameters’, which allows the solution of an in-
homogeneous linear differential equation to be deduced from the

solution of the corresponding homogeneous equation.
We seek a solution of (1) of the form
y = ze‘fpdz, (4)
where z is a function of x. This form is suggested by (3), the
constant 4 being replaced by the function z. Substituting (4) in
(1) gives
:_iif' e-§Pdz_Pre-fPdc | Pre-fPdz Q.
x

dz

Thus = QelPaz

and z = f Qe P g4 C. (%)
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Hence, finally; the solution of (1) is

y= eS| [ Qefrasdnyol, (6)

where C is an arbitrary constant.

Another method of solving this equation will be given in § 26.
The way in which (6) generalizes the results of Chapter II for
the case in which Pis a constant, say o, is worth noting explicitly ;
ax is replaced by f Pdzx.

dy R
Ex. z%—f-y = ge %,

Here, in the above notation, P = 1/x and

/dex=lnx.

Thus (6) gives y — e"“‘”{ f e gt C}

23. Equations reducible to the linear form

It is often possible to reduce an equation to the linear form
by a suitable substitution. The following are two important
types.
(i) The equation

dy v
wtPy =20 | ()
where P and @ are functions of z only. Putting
dz dy
= g~V 2 v
e T T

the equation (1) becomes
& =P (@)

which is linear in z. Equations containing a term in e¥ are of
considerable importance in chemical kinetics and similar prob-
lems. :
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(ii) Bernoulli’s equation,

Y 1 Py = Qy, @)
where P and @ are functions of x only.
Put z =y,
d_1-ndy
) dx y* dx’
and (1) becomes
& L (1—m)Pz = (1-m)Q, @

which is a linear equation in z.

Riccati’s equation,
dy :
-2 = Py? R, 5
F = Pty (5)
where P, @, and R are functions of z only, which is a little more
general than (3) and of considerable importance in dynamics, is
an example of an equation with no simple method of solution
(that is, in the general case).
Making the substitution

__1a
Y= Pz dx
it transforms into
dzz 1 dP\dz
(e p R )t PR =0, ©

which is a linear second-order equation in z with variable
coefficients.

24. Problems leading to first-order linear equations
Ex. 1. The problem of § 6, Ex. 5, with M = Myand T' = T, whent = 0.
From § 6 (5) we have M = mt+M,, (1)
and substituting this in § 6 (6) gives the linear equation for T’

aT  m+H . mT +HT,
‘ dt+mt+MD T omtt+M, "

2)
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Using § 22 (8), and writing u = (m+H)/m, ¢, = M,/m, the solution
of (2) is seen to be

T = @+t |

_ mTy+HT,
-

mTy+HT,

m (t+28,)* de+ C}

2Ot +tp) ™. v ) (3)

The requirement that 7' = 7T, when ¢ = 0 gives
__mT+-HT,
=
and substituting this value of C in (3) gives finally

_ mT,+HT, M#%—mi’}~H7'z}(l o

T mu mu +to )

Ex. 2. Fungus spores are destroyed by heat at a rate proportional to the

product of the number present and an exponential Sunction of the tem-
perature T.

That is, if 7 is the number of spores per unit volume at time ¢, n
satisfies the differential equation

dn
— o cT

knecT, (4)
where k and ¢ are constants, and the temperature 7T is s given funection

of the time. By § 22 (8) the solution of (4) is

T, +Ctzm,

T +{

n = Aexp{—k f T dt). (5)

If n, is the number of spores per unit volume when ¢ = 0, this becomes
¢

n = noexp{—k f eT dt} (6)
0

Ex. 3. The equation of radiative transfer.

Suppose radiation is being propagated in the direction of the z-axis
in a medium which absorbs the radiation at a rate pkI per unit volume
and also emits radiation at the rate pkB per unit volume, where P K,
and B are known functions of z, and I is the intensity of the radiation
at z. Then I satisfies the equation

dl

If I, is the intensity at z = 0, the solution of this is

I= exp[— fpkdx] {fkpBexp[fpk da:] da:+Io}.
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25. Homogeneous equations
These are of the form

dy _ [y

2=iY)

It follows that by the substitution
y = vz

the function f(y/x) is reduced to a function of » only.

Also from (2) % = v+x%,
so that (1) becomes x% = f(v)—v.

CH. IIT

(1)

(2)

(3)

(4)

(4) is an equation with the variables separable, and its solution

is
ff w)—o =Inz4C.

2 2
Ex. 1. dy _ @yt
dz =~ zy
Making the substitutions (2) and (3), this becomes
dv 1422
x E;:"}‘v = ’

v

or xdv——l
=

Thus the solution is %v“ Inz+C,

or Ec—é =Ilnz+C.

dy  o—3y+2

Ex. 2. da: m

0.

(5

This equation is not homogeneous as it stands, but if the variables are

changed to Y and X defined by
X—38Y = 2—3y+2,
3X-Y = 3z—y-+-6,

. dY X-3Y
it becomes ZK"’W—’Y =0

which is homogeneous. Substitubi.ng Y = vX, this gives

—p?

X + =0.
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The solution of this is (v :__l );X =0,
(X+Y)2
or m = L,
or, finally, reverting to the original notation,
(x+y+2) - 0.
y—zxr—2
26. Exact equations
The equation =, y)%-{-g(m, ¥) =20 (1)

is called an exact equation if the left-hand side, as it stands, is
the differential coefficient of a function é(x,y) of z and y. That
is, if (1) has the form

2 4y = o, @

so that its solution is d(x,y) = C. (3)
For example, the equation '

xg_z+y = 0.

is exact, and its solution is
xy = C.
In the notation of differentials the definition requires that

, J(z,y) dy+-g(x, y) dx
is to be an exact differential d¢.
The condition that (1) be exact is
7-2 0
and this condition is both necessary and sufficient, that is, if the equation
is exact (4) must hold; and if (4) holds, (1) must be exact. We prove

these statements in order. First suppose that (1) is exact so that it can
be expressed in the form (2); this may be written

opdy  op
dydetor
Comparing (1) and (5) we must have

(8)

Jen =k, ey = 12, (®)
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where k is a constant. Then from (6)

Q =k a’¢ = ke a"ﬁ
ox " owdy = oyox 8_1/’
so that (4) is satisfied as required.

Next we prove that if (4) is satisfied we can find a function ¢ such that
(1) can be put in the form (2). Write

6(z,9) = [ gla.y) d, (7)
the integral being evaluated as if y were constant. Then
0Q(x, y)
T = g(x’ .1/),
yox oy ox
using (4). (8) may be written
aQ(=,
el gy —Faw] =0
so that a6""”’y)—f(:c.y) Ply), (@)

where () is a function of y only.
We now choose for the required function ¢(z, y),

$(z.9) = Gz, y)— [ Y(y)dy, (10)
and show that this has the required properties. We have
oplx,y) 8G(x,y)

oz o —I@Y)
> oG s
%‘a’;—”’ oD yiy) = s

by (9), and thus (1) is put in the form (2). This process may be used to
find ¢(x, y) if this is not immediately obvious.

There are many equations which are not exact as they stand
but can be made so by multiplying by a suitable function of
x and y. Such a function is called an integrating factor. For
example, the equation

L
z Y= 0, i (11)
is not exact, but if multiplied by z-2 it becomes
ldy v _,, (12)

zdr %
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which is exact and can be written '
dfy
2(9) <o,
dx(x)

8o that the solution of (11) is
y = Cx.

One method of finding an integrating factor is to use the
condition (4). We illustrate this by considering the important
case of the linear equation

Y Py—e (13)

where P and @ are functions of z. Suppose ¢ is an mtegra.tmg
factor of (13), then

¢ Y 1 bPy—@) =0
must be exact. By (4) this requires
Y — ~ WPu—4Q)

- (Py—m%’wz’. (14)

Any function which satisfies (14) will be.suitable, in particular
a function (x) of z only chosen so that

d¢ —yP —o0. (15)
A solution of (15) is ./, — Pz (16)
so that this is an integrating factor of (13). Multiplying (13) by

it gives ( {
@y Pdx _ Pdz
{ 7T Py}e Qe P2,

or ‘ d%;{yejpdz} = Qef Pz,
so that, ihtegra.ting,

yel Paz — j QefPdz gy C, (17)
which is the solution already found in § 22.
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27. Equations of the first order but of higher degree than
the first '
The equation of the nth degree will be

dy\* dy\"*1
$oe O 2Z) a9 () et balmy) = O Ry
This may be factorized into the form
d; d; .
(12 2+ g )| ) St gl )} = 0. (@)

Therefore if y satisfies any one of the n equations
d,
Ay Gt n@y) =0
- (3)
d
Fal@, ) S+ nl@y) = 0

it will satisfy (2). The solution of (1) consists of the collection of all
the solutions of (3). Suppose (%, y,6,) = 0, ..., Y,(z,y,¢,) = 0 are the
solutions of these found by the methods of the previous sections, where
Cyse-es G, 8Te arbitrary constants, then any of these satisfies (1) and its
general solution may, if desired, be written

‘l’l(xa Y c)‘l’ﬁ(x’ y9c)--"ﬁn(x’ y,c) =0, (4)-
where ¢ is an arbitrary constant. One arbitrary constant ¢ is sufficient
in (4), since, as it varies, the individual solutions y(x, y,¢), etc., run
through all possible values.

As an example consider the equation

dy\? | o(dy _ '
() +3(z)+2 =0, ®
. .. dy )(dy _
that is, factorizing, (£+2 a-{- l) = 0.
The solution of 3—%4—2 =0
is the family of straight lines
y+2x = ¢, (8)
, Cay .
and that of d—z+ 1=0

is the family of straight lines
y+zx = Cy (7
(5) is satisfied by all the lines (6) and (7): its general solution may be
written (y+2o+cy+2-+e) = O.
A phenomenon which appears in certain equations of this type is that
they may have additional solutions which are not comprised in the
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general solution. Such solutions are called singular solutlons. For ex-

ample, for the equation

(@' =0
- (k)=

the general solution, found as above, is

2yt — (@t} 2yt +(x+c)} = O,

or 4y = (z+c)?,
which is a family of parabolas. But (8) is also satisfied by
y=20,

(8)

(9

(10)

which is not included in the general solution (9) and is a singular solution.

The line (10) is in fact the envelope of the parabolas (9).

EXAMPLES ON CHAPTER III
1. Bolve the following differential equations:

@ Y_1ig
Gi) % _(14evsinz = o,
dx
d

(iii) xd—i— —_

@v) (1+a9)% +4xy =1L
) %‘W = 2y’

(vi) (a® y") +3x’y—0

i W_ =ty
(vii) dz—m_—l-"-

(viii) (smx+xcosy) +(smy+ycosa:)—0

(ix) 3xy’g—g+2y3+3x = 0.
The solutions are )

(i) 2= tan"ly4C. (ii) cosz—In(l4ev) = C.
(iii) y = $a°+ Cu. (iv) y = (x+342°+ C)(1 4222
) y={+e+Ce= . (vi) d&iy—yt=C.

(vi)) In(y—z+})+(4x—1)/(2y—2x+1) = C
(viil) zsiny4ysinz = C. (ix) 28+adys = C.
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2. (i) Show that in the second-order reaction 24 —» any resultants
(cf. § 21) if z is the amount of 4 transformed in time ¢, and a is the
amount of A originally present,

T

s =

(i) Show that if a, b, ¢ are the amounts of A, B, and C originally
present, and z is the amount transformed in the third-order reaction
A+ B+ C — any resultants,

1 a 1 b 1 c

B—a)o—a) Pa—z T @a—b)e—0) " b—= T@a—o)p—0) “o—zm =

3. The differential equation for a reversible second-order reaction in
which the second substance is not present initially is
= ky(a—x)2—ky 2.
Putting y = z/(a—z) show that
1 (a—z)Vk; -+ 2k,
2a4/(ky ky) (a—a)Vy— ks

4. Molten metal in a cylindrical container is cooling by conduction of
heat radially outwards. At the instant of solidification the volume of the
metal solidifying is reduced by a fraction «. If A is the height of the free
surface of the liquid when the radius of the surface at which solidification
is taking place is r, show that

dh _ 20
dr— r°
If h = hy when r = r, show that the shape of the upper surface when
the metal is all solid is b = hy(r/ry)2>.
5. A substance decomposes according to the unimolecular law

aw ke~E/RTy,

dt
where w is the amount of the substance present, k, B, and R are con-
stants, and 7 is the absolute temperature. At time ¢ = 0, w = w, and
T = T,. Heat is given off during the reaction at a rate proportional to
the reaction velocity (no heat being lost to the surroundings) so that
dT/dt = —q dw/dt, where ¢ is a constant. Show that the temperature
at any time is given by

=1,

b eEIRT g
T ) Tytque—T"
. To

6. If there are initially V electrons per unit volume and they disappear
by recombination (cf. § 21, Ex. 3) show that the number present at time ¢
is N/(14-Nut).
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7. The density p in the earth’s atmosphere is assumed to vary with
height h according to the law P = poexp(—h/H), where p, and H are
constants. Radiation is incident on it vertically from outside, its
intensity at infinity being L, If the radiation is absorbed at the rate
kpI per unit volume, where I is its intensity [cf. § 24, Ex. 3], show that

I = Iexp{— Hkp, e>MH},

Ions are produced by the absorbed radiation at a rate B times the rate
of absorption. Show that the rate of ion production is

Bl kipy exp{— h/H — Hkp, e-HH),

Show that this has a maximum at the height HIn(Hkp,). This is
Chapman’s theory of the formation of the ionosphere.

8. Show that if 2, and h, are the depths of a stream at distances z,
and z, from an origin,

Uy ~3) = (hy—hy)~(1—)H{(hy/H)— p(hy/H)},

in the notation of § 21, Ex. 4.

9. In a sterilizing process the temperature T is raised linearly from
zero to T in time ¢y, and subsequently decreases exponentially according
to the law T' = T,exp[—a(t—t,)]. If 7, is the number of spores initially
present (cf. § 24 (4)), show that the number 7y at time ¢y > ¢, is given by

In(no/ny) = (kto/cTy){eTo— 1} + k{Ei(cTy) — Ei(cT) et} /o,
where Ei(x) denotes the tabulated function

z
Ei(z) = [ 91 dy.
-~

10. The path of arayin a spherically symmetrical refracting medium
is determined by Snell’s law, prsine = constant, where pis a given
function of 7, and ¢ is the angle between the path and the radius vector
to the origin. Show that if p —> 1 as r — oo, the equation of the path
of & ray which for large values of r is parallel to the axis of polar
coordinates and distant p from it is

0
0 = dr
- [
ks

11. Tons are produced for ¢-> 0 in a medium at the rate kt per unit
time per unit volume, and they disappear by recombination (cf. § 21,
Ex. 3) at the rate an?. Making the substitution #n = (1/az) dz/dt, show

that z must satisfy &

Z
'd—tz—dktz = 0,

For the solution of this see § 98. The problem corresponds to production
of ions in the ionosphere near sunrise.
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12. The bottoms of two equal tanks are on the same level and are
connected by a pipe which is such that the rate of flow of water is
proportional to ./(h,—h,), where h; and h; are the heights of water in
the two tanks. If water is pumped into the first tank at a constant rate,
show that k, and h, satisfy

dh ,
B LU
where k and %’ are constants.

If both tanks are empty at ¢ = 0, show that

k {k— 2k’(kt——2hz)i}
‘2k2 k

B Ky —hh,

+kl,(kt—2h2)i+z = 0.



Iv

DYNAMICAL PROBLEMS LEADING TO
ORDINARY LINEAR DIFFERENTIAL
EQUATIONS

28. Introductory
Ix this chapter we shall consider problems which lead to linear
differential equations. These will usually be ‘vibration prob-
lems’ on the motion of several masses constrained by springs,
or the rotation of a number of wheels on a shaft. As remarked
in § 4, quite complicated problems of these types can be solved,
provided they are idealized in such a way that the equa.tlons of
motion become linear.
Newton’s second law for the motion of a (constant) mass m
along the x-axis is
md—zw = force 1)
de? ’
and, asin § 4, we assume that the force is a sum of terms depend-
ing on position, velocity, and time: i.e.

mi = f(x)+g(&)+h(), (2)

where, as is usual in dynamics, a dot is used to denote differen-
tiation with respect to the time.

If the equation (2) is to be linear, f(z) must be proportional
to x, say f(x) = —Ax, and g(£) must be proportional to #, say
g(%) = —ka.

Restoring force proportional to displacement is provided by
the strain of an ideally elastic body or a perfect spring; we use
the term ‘stiffness’ for the constant of proportionality A, so

that the restoring force exerted is the stiffness times the relative

displacement of the ends.
Resistance to motion proportional to velocity is provided by
the shearing of an ideal viscous fluid.
If f(x) and g(£) -have these forms, (2) becomes
mi = —Ax—k&+-h(t), (3)

5298 r
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which is an inhomogeneous second-order linear differential
equation.

We also get a linear equation if the resistance to motion is
due to the ‘coulomb’ or ‘solid’ friction between two solids
which slide on one another. In this case there is a constant
force uR opposite to the direction of motion, R being the normal
reaction at the contact, and u the coefficient of dynamie friction.

R
(a) —"(RART\— ==t ] l‘f_[B._,
k m g
o

(b) ey LR
A /;—;‘J\ —

I
Fic. 3.

In this case, however, different equations of motion must be
used for the two directions of motion since the sign of the con-
stant force w R must be changed. This was not necessary in the
case of resistance to motion —*k#, since (—kz) changes sign
automatically with & and thus is always in the opposite direction
to it.

The fundamental elements considered above may be repre-
sented diagrammatically as in Fig. 3 (¢). The first represents an
ideal spring of stiffness A, the second a dash-pot containing ideal
viseous liquid giving resistance to motion k times the relative
velocity of sliding, the third a mass m, and the fourth coulomb
friction u times the normal reaction R and in a direction oppo-
site to an assumed direction of sliding. Complicated systems
.can be built up by combining these elements, and in all cases
the equations of motion will be linear.

Similar equations arise for the angular motion of wheels on
elastic shafts. Here the angular displacement 8 of a marked line
on a wheel from a fixed reference direction is the dépendent
variable corresponding to x, and the equation of motion of a
wheel of moment of inertia I is

1§ = torque. (4)
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An ideally elastic shaft of ‘stiffness’ A provides a restoring
torque A times the relative angular displacement of its ends, and
resistance to motion k6 is provided by shearing of an ideal
viscous liquid. Thus there are elements for rotational motion
as in Fig. 3 (b) similar to those of Fig. 3(a) for linear motion;
also there will be an analogy between linear and rotational
motion in the sense that certain systems will have the same
differential equations, except for a change of notation, 8 for «,
I for m, etc. In Chapter V this analogy will be developed and
extended to include electrical systems. In this chapter prob-
lems will be stated for linear motion, but the equivalent dia-
-grams of types Fig. 3 (a) and (b) for linear and rotational motion
will both be given.

Finally it should be stated that all the forces acting on the
mass are supposed to be specified, and that unless gravity is
mentioned explicitly (e.g. by saying that the mass moves verti-
cally) it is supposed not to be effective, for example, the motion
might be regarded as taking place on a smooth horizontal plane.
There is no loss of generality in omitting gravity forces in these
linear problems: if they are included there will be a position of
static equilibrium calculable from the weights of the masses
- and the linear forces, and the equations of motion about this
equilibrium position will be the same as those we discuss.

29, The damped harmonic oscillator: free vibrations

We consider the motion of a particle of mass m along the
z-axis, Fig. 4; the particle is supposed to be constrained by a
spring of stiffness A, the displacement x of the particle being
measured from the position in which the spring is unstrained;}
there is resistance to motion k times the velocity, and the
particle is acted on by an external force F(t).

The equation of motion, § 28 (3) is

miE = —Az—ki+ F(t), (1)

1 If the spring hangs vertically so that gravity acts on the mass m we may
either include mg in the force F(t), taking the origin in the unstrained position,
cf. § 30 (i), or we may measure = from the position of static equilibrium (a
deflexion of g/n?), in which case the same equations result except that F(t) is
to be the external force other than gravity.
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or (D*+-2xD+n%x — % Ft), @)
where, here and subsequently, we use the notation
— k 2 A
K = %s ne = ;L’ (3)

and write D for d/dt.

In this section we shall study the case F(f) = 0 in which there
is no external force; this gives the ‘free oscillations’ of the
system when disturbed in any way. This solution will also be
needed in discussing the general equation (2) of which it is the
complementary function.

Putting F(¢) = 0 in (2) we have to solve

(D242« D+n¥)x = 0. 4)
The auxiliary equation § 13 (2) is
a4 2xa+n? = 0,
and its roots are a = —k4f(kE—n3). (5)
Thus the solution takes three distinct forms according as
«?® 2 n2
(i) Thecase x <mn

Writing n' = J(n*—«?), (6)
the values (5) of « become —k-+in’ and the general solution
of (4) is ¢ — Ae-sin(n't+ B), )

where A and B are arbitrary constants determined by the way
in which the motion was started when ¢ = 0.
In the case « = 0, no resistance to motion, the solution is

simply " Asin(nt+B), (8)
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a harmonic oscillation of frequency n/2x: this will be referred
to as the undamped natural frequency.

The effect of resistance to motion « in (7) is to make the
solution the product of e~ with a sinusoidal term of frequency
n'[27. The motion is called damped harmonic motion. ' |2 will
be called the damped natural frequency, and « the damping
coefficient. The motion given by (7) is not strictly periodic since
each oscillation is different from the preceding one, but it does
possess certain periodic properties: for example z = 0 when

t="_2 (r=1,2..), (9)

that is, at a series of instants separated by the half-period =/n’.
Also the velocity has the same property, for
% == Ae~*{n’' cos(n’t4+ B)—«sin(n't+ B)}, (10)
and so £ = 0, when
t="" 4 L an™ B 1 2. (11)
nn kK n
Comparing (9) and (11) it appears that the particle always
takes time 1 ,
n
—tan—1—
n K
to swing from its equilibrium position z = 0 to a point at which
it is at rest, and time
~l7{7r—ta,n"1 ﬁ}
n K
to swing back from rest to & = 0. It thus moves back more
slowly than it moves out. This may be seen from Fig. 5, in
which the curves e, sinn't, and e-*sinn’t are shown.
Substituting the times (11) in (7) gives the displacements of
the particle at successive instants when it is at rest. These are
seen to be in geometric progression with common ratio

—e~mHm, (12)
The amplitudes of successive swings on the same side of the
origin diminish by the factor '

e—zmcln”
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and the logarithm of this, namely,

& = 2nx/n/, (13)
is called the logarithmic decrement.t This quantity, which is
the ratio of the damping coefficient « to the damped natural
frequency »’/2m, appears also in connexion with resonance. The
quantity in electric circuit theory analogous to n'/2« is called
the ‘@’ of a circuit.

P

2n/n’

Fic. 5.

Finally it should be remarked that if «/n is small, the damped
'natural frequency

1 1 2 9 n «?
—n = —k%) = —{l——— ..
21rn 27 (n?=c%) 277( 2n? (14)
differs very little from the undamped natural frequency n/2x.
Thus a small amount of resistance to motion has a much more
important effect on the amplitude than on the frequency.
(il) The case k > n
Here the general solution of (4) is
x = Ae—{k—tc—nMt | Bo—li+vct—nDH, '(1 5)
The velocity @ can vanish once at most. The motion is not
oscillatory and consists either of a single swing or of a creep back

7 1 Several different definitions are in use. Some authors use half this quan-
tity which corresponds to comparing successive swings on opposite sides of the
origin. Sometimes, also, the quantity & in (13) is called the decrement.
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to the origin, according to the circumstances of projection. This
cage x > n is referred to as ‘dead beat’.
(iii) The case of ‘critical damping’, k = n

Here the auxiliary equation to (4) has equal roots n and the
general solution is - (A Btje—. (18)

As in case (ii) the motion consists of at most a single swing
and is not oscillatory.

Finally we consider the effect of increasing the damping
coefficient of a system with undamped natural frequency n. If

x < n we have from (7) le| < |Ale-*;

thus as « is increased towards », the motion, while remaining
oscillatory, dies away like _4

(17)
When « = n, the motion ceases to be oscillatory and dies away
like te—, (18)

by (16). Finally, when « > n the motion given by (15) dies
away like oKV —nN). , (19)

Since both (17) for any value of « << n, and (19) for any value
of k¥ > n, are larger than (18) for sufficiently large values of ¢,
it follows that, in order to make the motion die away as rapidly
as possible we must give x the critical value n. If this value is
exceeded the motion does not die away so rapidly. Thus in
recording instruments which have to take up areading as quickly
as possible, critical damping is often aimed at.

Ex. The particle is set in motion with velocity V at t = 0 from its
equilibrium position x = 0: to find the motion.
The conditions x = 0, & = V, when ¢ = 0 require that in (7)
AsinB =0,
) A{n’cos B—ksin B} = V.
Thus B = 0, 4 = V/n’ and the solution is

14 . .
= Wc"“smn’t, if £ < n.

Similarly from (16) and (15) we find
x = Ve ™, if k= n,

= \7('_77_%_) ~tginht /(3 —nl), if K > n.
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30. The harmonic oscillator with external force apphed
to it
In this section we consider the ha.rmomc oscillator with
applied forces of various types; the most important case, namely
harmonic applied force, will be treated at length in § 31. Resis-
tance to motion proportional to velocity is not considered, but
it could be added in all cases.

(i) Constant applied force

The effect of such a force, as remarked in §§ 28, 29, is to give
oscillation about a displaced position of equilibrium.

Ex. 1. A particle of mass m is hung vertically by a spring of stiffness mnt,
At t = 0, when the spring is unstrained, the particle is released.

Taking the z-axis vertically downwards, with the origin at the position
in which the spring is unstrained, the equation of motion of the particle,
§28(1)is

mE = —mnir+mg,
or F+nix = g. (1)
The general solution of this is
xr = Asinnt+ Bcosnt—{—n%. ’ (2)

The constants A and B in (2) have to be determinéd from the con-
ditions = # = 0, when ¢ = 0. These give

B+% =

A=0.
‘Therefore the solution is

X = I'%(l——cosnt),

an oscillation about z = g/n?, which is the equilibrium position of the
mass when hanging from the spring.
(ii) The applied force any function F(t) of the time

In this case the equation of motion, § 29 (2), is

1
(D*+4-nP)x = m F(e). 3)

By § 14 (54) the general solution of (3) is
¢
x = Asinnt+ Bcos nt+"—%;-b f sinn(t— &) F(§) dE. (4)
0



§ 30 ORDINARY LINEAR DIFFERENTIAL EQUATIONS 73
Ex. 2. The particle 13 set in motion at t = O from rest in its equilibrium
position by a constant force F, which acts for time T and then ceases.

In this case F(£)in (4)is F, for 0 < ¢t < T, and zero for¢ > T. We
have to determine 4 and B in (4) to give x = 0 and # = 0 when ¢ = 0.
These require B=0

¢
nA+ [% f cosn(t—{) df]l-o =0,

6
Thus A = B = 0, and the solution is

¢
_ B [ _ 5K
x = ﬁfsmn(t—f)df-m(l—cosnt) 0<t< T,

T
T == }}% f sinn(t—§) d¢
0

= mi;;z{cosn(t- T)—cosnt} = ri—i;’zsinn(t-—gT)sm nT (> T).

Thus the residual effect after the force has ceased is an oscillation of
amplitude (2F,/mn®)sin nT. This, of course, could have been found by
studying the motions for 0 < ¢ < T and for ¢ > T separately.

(iii) Solid or coulomb friction

In this case, as remarked in § 28, the direction of motion must
be known before the differential equation is written down, and
the frictional foree, ¢ times the normal reaction, is in the direc-
tion opposite to the direction of motion. This differential equa-
tion is valid only for motion in this direction.

It should be remarked that the assumption that kinetic
friction is equal to a constant times the normal reaction is a very
crude first approximation which is used because 1t gives linear
equations of motion.

Actually, for most rubbing substances the frictional force
varies with the velocity of sliding according to a complicated
law such as that of Fig. 6 (a) in which for low velocities of sliding
the frictional force is less than the static value. A second
approximation which leads to interesting results is to assume a
-constant coefficient of kinetic friction p which is less than the
static value p’; of. Ex. 4 below.



74 DYNAMICAL PROBLEMS LEADING TO CH. IV

Ex. 3. A particle of mass m rests on a horizontal plane, the coefficient
of friction being w. It is attached to a fiwed point by an elastic spring of
stiffness mn®. The particle is displaced a distance a from its equilibrium
position and then released.

Initially we have x = a,# = 0, when ¢ = 0. Also, when released, the
particle will start to move backwards and so the frictional force will act
forwards. The equation of motion for this part of the motion is then

mE = —mnir+pumg,

or V F+4-nir = ug. (5)
¥ .
P
E 4 A b
& m X2
Velocity v and
(a) (b) fc)

Fic. 8.

The general solution of this is

z = Asinnt-}-Bcosnt-}-’;—z.

The conditions # = @, & = 0, whent = 0 give 4 = 0, B = a—pug/n3,
and so the solution is

= ’;—Z+b(a—:——%)cos nt, | (6)
& = -—n(a~—%)sinnt. (7)

The equation of motion (5) and the solutions (6) and (7) hold so long
as & is negative. This is the case until ¢ = =/n, at which time the particle
comes to rest, its displacement then being

2

that is, a distance (a— 2ug/n?) on the opposite side of its equilibrium
position. )

The same argument will show that it will next come to rest at time
2m/n at a distance (a— 4ug/nt) from the equlhbnum position, and so on.

Thus the particle oscillates with the period 2m/n which it would have
in the absence of friction, but the amplitude diminishes by a constant
amount 2ug/n® in each half-swing. This continues until the particle comes
to rest so near the equilibrium position that the restoring force is less
than the frictional force. Motion then ceases.



§30 ORDINARY LINEAR DIFFERE_NTIAL EQUATIONS 75
If this happens after r half-swings we must have

2
2r—1 < 22 < 9r 41,
pg

that is, # must be the first integer greater than }(n%a/ug)—3%.

Ex. 4. Chattering in a system in which kinetic friction is less than static
Sfriction.

This type of problem has many important technical applications.
The motion is periodic but is quite different from the harmonic oscillations
treated hitherto and is related to the ‘relaxation oscillations’ discussed
in § 59.

As a definite problem suppose that a mass m is pressed by force P
against a plane which moves with velocity V, motion of the mass with
the plane being resisted by a spring of stiffness mn? [Fig. 6(b)]. The
coefficients of static and dynamic friction between the mass and the
plane are u’ and p, with u’ > u.

We suppose the mass to be moving with the plane in the direction of
the z-axis; this will continue until its displacement from the position in
which the spring is unstrained is

(8

At this instant, which we shall take as the origin of time, ¢ = 0, it
will commence to slip and the frictional force on it will be dynamic
friction acting forwards. That is, its equation of motion is

mi = —mnix+pP, (9)

to be solved with & = V, @ = u/P/mn3, when t = 0. The solution of
(9) with these initial conditions is

_pP V., (' —p)P
x..-mn2+nsmnt+ proges cosnt, (10)
& = Vcosnt—(”'—_"'—)gsinnt. (11)
mn

This motion continues until the velocity of the mass relative to the
plane vanishes, and then sliding ceases. This happens at time T given
by the smallest (non-zero) root of

Vcosnt—wsinnt =V,
mn

. (@ —p)P
i.e. of tanint = Rlees (12)
.. 2r 2 _ (W —p)P
This gives T, = - —ﬁtan el (13)

At this time its displacement z, is, by (10),

2 — Cp—pIP

= b (14)
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When the particle has come to rest relative to the plane it stays moving
with it until its displacement is z; given by (8), when the process repeats
itself. The time taken in moving from z, to z, is

_ w2 —p)P
T= vV = mniV (18)
and the period of the whole process is T+ T, given by (13) and (15).
The curve of displacement against time for the motion is sketched in
Fig. 6(c).

31. The damped harmonic oscillator : forced oscillations

We now consider the system of § 29, namely a mass m with
restoring force mn? times its displacement x, and resistance to
motion 2m« times its velocity #, acted on by an external force
Fysin(wt+-B). '

Putting F(t) = Fysin(wt+B) in § 29 (2), the equation of
motion is F
(D24-2x D +-n?)x = —isin(wt—}—ﬁ). 1)

The complementary function of (1) has been discussed in § 29;
we now have to find a particular integral. Proceeding as in
§ 14 (iv), we find a particular integral of

(D22 D+-n?)x = %ei(whﬂ) (2)

and take its imaginary part. We seek a particular integral of
(2) of the form x = Xei: substituting this in (2) gives

(P2 — w4+ 2ciw)X = 5 B,
m

and the required particular integral of (2) becomes

z — Fy eilwt+f)
m(n2— w2+ 2xiw)
= F, iwl+f-$)

- m{(n2——w2)2—|—4kzw2}*e ’ (3)

where ¢ = arg{(n*—w?)+ 2kiw}. (4)

Taking the imaginary part of (3), the particular integral of
(1) is F
x 0

sin(wt-+B—9), (5)

= m{(n?—w?)?+ dtwi
where ¢ is defined in (4).
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Adding the complementary function [§ 29 (7) if x < », or the
corresponding expression of § 29 if « > n] gives the general
solution of (1)

x = Ae-gin(n't+ B)+

+ 5y

m{(n2—w?)2+ 4
where n’' = /(n*—«?), and 4 and B are constants to be deter-
mined from the initial conditions. n’'/27 is the damped natural
frequency. The first term of (6) dies away exponentially as the
time increases and is termed the transient part of the solution;
for large values of the time, only the second term of (6), which
is the particular integral (5) of (1), remains. This is called the
steady state solution or forced oscillation; it has the same fre-
quency w/2w as the applied force and a lag in phase of ¢ behind
it. In the time during which the transient is not negligible the
oscillation builds up from its initial value to the final steady
state value: the smaller the damping coefficient, the longer the
time taken in this building-up process.

We proceed to discuss in detail the way in which the ampli-
tude and phase of the forced oscillation (5) vary as w varies
between 0 and co. The velocity of the mass in the forced
oscillation (5) is

sin(wt+B—¢), (6)

Fyw .
= m{(nz_w2)2+4kzw2}* SlIl{wt-—{-B (¢—'%7T)}’ (7)
and we discuss also the variation of the amplitude and phase lag
(¢—3m) of this.
Treating the phase lag first, we need the value of ¢ from (4).
If w < n, n?2—w? i positive, and

7

1 2kw. .
¢ = tan lnz_wz (w < n). (8)
If w > n, n®—w? is negative, and [cf. § 14 (25)]
¢ = m—tan! wgﬁunz (w > n). (9)

1t appears from (8) and (9) that as w — 0, ¢ — 0, that is the
phase lag ¢ of the displacement is small for small w; as w - n,
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¢ — %, a phase lag of 7 when w/2 is equal to the undamped.
natural frequency; as w -0, ¢ — =, a phase lag of = for high
frequencies. Since by (7) the phase lag of the velocity is ¢—4m
it follows that this is —}= for very low frequencies, } for very
high frequencies, and zero at the undamped natural frequency.
Graphs of ¢ and ¢—}x are shown in Fig. 7 (a) and (b) respec-
tively, for the case «k = n/ 10.

13 k

LN

o [ w/n 2 o ] wjn 2

(a) Phase lag of x for x = n/10. (¢) Phase lag of z for x = 0.

) /’"
" k
& : N

(b) Phase lag of & for k = n/10. (d) Phase lag of & for x = 0.
Fra. 7 -

torr

Next we have to consider the variation with w of the ampli-
tude of the forced oscillation, and we study first the amplitude
4 i
Y 2em{l 4+ (n2—w?)?/ drlwt
of the velocity & given by (7). Clearly A, — 0 when w = 0, and
A4,->0as w —» 00, Also, when w = n, the denominator of (10)
ha.s its least value, so that 4, has a maximum of Fy/2km when
w = n, that is when the frequency is equal to the undamped
natural frequency. The curve of A, against w is shown in
Fig. 8(a) for « = n/10. Clearly, the smaller the value of the
damping coefficient «, the larger the value of the maximum.
Thus when the frequency of the applied force is equal to the
undamped natural frequency of the system, vibrations of large
amplitude can be set up, particularly if the damping coefficient
is small. This phenomenon is called resonance.

(10)
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It is of importance to have some information about the sharp-
ness of the peak of the curve of 4, against w. To specify this
we determine the values of w at which 4, has a value (1/s)th
of its maximum. By (10) this is the case when

1 1
== 11
{14+ (n?—w?)?/4x?w? &’ (1)
ro 10
o fe-aB2 .. e
‘i [ 3
< st o <s
3 Lo ' 3
N /' siakie o
o 7 wyn 2 4 i w/n 2

(a) Amplitude of Z for x = n/10. (¢} Amplitude of & for k = 0.

N\

wn 2 ° T wn 2
(&) Amplitude of  for x = n/10. (d) Amplitude of = for k¥ = 0.
. Fia. 8.

1o 10

2mn*Ar/F;
R

2mn®Ax/F,
AN

o 1

or, squaring, when

(n?P—w?)? = 4i?w?(s2—1),

that is, when w?42kw(83—1) —n? = 0. 12)
The roots of this quadratic are
w = Fr(s?— 1)+ {k2(s2—1)+n2}, (13)

where the positive sign has been chosen for the second square
root since we are only interested in positive values of w.
These two values of w differ by 2«,/(s2—1), so this is the width
of the peak at the point where the amplitude is (1/s)th of its
maximum value. In particular, the width of the ourve is 2« at
1/¥2 = 0-7071 of the maximum amplitude, and the values (13)

v
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of w for this value of s are («¥2-+-n?)}4-«. In Fig. 9 curves of 4,
against w for various values of «/n are shown in order to illus-
trate the effect of decreasing « on the sharpness of the curve,

or

K=o

4
_ nfio
w
3 .
< 5 n/4
g
™~

n/2
, n
o i 2
wyn
Fi1c. 9.

The amplitude of the velocity was considered in detail above because
it is the more important in the analogous problem in electric cirenit theory
(cf. § 43) and also because it leads to the simple exact result (13). We
now consider the amplitude 4, of the displacement x, which by (3) is

')
A4, = mi{(nP— w?) + Pt . (14)

When w = 0, A, = Fy/mn?, and a8 w — 0, 4, — 0. Also

dd, 2whin*— 2 — w?} (15
dw m{(n’——w2)2+4.cc2wz}' ‘ )

It follows that A, has a minimum at w = 0 and a maximum at
w = J(n?—2«?), provided n® > 2«®. If n® < 2«x* the curve decreases
steadily and there is no maximum. The maximum value of 4, is

L
2iem(n?—k®)t’ (16)
and it should be noticed that the frequency (n?— 2x®)¥/27 at which it is
attained does not coincide with either the undamped or the damped
natural frequency. The curve of 4, against w is shown in Fig. 8(b).
As before we specify the sharpness of the peak by seeking the values
of w at which 4, has (1/s)th of its maximum value {18). These are given

by @ = {(n?—2x?) £+ 2(s?— 1)}(n2—i2)h}t. a7
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If we assume that x/n is small and use the binomial theorem in (17), we
get approximately, neglecting terms in «%/n?,
w = nitxf(st—1), (18)

which gives the same value as (13) for the width of the peak, but (18) is
approximate whereas (13) was exact.

Finally, we treat the case « = 0 ab initio in order to show
clearly the connexion between the results for this case and those
obtained earlier. This connexion is of considerable importance,
since the study of more complicated systems involving several
masses is not particularly difficult if damping is neglected, but
becomes extremely complicated if it is included. It is therefore
desirable to be able to obtain a qualitative idea of the behaviour
of such a system from the solution for the case of no damping.

If « = 0, the differential equation (1) becomes

(D+n%)s = Dosin(ut 1) (19)

and its particular integral, found as before, is

T = L) 2 gin(wt+B), (20)

m(nP—w?)
provided w # n.
If w << 0, x is thus exactly in phase with the applied force.
As w —> n the amplitude of z tends to infinity. When « > #,
x becomes negative and may be written

which corresponds to an oscillation of amplitude. Fy/m(w?—n?)
with a phase lag of 7 behind the applied force. Thus (20) may be
written

2= O sinot+f—4), (21)

m|n?—w?|
where the phase lag
=0 (<n
p=m (0>n)
changes discontinuously by = as w passes through n. Also the

amplitude tends to infinity as t,ends to n. These curves are
5206 ’ fe}
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shown in Figs. 7(c) and 8(d), respectively, and are obv10us
limiting cases of those for finite damping as « — 0.
In the same way the velocity is

ok, .
= ;n—I-MToz»Ism(wt—{—B—l—%-n—@.
Its phase lag and amplitude are shown in Figs. 7 (d) and 8(c).
The general solution of (19) is

Asin(nt+B) + sin(wt4-B), (22)

F
m(n®—w?)
where A and B are arbitrary constants to be found from the
initial conditions. It should be remarked that in this ideal case
the complementary function 4 sin(nf-+ B) does not die away for
large values of the time.

It remains to consider what happens in the case of no damping
when w has the resonance frequency #, so that (19) becomes

(D*+n)x = %sin(nt-l—ﬁ). (23)

The particular integral of this has been found in § 14, Ex. 9,
to be 7
—_—0y . 24

S| cos(ni+p) . (24)

It thus corresponds to an osvillation of steadily increaéing ampli-
tude. If a system with negligible damping is set in motion by
a harmonic force of the resonance frequency, the amplitude of
its oscillations will increase steadily until they are so great that
the assumed equations of motion cease to hold.

32. The harmonic oscillator: forced oscillations caused

" by motion of the support

The differential equations discussed in detail in § 31 arise
again here but in a slightly different manner.

Suppose a particle of mass m is attached to a point S by a
spring of stiffness mn?, and that there is resistance to motion
2m« times the velocity of the particle. Let the point 8 be given
a prescribed motion £(¢) in the direction of the spring. If the
origin of x is taken so that the spring is unstrained when z = 0
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and £ = 0, the restoring force on the particle for any values of
z and £ will be mn{z—E(0)),
and the equation of motion of the particle will be

mE = —mn2{x—E(t)}—2mu,
or E4 2t +nie = n%(t), (1)
which is the same as § 29 (2) except for the change of notation.

wm S
EJ - xj

Fic. 10.

If the point of support is given a harmonic motion
| £ = asin(wt-+p),
(1) becomes Z42xx+n2r = nasin(wt+B), (2)
which is the same as § 31 (1) with »2%a in place of &j/m.

Ex. A machine of mass M is supported on springs of total stiffness
(M +m)nt, and its vibration is damped by resistance 2(M - m)x times its
velocity. It carries a mass m which executes a vertical simple harmonic
motion £ = asin{wt-+pP) relative to the mass M. Find the steady periodic
motion of the bed.

Let « be the displacement of the mass M measured upwards from the
position in which the springs are unstrained, so that (x-+£)is the position
of the mass m relative to the same origin. Let f(£) be the force exerted
by the machine on the mass m, then the equation of motion of the
mass m is ’

m(E+§) = —mg+f(§), (3)
and the equation of motion of the mass M is
M = —(M+mnx—2(M +m)i—f(€)— Mg. (4)
Adding (3) and (4) gives
G+ 2xd Pz = _g_l_wl”gng
maw? .
= —9+M+;zsm(wt+ﬁ)- (5)
Using § 31 (4) and (5), the particular integral of (5) is

g maw?

P R} 7 gy ST PR
corresponding to a forced oscillation about the equilibrium position
—g/n? of the machine.

Sin(wt‘i'ﬁ— ¢)’
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33. Systems of several masses

When several masses are involved there is a great increase in
algebraical complexity. We discuss in detail a case involving
two masses to show the new ideas involved. In this section we
shall assume that there is no resistance to motion; the same
problem, with resistance included, will be studied in § 34.

/.

I ]

%A\A'O A;OA,EE

Fic. 11.

Suppose that two masses M, and M, are connected as shown
in Fig. 11 by springs of stiffnesses A,, A,, and A to fixed points
4 and B, and that they oscillate in the straight line A B. Let
x, and x, be the displacements of M, and M, from their equili-
brium positions. Then, if there are no external forces, the
equations of motion of M, and M, are

M i = A2(x2_x1)_Alxl’ (1
My#y = —Ag(xy—,)—Ag . (2)
Writing
A A A A
2_ "1 2 =2 =2 3 = 2

ni _ ][11’ Ny .Zl/lz, Ny .Z’/Il, Tag 1‘/12’ (3)
these become (D2-nd+nd)x,—niyzs = 0, (4)
—n3z;+ (D2 -ni+nis)x, = 0. (5)

(4) and (5) are a pair of simultaneous linear differential equa-
tions for #, and z,. We could solve them by the methods of
§ 15, but it is more usual in problems of this type to use the
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equivalent method indicated at the end of § 13 and seek a solution
in which z, and z, are proportional to e®. Thus we assumet

. z = X e%, Zy = Xye*, (8)
where X; and X, are independent of ¢. Substituting (6) in (4) and
(®) gives. (a®+ni+nie) X, —nf X, = 0, (7)

—n3 X, + (a2 +n3+nds)X, = 0. (8)
These may be written
X, ns _ a2+n§+n§3- (9)

X, o*fnitnd
The second of equations (9) gives the equation
(a2+n§+n§3)(a2+n§+n§2)-—n§n%z =0 (10)
for o, and corresponding to each root of this, the first of equations
(9) gives the associated value of the ratio X,:X,. (9) is the
auxiliary equation of the differential equations (4) and (5) for
@, and x,. It will be called the frequency equation, since it will
appear that its roots determine the natural frequencies of the
system.
For simplicity we now restrict ourselves to the case of equal
masses and springs, so that

ng

M, = M,, A=A = A, Ny = Ng == Nyg == Tgg,
and (9) and (10) become
X, n}  a?42nd (11
X, o2f222 af
and ot 4da2n? 4 3nt — 0, (12)
The roots of (12) are a® = —n} and o2 = —3nl.
The root o? = —n}, « = +1n,, gives by (11)
X
— =1. 1
X, (13)

t It will appear in (13) that a is pure imaginary so that we might have started
by assuming solutions proportional to ¢!, and this is often done. The form (6)
is used here, partly because of the correspondence with the work of Chapter II,
and partly because it is a little better when there is resistance to motion asin § 34.
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Thus the solution of type (6) is
xl — Cein1t+De—in1l’
xz — Ceinll+De—inll,
where C and D are any constants. These may be written
r = Al Sin(nl t+Bl) (14)
xzy = A, sin(n, t4-5,)
where A, and B, are any constants.
Thus in this solution, z; and z, execute harmonic oscillations

of the same amplitude and phase, and with period 2n/n,.
The other root o> = —3n3, « = 41,43, 0f (12) gives from (11)

X,

fz = —1. (15)
For this root the solutions (6) take the form
x;, = A,sin(n, ivV3-+-8,) }’ (16)
2, = Apsin(n, IV3+By—)

where A, and B, are arbitrary constants. Thus z, and z, execute
harmonic vibrations of the same amplitude, of period 27/n,v3,
and 180° out of phase. -

These two solutions (14) and (16) are called the two normal
modes of oscillation of the system, and their frequencies =,/2x
and n,v3/2x are called the natural frequencies of the system. In

.the ‘lower mode’, that is the mode of lower natural frequency,
Fig. 12 (a), the displacements of the particles are equal and in
phase; in the higher mode, Fig. 12 (b), they are equal and out
of phase by 180°,

The general solution of (4) and (5) consists of a combination
of the two normal modes (14) and (16) with arbitrary amplitudes
and phases, that is,

@y = A, sin(n, t+B;)+ A,s8in(n, tv3+4-B,) }
xy = A, sin(n, t+p,)+ 4, sin(n, tV3 -+, —) .

This contains four arbitrary constants as it should (cf. § 15),
and these can be determined from the initial displacements and
velocities of the two masses. For initial value problems of this

(17)
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sort it is better to use the Laplace transformation method as in
" § 40; for most purposes a knowledge of the normal modes and
natural frequenéies is sufficient.

The same type of result holds in general: if there had been
r masses, the equation for «? would have had r roots, corre-
sponding to r natural frequencies, each of these gives a normal

.Y ! | :
(a}\%vmmmmwr%
: 2

(6)

S .
\1

Fia. 12.

mode in which the relative amplitudes and phases of the masses
are known.
Next we constder forced oscillations of the system of Fig. 11 due
to a force Fysin wt applied to the mass M,. ’
The differential equations (4) and (5) are replaced by

(D24-nf+nfe)e,—nia %y = (Ko My)sin wt, (18)
—n3z,+(D*+ni+nds)x, = 0. (19)

We now require a particular integral of these, and as usual
replace sin wt in (18) by e, giving

(D*4-n%+ nfo), — njax, = (Fyf 1”1)”“" (20).

find a particular integral of (19) and (20), and take its imaginary
part. To find this particular integral we seek solutions of (19)
and (20) of the form .

z, = X, ei, x, = X, e, (21)
Substituting (21) in (19) and (20) gives
—n3 Xy + (n3+ngs—w?)X; = 0,
(3 +nl—w?) X, —ni X, = Fo/ M;.
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Solving we find
_ Fynd+nhy—a?)
M{(ni+nfy—w?)(nf+nfs—w?)—nd nla}

X, — n3 By
z Ml{(nf‘*‘"fz“wz)(ng'*‘nga—wz)“"3"%2}.

(22)

X,

(23)

X, and X, are both real, so, using these values in (21) and
taking the imaginary part, the required particular integrals of
(18) and (19) are found to be '

z; = X, sin wt, (24)

2, = X,sinwt. (25)

To study the behaviour of these in greater detail we consider

again the special case M, = M,, A, = A, = ), discussed earlier.

In this case X, and X, become

X, = Fy(2ni—w?)

T MBri—wd)(nf—w?)

X, = iy :

P M Bni—wd)(ni—w?)

The behaviour of X; and X,, given by (26) and (27), as func-
tions of w is shown in Fig. 13 (a) and (). They tend to infinity
a8 w tends to either of the values n, or n,v3 corresponding to
natural frequencies of the system, and they change sign on
passing through these points. Asin § 31 (21) we regard x; and
x, as oscillations of amplitudes [X;| and |X,| respectively, and
when X, or X, is negative we express this as a phase lag of =
of 2, or z, behind the applied force. ‘The amplitudes of #, and
¥, are shown in Fig. 13 (c) and (d) and their phases in Fig. 13
(¢) and (f). These may be compared with the curves of Fig. 15
for the same system when resistance to motion is taken into
account. '

The case of harmonic force applied to one of the masses only
has been considered above. Clearly results of the same general
type will be obtained if harmonic force is applied to both the
masses, or if, as in § 32, one of the supports is given a harmonic
oscillation.

(26)

(27)
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34. Systems of several masses with resistance propor-

tional to velocity

To illustrate the effect of resistance to motion we consider
again in detail the system of § 33, but now include resistance
terms. These resistance terms may arise in two ways: there may
be resistance proportional to the absolute velocities &, and %y
of the masses, and there may in addition be resistance propor-
tional to the relative velocity (¢,—=#,) of the masses. These are
indicated by the appropriate symbols in Fig. 14.

The equations of motion of this system when subject to no
external forces are

M & = Az(xz‘—xl)_.'\xl“klir“km(“}z_x'l); . (1)

My &, = —dg(xa—2,)— A, Ty —kydy—lyo(By—, ). (2)
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Using the abbreviations § 33 (3) and in addition
Lk bk 0 F1a _kyy -
2K, == -—‘M;, 2Ky = jiz’ oK1p = E, 219 = )7 A (3)
these become
{D242(sey 4 10) DG4 ndp}ry — (2kye D4-1Yo)x, = 0, (4)

" —(2xqy D+-nd)2y+{D?42(ky+ gy ) D+ 0§ +-n35}x, = 0. (5)

Fic. 14.

As before, we seek solutions of (4) and (5) of the form
z, = X, e, xy = X, e, (6)
where X; and X, are independent of £. Substituting from (8) in
(4) and (5) gives the equations for X; and X,, namely,
{04 2(rc; +rpa)a+n+nio} Xy — (2600 atnf)X, =0, (7)
— (2K a+nd) X, +-{a?+2(ky+ kg Ja+n3+ndst X, = 0. (8)
To simplify the algebra we now restrict ourselves to the
special case considered in detail in § 33, namely, M; = M,,
A, = Ay = A,, so that n§ = n}, = n3; = #, and in addition we
take k,, = 050 that xy, = Ky = 0, and k; = k, so that x, = «;.
The equations (7) and (8) then become

(02+21; a+203) X, —nt X, = 0, (9)
—n2 X, + (024 2k, 4203 X, = 0. (10)
These require
X, a2+ 2ic, at-2n2 n?
X; = n? = a®+ 21, 203 (11)

The second of equations (11) gives the frequency equation
L (gt 2adiont =0,
or (024 21y a+n3) (a4 2, o+ 3n3) = 0. (12)
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The roots of this are
a= —kgEifni—), (13)
and a = —r;+0/(Bni—«3), (14)
provided that n, > «,.
The roots (13) correspond to an oscillation with time factor

e—rulzitv(ni—xd

and in which, using (13) in the first of equations (11),
=1
X,
This gives the normal mode ’
z, = A, e~tsin{ty(ni—«})+0,} }

- 7y = dyer!sin{ty(n]—x})+ 0} ’
where A, and 0, are arbitrary constants. This differs only from
the corresponding result § 33 (14) for the undamped case by the
occurrence of the damping factor e—*! and the change in the
natural frequency from z,/27 to (n}—x})}/2x.

In the same way, using (14) in the first of equations (11) gives
X,/X, = —1, and (14) leads to the normal mode
x, = A,e*tsin{t,/(3n}—x})+0,} }
x, = A,e—*!sin{t,/(3nF—«3)+0,—7} ’
cf.§ 33 (16). It should be remarked that the fact that the ratios
X,/X, are the same as those of the undamped case of § 33 is
accidental: usually they become complex.
Considering now forced oscillations, suppose that, as in § 33,
a force Fysin wt is applied to the first of the masses. We require
a particular integral of the equations

(D242, D+-2nd)y —ndx, = (Fo/ My)et, (17)

(15)

(16)

—niz,+ (D24 2ky D+2n3)z, = 0, (18)
and we assume this to be of the form
= X, eie, x, = X, e, (19)

Substituting (19) in (17) and (18) gives
(2n3— @+ 2k 1w) Xy —n} X, = Fo/ My,
—n? X, +(2n3—w?+ 2k, tw)X, = 0.
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Solving for X, gives
Fy(2n3 — w?+ 2, tw) »
! = (1 2
R My (303 — w2, tw)(nf—w?+2k; ) 4,e7'%, (20)
where ,
A | [ET L Lwres o (o as ey o I

¢ = arg(3nt—w?+ 2« tw)+arg(nt —w?+ 2, tw)—
—arg(2n}—w?4 2, iw).  (22)

"

,/Fo

2

(A

SN

M,

o ! 2 o 1 2
wyn, wyn,

(a) (6)
Fic. 15.

Using (20) in (19) and taking the imaginary part gives for the
forced oscillation of x,

z; = A sin(wt—d¢), (23)

a vibration of frequency w/27, amplitude 4,, and phase lag ¢
behind. the applied force.

We now have to discuss the variation of 4, and ¢ with w as
was done in § 31, and to compare the results with those of § 33.

The discussion of ¢ is easy: it consists of three terms of type
§ 31 (4), Fig. 7(a), and is shown in Fig. 15(b) for the case
Ky = My /10,

The amplitude 4, contains the product of two terms of type
§ 31 (14) and thus may be expected to have two maxima near
the values n, and n,v3 of w. The curve is too complicated for
general discussion: its graph for the case x; = n,/10 is shown
in Fig. 15(a).

The correspondence between the case « = 0 of Fig. 13 (¢) and
(e) with the case of small damping, Fig. 15 (a) and (b), shows
clearly on comparing these figures.
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35. Systems of several masses: variation of the natural
frequencies with the number of masses
In§ 33 the natural frequencies of two equal masses constrained
by three equal springs as in Fig. 11 have been studied: in this
section we consider the effect of adding more masses connected

M M
T
A1
© . 9[+0; 'Iz Ts
Fic. 16.

in the same way. Resistance to motion will not be included—if
it is added, a change corresponding to that from the results of
§ 33 to those of § 34 appears.

The system to be considered here is that of I‘lg 16 (a), longi-
tudinal vibrations of three equal masses M constrained by equal
springs of stiffness A. The corresponding system for torsional
oscillation of a shaft is shown in Fig. 16 (b). In order to intro-
duce another interesting system, and because the normal oscilla-
tions can be represented more picturesquely for it, we shall state
the problem in terms of the system of Fig. 16 (c), small transverse
oscillations of three equal mass=s attached at distances 1, 21, 31 along
a light elastic string of length 41 stretched to tension T.

Let x,, z,, 23 be the displacements of the masses; these are
assumed to be so small that they do not affect the tension of the
string. The restoring force on the first mass whose displacement
isz; is

' T cos0,+ T cost, — T2 7%=, (1)
approximately. Those on the second and third masses can be
written down in the same way.
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Thus the equations of motion of the three masses are

s, = Ty Torz),

l
M, — — T(x2l—x1) + ﬂxsl—%)’
Mi; = — T(xal—xz) _ Tlxs
Writing n2 = T/ M1 these become
(D24 2n2)x, —nlr, = 0, 2
—n?x,+ (D*+ 2n%)x,—nlry = 0, (3)
‘—n2ryt+ (DP+2n?)rg = 0. (4)

These are identical with the equations which would be written
down as in § 33 for the system of Fig. 16 (a) with n? = A/M, or
for the system of Fig. 16 (b) with n2 = A/I. In the problem of
Fig. 16 (c) the linear equations (2) to (4) are only an approxima- -
tion for small oscillations—the restoring forces in fact contain
_ in addition terms involving the squares and higher powers of the
displacements which we neglect. The equations of the problems
of Fig. 16 (a) and (b) are accurately linear if we assume the
springs and shafts to be perfectly elastic.

To solve (2) to (4) we assume a solution

z, = X, e¥, z, = Xpe¥, 23 = Xje¥, (5)
and substitute in (2) to (4) which give
© (a4 2n2) X, —n2X, = 0, (6)
—n2X 4 (a2 2n) X,—n?X,; = 0, (7)
’ —n2X,+ (a4 203X, = 0. (8)

(6)-(8) are three homogeneous linear equations for X, X,, Xj,
and, in order that they may have a solution, « must be a root of
a2-4-2n2 —n? 0
—n?2 o’ 2n2 —n? =0, (9
J 0 —n? a2 2n2
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which is the frequency equation. Expanding the determinant
this becomes

(a2 2n2){(a2+-2n2)2— 204} = 0. (10)
The roots of (10) are
o = —2m%, of — —(24V2mE, of = —(2—~2)n?,
(1)

corresponding to the natural frequencies of

[nJ@—~2))j2m, [nv2]2m, [nJE+V2))/20.  (12)

(aj

(b)

(c)

)

Fia. 17.

To find the normal mode of oscillation corresponding to each
natural frequency we insert the value of « in any two of (6)—(8)
and solve for the ratio X,:X,: X,.

Thus if .
a? = —(2—~2)n? X,: X, Xy = 1:42:1, (13)
if o = —2n2, X, X: Xy =1:0:—1, (14)

if a? = —(24-+2)n?, X;: X, X, =1:—+2:1. (15)

The displacements of the particles in the three normal modes
are shown in Fig. 17: (a), corresponding to (13), is the lowest
mode; while (¢), corresponding to (15), is the highest.

The method of solving (6)—(8) used above is the general one
applicable to any number of equations; the simpler method used
in §§ 33, 34 for the case of two equations is equivalent to it.
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If a fourth mass is added in the chain of Fig. 16, the frequency
equation corresponding to (9) becomes

a4 2n2 —n2 0 0
—n2 2 2 —_—n2
n o4 2n n 0 —o, (16)
0 —n? o202 —n?
0 0 —n?  a242n?
which hasroots a2 = —0-382n2,0%2 = —1:382n2,a%2 = —2-618n?,
a? = —3-618n2, corresponding to natural frequencies

0-618n/27, 1-176n/2n, 1-618n(2w, 1:902n/2x.  (17)

e
o
5 g' x
3 " x
< R x N
24 N
.§ x
E r A 3
1 2 3 4
Number of masses
Fic. 18.

The natural frequencies for the same system with two masses
have been found in § 33 to be /27 and (nv3)/2=, while the
natural frequency for the system with one mass only is the same
as that for the mass attached to a spring of twice the stiffness,
namely, (nv2)/2m.

These results are shown by crosses in Fig. 18: it appears that
as more masses are added to the system the highest natural
frequency increases and tends to n/w, and the lowest decreases
and tends to zero. The individual natural frequencies steadily
approach closer together. The general result for any number of
masses is given in Ex. 15 at the end of the chapter.

36. Systems of several masses, variation of the natural
frequencies with the masses: vibration dampers
Although the general frequency equation for any values of the

masses and stiffnesses of the springs was given in § 33, only the

‘simple case of equal masses and stiffnesses was studied in order

to have simple numerical results for discussion. The question
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of how the natural frequencies vary when the masses are varied
naturally arises, and in this section we discuss another system

from this point of view.
I AR

VARV

The problem considered here is that of longitudinal vibrations
of two masses M, and M,, connected by a spring of stiffness A,;
M, is attached to a fixed point by a spring of stiffness A;. As
before, resistance to motion is neglected: it may be included as
in § 34.

Let z, and z, be the displacements of the masses from their
equilibrium positions. Then, if there are no external forces, the
equations of motion are

Fia. 19.

My &, = —A 24+ —21), (1)
MyEy = —dg(xy—1y). (2)
Writing
A A A

n} = ]711 ng = 11722 n}y = —21 (3)
these become  p 4 nt-nip)r,—nyzs = O, @)
—n§z,-+(D*+nf)r, = 0. (5)

As usual, we seek solutions
z, = X, e¥, x, = Xpe¥, (6)

Substituting in (4) and (5) gives
(“2+n%+”%2)xl—n%2 X, =0,
—n3 X, (o2 0§ X,y = 0.

. X, ni, a-+nd
1= = . 7
That is X, = i iniiaL, - (7)
The second of equations (7) is the frequency equation
o+ a¥(nd+nd-Hndy)+ndng = 0. (8)

We propose to discuss the way in which the roots of this vary
with M,, and, in order to have only one variable parameter we
5296 H
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suppose that the stiffnesses of the springs are equal. Writing
M, = M,/k we have

ny = knj, n} = 13, (9
and (8) becomes
(ﬁ)‘+(ﬁ)2(2+k)+k ~o0. (10)
(G n

The roots of this are
2
(2) = —a+marpey. 1)
1 .
Corresponding to each of these roots the first of equations
(7) gives the ratio X,/X,.

If k = 1, both masses equal, the roots are
a = +0-618in,, with X,/X, = 0-618,
and a = +41-618¢n,, with X;/X, = —1-618.
If k = 2, the second mass half the first, the roots are
a = +0-766in,, with X,/X, = 0-707,
and o = 4-1-848in,, with X;/X, = —0-707.
If k = 05, the second mass double the first, the roots are
o« = 40-468in,, with X,/X, = 0-562,

and a = +1-510in,, with X;/X, = —3-562.
v As k- 0, i.e. M, > o0, the roots are, neglecting k2,

a = +in,(14+3k)v2, with X,/X, = —2/k, (12)
and a = +tin/(3k), with X,/X, = 3(1+3k). (13)

In the limiting case M, — oo its position becomes fixed and the
system becomes that of a single mass attached to two fixed
points by equal springs. The motion in this case has a single
natural frequency given by (12). (13) shows that the second
natural frequency of the system of two masses tends to zero
as M, —o0.

As k- o, i.e. My - 0, writing (11) in the form

(;ji)2= ~§{1+%¢(1+7;2§+"-)}, (14)
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it appears that, neglecting terms in 1/k2, (14) has roots

o= iinl(l _%c) with X,/X, = 1—1/k, (15)
and o= iinl(l +2_1k)«/k, with X,/X, = —1/k. (16)

In the limiting case M, = 0 the second mass is not present
and the system has the single natural frequency (15): the second
natural fréquency, given by (16), tends to infinity as M, - 0.

3 [
>
W
S
S$&{ — ol
g < x'
« N
R x ‘
5 1
§ g Lower mode
2
o 1 3 3 3 o N 2 E p]
1k =My/M, vk = Ma/M,
(a) (b)
Fia. 20.

These results are plotted in Fig. 20. The variation of the
natural frequencies with the values of the second mass is shown
in Fig. 20 (a): the effect of a small second mass is to introduce
a higher second natural frequency; as the second mass is in-
creased both natural frequencies decrease. The ratio of the
amplitudes of the first and second masses is shown in Fig. 20 ().
For the vibration of lower frequency this decreases steadily from
1 to } as the second mass is increased: for the higher mode it
increases steadily.

Results of this type have important practical applications:
most practical mechanical systems inevitably have natural fre-
quencies; also they are usually designed to operate over a fixed
range of frequency. If any of the natural frequencies fall in the
range of operating frequencies resonance will oceur and vibra-
tions of large amplitude will be set up. It appears from Fig. 20
that the natural frequencies of a system may be altered by the
addition of extra components: for example the addition of a
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suitable second mass M, to a single mass will remove the natural
frequencies of the system from the range between 7,/27 and
n,/47. The main object of so-called ‘vibration dampers’ is to
remove all natural frequencies of a system from a specified range
in this way; a secondary object is to damp some of the vibrations.
A simple example, related to the system of Fig. 19, is that of
Fig. 21.

k
‘ M A M L

Fia. 21.

The mass M, is a portion of a mechanical system and it is
required to damp its vibration; a second, suitably chosen, mass
M, shifts the natural frequencies to a safe region, and a dash-
pot between M, and M, giving resistance to motion proportional
to relative velocity damps the vibration. The corresponding
rotation system for two wheels 7; and I, on the same shaft is
widely used.

37. Geared systems

If a number of shafts carrying wheels are connected by geggs,
or a number of masses by levers, a small additional complication
oocurs. We discuss it here for the rather more interesting case
of gearing.

Suppose a gear of moment of inertia I; and radius a is in mesh
with a gear of moment of inertia I, and radius b, [Fig. 22 (a)].
1, is connected to a wheel of moment of inertia I by a shaft of
stiffness A;, and I, to a wheel of moment of inertia I; by a shaft
of stiffness A,. Let @ and 6, be the angular displacements of the
wheels I and I, from fixed reference positions, and 6, and 6,
those of the wheels I, and I;, as shown in Fig. 22 (a). It is con-
venient to measure 6 and ¢, in the same direction, opposite to
that of 6, and 6, since the wheels I, and I, rotate in opposite
directions.
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The relationship impesed by the gears can be seen from
Fig. 22(b). Firstly, since the circumferences of the two wheels
must travel the same distance

af, = bo,. (1)
=&
a
ﬁ
P P
b %
b) =%,

Fic. 22.

Secondly, if 7} and T, are the torques on the two gear-wheels,
measured in the directions of 6, and §, increasing, respectively,
and if P is the reaction at the point of contact of the wheels,

T,=Pb, T,= —Pa,

and therefore al,+bT; = 0. (2)
The equations of motion of the wheels are

16 = 2,(6,—9), (3)

Ilgl = —A(6,—0)+T,, (4)

A 9'2 = Tp+2y(6;—6,), (5)

I 9.3 = —Ay(f3—05). (6)

Eliminating 7 and T, from (4) and (5) by (2), and expressing
6, in terms of 6, by (1), we obtain the following three equations
for 6, 6,, and 6,:

(D?+n?)6—n%, = 0, (7)
—nia 0+ {(r*+p) D2 +-n3p+nir0, — i, = 0, (8)
—rn30,+(D*4-n3)8; = 0, (9)
where
1, A A A A
r:%, pzi, n2=Tl, n%zz—;, ngzi, n§——-—f.

(10)



\
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If as usual we seek a solution of (7)—(9) of the form

0, = 0, e~ 0, = O e, 0y = O e, (11)
the frequency equation for « is
a?t-n? —n? 0
—nly  (PP4p)atnd,+nir: —md |=0. (12)
0 —rnd o24-n

On expanding, (12) becomes
@{(r2-+p)a+[(r2+ p)(n?+ nd) -+ - bronlat+-
>+ P+ ndnd,] = 0. (13)

There is thus a zero root in o? as well as a pair of roots giving
rise to a pair of natural frequencies with their associated normal
modes. A factor o2 in the auxiliary equation gives rise to a term
of type A+ Bt

in the solution, corresponding to steady rotation of the system.

38. Mechanical models illustrating the rheological be-
haviour of common substances

In § 28 we described three simple elements, namely perfectly
elastic solid, perfectly viscous liquid, and coulomb friction, from
which idealized mechanical systems such as those of §§ 29-37
could be built up.

The same elements may be combined to give a useful approxi-
mation to the behaviour of many common substances ranging
from metals and rubber to flour dough. All substances exhibit
to a greater or less extent phenomena such as creep, elastic
hysteresis, plastic flow, etc. We give below a number of typical
examples.

(i) Rubber-like substances .

These may be represented by the combination of a spring
giving restoring force A times the displacement and a dash-pot
giving resistance k times the velocity. A and k are regarded as

" constants of the rubber itself. The extension of a piece of rubber
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when constant stress §, is applied to it is thus given by the

equation kid-dz = S, (1)
A S, ‘
or ‘ (D—i—];)x =z (2)
If the stress S, is applied at ¢ = 0 when z = 0, the solution
K of (2) is
2 z = ﬁ)(l——e—"‘/"). (3)
S, A
That is, the substance does not
A take up the deflexion S,/A instan-
Fia. 23. taneously as a perfectly elastic solid

does, but moves out to it according to the law (3).

If a mass M is attached to a piece of rubber its equation of
motion will be that of § 29: by measurements of two quantities
such as the natural frequency and damping coefficient of the
motion the constants A and % of the rubber may be determined.

Next weillustrate the phenomenon of elastic after effect which
occurs for such substances. Instead of applying a constant stress
suddenly we apply a cyclically varying stress: the simplest case,
which we consider here, is that of a stress S which increases
linearly for time 7" and then decreases again to zero in time 7'
this is given by

8 = 8§,t, o<t<T
S =8,2T—t), T<t<2T}, (4)
S=0, t > 2T

where S, is a constant.
For 0 < t < T, the differential equation is

A A . .
(D+%)x_ Ft’ (5)
with 2 = 0, when { = 0.
The solution of this is
T = S°t_&’_k‘(1—e—wk). (6)
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When ¢t = 7', this gives ‘

ST 8ok Iy ‘
7 =2 D0 (1A T), (7)
When T < t < 27T, the differential equation is
A Sy
Sl =227 — 8
(p+3)e =eT—0, ®)

to be solved with the value (7) of x when ¢ = T'.
The solution is

S, k\ Sk B
xr = -X"(2T—t+x)+7"2~(l—2e"7'/k)e Mk, (9)
o When ¢ = 2T, so that the stress has
~ returned to zero, the strain x is
A kS,
x e x = A—z"(l—e"T/")ze—z"T/k. (;0)
s Finally, when t > 27T, the differential
A equation is
S A
Fie. 24. (D+Z‘)x =0, - (11)
with initial value (10) of . This has solution
x = ]CA—%’(l—e"T”‘)ze‘N/k. (12)

If we plot the displacement x against the stress S as in Fig. 24
we get the curve OA B, OA being the portion 0 < ¢t < T, and
ABthat for T < t < 27. OB is the residual deflexion when the
stress is zero.

(i) Substances exhibiting plastic flow

To include the phenomena of plastic flow an element provid-
ing constant friction F has to be introduced.

The simplest system is that of Fig. 25 (a) which corresponds
roughly to the behaviour of metals. This is elastic until the
stress S is equal to F (the yield point) which is the greatest stress
the substance can resist. .

The system of Fig. 25(b) (a Bingham solid) is again elastic




.§ 38 ORDINARY LINEAR DIFFERENTIAL EQUATIONS 105

until § reaches F': for values of § > F it flows at a rate which
increases with S. If z is the displacement in this system

x=§ (8 < F), (13)
F
T = —X‘f—E(S_F)t (8 > F). (14)
A
@ LTI s

b‘ k A
ug_Fm ;

Fia. 25.

Finally Fig. 25 (c) is a model which has been proposed for flour
dough. The displacement x is given by

2= S(—enimy S (8 < F), (15)
X X

o= 0—ehiny 2L O T (5> ). e
1

39. Impulsive motion

We shall speak of an ‘impulsive force’ or ‘a blow of impulse P’
meaning a very great force applied for a time 7 so short that the
motion of its point of application during this time is negligible.
while the force is so large that its integral over this time is finite
—this will be called the impulse P of the blow.

Thus if F(z) is an impulsive force applied at ¢ = 0, we have

[ P = (1)
[1]
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Suppose now that a particle of mass m is struck by a blow of
impulse P at ¢ = 0. The equation of motion is

mE = F(t). (2)
Integrating (2) over the small time 7 during which the blow
operates, we find

m{&]] = j F()dt = P,
0

or mu,—mu,; = P, (3)
where u; and u, are the velocities of the particle before and after
the blow. Thus the change in momentum of the particle in the
direction of the blow is equal to the impulse of the blow.

If the particle is attached to a spring with viscous damping
[§ 29 (1)] the same result holds: (2) is replaced by

mE-+ki+dx = F(t).
Integrating as before gives

m[&];+k[2];+-A f xdt = P. (4)
0

Now we have postulated above that  shall be negligibly small,
and that the change of z in this time shall be negligible, so the
second and third terms of the left-hand side of (4) are negligible
and we regain (3).

Thus setting a particle of mass m in motion by a blow of
impulse P is equivalent to giving it an initial velocity P/n:.

The same result applies to systems of masses such as those
considered in this chapter; since the motion of any particle is
negligible during the blow, it can exert no influence on its neigh-
bours. If the particles are in contact or rigidly connected this
is not the case.

Using the 8-function notation, a blow of impulse P at t = 0
may be regarded as a force P 3(¢), and the above results obtained.

Ex. Motion of a damped harmonic oscillator maintained by impulses.

We consider the oscillator of § 29, Fig. 4, with no applied forces.
Choosing the origin of time so that x = 0 when ¢ = 0, the solution
§29(7) x = Ae*tginn’t (5)

represents an oscillation which dies away as discussed in § 29.
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Now suppose that each time the mass passes through the position
z = 0, that is, when

' t=ran’ (r=1,2,.), (6)
the particle is given a blow P just sufficient to raise the magnitude of
its velocity to the value it had when ¢ = 0. This is roughly the action
of the escapement of a clock. If this is done, all half-swings of the mass

will be the same, and the motion is maintained indefinitely. To calculate
P we have from (5)

& = Ae*t{n’cosn't—ksinn't}, (7)
and so z=n'A, whent =0,
& = —n’Ae 7", when t = n/n’.

Thus the magnitude of the velocity when ¢ = 7/n’ is less than that
when ¢ = 0 by an amount

nA(l—ex7in’), (8)
and a blow of impulse
P = mn’A(1—e*7I") (9)
is required.
If we regard P as a given quantity, (9) gives 4, and the motion is
! z = ~—~P——— e~*tsinn’t, (10)

mn/(1—ex7n")
for 0 < ¢ < w/n’, all subsequent half-swings being the same.

40. Initial value problems: use of the Laplace transfor-

mation

In the preceding sections the general solutions of a number of
problems have been found: in initial value problems sufficient
information is always given in the initial conditions to find the
arbitrary constants in these solutions. In this section we shall
solve some typical initial value problems by the Laplace trans-
formation method—it is for such problems that the method was
designed and its advantage over the older methods increases as
the complexity of the problem increases.

Ex. 1. Force Fysinwt is applied at ¢t = O to the damped harmonic

oscillator of §§ 29, 31, the initial displacement and velocity of the mass
being zero.
We have to solve
m(D?+4 2k D +n?)x = I},smwt 1)
with « = Dx = 0, when ¢t = 0.
The subsidiary equation, § 18 (26), is
Fw

m(p?+2xp+n?)% = F+wz.
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Thus, considering the case n? > «?, and writing n'? = n?—«?,

mE = Y
~ (ptr—mn)p+r+in)p—iw)p+iw)
- Fow '
B ‘2i”'(p +k—in){wi+ (rk—in)?} + COnJugate} +

{ s
T\ Siwp —iw)ni—w? I 2xiw)

—|—conjugate}, (2)

27.r/w

F1c. 26.

on putting Z in partial fractions by § 18 (29). Writing ‘conjugate’ implies
a similar tétm except that that the sign of ¢ is changed. From (2) and
§ 18 (11) :

_ Iqlw —xi+in't i }
me = {2in'(w’+x’—n"——2in’x)e “+eonjugate; -+
ho it .
+{2iw(n2—w=+2xiw)"’ +°°n’“gat°}
_ B o ginimi— By i
= VZ° sin(n't 0)+{(n2_w2)2+4K2w2}}sm(wt—¢), (3)
where ¢ = arg(n®*—w?+ 2xiw), 4)
and Z, and 8 are the modulus and argument of
w?+k2—n"?—2n'ki. (5)

‘The second term of (3) is the forced oscillation § 31 (5), and the first
the transient part of § 31 (6) with the arbitrary constants determined to
make £ = £ = 0 when ¢t = 0.

The function (3) is graphed in Fig. 26 for the case n = 4w, x = n/10
and shows how the starting transient dies out, leaving the forced
oscillation.
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Ex. 2. The system of § 33, Fig. 11, with equal masses and springs. The
Jirst mass is set in motion with velocity V at t = 0 when the masses are at
rest in their equilibrium positions.

We have to solve
(D?+2nd)x; —nix, = 0,
—niz, +(D*+2n)x, = 0,
where n® = A/M, with 2, = 2, = 4, = 0, &, = V, when ¢ = 0.
- The subsidiary equations are
(PP 202)E, —n¥E, = V,
— 2%, 4 (24 2n2)E, = 0.
Solving for #, we get
(p*+2n2)V 14 14

BT @I ) T 2p ) 2 )
VvV . | 2
Therefore 7 = 5-sin m+m sinniv3.

EXAMPLES ON CHAPTER IV

1. The displacement in an undamped harmonic oscillationz = a cosnt
may be written in the form x = R(ae**) and so interpreted as the real
part of the complex number z = aef® which describes a circle in the
z-plane with constant speed. Show that the velocity ¢ may be repre-
sented in the same way as R(nae®t+im)), Show that damped harmonie
motion z = ae~*tcosn’t may be treated in the same way, but the
complex number 2z now deseribes an equiangular spiral.

2. For forced oscillations of the damped harmonic oscillator of § 31
show that the phase lag of the velocity is +tan—*(s?— 1)t at the points
at which the amplitude of the velocity has (1/s)th of its maximum value.
In particular it is -} if 8 = V2.

Show also that the slope of the curve of the phase-lag ¢ against w is
1/x when w = n.

3. Force Fsinwt is applied to the dainped harmonic oscillator of § 29
with critical damping, x = n. Show that the displacement in the foreed
oscillation is F,
i+ @) sin{wt— 2¢),

"where ¢ = tan—w/n).

4. In the damped harmonic motion z = Ae~*tsinn’t of §29 the
potential energy V of the system is 3Az® and the kinetic energy T is
3ma®. Show that the total energy 7'+ V is given by

T+V = }mA%**{n?—x?cos 2n't—xn’sin 2n't},
and that the average value of this quantity over the cycle 2rm/n’ to
2(r+7/n’ is
(m A2n’3 /gﬂx){e-dxfuln‘__ —lx(r+l)1r/n'}_
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Find the loss in total energy in the same cycle, and show that if @ is
defined as 27 times the ratio of the average total energy over a cyele to -
the energy loss in the cycle,

Q = n'/2c = 78,
where § is defined in § 29 (13). This provides a physical interpretation
for the important quantity @ mentioned in § 29.
5. A mass m attached to a spring of stiffness mn? is set in motion from
rest at £ = 0 in its equilibrium position by a force which is F,sinwt for
0 < t < m/w, and zero for ¢ > wjw. Show that its displacement z is

z = Fy{wsin nt—nsin wi}/{mn(w?—n?)} 0 <t < m/w).
z = {2wF)/mn(w?—n?)}sinn(t—x/2w)cos(nr/2w) (¢t > 7/w).

6. A mass m is constrained to move in a straight line and is attached
to a fixed point in the line by a spring of stiffness mn? Its motion is
resisted by coulomb friction uR. The mass can be set in any position
by an adjusting screw whose end touches it. At ¢ = 0, when the mass
is at rest and the spring compressed by an amount z,, the screw is turned
80 that its end moves away from the mass with constant velocity v.
Show that the end of the screw and the mass will lose contact until a
time ¢ given by the smallest root of

(z,—pR/mm2)(1—cosnt) = ot.

This implies that if the screw is released with constant velocity a jerky
motion always results. Show that if the inertia of the screw is taken into
account it is possible to have a smooth motion.

7. A mass hangs at rest in its equilibrium position at the end of a
spring whose unstretched length is ¢ and whose stretched length is b. At
t = 0 the point of support is given a downwards motion csinw?. Show
that the length of the spring at time ¢ is

cnw cw?

b— sinnt4

sin wt.
et n— ol 4

where n/2m is the natural frequency of oscillation of the mass, and n # w.

8. In the system of Fig. 19, M, = 2M,/3, A, = A,;; show that the
natural frequencies are (n,v3)/2r and n,/(27v2), where n} = A,/M,, and
find the normal modes of oscillation.

9. In the system of Fig. 19 the masses M and the stiffnesses A of the
springs are equal, and in addition & third mass M is connected by an
equal spring A. Writing n? = A/M, show that the natural frequencies are

0-445n/27, 1-247n/2w, 1-802n/2n.

10. Show that if in the system of Fig. 19 the stiffnesses of the springs
are equal, the squares of the natural frequencies are rational if

M,: M, = r:s,
where r and s are integers such that 734 4s? is a perfect square. Show
that such integers can be found by splitting up any odd perfect square
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into a sum of integers differing by unity, e.g. 49 =— 24425 gives
242472 = 252, corresponding to M;: M, = 7:12.

11. Three wheels 4, B, and C are of moment of inertia I. A and B,
and B and C, are connected by shafts of stiffness A. Show that the
natural frequencies of the system are n/27 and (nv3)/2n, where n? = A/I.

12. If in the system of Fig. 14, M, = My, A, = Ay = Ay, by = k3 = 0,
show that the normal modes of oscillation are

2 = 2, = A,sin(nt+p;),
z, = —xy = Aze ¢ sin{t /(3n2— 4x®) +B,},
where n? = A /M,, and 2x = k,,/M,.

13. If in the system of Fig. 14, M, = M, Ay, = Ay = Ag, by = kyp = O,

show that the frequency equation is

ot + 2ia® + 4n2a? + dxkan 4-3nt = 0,
where n® = A,/M, and 2« = k,/M,. Show that if « is so small that «® is
negligible, the natural frequencies are still n/27 and (n«/3)/211-, but the
oscillations both have a damping factor exp(— 4«?).

14. n particles, each of mass m, are attached at equal distances along
a string of length (n+ 1) which is stretched to tension 7' and whose ends
are fixed. If the particles execute small transverse oscillations and z, is
the displacement of the rth particle, show that

& = A&y —20,+2,,) (r = 1,..,n),

with z, = :z:,H,l = O and ¢ = T/ml.

15. Show that the system of equations of Ex. 14 is satisfied by

= (AeP+ Be"R)ext,

where B is a root of coshf = 1+4(a?/2¢?).

Show that the conditions xq = ,,, = 0 require § = smi/(n+1), and
thus that the natural frequencies of the system are

c{2—2cossw/(n+1)}}/21r (s = 1, 2,...,n).

16. A wheel of moment of inertia I is connected to a gear-box by a
shaft of stiffness A. The gear-box gives a step up of r, and is connected
to a wheel of moment of inertia I, by a shaft of stiffness A;. Show that

if the moments of inertia of the gears in the gear-box are negligible, the
natural frequency of the system is w/27, where

_ W4T

T ILA+)

17. If the system of Ex. 16 is at rest with the shafts unstrained, and
the wheel I is set in motion at ¢ = 0 with angular velocity £, show that
its subsequent angular velocity is

QI+ I, r2coswt)/(L 2+ 1),
where w is defined in Ex. 16.

w?
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18. The motion of a mass M acted on by a force Fsinwt and con-

strained by supports of rubber in shear is given by

(MD*+ KD+ 8S)x = Fsinwt,
where K and S depend on the nature of the rubber. Find the amplitude
of the forced oscillation and show that, neglecting terms in K32, its
maximum value is approximately F/27K(Q, where (Q, the resonance fre-
quency, is approximately (S/M)}/2x.

19. Show that if a varying stress S(z) is applied to a rubber-like
substance [cf. § 38 (i)] for ¢ > 0 with zero initial strain, the strain = at
time ¢ is given by P
kx = e Mk f e Mk S(€) dE.

0

If S(¢) = sinwf show that, writing o = Afk, ¢ = tan—1(kw/A),

1 .
T L Tr e G

20. In the system of Fig. 11 the masses and springs are equal. At
t = 0, when the masses are at rest and the springs unstrained, a point
of support is given the motion asinwt, starting in the direction towards
the masses. Show that, if w is not equal to either natural frequency, the
displacement of the nearer mass is, writing n® = A,/M;,

X =

naw naw an®(2n?— w?) .
T —nd) mnt+2(w2—W,’smnN3+( wf)(3ni— w2)81nwt.

21. A mass M/3 is connected by a light string of length [ to a mass M
which is connected to a fixed point by an equal string. At ¢ = 0, when
the two masses are hanging vertically and at rest, the mass M is given
a small horizontal blow of impulse P; show that its subsequent displace-

roent is P{(8sinntv2+v3sin nty(2/3)}/(4nM2),
where n? = g/l.

22. In the geared system of Fig. 22(a), I = I, = I, = I, A, = A, a.nd
a = b. For t < 0 the wheels I and I, are at rest, the gears are not in
mesh, and the wheels I, and I, are rotating with constant angular
velocity w. At ¢ = 0 the gears are forced into mesh. Show that the
angular velocity of I, at time ¢ is }cw(1+cosnt), where n? = Aj/I.
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ELECTRIC CIRCUIT THEORY

41. Introductory

In this chapter we shall consider the elementary theory of
electric circuits with ‘lumped’ or concentrated properties. This
theory is so closely related to that of the mechanical systems of
Chapter IV that they can best be studied simultaneously.

We regard electric circuits as being built up of ‘elements’ of
three types: namely, inductance L, resistance R, and capaci-
tance C. The current I at a point of a circuit in a certain
direction is the rate at which positive charge passes that point
in that direction. In the problems with which we shall be con-
cerned, the current is usually caused by a ‘voltage’ V applied
to two terminals, one of which we select, by convention, as the
positive one, so that V is positive when this terminal is at the
higher voltage and the current I is positive when flowing away
from it.

" These circuit elements are illustrated in Fig. 27. The informa-
tion provided by the theory of electricity which we shall assume
is as follows.

(i) The voltage drop across a resistance R is R times the
current in it [Fig. 27 (a)],

RI=7. (1)

(ii) The voltage drop across an inductance L is L times the
rate of change of current in it [Fig. 27 (b)],

aI
Lﬂ =7T. (2)
(ili) The voltage drop across a capacitance C is (1/C) times

the charge @ on it [Fig. 27 (c)],

_@
=z (®)
Also, since the current I is the rate of flow of positive charge,
we must have
dQ
I=22 (4)

5208 1
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and, with the conventions of sign introduced above, the current
is positive when flowing towards the high-voltage side of the
capacitance.

1 ! 1 L f
+ + + +
ol
R v L v v R v
-alc
Ic

Q

dI Q
@RI=V ML=V @g=V @ o +RI+C

Fia. 27.

The equations (1)—(4) are practically all that is needed for the
work of this chapter; they are linear, and it is because of this
that it is possible to go so far in electric cireuit theory. They are,
of course, approximations, but they are very good approxima-
tions (except for iron-cored inductances), so results calculated
by using them will be very near the truth. The more accurate
equations are non-linear and will be discussed in § 57.

More complicated circuits can be regarded as being built up
of the simple elements described above, but it is a little shorter
to take as the fundamental unit the ‘L, R, C circuit’ consisting
of inductance L, resistance R, and capacitance C in series
[Fig. 27(d)]. If voltage V is applied to such a circuit, the sum
of the voltage drops over the inductance, resistance, and capaci-
tance, given by (1), (2), and (3), respectively, must be equal to V,

that is
dl Q
LEt- +RI+5 =V. (5)

(4) and (5) are the fundamental equations for this circuit; they
are a pair of simultaneous ordinary linear differential equations
for the two unknowns 7 and @ in terms of ¥, which is supposed
to be a given function of the time. If we substitute from (4) in
(5) we get the equation

JAAY

LTk

19—y e
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.- __ R s 1
for . Writing K= g7 n? = —6" (7)
this becomes dt?+ 2k dQ—{—an (8)

which is the same as § 29 (2), except that it has @ in place of x,
and V/L in place of F/m. This is a special case of a far-reaching
analogy between mechanical and electrical systems which will
be discussed in §§ 42, 43. For the present we simply note that
the similarity in form of (8) and § 29 (2) allows us to quote many
of the results and much of the general discussion of §§ 29-32;
some examples of this are given below.

Ex. 1. Constant voltage E applied at t = 0 to the circuit of Fig. 27 (d)
with the initial values Q@ = 0 and I = 0 when t = 0.

. We have to solve (D?+42kD+n%)Q = % ' (9)
" A particular integral of this is
E
nL CE.

Addmg the complementary function given by § 29 (7), the general
solutxon is found to be

Q = ae*tsinn’tt+be*tcosn’t+ CE, (10)
where a and b are arbitrary constants, n’ = /(n*—«?), and we assume
that this is real (the other cases follow precisely as in § 29). The initial

conditions
@=0, —‘&_0, when ¢ = 0
give the equations for a and b
b1+ CE =0, n'a—xb = 0.
Thus the final solution is
@ = CE{l —e*tcosn’t— («/n')e ¥t sinn't},
and the current I is by (4)
I = (E/n'L)e*tsinn’t.
Ex. 2. Alternating voltage E sin(wt + B) applied to the circuit of Fiig. 27 (d).
The differential equation is now

(D®4-2xkD+-n2)Q = — sm(wt +B),

and its general solution, obtained by quotmg § 31 (6) with z replaced by
Q and Fy/m by E[L, is
E

—_ —«t o3 ’ .
Q = Ae*sin(n’t+ B)+L{(n“’—w2)2+4x’m2}
where n’ = ,/(n*—«?) and ¢ is defined in § 31 (4).

sin(wt+B—d¢), (11)
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Differentiating, we have by (4)

1 = Aen' cos(nt+ B)—«ksin(n't4 B)}+
w .
+ L{(n®— wE’:)2 + 4rtew?} sinfwt+A=(¢—4m}. (12)

The first term of (12) is the ‘transient’ current which dies away with
time; the second is the steady state alternating current. The variation
of its amplitude and phase with frequency are shown in Figs. 8 () and
(¢) and Figs. 7 (b) and (d).

If the voltage is supposed to be switched on at time ¢ = 0 the constants
4 and B can be determined from the given values of the charge @ and
current I at this instant, either by direct substitution, or as in § 40, Ex. 1,
where the complete solution of this problem is given.

42. Electrical networks

The principles of § 41 may be extended immediately to any
network, however complicated. A network can be divided up
into a number of simple ‘branches’ 4B, BC,..., Fig. 28(a),
which are connected at ‘junctions’ or ‘nodes’ 4, B,.... For
definiteness, we suppose each branch to contain L, R, C in series,
together, possibly, with a source of applied voltage.

First we assign by convention a positive direction for current
in each branch. Suppose that in the branch 4 B this direction
is from 4 to B, that I, is the current in this branch, and that |4
is the external voltage applied at terminals in the branch 4B,
W, being reckoned positive if it would cause a current to flow in
the direction from 4 to B. These conventions are shown in
Fig. 28(b).

Then, as in § 41, the voltage drop v, over 4 B is the sum of the
voltage drops over the elements L,, R,, C,, and the applied
voltage V] in AB, that is

ldt+R 11+Q ~h=ur. (1)
¥, appears in the left-hand side of (l) with a negative sign, since,
with the convention chosen above, it is a rise in voltage.

Now consider any closed circuit round several branches of
Fig. 28(a), e.g. the closed circuit 4B, BC, CA. If v,, vy Vg are
the voltage drops from 4 to B, Bto C, and C to A4, respectively,
the algebraic sum of these must be zero. Adding the three corre-

sponding equations of type (1), we get the result that the algebraic
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sum of the voltage drops across the elements and the sources of
applied voltage in a closed circuit is zero. Clearly this is true for
any closed circuit, and the statement is known as Kirchhoff’s
Jirst law. Alternatively it may be stated in the form that the
algebraic sum of the voltage drops across the elements of a closed
circuil 18 equal to the algebraic sum of the applied voltages in the
closed circuit.

G

b (c) {d)

We also require Kirchhoff’s second law, which states that the
algebraic sum of the currents flowing towards any junction s zero.
This is simply the expression of the physical fact that charge
does not accumulate at the junctions. _

By using Kirchhoff’s two laws we can always write down
sufficient equations to determine all the currents and charges
in any network. There are various ways of shortening and
systematizing this work which are commonly used by engineers
in solving such problems. These will be indicated briefly later:
for the present we solve a number of problems from first prin- -
ciples.

Ex. 1. The circuit of Fig. 29 with applied voltage V.

Let 1,, I,, and I, be the currents in AB, BC, and BE in the
directions of the arrows. Let Q,, @,, and @, be the charges on
C,, C;, and C,; then by § 41 (4)

I, = DQ@,, I, = DQ,, L = DQ,. (2)

Next, Kirchhoff’s second law at the junction B gives

L—-I—I,=o. (3)
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Kirchhof!’s first law for the closed circuit A BEF gives '

(L1D+R1)II+Q1 %T: =V, (4)
and for the closed circuit BCDUE it gives
LD+EL+ G- =0 ®
' A R L,

Fia. 29.

(2), (3), (4), and (5) are six equations for the six ‘unknowns
L,..., @;. If we substitute for the I in terms of the @ by (2),
equations (4), (5), and (3), respectively, become

( D™+ R, D+01)Q1+Q3 v, (6)
Qs

(LD+RD+J%—U—, (7)

D(QI—Q2_ Qs) =0, (8)

Integrating (8) gives
. Q QB Qs Q’ (9)
where Q is a constant to be determined from the known con-
ditions at the instant when the voltage V was switched on. For
simplicity we assume that @ = 0; this would be the case, for
example, if the condensers were initially uncharged. We then

have Q= Q—0 (10)
and substituting- this in (6) and (7) gives
@D+RD++—WI%=K (11)
C,

_% (L2D2+R2D+0 +0)Q = 0. (12)

2
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Writing
—_ Rl 2 __. 1 2 1

K1_2_I:;.’ nl—Llol’ "z = LIC2,
K:_R_2 n2 = 1 ni, = 1 (13)

2oLy P L0 P LGy

(11) and (12) become

(D2 42k, D+ni413,)@—nd € = ViLy, (14)
—n2 Q-+ (D24 2k, D+ ni+ns)Qy = 0. (15)

These equations are exactly those for forced oscillations of the
mechanical system of Fig. 14 with ky, = 0 and @, and @,
replacing z, and z, (cf. § 34 (4) and (5)) and it follows that the
whole discussion of free and forced oscillations of this system in
§ 34 can be taken over bodily: there will be two natural frequen-
cies, each with its own damping factor and normal mode of
oscillation of the currents and charges.

For the special case L; = Ly, B, = R,, C; = C; = G, so that

n} = 1}, = nf = nj,, Ky = Kg, (16)

(14) and (15) become .
(D242, D+-203)Q,—n3 Qy = V/L,, (17)
- —n2Q,+ (D21, D+2n3)Q, = 0. (18)

Free oscillations for this case have been discussed in detail in
§ 34 (9) and (10), and forced oscillations in § 34 (17) and (18).

Ex. 2. A system containing mutual inductance.

In addition to inductance, resistance, and capacitance in the branches
of a circuit there may be mutual inductance between some of the
branches. If there is current I, in the rth branch and current I in the
sth branch, Fig. 30 (a), and mutual inductance M between them, there

will be voltage drops
dl, dl,

respectively in the sth and rth branches. The mutual inductance M may
be positive or negative according to the way in which the coils are wound-

As an example we write down the equations for the circuit of Fig. 30 (b)
which has mitual inductance M between the inductances L, and L,.
Choosing currents I, I,, and I in the directions of the arrows, Kirchhoff’s
second law at the junction C gives

L—IL—I,= 0. (20)

(19)
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The first law for the circuits A BCDEA and CGFDC, respectively, gives
"~ (L D+R),—MDI+L,DI, = V,
(L3 D+ Ry)y— Ly DI,— MDI, == 0.
Eliminating I; from these by (20) gives
{(Ly+ Ly)D+ B}, — (M + Ly)DIL, = V, -(21)
—(M+ Lg) DL +{(Ly+ Ls)D+ Ry}, = 0. (22)

(a) (b)
Fia. 30.

It should be noticed that the equations (21) and (22) are the same as
those which would be found for the network of Fig. 30 (c) which contains
self-inductances and resistances only. This device is much used in
circuit theory.

Ex. 3. The transformer.
Two circuits Ly, R, and L,, R, are coupled solely by mutual indue-
tance M. Alternating voltage Esinwt? is applied to the primary.
If 1, and I, are the primary and secondary currents, Fig. 31, the circuit
equations are
(Ly D+ R\)I,+MDI, — Esinwt, (23)
MDI,+(L,D+R,)I, = 0. (24)
Suppose we wish to find the forced oscillations of the system. As usual
we replace sinwt by e'¢f and find a particular integral of the resulting
system by assuming
I, = Ijeiwt, I, = I eiet, (25)
where I] and I are constants. This gives
(Bi+ Lyiw)l{+ Miwl; = E,
MiwI}+(R;+ Lyiw)I, = 0.
Solving for I, we get

ME

5= BRI R L) TAE, L= F, Bja)’
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Thus the steady value of I, is

—yZEsin(wt— ),

where tang = [(Ly Ly—M*®)w?— R, R,]/(L, Ry+ R, Ly)w,

I, R, 1.
+
Esinat LM L., R,
|
Fia. 31.
and  Z = (L, Ryt Ry Loy~ 2R, Ryo+o*wt+ B RYfw},

where o = L, L,— M2

Z — o a8 w — 0 or w — co. It has a minimum when w = (R, R,/o)t.

In the examples above we have written down the equations
directly from Kirchhoff’s two laws. There are two ways in
which this procedure can be shortened.

(i) Instead of assuming an unknown current in each branch
of the circuit and writing down algebraic equations connecting
them by Kirchhoff’s second law at the junctions, we may choose
the unknown currents to satisfy the second law automatically.
For example in Fig. 28(c), if we assume unknown ourrents I,
and I, in AB and BC, the eurrent in BD must be I,—1I,. Pro-
ceeding in this way, it appears that only four unknown currents
appear in Fig. 28 (c) instead of the eight in Fig. 28 (¢). We shall
often use this procedure in future.

(ii) The same result is achieved if we assume a ‘mesh-current’
to be circulating round each of the four meshes A BC, BDC,...
of Fig. 28(d). In this case the current in BC, for example, is
I,— I, and Kirchhoff’s second law is satisfied automatically at
B and similarly at all the other junctions.

43. Mechanical analogies

In §§ 41, 42 it was seen that certain electrical circuits led to
precisely the same differential equations as corresponding
mechanical systems, so that the algebra of the solutions is the
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same for both. The obvious correspondence appears on com-
paring (5) and (4) of § 41, namely,

dI Q .
LW+RI+E’ =17, (1)
aQ

with the equations of motion § 29 (1) for a mass m attached to
a spring of stiffness A, with resistance to motion % times the
velocity v, and acted on by force F. These are .

mfll—:’+kv+)\x =F, (3)
, de
7= 4)

These two sets of equations correspond precisely if we replace
Q by z, I by v, L by m, 1/Cby A, Vby F and R by k. Thisis the
most common and useful form of analogy.

_These considerations can be carried a good deal farther. First
we notice that by integrating (2) with respect to the time from.
t=0tot=1we get

0 |2
Q=0+ [Ia, - (8)
[

0
where @ is the value of @ when ¢{ = 0. For shortness we shall
write (5) in the form

Q=[1a, (6)

and other integrals of the same type below are to be understood
in the same sense.
Using (6) in (1) gives

dI 1 [
LS +RI4 Lit=7, (1)

which is a form in which the fundamental equation for the
L, R, C circuit is often written. (7) is called an integrodifferen-
tial equation since it contains both the integral and the differen-
tial coefficient of the unknown 1.
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In § 41 the equations
dI
o

were given for determining the current in a resistance, induc-
tance, or capacitance in terms of the voltage V applied to it.

1 1
RI—7V, -7, 6Q=6J-Idt—l’, )

L 1LLLN
R k v
e NA———- % —
T k _A
AR vy SO WA
e XM, F F V
(a) {b) () (d)
Fic. 32.

Now suppose we regard the current I in each of these elements
as known and wish to find the voltage drep ¥V in terms of it.
The equations (8) may be rewritten from this point of view ast

1 1 av
V=1, ZJ.th-I, ¢ -1, 9)

where the second and third of (9) are obtained by integrating
the second and differentiating the third of (8), respectively.

Next consider the ‘L, R, C parallel circuit’, Fig. 32 (b), in
which the total current I into the combination of L, R, and C
in parallel is regarded as given, and it is required to find the
voltage drop across the elements. Adding the currents in the:
separate elements given by (9), we get

av 1., 1 (.
o%+ﬁv+zfmt_z. (10)

This is of the same form as (7) with V and I interchanged,
L and C interchanged, and R replaced} by 1/R. The circuit
Fig. 32 (b) is called the ‘dual’ of Fig. 32 (a), and this duality can
be extended to more complicated circuits.

+ These equations may be used to develop the theory of electrical networks
in the same way that we have used (8).

" 1 It will be noticed that in (7) and (10) all of L, R, C and their reciprocals

appear. It is usual to give these reciprocals names and to use them when they
oceur: thus @ = 1/R is the conductance, S = 1/C the elastance, etc.
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Similar relations apply to mechanical systems: writing z for
displacement, » = 4 for velocity, we have

v = F, mg-;—)_~F Ax:)\fvdt:l«", (11)

for a force F applied respectively to a dash-pot which gives
resistance to motion & times the velocity, to a mass m, and to
a spring of stiffness A. Combining these we have for the mechani-
cal system, Fig. 32 (¢),

m%’+kv+)\ f vdt—F (12)

as in (3) and (4). If, on the other hand, we regard the velocity
as given and wish to determine the force across the elements,
we write (11) in the form

k A dt

The equation of motion of the system of Fig. 32 (d), in which
the point 4 is moved in a straight line with velocity v which is
& known function of ¢, is

1dF y
X dt+kF+ fﬁ dt = v, (14)
which, again, is of the same form as (7), (10), and (12). The
system of Fig. 32 (d) is the dual of the system of Fig. 32(c), and
all four systems of Fig. 32 lead to equations of the same type in
symbols which correspond as follows:

1y, %det:v, 1dr _ (13)

Electrical Mechanical

Damped harmonic
L, R, C series Dual oscillator Dual
Fig. 32 (a) Fig. 32 (b) Fig. 32 (c) Fig. 32 (d)

L C m 1/x
R 1/R k 1/k
c L 1/A m
I 14 v F
14 I F v

It is possible, by using the relations given above, to set up
electrical analogues of dynamical systems. The correspondence
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between the circuit of Fig. 29 and a special case of the mechani-
cal system of Fig. 14 has been noted in § 42.

In the same way the circuits of Fig. 33 (a), (b), and (c) will be
found to be the analogues of the mechanical systems of Figs. 14,
19, and 16 (a), respectively, of the type in which inductance
corresponds to mass, ete. For example, if the differential equa-
tions for @, and @, in Fig. 33 (a) are written down they will be

M, kK M, Kk, M, My M M M
aYil l I l l
Fie. 33

found to be identical with § 34 (4) and (5) with ¢, and @,
replacing x;, and z,. In doing this the charge in any branch is
taken to be the total amount of charge transported by the
current in this branch, so that Q,, the charge associated with
L, —1,, is equal to Q,—Q,; cf. § 42 (10).

The procedure for setting up such analogous systems has been
extensively studied and extended to systems containing gearing
and also to acoustical systems.{

44, Steady state theory. Impedance

It has been shown in the last three sections that there is no
fundamental difference between the equations to be solved in
problems of electrie circuit theory and of mechanical vibrations.
But owing to the enormous complexity of many practical cir-
cuits, special techniques have been developed for their study
which concentrate attention on the quantities of interest to the
electrical engineer. This leads to two important changes in point
of view.

Firstly, the electrical engineer is most often interested in the
steady response of a circuif to an alternating voltage rather than
in its transient behaviour. Thus he does not usually look for

1 Cf.*Olson, Dy ical Analogies (van Nostrand, 1943).
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natural frequencies as such, but regards them as frequencies at
which resonance ocecurs: this corresponds to the second of the
two methods developed in Chapter IV. Similarly, the normal
modes of oscillation corresponding to the natural frequencies are
rarely calculated—for a complete solution of a transient problem

A o——i A ol j—e
B— B o— — D
(a) (b)
Fic. 34.

by the classical methods it is necessary to do this, but the labour
can be avoided by the use of -the Laplace transformation or
operational methods which have, in fact, largely been developed

for problems of this type. S

Secondly, the engineer is very little interested in what goes on
in many parts of the complicated circuits with which he deals.,
Instead, he regards them as boxes, with, for example, two
terminals 4, B, Fig. 34 (a), which is a two-terminal network, or
with four terminals, Fig. 34 (), which is a four-terminal network.

The commonest types of problem are then: (i) to find the
steady state current flowing into the network of Fig. 34 (a) due
to sinusoidal voltage applied to the terminals A B, or (ii) to find
the steady state current in a known load connected to the
terminals C'D of Fig. 34 (b) when a sinusoidal voltage is applied
to the terminals 4 B.

In a complicated circuit it would be a waste of labour to write
down a complete set of equations for all the currents in all the
branches in the boxes of Fig. 34 and this labour can often be
avoided by the methods now to be discussed.

Consider first the L, B, C circuit, Fig. 35 (a), with sinusoidal
voltage E cos(wt-+f) applied to it, and suppose we require the
steady state current in the ¢ircuit. The equations for the current
I in the circuit are, by § 41 (5),

(LD+R)I+% = F cos(wi+B), (1)
DQ = 1. 2)
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To find the steady state current we replace E cos(wt-8) in
(1) by E’et«t, where

E' = EeB, (3)
Then we seek a solution of the form
I="Tred, Q= Qe (4)

and take its real part. Substituting (4) in (1) and (2) gives
(R+ Liw)['—}—.o_ = K, iwQ = I.

L Z, Zz Zn ZI Za Zs

! R
Ecosfwt+p) £

LT 1 1 L
@) (b (c (d)
F16. 35.
Therefore, eliminating Q’,
{R+i(Lw_L)}I' —F. (5)
Cow
We call z = R—{—i(Lw- '1 ) (6)
Cw
the complex impedance of the circuit. Its imaginary part
) ,
= Lw—— 7
X w—a- (7)
is called the reactance of the circuit, and its modulus
2
2] = {RH—(Lw-—}—) }% — (R4 X2 ®)
Cw
is called the impedance of the circuit. The angle
X
== t, -1 9
7} an B (9)
is called the phase angle.
With this notation, (5) gives
r=% (10)

z
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Using (10) and (3) in (4), the steady state current is thus the
real part of Eeiwl _ B ot
z |2 ’

E

J—z—lcos(wz:—}—ﬁ—()), (11)
where |z| and @ are defined in (8) and (9). This is the resultt
which was quoted in § 41 (12), and the argument above is merely
a repetition of that of § 31 in which this particular integral of the
equations (1) and (2) was found. One minor change has been
made, namely including the phase angle 8 of E cos(wt+8) in the
complex quantity E’ of (3), but the main point has been the
expressing of the solution in terms of the complex impedance 2
which is now regarded as a quantity which can be written down
immediately for this circuit.

For shortness, we shall call B’ the complex voltage applied to
the circuit and I’ the complex current in it, it being understood
that these terms refer to the steady state only, and that to get
actual real voltage or current we multiply E’ or I’ by e and
take the real part. Thus (10) states that the complex current in
an L, R, C circuit is obtained by dividing the complex voltage
across it by the complex impedance z. This relation has the same
form as Ohm’s law for direct current with complex impedance 2
replacing resistance; thus we can write down formulae for the
impedance of complicated networks by the same rules which
allow us to write down direct current resistance.

First we define the complex impedance of any two-terminal
network, Fig. 34 (a), as the complex voltage across its terminals
divided by the complex current into them.

Next oonsider the circuit of Fig. 35(b) with n impedances
Z1sees 2, in parallel and complex voltage E’ applied to it. Let
I,..., I, be the complex currents in the impedances, then

i N
I = PR I, = o

that is,

t Except that the voltage has been taken here to be E cos(wt-+ ) to conform
with the usual engineering practice. It should be added, also, that engineers
use the small letters e and 4 for the quantities denoted here by E’ and I".
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Thus if I’ is the total complex current into the network
’ ’ ’ 27 1 1
I'=1i4-.+1, = E (:+...+z—). (12)
~1 n

Thus the complex impedance z of the n impedances in parallel

is given by 1 1 1 1

' S= 1

” z1+22+ +2n . (13)

Similarly the complex impedance z of a number of impedances
Zyseees %, in geries, Fig. 35(c), is

z = 242yt ... 42, (14)

For more complicated circuits the complex impedance may
be written down by a combination of these rules. For example
for the ‘ladder’ network of Fig. 35(d), it is

1

2+ 1
a i
o (1) + (1)
The reciprocal 1/z of the ecomplex impedance of a circuit is its
complex admittance. Both quantities are equally useful in the
theory: for example (13) may be better stated in the form that
the admittance of n circuits in parallel is the sum of their
admittances. ,
For four-terminal networks the position is a little more com-
plicated. Consider the network of Fig. 34 (b) and suppose a load
of complex impedance z, is connected to the terminals CD. If
I, is the complex current in this load caused by complex voltage
E’ applied at the terminals 4 B, the quantity
Bl
is called the transfer impedance between the pairs of terminals
AB and OD: it can be calculated from a knowledge of the
network and the load impedance. To do this it is usually
necessary to use Kirchhoff’s laws discussed in § 42. In the
steady state with which we are now concerned the voltage drop

over any element of complex impedance z carrying complex

current I’ will be zI'e?* and the applied voltage will be E’ei*:
5296 K

(15)
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the time-factors e cancel and we are left with equations con-
necting the complex currents and voltages. Kirchhoff’s first law
then becomes the algebraic sum of the complex voltage drops over
the elements of a closed circuit is equal to the algebraic sum of the
complex applied voltages in the circuit. The second law becomes
the algebraic sum of the complex currents at a junction is zero.

45. Variation of impedance with frequency. Filter cir-
cuits
It was remarked in § 44 that most of the information required
by engineers could be obtained by writing down the complex
impedance of a circuit and studying its variation with frequency.
In this section we discuss some simple networks from this point
of view.

L. R C 12|

w(LC)%
(a) (6)
Fia. 36.
(1) The L, R, C circuit in series with a load
We suppose that complex voltage E’ is applied to the ter-
minals 4 B of Fig. 36 (a), and that the complex current I’ in a
terminating resistance r is to be calculated. By § 44 (10)

r-%,
z
where z = R+T+(Lw—-—-l—)’i
‘ Cw

is the complex impedance.
The impedance is

2] = {(R+r>2+(Lw—Ciw)2}%, )
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and this has its least value (R4-r) when w? = 1/LC, that is, at
the undamped natural frequency of the circuit. The variation
of |z| with w is shown in Fig. 36 (b). When w = (LC)-4, the
impedance is least and the current greatest: thus this circuit
tends to favour the passage of this frequency relative to others.
The problem is essentially that of § 31 and Fig. 8 () except that
here we have studied the impedance instead of the amplitude
which is proportional to its reciprocal.

1zl

o 1 w(LC}}i 2
(b)

Fia. 37.

(ii) The ‘choke’ circuit, Fig. 37 (a)

Here we require the complex current I’ in a load consisting
of resistance r when complex voltage E’ is applied »% ie ter-
minals AB.

The complex impedance z of the system ACDB is, v § 44
(13) and (14),

1
2 =T Cenr 1(R Leoi)
oy BtLei

(1—LCw?)+RCwi’
2] = {r(l—LCw2)+R}2+(RCrw+Lw)2}§ @
o (1— LCw?)?+ R2C?w? )

Here, if R is small which is usually the case, the denominator
of (2) is least for a value of w near (LC)-}. Thus the impedance
has a maximum value near the undamped natural frequency of
the L, C circuit—its variation is shown in Fig. 87 (b). Thus this
circuit tends to discourage the passage of the frequency
(LC)~}/27 and to favour higher or lower frequencies.
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(iil) The ‘parallel-T’ circust

The circuit is shown in Fig. 38 (a). Complex voltage E’ is applied at
the terminals 4 B, and we require the complex current I’ in a load (which
is taken to be a resistance ) connected across the terminals EF,

° ! wWRC 2
(b)

Fic. 38.

This is & more complicated problem than those discussed above because
we require the current in a different branch to that in which the voltage
is applied. We use Kirchhoff’s laws for complex currents and voltages
as in § 44. Let I{, I, and Ij be the complex currents in the branches
OP, US, and QP of Fig. 38 (a), those in the other branches being chosen
to satisfy Kirchhoff’s second law automatically. Then Kirchhoff’s first
law for the complex voltage drops round the closed ecircuits PABOP,
OEFPO, USQFEU, and PTSQP, respectively, give

’ ,': ’ ’ 7
—RI+g (i+ 1) = B, &)
4 7: ’
o I+ R(Ii—I')—rI’ = 0, (5)

, 2Cw
7: ’ ’ r ’ ’ ’ ’ 3 ,
— oo L4+ I+ RUIG— L—I')+ R~ 1 )_6,“_013 = 0. (8)

If we write z = wRC, = r/R, (7
and solve for I’ we find
-3 o —ijx 0 (3—ifx) O —ijx
_121,' = 0 —i2w 1 |=| & =} 0 —ix
—ifz —1 2(1—ijx) —(k+1) 0 —if2x .1
-2 iz —1 2(1—i/x)
x2—1

= (ka*—2—k)— Zix(11-2%)" v (8)
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If we write 1" = E'[z,

where, in the notation of § 44, 2 is the transfer impedance between the
branches 4B and EF, we find from (8)

22— k)24 42(1 2k’*
o] — Bl Ix: _+l|x( +2k)7) ©)

The variation of 2| with £ = wRC is shown in Fig. 38(b). The
impedance is infinite at the frequency 1/27RC.

(iv) Filter circuits

In the above examples it has been seen that simple combinations of
circuit elements have rather crude filtering properties. Thus the circuit
of Fig. 36 (a) tends to ‘stop’ low and high frequencies and to ‘pass’ those
near (LC)~¥/27. The circuits of Figs. 37 (a) and 38 (a), on the other hand,

%z, 1, z I z I’ 1;,,, AZ, 1, k7, *Z, !gL
(a) (6)
Fia. 39.

pass the low and high frequencies and stop, in part or wholly, inter-
mediate frequencies. This behaviour can be sharpened by connecting
together a number of these combinations. The simplest example of this
is the ‘ladder’ network of Fig. 39 (a) which may be regarded as composed
of n of the sections of Fig. 39 (b) connected in tandem and terminated
by a complex impedance z’.

We suppose complex voltage E’ to be applied to the circuit and we
wish to find the complex current I, in the terminating impedance z’.
Let I;, I{,..., I, be the mesh currents as shown in Fig. 39 (a). Then
Kirchhoff’s laws for the successive meshes give

d2, In+2,(Li—~ 1)) = B, (10)
Lz L— L) —2f I, — 1) = 0 (r= lLu,n—1), (11)
(32, +2" )M —2y(Ipy—I3) = 0. (12)

We seek a solutiont of the set of equations (11) which connect the
complex currents in three successive impedances 2, of the form

I; = Ae', (13)

t Equations such as this are called difference equations; for other examples
see Chapter IV, Ex. 14 and § 85 (12). They have a general theory similar to
that of differential equations and the present procedure may be regarded as
being suggested by that at the end of § 13.
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where 4 and & are independent of r. Substituting in (11) gives
(14)

(214 22,)70 — 2, €T+ — 2, (=118 — (),
— il .
Or coshf = 1+2z3'
Since (14) gives two values of 8 with opposite signs, we get the final
result that all the equations (11) are satisfied by
I, = Ae-- Be ™, (15)

where A and B arée independent of r, and 8 is given by (14). The con-
stants 4 and B are determined by substituting (15) in (10) and (12) which

give, using (14),
(A + B)cosh@—(Aef + Be) = E'[zy
(cosh 8+2'/z,)(Ae™® + Be~"0)— (Aen-1)8 4 Be~(n~1)8) — ¢,

'
?
]
]
[
!
!
?
[}
’
4

1zl

w/w,
Fic. 40.

Solving for 4 and B and putting these values in (15) we get, after some
E'[sinh 8 cosh(n— )8+ (2/z,)sinh(n —r)8] (16)

reduction,
’

, =
For a simple special case to study in detail, we consider I in the case
in which z’ = 0 (the output terminals short-circuited) for the circuit of
(17)

(]
%= G’
(18)

Fig. 39(c) in which
2y = L,
so that coshf = 1—3LCw?.
In this case (16) gives I, = E'|z, (19)
where z, the transfer impedance in which we are interested, is given by
(20)

z = z,sinh @ sinhnf
= —(i/Cw)2"Y(cosh 8 — 1)(cosh8—~cos 7/n)... X
X (cosh §—cos(n— 1)mr/n)(cosh 8+ 1),

where in (20) we have used the finite product for sinh # sinhnf. Using

the value of (18) of cosh 8 in (20) we get finally
z == 2% Lew(l —cosw/n— 3 LCw?)(1—cos 2mr/n— } LCw?)...(2— } LCw?).
(21)
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In Fig. 40, |2] is plotted against w/w,, where w, = (LO)1, for n = 2
and n = 4.

It appears that |z| is small if w < 2wy, but |2| increases rapidly as @
is increased beyond 2w, and that this tendency increases as n, the number
of sections, is increased. The filter is a ‘low-pass’ filter with ‘cut-off’
frequency wy/m.

4

46. Circuits containing vacuum tubes

We shall consider only triodes which illustrate most of -the
important properties of such circuits.

¥ F
IS
3
R,
I
‘;:r"'l‘ Vor G
(a) (b) (c)

When a triode forms part of a eircuit [Fig. 41 (a)] there are
batteries of voltages P and G in the plate and grid cireuits which
by themselves would cause steady direct current S to flow to
the plate and would apply steady voltages ¥, and ¥ to the
plate and grid respectively. Superposed on these steady voltages
and currents are varying voltages ¥, and V, applied to the plate
and grid from the remainder of the circuit, and it is mainly in
these that we are interested. We shall write ¥, and V1 for the
total voltages applied to the plate and grid from these two
causes, and I, for the total plate current, reckoned positive
when flowing towards the plate. Then we have

Vor = Vp+Ve, (1)
I{VT = IZg+VG) (2)
Lp=IL+8, (3)

where I, is the varying part of the total plate current.
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The plate current is determined in terms of the plate and grid
voltages by the family of characteristics of the triode. Thus

Ly = ¢(Vor: Vyr), (4)
and also S = ¢(Vp, Vy), (5)

where, in general, ¢ is a non-linear function of two variables.
However, it is found experimentally that the effect of changing
V.1 is, to a very close approximation over a very wide range of
values, a constant, u, times the effect of changing V4, so that
the function of two variables in (4) can be replaced by a function
of the single variable ¥, +uV , and we have

IpT = f(V;;T‘{"P«I{;T)- : (6)
This relation we shall call the characteristic of the triode. u is
called the amplification factor. The form of the function (6) is
sketched in Fig. 41 (b). In general it has a long straight portion
which flattens off to zero for small, and to a horizontal asymp-
tote for large, values of V,;+uV, ;. Thus, although the complete
graph of the function is far from linear, a linear theory will be
a good approximation if operation is confined to the straight
portion of the characteristic. This is the case in many practical
applications, but in many others the non-linearity is of great
importance.
On the linear portion of the characteristic (6) becomes

Ly = gVor+upgVyr+K, (7)
where g is a constant called the plate conductance, and K is a
constant. The same relation

S = gVp+pgVp+K (8)
holds for the steady current and voltages, and subtracting
(7) and (8) and using (1) to (3) we get

I, = gVp+pgV, (9)
which is a relation connecting the varying parts of the plate
current and the grid and plate voltages.

When the tube is connected in a circuit, contributions to ¥,

I, ete., will come only from varying currents and voltages in
the circuit elements, so, when we are dealing with the linear
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theory, we may omit entirely the batteries and their constant
effects from the circuit diagram [cf. Fig. 41(c)] and deal only
with the varying currents and voltages superposed on them,
using (9) as the characteristic of the tube. But when dealing
with non-linear problems on the accurate characteristic, Fig.
41 (b), it is often better to work with the total voltages and
currents.

As an example of the linear theory we study the resistance
coupled amplifier, Fig. 41(c). We wish to find the varying
voltage ¥, across the terminals F& caused by varying voltage v,
applied to the grid. Neglecting the small capacitances between
grid and plate, etec., the circuit equations are

R(I,—1L)= -V, (10)
BRI+ 2= v, (1)
DQ = L, ‘ (12)

together with (9).

These are the differential equations which have to be solved
if we wish to study transients. For the steady state alternating
current we suppose that complex voltage E’ is applied to the
grid, and that I, and I are the'complex currents in the plate
and in R,. Then thé equations become

R(I)—13) = —Vp,

1ie,1;_0_’w1'2 = —V,

L, = gVy+guE'..
Solving these, we get for the complex voltage drop V;, over FG

V= —Ry Iy — — Rogu ' .
2 2 (14-9R,+ R,/R,)—t(gR,+1)/R, Cow
(13)
The ratio of the magnitudes of V}, and £’ is
Rzg,“' (14)

{(1 +gR,+ R,/ R,)*+ (9B, +1)*/ R} 02‘”2}* ’
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which increases from zero when w = 0 to

o Bagp 15
o+ Bl Ry) 1)
as w — 00. The phase of ¥, lags behind that of £’ by an amount
- (9B, +1)
—tan—! R 16
N G By g By Ry R e

47. Stability. Oscillator circuits
In dealing with the solutions of linear differential equations
in Chapter II it was found that the solution of
(@ D*+...+a,)y =0 (1)
was of type Ale"l‘—}—...ll—Ane“a‘, (2)
where A,,..., A, were arbitrary constants, and ay,..., a, were the
roots of the auxiliary equation
aga™4-...4a, = 0. (3)
For the moment we suppose ay,..., a, to be all different. In
the solutions found up to the present, all the « have been either
real and negative, or complex with negative real parts, corre-
sponding to exponential decay or to damped oscillations. If,
however, any of the roots has a positive real part, the solution
would contain & term of exponentially increasing amplitude, and
the system is said to be unstable. Such effects arise most com-
monly in systems in which energy is supplied from an external
source, such as valve circuits, servomechanisms, etc. It must
always be understood that the linear equations of motion with
which we deal are only approximate, and only hold for a
restricted range of the dependent variable; thus if we say a
system is unstable it implies that its displacement will become
so large that it will move into a region in which our linear
equations no longer hold.
The criterion for stability is that all the roots of (3) should
have negative real parts. For the quadratic

a?+ta,ata, = 0, (4)
this requires simply that
a; > 0, a, > 0; (5)

the roots are complex if, in addition, 4a, > a2.
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Suppose, now, that in (3) a, > 0 and that the left-hand side
can be resolved into linear and quadratic factors in the form

@o(a+b1)(a+by)...(eP+¢y at-dy) (e +cpatdy)... = 0. (6)
For stability, all the quantities b, b,,... in (6) must be positive,
and, by (5), all the quantities ¢,, d,, ¢,, d,,... must also be positive.
Multiplying out the left-hand side of (6), it follows that if ¢, > 0
it is @ necessary condition for stability that the coefficients of all the
powers of « in (3) be positive.
This simple criterion is often useful but it is not sufficient, and
the complete conditions for equation (3) with a, > 0 are that
all the determinants

a,, | a, ay |, a a, 0 |,...,|] @a aQ, 0 0 0
ag a, a, a, a, a, a a, O 0

as a, a, 0

Bgpy Ggp_g - .« .« .« . G

M

should be positive, where, in writing them down, a, is replaced
by zero if » > n. If any of the determinants in (7) is negative
the system is unstable. The result (7) is known as Hurwitz’s
eriterion;t it is related to Routh’s rule and provides a compact
statement though rather a clumsy one to use.

For the cubic oy 0P +agat-ay — 0, (8)

the conditions (7) give
a >0, a,a,—a; >0, a; > 0. (9)

Criteria for stability are important in two ways:

(i) Systems required to be stable. In systems such as servo-
mechanisms, amplifiers, ete., in which energy is supplied to the
system, oscillations of large amplitude may be set up by a
chance disturbance unless the system is stable. The criteria for
stability set limits to some of the circuit parameters; cf. § 49.

(ii) Systems required to be unmstable. In studying oscillation
generators the first step is usually to write down approximate

1+ For a proof see Frank—von Mises, Diﬂ'e}entialgleichungen.der Physik, vol. 1,
p. 162. For Routh’s rule see his Advanced Rigid Dynamics, chap. vi.
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linear equations of motion. If this system is unstable it will
execute large oscillations whose amplitude is determined by the
accurate non-linear equations. We proceed to discuss a simple
triode oscillator circuit from this point of view.

Ipr 724

(.C. -} > 1

Ir-lpr

Fia. 42.

The circuit is shown in Fig. 42. I, V,,, V; are the total
plate current, and plate and grid potentials, as in § 46; I, is the
total current in the inductance L. The characteristic § 46 (6) is

Ly = f(Vpr+u¥,r)- (10)

ASS}IIIiingT that the current to the grid is zero, the circuit
equations are L dZt an
_deIT Rl =V,,—P, (12)

M d_d%’ VG (13)

Eliminating V, 5, V,7, and I,; from (10)—(13) gives the differen-
tial equation for I,

d d?l dIT f

dt2 +RC =X

P+4-pG—RIp— (L-HLM) }+IT = 0.
| (14)
This is the accurate equation; it will be discussed further in

t This is very nearly true for most valve circuits under most operating
conditions.
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§ 48. Here we make the assumption § 46 (7) that the charac-

teristic is linear, in which case (14) becomes

d?l, dlr,

—p TIRO+g(LApM)] 2+ (1+ Rp)ly = g(P+uG)+ K.

| (15)

This has a particular integral [g(P+upG)+ K]/(1+ Rg) which

is the direct current to the plate. The complementary function

corresponds to an oscillation about this value. By (5) this

oscillation is unstable if

RC+g(L+pM) < O. |

- That is, if M < —é—gg. (186)
B gu

Since M can be negative this condition can be satisfied; it is

the condition for the circuit to act as an oscillation generator.

As remarked above, the non-linearity of the characteristic be-

comes important as the oscillations become larger and ultimately

it determines their amplitude. This point will be discussed

in § 48.

LC

48. Further discussion of triode oscillations

In order to study the effect of non-linearity we now consider
the equations of § 47 in greater detail. First, it is convenient, as
in § 46, to work with the variable parts ¥, V,, I,, I of the voltages
and currents. Using § 46 (1) to (3) and the corresponding equa-
tion for the current [ in L,

I, =148, 1)
in § 47 (11)-(13) we get the following equations connecting the
variable parts of V,, V, I,,, and I:

p’ g’
I-I,=¢C ‘%ﬂ, 2)
L ‘fl—f—RI ~7, 3)
I

where in (3) and (4) we have used V, = P— RS and V; = G.

.
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- Also, treating the characteristic of the triode § 46 (6) in the
same way, we get

L, = f(Vp+u¥V,+Vot+u¥e) —f (Ve +uVs). (5)
Expanding the first term of (5) by Taylor’s theorem we get
L, = 9o+ ph)+ 9V +pV P+ 0oV el 4., (8)

where g, g,, ¢5,... are constants determined by the triode and the
values of P and . Retaining only the first term corresponds to
the linear assumption§ 46 (9). We may simplify (6) further since
in practice R is usually small, so that neglecting the term RI
in (3)

v, L
T% =9 (7)
Using (7) in (6) gives
I, = kgV 49, k*Vy+g. 2V i+ ..., (8)
where, for shortness, we write
k= (L+ud)/M. (9)

From (2) and (3) \
Lc %! aI 2. V2 3 173
—+RC —7-{-1 = I, = kgV,+-k?q,Vi+k3g,V3+..., (10)

pro d
using (8). Using (4) in this gives
@1
2o fa s
dI o adl . (G2 3
+;E{R0+kgM gy 02 % asg, aro(H _...}+1 —o0.
(11)

Alternatively, differentiating. (10) with respect to the time and
using (4) gives an equation for 7,

2
1020 1 Te(( RO 1 kg M) 12129, MV, 434, MV+ .3+, — 0.
(12)
Either (11) or (12) may be chosen as the fundamental type
of non-linear differential equation requiring further study.
Taking (12) we notice first that it is non-linear because of the
terms in V), V2,... multiplying dV,/d¢ which are caused by the
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terms in g,, g,,... in (8). If we neglect these, (12) becomes linear,
and by § 46 (5) its solution is unstable if

RC+kgM < 0, (13)
that is, using the definition (9) of %, if
M< RO L (19)
By

as in § 47 (16). If the circuit is to act as an oscillator M/ must
be negative, and also, by (13), k¥ must be positive. The signs
of g;, g,, etc., have to be determined from the form of the
characteristic (8), and it appears that as this curve is concave
upwards for small values of ¥, and concave downwards for large
ones g, must be negative and g, positive. It will appear later
that the term involving g, is not important.
To summarize this information we write

nt — 1 c— __RCH-kgM
e h Lc (15)
_ %k M g—— 3kg, M
= T RO+kgM’ ~ RC+kgM’
and (12) becomes
aov. day,
Et?a_e(l_aI{,—BVE—,.. L+, =0, (16)

where ¢ and B are certainly positive. Usually e is small, and if
the circuit commences to oscillate with a small value of ¥, the
osoillations will at first increase in amplitude like exp(3ef). But
when ¥, becomes so large that V2 > 1—a¥,, the sign of the
coefficient of d¥,/dt in (16) changes from negative to positive,
corresponding to a stable oscillation. This behaviour will be
studied further in § 58, ‘

It should be mentioned that the power series (6) is obviously
not a particularly good method of representing a curve such as
Fig. 41(b); it has been used here because of the importance of
equations of types (11) and (12) in non-linear mechanics (cf. § 58).
Other methods of approximating to the effect of a non-linear
characteristic have also been used.¥

t e.g. Pidduck, Math. Gazette, 29 (1945), 206, who uses a characteristic of
the form f(x) = 0, ¢ < a; f(z) = k(zr—a), 2 > a.
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49. Servomechanisms

The basic ideas involved may be understood from Fig. 43.
Suppose a heavy rotor of moment of inertia I is to be turned
about an axis so that it always follows the motion of a light
pointer. We call 8,, the angular displacement of the pointer from
a fixed direction, the input displacement: this is a prescribed

Controller

Fia. 43.

function of the time. The angular displacement of the rotor
from the same direction, 8, is the output displacement, and
0 = 0,—0; is the error.

In order to make 6, follow 6, the error 6 is fed into a controller
which determines the torque 7' applied to the rotor I by the
driving motor. The simplest case is that of ‘proportional con-
trol’ in which 7 is proportional to the error, so that

T = —A(6,—b;), (1)

where A is a constant. Then, if there is frictional resistance Icli'o
to the motion of the rotor, its equation of motion is

Igo = '“kéo")‘(oo—gi),
or (ID24-kD+X)8, = ), (@)

The way in which 8, follows 6; may be studied by givihg 0,
a simple prescribed motion, calculating 6,, and comparing the
two. Suppose, for example, that ; is given a steady rotation

oi = wt, (3)
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starting at { = 0 when 6, = DB, = 0. The solution of (2) Wlth
these initial values is

6y = wt—I£+-I”—— e~ cosn't 4 (@ —%)e-“' sinn t 4)

where k= kj2I,  n'?=MI—«

Comparing (3) and (4) it appears that the error 6,—8, contains
an oscillation which dies away like exp(—«t), and that for large
values of the time 6, lags behind 6; by kw/A. If k is increased in
order to make the oscillation die away more rapidly, the time lag
is also increased. Thus this simple system cannot be made really
efficient.

In the next stage of complexity terms depending on the suc-

cessive derivatives and integrals of the error are included in 7'.
Thus

'

[2 .
T = —\0,—6)—X [ (6,—0;) dt (5)
0

has a term proportional to the error, together with a term pro-
portional to the integral of the error. This gives the equation
of motion

t t
(ID?+-kD+X)8,+2, f 8, dt = A0, 4+ f 0, dt, (6)
0 0
or, differentiating,
(ID34-kD?*+AD+A,)0, = ADO,+-), 6. (1)

If, as before, we take 6; = wt as the input displacement, the
particular integral of (7) is just wt, and so there is now no con-
stant lag as there was in (4).

The question of stability of the system must be studied. By
§ 47 (9) this requ#es A > I, (8)

which sets a limit to the coefficients in (5).

In practical systems the controller is in effect a complicated
amplifier circuit, and, instead of simple relationships such as
(1) or-(5), expressions involving the properties of this circuit
appear.}

+ See, for example, MacColl, Servomechanisms (van Nostrand, 1945).
5296 L
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50. Impulsive motion
In § 39 the effect of an impulsive force or blow on a particle
was studied: analogous problems arise in electric circuit theory,
as might be expected from § 43. We define an impulsive voltage
E, at t =0 as a voltage V(¢) which is very large over the.
vanishingly small time-interval 0 < t < 7, zero outside this
interval, and such that its time integral has the finite value
E, ie. w
f V() dt = E,. (1)

In the notation of the 8-function, § 17, this voltage is E, 5(¢).
Ex. 1. Impulsive voltage E, applied at t = 0 to an L, R, C circuit with
initial current I; and initial charge Q.
The differential equations, § 41 (4) and (5) are
Q

(LD+ R+ 5 = V(©), , (2)
DQ =1, (3)
S
S —

E—W\—f‘o‘o‘ﬁ\-——wm-
+ R L R, L,

'TE R R Rt

Fic. 44.

As in the analogous problem of § 39 we integrate these over the small
time 7. I and @ must be finite, so that their integrals over this time will
be of the order of 7. Omitting these small quantities (2) and (3) give

L{I}Zg = K,  [Q¥=;=o. 4)
Writing I; and @, for the values of I and Q@ when t = 7, we get

fi
rom (4) I; = L+ E/L, Q= @ (5)

The current is thus changed instantaneously by an amount E,/L
[cf. § 39 (3)] by the impulsive voltage, and the new initial current (5)
must be used in calculations on the subsequent behaviour of the circuit.

Ex. 2. Steady current E[/R is flowing in the circuit of Fig. 44 with the
switch S closed, when at t = O the switch S is opened.

In switching problems of this type there is an impulsive redistribution
of currents between the inductances analogous to the redistribution of
velocity when two masses collide. Suppose there is an impulsive voltage
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E, over L,, R, caused by the closing of the switch. Then by (5) the
currents in L, R, and L, R, respectively, change to

EyL, and E/R—E,/L. (6)
Now for ¢ > 0 these must be equal, so
ELL,

EO = ml_)’ (7)
and the initial value of the current in the circuit with the switch open is
EL
e 8
REL+Ly) ®

51. Transient problems. Use of the Laplace transforma-

tion

In transient problems differential equations such as those
written down earlier have to be solved with given values of the
initial currents and charges in the system. The only difficulty
is the amount of algebra involved, much of which can be avoided
by the use of the Laplace transformation discussed in § 18.

We begin with the fundamental equations § 41 (5), (4) for an
L, R, C circuit, namely,

dI Q
L%‘FRI“P@—— v, (1)
aQ
xor 2)

Let I, @, and ¥ be the Laplace transforms of I, @, and V,

0 0
and let I and @ be the values of I and @ when ¢ = 0. Then
the subsidiary equations corresponding to (1) and (2), formed

as in § 18, are g - 0
(Lp+B) +5 = V+ LI, (3)
»Q = I+Q. (4)
.0
. = 1 @
4 ==+, 5
(4) gives Q p—l—p (8)

and substituting this in (3) gives

0
1V o _—g
(Lp+R—|—6Z;)I =7+ Ll-¢. (6)
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(6) will be called the subsidiary equation for an L, R, C circuit:
it gives the Laplace transform of I, and is regarded as funda-
mental. If @ is needed, it is found from (5).

Ex. 1. As a simple example on the L, R, C circuit, suppose that the
0
condenser has initial charge @, and is discharged at ¢ = 0 through L

— 0 .
and R. Thenin (6), V = 0, I = 0, and (6) becomes

0 0
I —"”*—‘;_Q'—'. TV T ""T""“’Q_z—_’fg‘ , (7)
(LCp*+ RCp+1) LO{(p+K)P4n"?}
where k= R/2L and n"? = 1/LC—«2 (8)

It follows from § 18, Theorem 1, and § 18 (13), (8), and (15), re-

spectively, that
0

2 g if n2
= —n’LC’e sinn’t, if n2 > 0, (9)
. 0
¢
— Pt 2 —
I = T0¢ " if n 0, (10)
QO
- _ —t i e — 2 .
I = S rokd sinh kt, ifn k<0 (11)

The negative sign in these indicates that the current is flowing away
from the high-voltage side of the condenser.

More complicated circuits are regarded as being built up of
L, R, C, or simpler circuits, and sufficient equations can be
written down to determine the Laplace transforms of all the
currents in a circuit by adding equations of type (6) round
closed circuits. When this is done, as in Kirchhoff’s first law,
only the transforms of applied voltages appear on the right-hand
sides together with terms involving the initial conditions in
which each inductance is given its own initial current and each
condenser its own initial charge. The statement corresponding
to Kirchhoff’s second law is that the algebraic sum of the
Laplace transforms of the currents flowing towards any junction
is zero.

Ex. 2. Voltage V applied at t = 0 to the circuit of Fig. 38 (a), the con- .
densers being initially uncharged.

Choosing currents as shown in Fig. 38 (e¢) (omitting the dashes, i.e. I,
is the current in OP, etc.), Kirchhoff’s second law is satisfied automati-



§ 51 ELECTRIC CIRCUIT THEORY 149

cally. Then the subsidiary equations corresponding to Kirchhoff’s first
law for the circuits PABOP, OEFPO, USQFEU, PTSQP, re-
spectively, are

%RE—FC—;(fﬁE) = -V, (12)

ri+a£ IL,— LRI, = 0, . (13)

20 I+ R(I,—I)—rI = 0, (14)
C—}];(I’l+13)+R(I3—1;—1')+R(1;—I)+-Cl—p I, — 0. (15)
Writing wo = 1/RC, k =r/R, (16)

and solving for I we get

T Rp T Zpan( 1+ 26)+ 2+ 0wl an

Suppose, for example, that

. = w
= sinwyt, vV =p2+ow§; (18)
then from (17)
T— , R

E{lep™ + Zposa( 1+ 28) 4 wi(2 -+ 1) (19
Therefore {e"l‘ — gt} (20)

, kR()«z
where A, and A, are the roots (both real and negative) of
kpt+ 2pawe(1 +2k) +wi(2+ k) = 0.

The current I thus dies away exponentially and has no component
of frequency wy/27. In the steady-state treatment of § 45 it was found
that this frequency was ‘stopped’ by the circuit: here we have verified
this and found the transient caused by switching on the voltage.

It is instructive to compare the treatment of this section with
that of § 45. If the bars in (12) to (17) are replaced by dashes,
V is replaced by E’ and p by iw, we get the equations § 45 (3) to
(8). By reversing the process we may pass from § 45 (8) to
equation (17) above which gives the complete transient solution.
If the condensers are initially charged, there will be other terms

" on the right-hand sides of (12)-(15) and this simple correspon-
dence no longer holds. There is a general correspondence be-
tween the Laplace transformation and the steady-state theory
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which is developed in works on the subject. As another example
we notice that if ; = é = 0, (6) may be written

dp) =7, (21)
where 2(p) = LP+R+Z%J (22)

is called the generalized impedance of the L, R, C circuit. The
complex impedance, defined in § 44 (6), is just z(¢w). The rules
given in § 44 (13), (14), (15) for writing down complex impedances
also apply to generalized impedances.

Finally we remark that it can be shown that the Laplace
transformation method always gives the correct result when
applied to switching problems such as those of § 50 in which the
currents or charges in a circuit redistribute themselves instan-
taneously at the instant when a switch is opened or closed.

Ex. 8. The circuit of Fig. 31. Att = 0, when steady current E/R, is

Slowing in the primary from a battery of voltage E, and the secondary
current is zero, the primary circuil is opened.

0 0
We have I, = E/R,, I, = 0, and the subsidiary equation for the
secondary § 42 (24) gives
Mpl+(Lyp+ R, = ME/R,. (23)
Now I, = 0 for ¢t > 0 and so

o0

I = J’ eI dt = 0.

Using this in (23) gives

o ME L
2 R(Lyp+R,)’
ME
_ —R,t/L
-1, 7 Lze 2t/ La, (24)

The solution (24) shows that the secondary current changes discon-
tinuously from zero to ME/R, L, at the instant the primary circuit is
broken.

Ex. 4. Impulsive voltage E, applied at t = 0 to an L, R, C circuit with
zero initial current and charge.

The voltage V in (1) is E,8(¢), and using § 18 (10) the subsidiary equa-
tion is

(Lp+R+5‘5)I = B, (25)
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Thus, b, ,
e B

T L{lp+eyEtny

_Eo —xl: ’ K ’}
I = Ie cosn t—;,smnt . (26)

EXAMPLES ON CHAPTER V

1. A condenser of capacitance C is charged to voltage E, and dis-
charged at £ = 0 into a non-inductive resistance R. Show that the
charge on the condenser at time ¢ is

CE,etEC,

2. A battery of voltage E, is applied-at ¢ = 0 to a circuit consisting
of inductance L and capacitance C in series. Show that, if the initial
charge and current are zero, the current in the circuit at time ¢ is

(Ey/nL)sinnt,

where n = (LC)~t. Show also that if the eircuit is opened at the instant
7/n when the current changes sign, the condenser will then be charged
to voltage 2KE,.

3. A circuit consists of an inductive resistance L, R, a capacitance C,
and a resistance 1/G in parallel (this corresponds to the effect of a leaky
condenser). Show that its natural frequency of oscillation is

1 [ 1 I(R G)”]:}
wmlzeaz ol I”
and that the oscillations have the damping factor exp[ — (R/2L-+ G/2C)t].
4. A circuit consists of three branches in parallel. Two of them con-
tain equal inductive resistances L, R, and the third a capacitance C.
Show that the general solution contains an exponentially decaying term,
together with a damped oscillation of frequency (2n?— ?)}/27 and damp-
ing factor exp(—«kt), where n? = 1/LC, x = R/2L. Whait is the mechani-
cal analogue of the circuit ?
5. A circuit consists of inductance L and capacitance C in series with
a battery of voltage E,. At t = 0, I = I,, and the condenser is un-
charged. Show that if I, is the current at the time when the voltage
drop over the condenser attains the value V < E,, then

E3+(L/nO) = (By— VP +(L/nCP,

where n2 = 1/LC. Discuss the behaviour of such a circuit in which the
condenser is automatically discharged when the voltage drop over it
attains the value V.

6. The primary circuit of a transformer consists of inductance L, and
capacitance C; in series, and the secondary consists of inductance L,
and capacitance C, in series. There is mutual inductance M between
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L, and L,. Find an equation for the natural frequencies, and show that
in the special case L, = L,, C; = C,, these are

n(1+&)/2r and n(l—k)-/2m,
where n? = 1/L,C,; and k = M/L,.

7. The primary of a transformer contains inductance L,, resistance B,
and capacitance O, in series, and the secondary L,, B,, C, in series. They
are coupled by mutual inductance M. Alternating voltage E’eiwt! is
applied to the primary; show that the steady-state secondary current is

(E'/Zo)ei(wt+5—1r)’
where .
Zyé'® = {R, X,+ R, X, +i(M?*w?+ R, R,— X, X,)}/Mw,
and X, =Liw~1/0w, X, = Lyw—1/Cyw.

8. Show that the complex impedance of the circuit of Fig. 29 with
C,=C=0C L1=L,=0,R, =R,is

4R, Ciw+i(R2Ciw?—3)
20, w+ R; Ciw¥

9. The branches 4 B and CD of a circuit A BCDA contain resistance
R, and the branches BC and DA contain capacitance C. Show that if
complex voltage E’ is applied to the terminals 4 and C, the complex
voltage drop between D and B is B’ exp(2yi), where y = tan~(1/RCw).
The magnitude of the voltage across D and B is equal to that of the
applied voltage, but its phase may be varied at will by changing R or C.

10. Show that if complex voltage E’ is applied to a three-stage (n = 3)
filter circuit, Fig. 39 (a), with 2, a capacitance C, z, an inductance L,
and 2’ = 0, the complex output current I; is

Iy = 4iw’ B'{ Lw}(w? — w})(3w? — wd) (4w —w})}?,
where w] = 1/LC. Show that the filter cuts off frequencies less than }ew,,
i.e. it is a ‘high-pass’ filter.

11. A telephone line has resistance R; between posts and a leakage
resistance R, at each post. If a battery of voltage E is connected to it
half-way between two posts and the line is broken between the nth and
(n-41)th posts [2"—> co in § 45 (16)], show that the battery current is

E sinhnf
R,sinh § coshng’
where cosh = 14-(R,/2R,).

12. Show that| I}, the current in the terminal impedance of the filter
circuit of Fig. 39 (a), decreases exponentially as n is increased unless w
is such that 0 defined in § 45 (14) is pure imaginary, and that the con:
dition for this is that cosh 8 lie between J-1.

For the circuit of Fig. 39 (a) in which 2, consists of inductance'L, and
capacitance C, in series, while z, consists of inductance L,, show that this
criterion is satisfied if (L, C,+4L,C0,)t < w < (L;C,)-t. The filter is a
‘band-pass’ filter and this is its pass band.
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13. If the resistance-coupled amplifier of Fig. 41 is operating on a
linear portion of its characteristic and the grid voltage is suddenly
changed by E,, show that the resulting change of voltage over F@G is

o Rleﬂgﬂ)* exp‘—— (B, g+ 1) }
(By+R,+ R, R,9g) C(B,+R,+ R, R, g))°

14. A valve circuit is that of Fig. 42 with the following modifications:
(i) the condenser C is absent; (ii) there is no mutual inductance between
the inductance L and the inductance L, in the grid circuit, and the
resistances of these inductances are negligible; (iii) there is a capacitance
C, between the grid and the plate, it being assumed, as usual, that no
current flows to the grid. Show that the circuit will act as an oscillation
generator if L < pL,, and find the corresponding result if the resistances
of L, and L, are not neglected.

15. In the servomechanism of Fig. 43 the torque applled to the rotor
is arranged to be —A0— k6, where = 0,—0, is the error (cf. § 49). Show
that if the system is initially at rest and the pointer is given a displace-
ment §; = Qt, the displacement of the rotor is

Qt—(Q/n")e~*tsinn’t,
where « = 2k/I, n’* = (A/I)—«*. Friction is neglected.

16. In the circuit of Fig. 29 withC, = C; = Gy, R, = Ry, L, = L, =
the condenser C, is charged to voltage E, and discharged into the system
at ¢ = 0, the other two condensers being then uncharged. Show that the
charge on the condenser C, at any time is

C, Ey{2+ 3¢t ¢-3at} /6,

where « = 1/R, C,.

17. Voltage Esin{wt+B) is applied at £ = 0 to an inductance L and
a resistance R in series, the initial current in the inductance being zero.
Show that the current at time ¢ is

Efsin(y—Be~FHE 4 sin(wi+B—yp)}( B+ Liwt),

where y = tan—!(Lw/R).

18. An inductive resistance L, R is carrying steady current E,/R from
a battery of voltage E,, when at t = 0 an inductive resistance L,, R, is
switched into series with it. Show that the subsequent battery current
is

Eo EO(RLI_LRI)

— e—t(R+BOMLTLy),
R+E, RL+L)R+E)
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VECTORS

52. Vector algebra

Iv applied mathematics we are concerned with two different
types of quantity: firstly, quantities such as temperature, mass,
electric charge, etc., which are specified by their magnitude only
and are called scalars, and secondly, quantities such as force,
velocity, electric and magnetic field strength, etc., with which
are associated both magnitude and a direction in space. It is
for the handling of these latter that vector analysis has been
developed. Its place in mathematical teaching is still a matter
of argument; on the one hand it is possible to work exclusively
in rectangular Cartesian coordinates or others of similar type—
most of the classical English text-books do this and the student
must be prepared to follow arguments set out in this way; on
the other hand, vector methods do provide a conspicuous
simplification in many problems of three-dimensional statics,
dynamics, and electromagnetism, though, again, it should be
said that they are not sufficiently powerful to handle many of
the more complicated problems and that for these still other
methods have been developed.

The most common practice, and that which will be adopted
here, is to use vector analysis as a tool in subjects for which it
is well adapted. Its main virtues from the present point of view
are: (i) that it provides a useful physical picture so that it is
better to think of quantities such as force, angular velocity,
electric field, etc., as vectors even if manipulation is done with
their components, and (ii) that the vector product arises
naturally in fundamental formulae such as § 53 (11) of statics,
§ 53 (6) of dynamics, and § 60 (23) of electromagnetism, and
that by the use of its elementary properties their discussion is
greatly simplified.

In this chapter a brief accountt of the fundamentals of vector

+ For a complete treatment see Milne, Vectorial Mechanics (Methuen);
Weatherburn, Elementary Vector Analysis and Advanced Vector Analysis (Bell).
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algebra is given, and subsequently vector treatments will be
used for problems particularly well adapted to them, while in
other cases the vector equivalent of Cartesian formulae will be
noted.

A vector r is defined as a number 7 associated with a definite
direction in space.t The number r is called the magnitude of the

’

<

(a)

(d) (e)
Fi1c. 45.

vector and is to be positive or zero. A vector may thus be
represented by any line such as AB in Fig. 45(a) which has
length r and is such that the direction from 4 to B is parallel
to the given direction and is in the same sense. Any other line
equal and parallel to A B represents the vector r equally well,
for example, 4'B’, and, in particular, just one such line OP
can be drawn from a chosen origin O.

The sum of two vectors. If OP and 0@, drawn from an origin O,
represent the vectors r, and r,, then the sum r;+r, is defined

1 Clarendon type is usually used in print for vectors. In manuscript a bar
or a wavy line above or below the letter is convenient; if written below it
cannot be confused with the bar used to denote an average or a Laplace trans-
form. |r| is sometimes written for the magnitude of r. Normally the space
with which we are dealing is three-dimensional; the results, except those
involving vector produets, still hold in two dimensions.
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as the vector represented by the diagonal OR of the parallelo-
gram OPRQ; cf. Fig. 45(b). The sum of three non-coplanar
vectors Iy, Iy, Iy, represented by OP, 0@, OR in Fig. 45 (c), will
be represented by the diagonal OS of the parallelepiped with
sides OP, 0@, OR.
Algebraic laws such as
r1+r2 = r2+r1a (1)
ry+(r3+r;) = (X +105)+r; = 141,41, (2)
follow immediately from the geometry of Figs. 45 (b) and (c).
(—r) is defined as a vector of the same magnitude r as r, but
oppositely directed. The difference r; —r,isdefined asr; +(—r,).
The product kr of a number k with a vector r is defined as a
vector whose magnitude is |k|r, and which is in the same direc-
tion as r if &£ > 0, and in the opposite direction to r if k < 0.
An immediate consequence of the parallelogram law of addi-
tion is that a vector represented by OS, Fig. 45 (¢), may be
expressed as a sum of vectors represented by OP, 0Q, OR in
three chosen (non-coplanar) directions. These vectors are called
the components of the vector in the chosen directions. The most
important case is that in which the directions are mutually
perpendicular. Suppose that OX, OY, OZ are a right-handed
system of rectangular axes, and that i, j, k are vectors of unit
magnitude (‘unit vectors’) in these directions, Fig. 45 (). Then
if OP represents a vector r of magnitude 7, and (z, y,2) are the
Cartesian coordinates of P relative to OX, OY, OZ, we have

r = xi+yj-Fzk. (3)
In future we shall always use right-handed rectangular axes,
and for shortness will describe x, ¥, 2z as the ‘components’ of the

vector r; strictly, of course, the components, as defined above, °
are zi, yj, 2k. The magnitude r of the vector r is

(xz_*_yz_}_zzy. (4)
If z,, y,, 7, are the components of another vector r, relative
to the same axes, the components of the sum r+r,, are x4z, »

Yty 2tz
The product of two vectors. The choice of a definition is rather
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arbitrary, since any expression which involves the product of
the magnitudes of the vectors might be regarded as a product.
Two of these expressions are chosen because of their usefulness:
they are called the ‘scalar’ (or ‘dot’) product, and the ‘vector’
(or ‘cross’) product.

If two vectors r, and r, are represented by OP and 0@Q,
Fig. 45(e), the angle 8 such that 0 << 8 < = between OP and
0Q is called the angle between the vectors. The scalar product
r,.r, of the two vectors is then defined by

r,.ry = 7r,r,c080. (5)

As its name implies, it is a scalar or pure number. It follows
immediately that if the two vectors are perpendicular their
scalar product is zero. Also that

ry.Ty = Iy.T, (6)

and that r,.r, = ri. , (7)
Finally, it is easy to show geometrically that (cf. Ex. 1)

. (Fp4 1) = Iy.Tp4-1y.1 (8)

. For the system of mutually perpendicular unit vectors i, j, k
introduced above the scalar products are

ii=jj=kk=1, (9)
ij—jk=ki=o. (10),

If 2, y;, 2, and x,, y,, 2, are the components of the vectors
r, and r, relative to the axes of Fig. 45 (d), we have by (3)

1.6 = (% ity j+2 k)@ ity j+2,Kk)
=0, 0. 14y, Yo § . J+2 2K K4y 2, § K42, 9,k j4+...
= 1% +Y1 Yot 21 2 _ (11)
using (9) and (10). :
The vector product ry AT, of the vectors r; and r, is defined as
the vector whose direction is perpendicular to the plane of r,

and r, and in the sense of the progression of a right-handed
screw rotating from r, towards r,, and whose magnitude is

7,72 8in 6, (12)
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where 6 is the angle between the directions of r; and r,
[Fig. 45 (f)].

It follows thatf Tr,AT = —I AT, (13)
For the unit vectors of Fig. 45 (d) the vector products are

ini=jnj=kak=0, (14)

inj =k, irnk =i, kni=j. (15)

It is easy to show that (cf. Ex. 2)
ryA(Cg+TI3) = Ky ATy +Ty ATy, (16)

If r; and r, are vectors of components x;, ¥y, z; and xy, ¥s, 25,
we have by (3)

AT, = (B ity j+2K)A @ity j+2 k) | )
= (y1z2—21yz)i—{—(zlxz—xlzz)j+(x1y2—y1x2)k, (17)

on multiplying out and using (14) and (15). This may be
written in the form

rrrp=|i j k (18)
Y oA
Ty Yo 22

which is the easiest way of remembering the result.

The vector product of two vectors being a vector, the scalar
and vector products of it with a third vector will be of impor-
tance. These are called scalar and vector triple products.

Using (11) and (18) it follows that the scalar triple product

. (LAT) =2, ¥ 2% (19)
Ty Y2 R
T3 Yz =3

and thus from the properties of the determinant in (19) that
;. (T3 ATg) = F3. (P ATy) = Iy (T3 ATY). (20)

+ That is, the commutative law of multiplication does not hold. In develop-
ing any calculus of this sort, it is necessary to prove the laws of elementary
algebra as in (1), (2), (6), (8), (16), ete.; this makes the early stages tedious,
but it is essential since exceptions such as (13) do occur. The same point arises
in connexion with the operator D; cf. § 12.
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The vector triple product is by (18)
L A(PaATy) = i i k
Ty Y %
Y223—Ys% 2pT3—23%y LY3— Y2 %3
= 1{&y(x5 21+ Y1 +2520) — 2, 3 +41 Yo+ 20}
+i{ya(@s 21 +y3 41 +2521) —Ya(@, o +-41 Yo 21 20)}
+Hk{zy(T3 21+ Y5 Y1 +2321) —23(21 Ty +-41 Y +2, 220}
= Iy(r3.T;) —Ty(r;.Ty). (21)
This result is of the greatest importance. The reason for its
form may be seen from the following considerations: r, A ry is
perpendicular to the plane of r, and r,;, and since the vector
product ry A (ry A T3) is perpendicular to r, A rg it must lie in the
plane of r, and r,, that is, there must be a relation of type

Ty A (T ATg) = ary+fry,

where « and B are scalars. The result} (21) gives the values of
o and B.

53. The vector quantities of applied mathematics

The vector algebra developed in § 52 is really the pure mathe-
matics of a type of generalized number. We now have to con-
sider its relation to the mathematics of the physical quantities
in which we are interested. The first stage in the development
of any branch of applied mathematics consists essentially of
establishing the vectorial character of many of the fundamental
quantities which occur in it. This process needs considerable
care, not only since this character is different for different
quantities, but also because it does not follow without proof
(and in fact is not always true) that if a quantity can be specified
by a vector the combined effect of two such quantities is the
same as the effect of the quantity specified by the sum of the
vectors. In this section we sketch the foundations of statics and
dynamics, very briefly, from this point of view.

Vectors as defined in § 52 only specify a magnitude and a

1 Many direct prodfs of (21) are available, cf. Math. Gazette, 23 (1939), 35;
33 (1949), 125, 212; Milne, loe. cit., §31.
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direction:} some physical quantities can be completely described
_ in this way, for example a translation of a rigid body without
rotation (i.e. in such a way that the displacements of all points
of the body are equal and parallel); others are specified by a
magnitude and a direction af a point, and for these a vector is
~ required to specify the magnitude and direction, and another
to specify the point.

(i) Position. The position of a point P relative to an origin O
can be specified by a vector r of length and direction given by
OP. As in Fig. 45(a), OP is the one line which can be drawn
from O which represents the vector r: it will be called a postition
vector. .

If the position vector of O relative to another origin O’ is r,
then the position vector of P relative to O’ is r-+r’.

(ii) Velocity and acceleration. To introduce velocity we have
to define differentiation of a vector with respect to a scalar
quantity, which in our case will be the time ¢. If the position
vector of a moving point P relative to an origin O is r at time ¢
and r-8r at time ¢+ 8¢, we define the velocity v or I as

dt §t—0 O

From its definition, cf. Fig. 46 (a), the velocity of the point P
can be represented by a vector directed along the tangent to its
path. The acceleration ¥ is defined similarly as dv/dt.

Rules for differentiating sums and products of vectors are
proved in the same way as for scalars. Thus,

(1)

d .

‘%(r1+r2) = I+, - (2)
d . :
a‘t(rrrz) == I;.Ty+T;. Ty (3)

d ' . .

(-l—t(rl/\rz) =r, AT+ T, AT, (4)

t They are often called free vectors to emphasize the fact that they are not
restricted to any particular line and to distinguish them from localized vectors
which have a definite line of action. Thus a couple in statics is a free vector,
~ and a force a localized vector.
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It follows from (2) that velocities combine according to the
law of vector addition, that is, if &, is the velocity of a point P
relative to an origin O, and £, is the velocity of O relative to
another origin 0’, then ¥, i, is the velocity of P relative to 0.

Fia. 46.

(iii) Rotation. Suppose a rigid body is rotated through a small
angle 80 about an axis through the origin O whose direction is
specified by a unit vector a. Then the displacement of the
point P whose position vector relative to O is r is given in
magnitude and direction by

aAr sl (5)

[cf. Fig. 46 (b)] provided 86 is so small that 562 is negligible.
If the body is rotating about the axis, so that 30 is the angle
turned through in time 8¢ and

3t—->0 Of
then, taking the limit as 8t - 0, (5) gives for the velocity v of

the point P V= wAT, (6)

where w = af. w is called the angular velocity of the body.
Returning to (5), suppose that following the rotation 86 about a,
the whole system, including the axis a, is given another small

rotation 3¢ about an axis through O specified by the unit
5296 M
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vector b. The displacement of P due to the combined effect
of these two small rotations is given by

anrdl+bAardp = (adf+bdp)Ar, (7)

cf. Fig. 46 (c), and thus is the same as the displacement caused
by a single rotation specified by the vector sumt a 36+b 3¢.
Thus small rotations combine as vectors, and in the same way
angular velocities combine as vectors.

The most general displacement of a rigid body can be specified
by the displacement of a marked point on it from a fixed origin,
together with a rotation of the body about an axis through the
marked point (¢f. Ex. 10). Thus its motion will be specified by
the velocity v of the marked point and the angular velocity w
of rotation about it.

(iv) Force. A force is specified by its magnitude, direction,
and line of action. So far as magnitude and direction are con-
cerned, it may be specified by a vector P.

It is taken as an experimental fact (or, if preferred, as an
axiom of statics) that a force may be regarded as applied at any
point of its line of action (or that forces P and —P applied at
any two points of this line annul each other). Thus a force
is completely specified by P and the position vector r of any
point of its line of action. We shall speak of ‘a force P applied
at a point r’. ,

It is a second experimental fact (or an axiom of statics) that
concurrent forces combine as vectors, that is, that forces P, and
P, applied at a point O are equivalent to a force P,+P, applied
at O.

The work done by a force P in a small displacement 8r of its
point of application is P.sr. (8)

(v) The equation of motion of a particle. If the resultant of the

T The need for care is illustrated by the fact that this is not true of finite
rotations. Such rotations can be specified by vectors, but the combined effect
of two finite rotations is not equal to that of a single rotation corresponding
to the sum of the vectors. In some treatments of vectors the parallelogram
law of addition is included in the definition, and before any quantity is regarded
as a vector quantity it has to be verified that such quantities combine according
to the parallelogram law.
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forces on a particle of constant mass m is P, Newton’s second
law gives the equation of motion '

%(mi‘) = mi = P. (9)

If the mass of the particle is not constant, Newton’s law
becomes ~

& omt) = P, (10)

but this is not applicable to all cases; cf. § 63.

(vi) The moment of a force about a point. The moment of a force
P about a point O is defined as the vector whose magnitude is
P times the perpendicular distance of O from the line of action
of P, and whose direction is normal to the plane of O and P
and is related by the right-hand.screw law to the direction of
turning of P about 0. If r is the position vector, relative to O,
of any point on the line of action of P, the moment is exactly
[cf. Fig. 46 (d)]

rAP. (11)
(vil) The general conditions of statical equilibrium. Suppose
a rigid body is acted on by forces P, B,,..., P, applied at the

points 1y, r,,..., r,, respectively. The general conditions for the
body to be in equilibrium under this system of forces are

)3} ) (12)
8=1
ir,/\l’, = 0. (13)

8=1

These may be established in either of two ways. Here the
equations of motion of a rigid body, § 66 (8) and (9), will be
established without reference to them, and (12) and (13) may
be deduced from the condition that the body is to remain at rest
under the application of these forces. -

Alternatively, the system of forces is reduced in the following
way. Corresponding to the force P, at r, we add two forces F,
and —P, at the origin O: these have no effect on the system
[cf. Fig. 46 (¢)]. The force P, at r, and the force —F, at O are
defined to form a couple of moment r, AP, and the properties
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of this studied (cf. Ex. 11, 12). When this has been done for
all forces, we are left with concurrent forces P,,..., P, at the
origin, and (12) is the condition that the resultant of these
vanish, while (13) is the condition that the resultant of the
moments of the couples vanish.

(vili) Linear momentum. Let m be the mass of a typical par-
ticle of a rigid body (or any assemblage of particles), let r be its
position vector relative to an origin and £ its velocity. Its linear
momentum is defined as m#, and, using > to denote a summa-
tion over all particles of the system, the linear momentum of

the system is S mi. (14)

(ix) Angular momentum. If m is a typical particle of any
assemblage of particles as in (viii), its linear momentum is mf,
and the moment of this momentum about the origin O is as

in (1) me At

This quantity, summed over all particles of the system, viz.
> mr AT, (15)

is called the angular momentum of the system about the origin.

(x) Vector fields. In a vector field, at each point of space a
vector is defined whose magnitude and direction are functions
of the position of the point. Electric and magnetic fields are of
this type.

(xi) Vectors in electric circuit theory. A complex number
z = x+1iy = |z]e?® may be represented by a vector in the (z, y)-
plane of magnitude |z2| and in a direction inclined at # to the
z-axis. The sum of several complex numbers may be repre-
sented by the sum of the corresponding vectors. The product
and quotient of two complex numbers z; and z, may be repre-
sented by vectors of magnitudes |z,| X [2,] and [z,]/i2,], respec-
tively, in the directions 6,4-6,, and so on; in particular,
multiplying a complex number by ¢ corresponds to rotating the
vector which represents it through 90°.

In this way a representation of the currents and voltages
in an electric circuit can be given which has been much used
by engineers. Its most important application is to the steady
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.

state theory, cf. § 44, where it gives a representation of the
complex currents and voltages, I’ and E’, and the complex im-
pedances z in the various parts of the circuit, which shows the
connexions between them very clearly: this may be used either
as a diagram for illustrating and proving circuit properties or
as a drawing-board method for calculating them numerically.
The actual currents and voltages, I and E, are obtained by
multiplying I’ and E’ by e and taking the real part: since e**
is represented by a vector of unit length which rotates steadily
with angular velocity w, the connexion between Iand E is found
by regarding the diagram connecting I’ and E’ as rotating
steadily with angular velocity .

EXAMPLES ON CHAPTER VI

1. If OP and OQ represent the vectors r, and r,, show that r,.r, is
equal to the product of the length of OP and the projection of 0@ on it.

OPR is any triangle. Show that the sum of the projections of OP and
PR on any line through O is equal to the projection of OR on it. Deduce
§ 52 (8).

2. Let OP, 0Q, OR, OS represent the vectors ry, Iy, r,-r,, and ry,
respectively. Let OF’, 0Q’, OR’ be the projections of OP, 0Q, and OR
on the plane through O perpendicular to OS. Show that the vector
products of r, with Iy, ry, and r;+r, are represented by 7, times the lines
obtained by rotating OP’, 0Q’, and OR’ through 90°. Deduce § 52 (16).

3. If OP, 0Q, OR represent r,, I';, I's, show that r;.(r, Ar,) is equal
in magnitude to the volume of a parallelepiped of sides OP, 0@, OR.

4. Derive § 52 (20) by expressing r,, I,, and r, in terms of their com-
ponents in the right-handed system of rectangular axes parallel to r,,
T, AT, and Py A (P ATS).

5. Show that

(i) (P ATy).(r3AT,) =|r.r; Iy.T,
r,.ry rp.r,
(i) (riATy).(ryAT,) = 7ir3—(r.1,)%
(iil) (Y123— 219202+ (21 22— 212, +(T1 Yo — 1 7o)°
= (2} +yi+ 22+ y3+2) — (2123 Hy1¥3+ 21 22)%

6. Show that
(aAb)A(cad)=[a.(cAad)]b—[b.(cAad)la
= [a.(bAd)lc—[a.(bAc)ld.
Deduce that any vector r can be represented in terms of three non-
coplanar vectors a, b, ¢ by the formula
r— [r-(bac)lat[r.(caa)lb+r.(anb)lc
- a.(bac) '
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7. Show that the solution of the vector equation
ar+by+tcz=d

is __d.(bac)

~ a.(bbac)

etc., unless the denominator vanishes. Deduce the usual rule for solving
linear equations using determinants.

8. Show that the equation of a straight line may be written
= a-tb,

where r is the position vector of any point on it. Show that the shortest
distance between the above line and the line rr = a’+4-tb’ is
b.(b’A(a—a’))
LYY
9. Show that
(i) The equation of the plane through r, with its normal in the direction

of a unit vector n is
(r—r;).n=20,

where r is the position vector of any point on the plane.

(ii) If the length of the perpendicular from the origin to the plane is p,
the equation of the plane is n.r = p.

(iii) The equation of the plane through three points whose position
vectors are a, b, ¢, is

r.bac+cratanb)=a.(bac).

10. The point O of a rigid body is fixed. 04 and OB are two marked
lines in the body, and 04’ and OB’ are their positions after the body
has been moved in any way about 0. Show that the body can be brought
from its first position to its second by a rotation about the line of inter-
section of the plane which is perpendicular to the plane A0A’ and bisects
the angle 40A’ with the plane related in| the same way to BOB’.

11. A force P applied at r, and a force — P at r, constitute a couple.
The sum of the moments of the forces abput O is (r,—r,;) A P, which is
independent of the position of O and is called the moment of the couple.

(i) Show that the above couple and a couple consisting of Q at r, and
—Q at r,, where Q is such that (r;—r,)AQ = —(r;—r;) AP, are in
static equilibrium. {Add forces —P—Q at r;, and P+ Q at r,.]

(ii) Show that the above couple and 4 couple consisting of —P at
r;+r and P at r,-+r are in static equilibrium.

(iii) Deduce that a couple is statically equivalent to any couple of the
same moment. !

12. Show that any two couples are equivalent to a couple whose
moment is the sum of their moments. ;

13. Show that forces P, at r,,..., P, at ‘1‘,, are equivalent to a force

R=3P
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at the origin O, together with a couple of moment
G=2raAP.

Deduce the conditions of statical equilibrium, § 53 (12) and (13).

If the origin is moved from O to the point O’ whose position vector
relative to O is s, show that the resultant force and couple are R and
G-—sAR. ’

14. Show that the system of forces in Ex. 13 is equivalent to a single
force if and only if R.G = 0, and that its line of action relative to the

iin O i
origin O is RAG

R

15. Show that if the point 0’ in Ex. 13 is chosen on the line

RAG
R
the couple and force are parallel and the ratio of their magnitudes is
(R.G)/R2.

16. If forces P,,..., P, act on a rigid body at the points ry,..., Ty,
respectively, and the body is given a small displacement (which must
be consistent with any constraints on the body) consisting of a transla-
tion 8a and a rotation 88 about an axis specified by the unit vector n,
show that the work done by the forces is

+IR,

+IR,

i P,.5a+ i n.(r,AP,)86.
8=1 =1

Deduce that this work is zero if the forces are in equilibrium, and
conversely that if the work is zero for all possible small displacements
the forces are in equilibrium.

17. Complex voltage E’ of frequency w/2n is applied to an L, R, C
circuit. Draw vector diagrams showing the voltage drops over the induc-
tance, resistance, and capacitance, and their relation to E’.

18. Draw vector diagrams representing the combinations of impe-
dances in Fig. 35 (b), (c), (d).

19. The voltage drop V over portion of a circuit carrying steady state
alternating current is the real part of V’eiwt, and the current I in it is
the real part of I'¢i“t. The average power F,, in this portion of the
circuit is defined as the average of VI over a period. Show that if
V! = Vy+iV,, I’ = I,+41l,, then

F,, = L+ WL L)
This provides a meaning for the scalar product of the vectors V'and I'.



VII
PARTICLE DYNAMICS

54. Introductory

In §§ 4, 28 the motion of a particle whose position is specified
by a single coordinate, say x, with any laws of force and resis-
tance, was discussed and found to lead to the equation

mE = f(x,2,t), (1)
and frequently to the simpler equation
mE = f(x)+g(@)+h(t). - (2)

The important special case in which f(x) and g(z) are propor-
tional to x and %, respectively, so that (2) becomes linear, has
been discussed in the preceding chapters.

We now return to the non-linear equations (1) and (2). There
are no general methods for solving}these, but two important
special cases can be treated in detail, namely those in which the
right-hand sides consist of functions of « or & only. These cases
are considered in §§ 55, 56. Occasionally, exact solutions of more
complicated equations can be obtained in the same way; for
example, the equation P

422 f(x)+g(x) = 0 (3)
is reduced to a first-order linear equation in 2 by § 55 (3), but
the discussion of such equations has usually been restricted to
the study of cases in which the non-linear terms are small.
These are treated by the method of successive approximations
described in § 58. When the non-linear terms are not small,
numerical or graphical integration is often resorted to.

The remainder of the chapter is devoted to a study of the
motion of particles in two or more dimensions.

In all cases it is assumed without further statement that the
mass of the particles involved is constant. The motion of a
particle whose mass varies is considered in § 63.

55. The force a function of posit_ibn only
In this case the equation of motion § 54 (2) becomes

mé = f(z). (1)
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The methods of this section and the next consist essentially
of transforming the second-order equation § 54 (2) into a separ-
able first-order equation in either the velocity v = & or in v2.
We have &% dv

=HE @ - o

_dvdz_vdv_ld(vz)
T dadt dx 2 dx

Using the form (3) of £ we may write (1) in the form

(3)

d
4 _ jia), @
and thus »? is determined in terms of by a simple integration
ymo® = [ f(z) dz+-C. (5)

The arbitrary constant C in (5) is to be determined from the
initial conditions. Alternatively, using these, a definite integral
for v? may be written down immediately; suppose that, when
t = 0,z = a and v = V, then, integrating (4) with respect to «
between the limits a and z, we get :

ym[o?]F = f f(x) de,

or ;mvz mpe = f f(@) da. (6)

A slightly different method of integrating (1) which is often used is
as follows: multiply both sides of (1) by & which gives

mak = f (x); : (7)
and integrate with respect to the time which gives
. ' de
it = [ f@) 5 at+0 = [ f@) a0, ®)
as before, since %(a‘:’) = 244, (9)

Equations (5) or (6) give the velocity as a function of position,
and are referred to as the first integral of the equation of motion.
Each of them is the energy equation for the motion and will
be discussed from this point of view in § 73. For the present we
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merely remark that, for motion to be possible, v must be real
and thus v? given by (6) must be positive.
To complete the solution we have from (6)

o 3
g :i:{V“r%ff(x) dx} : (10)

The sign before the square root is determined by the circum-
stances of projection, that is, by the sign of dx/dt at the instant
¢t = 0 when the particle was set in motion. Finally, integrating
(10) between the corresponding limits of 0 to ¢ in ¢, and a to =
in z, gives

x L, -3
1= + J' {VZ—{-%jf(x) dx} de. (11)

Needless to say, these formulae should not be quoted; the
whole process should be gone through in each special case,
remembering only the initial step (4) or (7).

Ex. 1. The simple pendulum.

A particle of mass m is attached to a light rigid rod of length I,
freely hinged at a fixed point O, and moves in a vertical plane.
If 8 is the inclination of the rod to the vertical, the equation of
motion of m is [cf. § 61 (11)] ‘

mlf = —mgsin ¥, (12)
or G+n?sinf = 0, (13)
where n? = g/l. (14)

For small oscillations sin  in (13) may be replaced by 6, and
(13) becomes the linear equation

G+n20 = 0. (15)
Here we do not make this assumption, but solve (13) by the
methods described earlier. As in (4) we write (13) in the form

1d oo o
éd—o((i)_— n2sin g,

so that, integrating, .
02 = 2n2cosf+C. (16)
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Suppose that the pendulum is released from rest at 6 = «a,
that is, when ¢t = 0, # = o, 8 = 0. Substituting these values
in (16) gives C = —2n2cos«, and thus (16) becomes

02 = 2n?(cos §—cos a).
a9

Therefore = - _ n(2 cos 6—2 cos a)?, a7

where the negative sign has been chosen for the square root in
(17) since the particle begins to move backwards. Integrating
(17) between the limits 0 and ¢ in ¢, and « and 8 in 8, gives

[
dé
w= = [ iz (18)

This integral cannot be expressed in terms of elementary
functions, but, like many that arise in the present context, it
is an elliptic integral.

The elliptic integrals F(k, ¢) and E(k, ¢) of the first and second
kinds, respectively, are defined by

dt
Fd) = [ ey = fu__tz)szﬁfﬁ)w (19)
o

sing

Bk, $) — f 1 — k2 sin®p)t dyp — f :

}% dt,  (20)

and are tabulated functions.t Many integrals can be expressed
in terms of them, for example integrals whose integrands are the
reciprocals of the square roots of cubics or quartics.

To reduce (18) to one of these forms we write it as

2nt = . 21
nt f (sin? $a—sin® LO) (21)
4
In this put sin 16 = sin Jasin g,
df  2sinfacos¢  2sinjacosé
dé¢ ~  cos30  (1—sin®asinZp)t’

t Cf. Jahnke-Emde, T'ables of Functions (Teubner). They give also many
formulae for expressing integrals in terms of ¥ and E.
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and (21) becomes

i
¢
"= f (1—sin? fa sing)? (22)
¢ .
= F(Sin %Oﬁ, %rr)—F(sin %a, (ﬁ) ) (23)

The period T of the oscillation is
T SF(sin Lo, ). (24)

While (23) and (24) are accurate solutions of the problem in
terms of tabulated functions, they are not particularly informa-
tive in the sense that they do not show how solutions based on
the approximate linear equation (15) go wrong for larger values
of the amplitude. This may be seen by expanding the integrand
of (22) by the binomial theorem. Suppose we wish to find the
effect of the amplitude of the oscillation on the period: by
(22) the period 7 is

I
T = S f (1—sin? Jasin®$)* dgp
0

i
= S, f (144 sin? fosin®p - § sin® Jasintg+...) deé
0

— 3(7_2'4_%%31112 %a+g?l’_’ésin4-g.a+...). (25)
Neglecting fourth and higher powers of « this gives
27 a?
T2 (1 +E), (26)
thus the period increases with increasing amplitude.
Ex. 2. The anharmonic oscillator.
The linear or harmonic oscillator has equation of motion
& = —nix. (27)
In many important cases the law of force is not that of (27), but there
is & change of restoring force with displacement which may be expressed

by adding higher powers of z to the right-hand side of (27). The next
power for which the restoring force is independent of the sign of « is the

third, giving & = —niw—bad. (28)
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If b is positive in (28) the restoring force increases steadily above the
linear value as the displacement increases; this is the case with a non-
linear spring whose stiffness increases with increase of displacement. If
b is negative the restoring force falls below the linear value: the case
b = — }n?, corresponding to retaining the first two terms in the expan-
sion of sinf, is often used as a second approximation to the equation
of motion (13) of a pendulum.

If & quadratic term in z is included as in

i = —nlr—ax?, (29)
or & = —nr—ax®—bxd, " (30)
the restoring force is not symmetrical about « = 0.

Exact solutions can easily be written down. Taking the law

(30), suppose that when ¢t = 0, 2 = V¥, and z = 0. Then, as in (6),
32— 3V = —In%?— lax®— }bat, (31)
v = {V2—n%?— jaz’— b}t

and ¢t = f {V2—n2x?— 3az3— }bxt}t dx. (32)
0

As remarked above, the integral (32) can be expressed in terms of the
elliptic integral F(k, ¢) defined in (19), but if higher powers of x than the
third appear in the equation of motion (30), this cannot be done.

Ex. 3. A rigid cone of semi-vertical angle o and mass m, moving with
velocity V in the direction of its axis, impinges normally on a plastic
substance which provides resistance to motion of the cone which may be
represented by a uniform pressure F (the ‘flow pressure’) over the region
of contact.

Let = be the depth of penetration of the apex of the cone at time ¢
after the instant of contact ¢ = 0. Thenatt = O wehavez = 0,2 = V.

The force on an element of area 84 of the surface of the cone is — F 84 ;
the resolved part of this in the direction of the axis is — F 84 sina,
which is just — F times the projection of the area 84 on the plane z = 0.
Thus the total force on the cone in the direction of its axis is — F times
the area of the impression made by the cone in the plane x = 0, that is

- Frx?tanio.
Thus the equation of motion of the cone is
mi = —wFx?tania. (33)
Integrating as in (6) and using the initial conditions, the velocity »
of the cone is found to be

Imet = ImVi—lnFadtania. (34)
The cone comes to rest when v = 0, that is, when the depth of
penetration 1s ( ImVe ) 3
27 F tan%a
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F can be determined by measuring the size of the impression. The
time of penetration to any depth can be expressed as an elliptic integral.

Ex. 4. Collision of egqual spheres.

Suppose a sphere 4 of mass m and radius @, moving with velocity V
along the z-axis, collides with an equal sphere B at rest with its centre
on the z-axis. We choose the origins of time and distance so that the
spheres touch at ¢ = 0, and the centres of the spheres 4 and B are at
z = 0 and x = 2a at that time.

v

ieg ¢

!
B
7 )
] /
; /B

SCEEEE] :
— - - x+2a-2f- - - o | m2w ¢t
(a) (b)

Fia. 47.

In the process of collision a small flat is squashed on either sphere,
and, since we have assumed that the spheres are of the same size and
material, this squashing will be the same for both and the surface of
separation will be plane. Let £ be the depth of the impression on either
sphere at time ¢, then if z is the position of the centre of the sphere 4
at time ¢, that of the sphere B will be z+ 2a—2¢.

Also, whent = 0,z = 0, § = 0,% = V, and the velocity of the centre
of the sphere B is zero, that is

d
7 (x+2a—2€) = 0,

i.e. £=13V, whent=0. (35)

The spheres” exert forces on each other across the area of contact:
suppose the force is f(£), a function of the depth of the impression which
will be discussed later. The equations of motion of the spheres A and B
are

mi = —f(£), (36)
m(i—2£) = f(£). (37)
Adding (36) and (37) gives
i—¢ =o0.
Integrating, and using # = V, £ = }V, when ¢ = 0, gives
: z—¢& = }V. , (38)

This result could have been written down by the principle of conserva-
tion of momentum.
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Subtracting (36) and (37) gives
mé = —f(€) (39)

an equation for ¢ of the type being studied in this section.

If the spheres are perfectly elastic, f(£) can be calculated by the
methods of the theory of elasticity, being the force necessary to squash
a flat of depth ¢ on a sphere, and it is found that f(§) = k£° where k
depends on the radius of the sphere and its elastic properties.

Here we shall consider the case in which the spheres are perfectly
plastic, that is, that they exert a constant pressure P (the flow pressure,
characteristic of the material) over the area of contact while the spheres
are approaching one another. If r is the radius of contact, so that, for
small £, 72 = 2af nearly, we have

(&) = 7P = 2natP,

and (39) becomes Etw =0, (40)
where w? = 2nalP/m. (41)
(40) is linear and its solution with £ = 0, £ = 4V, when ¢t = 0, is
v .
£ = Esmwt. (42)

The spheres stop approaching when £ = 0, that is, when ¢ == 7/2w and
the value of ¢ then is V/2w.
The velocity of the sphere A is by (38) and (42)

& = }V+¢ = V(1 +coswt). (43)
The velocity of the sphere B is
(%(x+2a—2§) =d—2 = }V—§ = }V(1—coswt). (44)
+

The velocities of the spheres A and B, given by (43) and (44), are
shown in Fig. 47 (». For t > m/2w the spheres both move with
velocity 3V.

56. Motion with resistance a function of the velocity
In this section we consider motion with differential equation
mi; = f(). (1)
. The process of solution is very simple provided the integrals
can be evaluated. As in § 55 (2) and (3), we write

v=2a
. . dv
for the velocity. Then &= (2)
dv dx dv

and x=%%;—v£. (3)
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The method of solution is now as follows:

(i) Velocity in terms of distance
Writing # in (1) in the form (3) gives

mo &Y — f(0), (@)

a separable first-order equation for v in terms of z.
(ii) Velocity in terms of time
Writing & in (1) in the form (2) gives

n®— fo), ®)

a separable first-order equation for v in terms of .
(iii) Posttion tn terms of time

The simplest way of finding this is usually to eliminate v
between the solutions of (4) and (5). Alternatively, the solution
of (5) gives dx/dt as a function of f, and another integration
gives z as a function of ¢.

The function f() in (1) may contain a term independent of
the velocity, that is, a constant force . In this case we write
f(#) = F—¢(&), where ¢(£) is the resistance to the motion.

Then (1) becomes mé — F—g(a). (6)

Usually ¢(#) is an increasing function of &, so there will be

a velocity V at which the resistance to motion is equal to the
applied force F. That is

$(V) = F. (7)

When 2 has the value V, & is zero by (6), and thus the particle
continues to move with constant velocity V. For this reason V
is called the ferminal velocity; clearly it will appear as a natural
parameter in many solutions.

Before proceeding to solve problems it is useful to consider
the commonly occurring laws of resistance to motion. ' Resis-
tance proportional to velocity arises from shearing of ideal
vigscous fluid and has been studied in Chapter IV. It also occurs
for the slow fall of small spheres through viscous fluid. If a is
the radius of the sphere and p and v the density and kinematic
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viscosity of the fluid, Stokes’s law states that the resistance to
motion of the sphere at velocity v is

6rapvy. (8)

If p, is the density of the sphere, its terminal velocity when
falling in the fluid under gravity is by (7) and (8)

} pv

The law (8) is of considerable importance since it determines
the motion of small raindrops and small particles settling in
liquid (sedimentation).

(8) is valid for motion in which the fluid is not turbulent.
The degree of turbulence of the fluid is determined by the
Reynolds number R, a dimensionless quantity which in the

resent i
pre case is 2

R="2 (10)

14

The resistance to motion of the sphere is found experi-menta]lyy
to be given by A 3mpatC(R)?, (1)

where C(R) is a function of Ronly. If R < 10-1, C(R) = 24/R,
and (11) reduces to (8). For 10! << R < 103 there is a transition
region; while for 10® << R < 105, C is very nearly constant so
that the resistance to motion is proportional to the square of
the velocity.

The variation of C(R) with R is shown in Fig. 48.

Enough has been said to show that even for the simple case
of a falling sphere the variation of resistance with velocity is
extremely complicated. For other bodies, projectiles, etc., the
resistance is usually specified graphically or as a power series in
the velocity.

Since resistance proportional to the square of the velocity has
been seen.above to have some physical significance and leads to
fairly simple results, we consider it in the examples below.

Ex. 1. A particle of mass m falls from rest under gravity and

resistance to motion km times the square of the velocity.
5208 N
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Taking the origin so that + = 0 when ¢ = 0, and the z-axis
vertically downwards, the equation of motion is

mE = mg—mka?. (12)

-1 [~ 1 2 3 4 5 [

logoR
Fia. 48.

The terminal velocity V is given by
V2 = g/k. (13)
To find velocity in terms of distance, as in (4) we write (12) in

the form dv
— = k(V2—e?).

v = k(V2—2?) (14)

Integrating, and using v = 0 when x = 0, we get

v

v dv
it = kzx.
0
2__ 52
That is, ——%ln(V - ) = k.
Therefore 22 = V1 —e 2z), (15)

This shows the way in which v > V as ¢ — 0.
Next, to find velocity in terms of time, as in (5) we write

(12) in the form dv
— = k(V2—2v?), 16
7 ( v?) (16)
Since v = 0 when ¢ = 0 this gives
dv

I_/2____?2=Ict.
o
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Therefore v = Vtanh kVt. (17)

To find the position at any time, we eliminate v between
(156) and (17). This gives
tanh2kVt —= 1 —e—2k=,

or x = % In cosh kV't. (18)

Ex. 2. A particle is projected vertically upwards with velocity U under
gravity and resistance to motion mk times the square of the velocity.

Choosing the z-axis vertically upwards with the origin at the point
of projection, the equation of motion is
mE = —mg—mkz?, ‘ (19)
to be solved with 2 = U, x = 0, when t = 0.
To find velocity as a function of distance we write (19) as

dv
&y - 24 52
LN k(V24-02), (20)
where V2 is defined in (13). The solution of (20) is
vdy 24 g%) — —
Viget = kx+C, $In(V3+402) = —kx+C.
Since v = U when z = 0, this gives
V24 U2
The greatest height attained, which is the value of x when v = 0, is
1 Uz)
ﬁln(u_ﬁ ) (22)
To find velocity as a function of the time we write (19) as
dv
oY L (Ve 2
dt k(V2402).
\ The solution of this with © = U when ¢ = 0 is
' U v
— 17 _tan-lo
kVt = tan 7 tan 7 (23)
After the particle has come to rest at height given by (22), and at time
1 LU
—_. =1 __
kVtsm % (24)

it commences to fall, and the equation (19) ceases to hold since the
resistance to motion now acts upwards.
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Ex. 3. A particle of mass m is blown along the z-axis by a wind of
velocity U, the force on the particle being mi(U —v)?, where v is the velocity
of the particle. If it starta from rest at x = 0 at t = 0, find the motion.

The equation of motion is

dv
o = MU—op, (25)

and its solution with v = 0 when ¢ = 0O is

1 1
T U~ &
ktU?
or v = m. (26)
To find the position at time ¢ we have from (26)
¢
ktU? dt 1

r = f T U = Ut—Eln(l+ktU). ' (27)

0

57. Non-linear problems in electric circuit theory

In Chapter V the equations of electric circuit theory were
discussed on the linear assumptions § 41 (1)-(3). For most pur-
poses these are adequate, and also the general non-linear equa-
tions are quite intractable. There is a number of cases in which
non-linearity is of great importance, and in which exact solutions
of simple special problems can be obtained by methods similar
to those of §§ 55, 56. Here we discuss briefly non-linear resis-
tances and iron-cored inductances.

(i) Non-linear resistance

Many semi-conductors and electron tubes may be treated as
resistances in which the voltage drop V is connected with the
current I by the relation

V= ¢l) . (1)

in place of § 41 (1).

Suppose, for example, that constant voltage E is applied at
t = 0 to such a resistance in series with an inductance L obeying
§ 41 (2). Then, as in § 41, the circuit equation is

I .
LS +¢() = E. 2)
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If the current in the inductance is zero when ¢t = 0, the
solution of (2) is I .
dl
t=L J' _ol 3
J T4 ®)

This can be evaluated for simple forms of ¢(I), the one most
used in practice being the power law I = KV", '
(ii) Iron-cored inductance

In this case the linear relation § 41 (2) does not hold. It is now
most convenient to work with the flux ® linked with the induc-
tance. The voltage drop V across the inductance is then

do
=" (4)

The flux P, instead of being LI as in the linear case, is now
connected with I by a non-linear relation

I = f(®). 8

For example, suppose that constant voltage E is applied at

t = 0 to an inductance satisfying (4) and (5), in series with a
linear resistance R satisfying § 41 (1). Then the circuit relations
are

do
= T Bf(@®) = &, (6)

and if J = 0 when ¢ = 0, the solution is

4
ao
t=!ﬁjm@.' (7)

Clearly other simple problems of types (i) and (ii) can be
solved explicitly in the same way. When we come to slightly
more general problems, such as the L, R, C circuit, we usually
reach second-order non-linear equations which cannot be solved
explicitly. For example, the circuit equation for oscillations in
a closed L, R, C circuit with linear resistance and iron-cored
inductance is

d® Q
@ TR =0
d*® dl 1
or W+RET+EI=O’ (8)
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where I and @ are connected by (5). Taking the simple form
I = Ad+ BD? 9)
as the approximation next in order of simplicity to the linear
one, (8) becomes
d*®
dt?

+ R(A-{»SB(I)Z)‘%%)JF% ®(4 - BO?) — 0. (10)

58. Oscillations of non-linear systems

It was remarked in § 54 that the types of problem discussed
in §§ 55-7 are the only important non-linear ones for which
exact solutions are obtainable by elementary methods. Because
of the difficulty of studying more general non-linear problems,
attention has largely been concentrated on what is perhaps the
most important problem of this type, namely the effect of small
non-linear terms on the oscillations of a system.

Thus we study equations of motion of the type

Z4n2rtef(r, £) = 0. (1)
where ¢ is small. If we neglect ¢ altogether, the equation
becomes ddniz = 0, )
whose solution, asin(nt-+¢), (3)

is a harmonic oscillation whose period 2=/n is independent of the
amplitude of the oscillation. We wish to see what effect the
small non-linear terms in (1) have on the simple solution (3). It
may be remarked that, even if an exact solution could be found,
it probably would not be very useful for this purpose (e.g. § 55
(24) is not) so that in any case new methods have to be devised.

First we list some problems of the type envisaged, most of
which will be used as examples later:

(i) The motion of a mass m with linear restoring force and
resistance to motion proportional to the square of the velocityt

E+-kx|E|+nie = 0. (4)
(ii) The anharmonic oscillator
Z4n2x+4bx® = 0. (5)

+ Notice that # || changes sign with the velocity, so (4) is applicable to
both directions of motion whereas § 54 (3) is not.
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(iii) The equation § 57 (10) for electrical oscillations in a cir-
cuit containing an iron-cored inductance, viz.

&+ R(4+3BDd + 16<I>(A+B(D2) —o. (6)

(iv) The equations § 48 (16) and (11) which arose in connexion
with triode oscillations, namely
v—e(l—av—Buv?—...)0+n% = 0, (7)
I—e(l—al—bl*—..)[4n2] = 0. (8)
The most important equation of this type is van der Pol’s
—e(l—v)o+ntv = 0, (9)

which is equivalent to (7) if only the terms (1—pgv?) in the
coefficient of ¢ are retained.
There are various methods of treating (1); we shall first give
a sketch of that used by Kryloff and Bogoliubofft since it leads
to a single formula applicable to a wide variety of cases. The
other methods of approach will be treated more briefly later.
If we neglect € in (1) we get the solution (3), that is,

x = asin(nt+¢), (10)
& = na cos(nt+¢), (11)

in which ¢ and ¢ are constants. We now attempt to find a
solution of (1) in which z and % are still given by (10) and (11),
but @ and ¢ in these are now functions of the time. If x is
given by (10) with @ and ¢ functions of the time, we have

Z=an cos(nt—{—tla)—{—dsin(nt—l—cﬁ)—i—a«ﬁ cos(nt+¢), (12)

but since we have assumed that & is given by (11), the sum of
the last two terms of (12) must be zero, that is

dsin(nt-+¢)+ae cos(nt+4) = 0. (13)
Differentiating (11) gives
& — —nlasin(nt+¢$)+nd cos(nt+)—nagsin(ni+¢$). (14)

¥ Introduction to Non-Linear Mechanics (Princeton University Press, 1947).
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Substituting (10), (11), and (14) in (1), and writing for short-

ness b= nt+d, (15)
we get
nd cosy—nagsiny = —ef(asiny, nacosy). (16)

Solving (13) and (16} we get

a= -—:;Lf(asinzp, an cos r)cos i, (17)

p = niaf(a sin , an cos )sin . (18)

These equations give the way in which the amplitude ¢ and
the phase ¢ of the solution (10) of (1) vary with time. Since both
d and ¢ are proportional to the small quantity e, it follows that
they are small, that is, that ¢ and ¢ are slowly varying functions
of the time. Thus in time 2n/n, Y = nt+¢ will increase by
nearly 2= while @ and ¢ will have changed very little. Thus
in calculating d¢ and ¢ from (17) and (18) we may, as a first
approximation, replace the right-hand sides by their average
values over a range 2= in ¢, regarding a as constant when taking
the average; that is we take

an
Z_? = — 2—;-& f Sflasiny, an cosp)cos i dif, (19)
0
2
%—f = 2’;‘1 f flasing, an cos )sin di. (20)
]

1t,should be emphasized that (17) and (18) are exact; (19) and
(20) are simply obtained from them here as approximations
which are physically reasonable. For a complete justification
of (19) and (20) and higher approximations (the method is to
expand the right-hand sides of (17) and (18) in Fourier series
(ef. Chap. XI) of which (19) and (20) are the first terms) the
reader is referred to Kryloff and Bogoliuboff (loc. cit.).
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Ex. 1. The anharmonic oscillator (5).
In this case (19) and (20) give

2
da b 3aind _
d_t—_ﬁfa sin%) cosy dip = 0, (21)
0
dé b i 3ba?
ap __ 9 | a3sint — 20t
9 _ o f atsinty d = °° (22)
0

By (21) the amplitude is independent of time, and by (22) the
phase increases linearly with time. Thus the solution is

2
z = asin nt(l +%§). (23)
Thus the period, which is
27 3ba?\ -1 '
‘;(‘ 5:2—) ’ (24)

decreases with increasing amplitude.

If we take b = —3}n? in (5), we get the approximation to the
equation § 55 (13) for the simple pendulum obtained by replac-
ing sin@ by (6—36%). With this value of b, (24) gives for the
period in this case

2m a®\-1  2x a?

=) === dl

n ( 16) n (1+ 16)’ (26)
neglecting terms in a*. This agrees with § 55 (26).

Ex. 2. Eguation (4).
For this equation (19) and (20) give

27
da k 4ka®
%= "o f a?n?costflcosy| dif = ——3‘”—"’, (26)
0
k 2m
% = mfa’n’cos:ﬁ[cosx//[sm(ﬁdcﬁ = 0. 27
0

By (27), ¢ is constant, that is, the period is unaffected by the damping
to this approximation. (26) is a differential equation for a, and its
solution is 1 1 dkne
s (28)

a a; 3w
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where ay is the value of @ when ¢ = 0. In a half-swing, ¢ increases by /n,
1/a increases by 4k/3, that is, the amplitude a decreases by 4ka?/3,
approximately.

Ex. 3. The triode equation (7).
We consider the equation

Z—e(l—ar—fBx?)z+n% = 0, (29)
for which (19) and (20) give

on

da . .

7= -2-%[(l-msmaﬁ——ﬂa’smztﬁ)ancos’qﬁw
0

= }ea(l—}Ba?), (30)
b4 4
3—? = —2”—;—‘1[(l——aasin¢v-ﬂa’sin’¢)ancos:/15in¢dt/u
0
=0 (31)

From (31), ¢ is constant, that is the period is not affected to this
approximation. Also, since o does not appear in (30) it does not affect
the amplitude to this approximation.

The differential equation (30) for @ has solution

2da :
J‘a——"—(l_iﬁaz) == €l+0y
2
IHITZW = €t+o,
a? al

—_ e€t
1—4Ba*  1—3}fa}” ’
where a, is the value of @ when ¢ = 0. Thus, finally,
_ ag ect
T 14+ $Bai(est—1)"
(32) shows how the amplitude varies with time. As ¢-> o, @ — 284
whatever the initial value of the amplitude, and thus the final oscillation

of the system is 2
x = ﬁsin(ntﬁ—gb), (33)

a? (32)

where ¢ is a constant. It should be observed that the solution tends to
(33) whether the initial amplitude is larger or smaller than 28~%. The way
in which the oscillations build up if a, is small is shown in Fig. 49 ().
In the next two examples we illustrate other methods of
attack which are often used. They are a little ad hoc and have
to be used with care as it frequently happens that while they
work well in some cases they need modifications in others.
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" Ex. 4. Solution in a trigonomelric series.
As an example we consider the anharmonic oscillator with applied
force F'sinwt. The differential equation is

E4n2c+bx® = Fsinwt. (34)
We seek a so!ution x = Asinwt, (35)
where A4 is a constant; substituting this in (34) requires
(—w?+n?)A sinwt+bA3sinwt = Fsinwt.
Using the result ’
sindwt = #sinwt— }sin 3w?,
this becomes

{(n*—w?)A +3bA3— F}sin wt— }bA3sin 3wt = 0. (36)
Clearly this cannot be satisfied exactly for all values of ¢. But if
(n*—w?) A+ A% = F, (37)

the coefficient of sinwt is zero, so that if we ignore the term in sin 3wt
in (36) the amplitude of the solution (35) is given by the solution of the
cubic (37). In particular if w = n, corresponding to resonance if the
non-linear term is neglected,

A = (4F/3b)}, (38)

so that the amplitude depends on the cube root of the applied force.
The crude treatment above in which the term sin 3wt in (36) has been
neglected may be improved as follows. Instead of (35) we assume a series
x = Asinwt+ A,sin 2wt+ Ay8in 3wt +-..., (39)
substitute in (34), and equate the coefficients of the successive trigo-
nometric functions to zero. The first equation so obtained will be
(37) which determines A, subsequent equations determine A4,, ete.
The free oscillation corresponding to F' = 0 in (34) may be studied

in the same way, but w in the substitution (35) must be regarded as an
unknown to be determined.

Ex. 5. The method of iteration.
We again consider the anharmonic oscillator

E+n2x+bx® = 0, (40)
where b is small. The first approximation, neglecting the small term, is
x = Asinnt. (41)

The general method of iteration consists of substituting the first
approximation in the small terms of the original equation and solving
again. This process, theoretically, has to be repeated indefinitely, and
it has to be proved that the set of results so obtained converges to a
definite solution. The difficulty which appears at the outset is that if
the effect of the non-linear terms in (40) is to change the period, the
assumed first approximation (41) will after a short time cease to be a
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valid approximation. Thus instead of (41) we can only assume as first
approximation x = Asinmt, (42)

where m is unknown but does not differ greatly from n.
Substituting (42) in the small term of (40) gives

£+n2r = —bA43sin3m¢
. = — }bA3(3sin mt—sin 3mt). (43)
We now seek a solution of (43) of the form
x = Asinmt+ Bsin 3mt. (44)

Substituting (44) in (43) requires
{A(n?—m?2) + 3bA3}sin mt+{ B(n? — 9m?)— }bA3)sin Imt = 0.
A
4(n®—9m?2)’
m? = n?+ 3bA2. (48)

(48) shows the way in which the period varies with the amplitude: it

agrees with the result (24) found previously.
59. Relaxation oscillations

This is the name given to periodic oscillations of a system in
which energy is supplied from outside during part of a period
and dissipated within the system in another part of the period,
so that the total energy in the system oscillates periodically.
Most practical systems in which oscillations are maintained are
of this type. : _

One simple example which has been analysed in detail is the
system of § 30, Ex. 4. Here the potential energy stored in the
- spring increases steadily in the static phase, and this energy is
dissipated by friction while slipping occurs. The system has a
well-defined period determined largely by the velocity of the
moving plane.

An analogous electrical system is shown in Fig. 49 (¢). This
is idealized, but represents in principle the working of many
practical circuits. A battery of voltage E is connected to resis-
tance R and capacitance C in series: when the voltage drop
across C reaches the value E, << E, a diode D across it suddenly
discharges it completely.

The charge @ on the condenser satisfies

aQ , Q
R%‘I_E—E: (1)

That is (45)
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and if we assume @ == 0 when ¢ = 0, the solution is
Q = CE(1—eE0),

The voltage drop across the condenser is E, when

—Ee-iRC — |,
that is, when t= RCIn E . (2)
E—E,
R o1 €10
e o = r N

(a) (6) {c)
Fia. 49.

The condenser is then discharged, and the process repeats
itself with period given by (2).

" The most important example of relaxation osclllatlons is the

behaviour of the triode studied in §§ 48, 58. This is typical of

the behaviour of systems specified by differential equations of

type . E—e(l—aji+ntz = 0 G

in which the damping coefficient is negative and the system un-
stable for small displacements, while for large displacements the
damping coefficient becomes positive. Thus small oscillations of
the system tend to grow, and large oscillations tend to diminish,
and a stable oscillation results. The nature of the solutions of
(8) for various values of the parameter ¢ has been exhaustively
studied by van der Pol. Small values of ¢ have been studied in
§ 58 and a first approximation to the method of growth and the
final steady state has been found: the results are shown in
Fig. 49 (b).

The case of large € has been examined by van der Pol; the way
in which the oscillations build up is shown in Fig. 49(c). It
appears that the final wave form is very far from sinusoidal—
this is a characteristic of such oscillations.



190 PARTICLE DYNAMICS OH. VII

60. Motion in two or more dimensions
Problems of this type usually are very difficult to handle
unless they separate into a number of equations of the types
previously discussed. We discuss a number of examples in
which this is the case.
Ex. 1. The simple projectile.
A particle of mass m is projected at ¢ = 0 with velocity u at
an angle a to the horizontal. Taking the origin O at the point
of projection, and the axes of # and y horizontal and vertical,
the equations of motion are
mi = 0, (1)
mgj = —myg. (2)
Integrating twice and using the initial values x = y = 0,
% = ucosa, ¥ = usina, we get
x = utcosa, (3)
Yy = utsin a— gt (4)
Eliminating ¢ between (3) and (4) gives the equation of the

path 2
Y = xtana—g—izsec%. (5)

Ex. 2. The projectile of Ex. 1 but with resistance to motion a
Sfunction f(v) of the velocity.

Let ¢ be the slope of the path at the point (x,y). The resis-
tance f(v) is directed backwards along the tangent to the path,
8o its components in the 2- and y-directions are —f(v)cosy and
—f(v)sing. Thus the equations of motion are now ~

mi = —f(v)cos ' (6)
mj = —f(v)siny—mg, (7)

where, if s is the arc measured along the path,
v =3; cosy = dx/ds; siny = dy/ds. (8)

The equations now do not separate into two for x and y
except in the case of resistance proportional to velocity in
which

f@) = mkv = mk‘%9
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which we now consider. In this case (6) and (7) become

.. ds dx ] ,
mE = —mlc-d-Z Pl —mk# (9)
. dsdy T
my = —m = %—-mg = —mky—myg. (10)

Equations (9) and (10) are linear second-order equations.
The general solution of (9) is

x = A4 Be®,;

choosing 4 and B to make x = 0, # = ucosa, when { = 0, we

et
g U cos o

z = (1—e*), (11)

Similarly, from (10) with y = 0, § = usin«, when ¢ = 0,
gt M N1 e
Y= k+k(u51na+k)(l ek, (12)

Eliminating the time between (11) a,nd (12) gives the equation
of the path. From (11)

h=;1m@_ h”) (B)

k ucosaf

and substituting (13) and (11) in (12), we get

kx
y—ﬁl ( ucosa)+(usma+k)ucOSa (14)

Although the linear law of resistance is rather artificial the
simple results (11), (12), (14) may be used to illustrate the
general effects of resistance to motion. From (11) and (12) it
follows that

% Cos o

k ’
that is, the curve has a vertical asymptote at this value of z.
The range on the horizontal plane, of course, is less than this;
it is obtained by putting ¥ = 0 in (14) which gives a transcen-
dental equation for x.

x —>

y—>—oo, ast— o, (15)
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Finally, if k is small, we may expand the logarithm in (14) by
the logarithmic series. This gives

y = g9 kx k22 k33 +
T k2| wcosa 2ufcos’a 3udcosda
. g\ =
+ (usm ot Ic) % CoS o
_ gx? gka? '
= xtana—ﬁsecza—gu—ssecsa—.... (16)

The first two terms of (16) are the path (5) in the absence of
resistance. The terms of the series give the change in the path
caused by resistance.
Ex. 3. The motion of a particle of mass m in the xy-plane with restoring
Sorce my¥x parallel to the x-axis and mny parallel to the y-axis.
The equations of motion are
G4vix = 0, (17)
j+niy =0, (18)
corresponding to two simple harmonic motions. With an appropriate
choice of the origin of time their general solutions may be written
x = asin(vt+0), (19)
y = bsinnt. (20)
The path of the particle is obtained by eliminating ¢ between (19) and
(20). If v is a simple multiple of n the paths are known as Lissajous

figures.
If v = n the path is

(2__31 cos 0)3 = (1 —-‘f) 8in?f,

b bt
z? y' 2xy . oain?
or (?.*_b—z--a—cose = sin?0, (21)

an ellipse whose shape and orientation depend on the relative phase (]
of the two vibrations.
If v = 2n the path is

2: 2%(1——%:)}0050—{—(1—2—3/2—)31110. (22)

The motion of an electron in electric and magnetic fields,
The force F on an electron of charge —e in a static electric field
E and a static magnetic field H is

F = ——eE—SV/\H, (23)
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where v is the vector velocity of the electron and c is the velocity
of light. Here ¢ and E are measured in e.s.u. and H in e.m.u.
The force of gravity is usually negligible but may be included
if desired.

If the magnetic field is uniform and H is its magnitude, and
we choose the z-axis in the direction of this field, the components
of F in the z, y, and z directions become

F,= —eB, %2y, (24)
F,= —eEy-}-eéIi‘, (25)
F, = —eEk, (26)

Ex. 4. No electric field. The particle projected from the origin
at t = 0 with velocity V in a direction which makes an angle 8
with the magnetic field.

Taking the z-axis to be in the plane containing the z-axis and
the direction of projection, the initial conditions are

m:__—y:z-_—o; j:Vsina, y=0, z"=V0080,

(27)
when ¢ = 0.
The equations of motion are
mi = — 2y, (28)
mi = 0. (30)
(30) gives immediately 1
£ == Vcos#, z = Vtcos#. (81)
Writing = w=2, w—2 ov=gy (32)
me
(28) and (29) become
Du+twv = 0, (33)
Dyv—wu = 0. | (34)

5296 o
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These give (D24 w?u = 0, (35)
the general solution of which is
u = A sin wt-++ B cos wi. (36)
Then, by (33)
v = —L Du = — 4 coswi+ Bsin wt. (37)
w

The initial conditions, # = Vsinf, v = 0, when t = 0, give
A =0, B = Vsinf, and we get

% = u = Vsinfcoswi, (38)
¥y = v = Vsinfsinwt. (39)

It follows that the speed of the electron is
@y +2p =V. (40)

Integrating (38) and (39) and using the initial conditions
(27) gives

T = I—/nsinﬁsinwt, ‘ ©(41)

w

V.
Y = —sin §(1—cos wt), (42)

w
2 2 gin2
and therefore 952—{—(2/—K sin 0) = 4 SI:I 0. (43)
w w

The projection of the path on the plane z = 0 is thus a circle
of radius (¥ sin 8)/w and with centre at (0, (V/w)sin 8). The path
of the particle is, by (31), a helix with axis along the direction of
the magnetic field described with constant speed V. If § = 1, 5o
that the motion is wholly in the plane z = 0, the path is a circle
of radius (V/w).

Ex. 5. No electric field. The particle projected in the xy-plane from the
point (a,b) with speed V in a direction inclined at ¢ to the x-axis.

This is a problem similar to that of Ex. 4, but we shall now solve it
by a useful alternative method. The equations of motion are

#+wy = 0, (44)
j—ewsd = 0, (45)
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where w is defined in (32). Writing { = z+ 4y and adding ¢ times (45) to
(44) we get C-iwt —o. (46)
This is a single differential equation for the complex quantity {. It has
to be solved with the initial values
{=a+ib, {=Ve¥, whent=0. (47)
The general solution of (46) is
{ = Aé*+ B, (48)
where now the arbitrary constants A and B are complex. Using (48) in
(47) gives A and B, and we get finally
{ = a+4ib+(V/w)[eiwt—1]ekd—im, (49)

The path of the particle may either be found by writing down the real
and imaginary parts of (49) and discussing them as in Ex. 4, or, better,
by noticing that for all values of ¢ the points (49) lie on a circle of radius
V /w whose centre’is at

a+ib— (V/w)eits—m, (50)
The speed of the particle is
@ = |l =V (51)

Another example of the method is given in Ex. 8.

Ex. 6. The problem of Ex. 4 with, in addition, a constant electric field E
parallel to the magnetic field.

The only change is that (30) is replaced by

mi = —ek (52)

and thus the electron has constant acceleration in the z direction.

Ex. 7. Constant electric field E along the x-axis and constant magnetic
field H along the z-axis. Zero initial velocity and displacement.

The equations of motion are now

' eH .

miE = ——-eE-——c-y, (53)
¢
mi = 0. : (55)

Making the substitution (32) as before, (63) and (54) become
e . .
Dutwv = ——F, (56)

Dv—wu = 0. (67)
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As before we find u = Asinwi+ Bcoswt, (68)

and from (56) V= _m—ew E— A coswt+ Bsinwt. (69)

~ The initial conditions » = v = 0 when ¢ = 0 give
B =0, A = —eE/mw,

and we get
T=u= ——e—E—sinwt, (60)
mw

. el

Yy=v= m(coswt—l). (61)
Integrating (60) and (61) with x = y = 0 when ¢ = 0 gives

z = :L%(coswt—l), (62)

el | .

The path is therefore a cycloid. The maximum value of = is 2eE/mw?.

Ex. 8. An electron of mass m is attracted to a centre of force at the origin
by a force A times its displacement. There is a magnetic field H along the
z-axis. Motion in the xy-plane only will be considered.

The equations of motion are now

mié = —/\x—e—?y, (64)
my = —-—/\y+e—c£—la':. (66)
Writing
Mot L, (66)
m me ;
: { = zt+iy, (67)
and adding ¢ times (65) to (64) gives

{—iwl+n¥ = o0. (68)

The general solution of this is
{ = Aexp{lio+i(nt+iw?)Hjt+ Bexp{liw—i(n+ lw?)i),
where A and B are constants which may be complex. Taking the real
part,  has the form

z = Ccos[{(n®+}w*) —fw)t+ D]+ E cos[{(n®+ jw?)t + jwit+ F1, (69)
where C, D, E, F are real constants.

In the absence of a magnetic field the frequency of the oscillations is
n/2m; the effect of a magnetic field is to introduce in place of this a pair
of frequencies which are (n+t 3w)/2m, provided w? can be neglected.
Problems of this type occur in the classical theory of the Zeeman effect.
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Ex. 9. The motion of a charged particle in the field of a magnetic dipole.t
In this case the field is a function of position, and equation (23) gives

mé = — (gH,—:H,)ele, (70)
mij = —(2H,—zH,)e/c, (71)
mE = —(¢H,—yH,)e/c. (72)
It follows that &+ yij+2Z = 0, and therefore
24 yr42t = V3, (73)

where V2 is a constant. That is, the speed of a charged particle in any
pure magnetic field is constant. If we take the dipole to be of moment u
and to be situated at the origin with its axis along the z-axis, its magnetic
field} at (z,y, z) has components

H, = 3uxzr-5,  H, = 3uyzr-5, H, = u(3z2—r)r5, (74)

where r? = x4 y%42% (75)
Putting (74) in (70) and (71) we get ‘
& = k{g(322—r2)— 3iyz)rs, (76)
§ = k{3zxz— (322 —1r2)}rs, (77)
where k = —pe/me. '
Multiplying (77) by z and (76) by y and subtracting gives
zj—y& = k{3 +y?)— (322 —r*)(ai+yg)r.  (78)
Using the value (75) of 72 this may be written
2 2
%(xy—yﬁwrk%{(;,,jT——*;izz),} ~o0. (79)
Integrating, using the notation (75) and writing R* = x?+-y2, we get
ay—yi = O, (80)

where C is a constant of integration. The quantity on the left is propor-
tional to the angular momentum of the particle about the z-axis. If ¥V
is the constant speed of the particle and @ is the angle its direction at
any point makes with the plane through the particle and the z-axis, the
left-hand side of (80) is V Rsin#, and (80) becomes finally

2
VRsing = o—'%'-. (81)

This first integral has been extensively studied by Stérmer in con-
nexion with the theory of aurorae. Using the fact that |sinf] < 1, he
found that charged particles incident from space can only reach the
earth’s surface in certain regions.

+ This problem is given as an example of rather complicated manipulation
in Cartesians. It is an interesting exercise to study it vectorially.

1 The field due to a magnetic dipole is calculated in exactly the same way
as that for an electric dipole; cf. § 72 (23).
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61. Motion on a fixed plane curve

When a particle moves on a fixed curve the forces on the
particle in the directions of the tangent and normal to the curve
are usually known, and to write down equations of motion we
need expressions for the accelerations in these directions.

N 2a
8 mg
(] (4
mg )
(6) (c)
Fia. 50.

Suppose the intrinsic equation of the curve is s = f(), where
s is the arc measured along the curve from a fixed point to the -
point P, and i is the angle the tangent at P makes with a fixed
direction OX, which we shall take as one of the axes 0X, OY
of a rectangular coordinate system. The radius of curvature p
of the curve at P is given by —

p= EJ 1)
The particle moves along the curve with speed § = ds/dt.
Its components of velocity parallel to OX and OY are
& = §cosi, (2)
4§ = §siny. (3)
Differentiating these we get for its components of acceleration
in the directions of OX and 0Y

& = §cosy—spsinyg = §cosPh—(52/p)sin, 4)
§ = §sing+ s cosf = §sin Y-4-(s2/p)cos i, (5)
where in (4) and (5) we have used the result
_dpds _$
== (6)

The tangential acceleration of the particle is by (4) and (5)
ZeosP+gsing = §. (7
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The normal acceleration (in the direction of the inward normal)
—&siny4-gjcos = §%/p. (8)

If the forces on the particle in the directions of the tangent
and inward normal to the curve are T and N, respectively, its
equations of motion are

.

18

mé =T, (9)
o2
ms _ N. (10)
p

Ex. 1. Motion on a smooth vertical circle of radiusl: the simple pendulum.

Measuring & from the lowest point of the circle (Fig. 50 (b)) and @ from
the downward vertical we have & = 16, = 6.

The forces on the particle are N, the normal reaction.of the circle, and
myg, the force of gravity. Thus (9) and (10) give

mlf = —mgsind, (11)
mif? = N—mgcosé. (12)

The integration of (11) has been discussed in § 55, and when 02 is
known, (12) gives N. If the particle is constrained to move in the circle
by being attached to O by a light rigid rod freely hinged at O, or if the
particle is a bead sliding on a smooth circular wire, N may have either
sign. On the other hand, if the particle is connected to O by a flexible
string or slides on the inside of a smooth circular cylinder, N must be
positive: if at any stage N becomes zero, the particle will leave the circle
and the equations (11) and (12) no longer hold.

Ex. 2. Motion on a rough vertical circle of radius a.

Suppose the particle to be moving in the direction of increasing 6,
Then if the coefficient of friction is u, frictional force N acts tangentially
in the direction of decreasing §. The equations of motion (9) and (10) now
become ' ;

mall = —uN—mgsin6, (13)
maf?t = N—mgcosf. (14)
Eliminating N these give :
al+pab? = —gsin§—pgcosh. (15)
. i 1du
Putting 02 = u, d= 330’

(15) becomes a linear first-order equation for u, namely

%—;—2;;,1& = —i—g(sinﬂ—}—p.cosO). (16)



200 - PARTICLE DYNAMICS " CH.vn

Ex. 3. Motion on a smooth vertical cycloid with ifs vertex downwards.

Measuring s from the vertex O (Fig. 50(c)), the intrinsic equation of
the cycloid is & = dasiny, _ an
where 2a is the distance from the vertex to the line of cusps.

The equation of motion (9) gives

mé = —mgsiny, (18)

. or, using (17), §+4la’ = 0. (19)
The solution of this is '

& = Asin{t(g/4a)}+ B},
an oscillation whose period 2x7(4a/g)t is independent of its amplitude.

62. Central forces

If the force on a particle consists of attraction or repulsion
from a fixed point O, it is convenient to work in plane polar
coordinates with this point as origin. '

Let (x,y) be the rectangular Cartesian coordinates of the
particle P, and let (r, §) be its polar coordinates with O as origin
and 6 measured from OX. Then

x = rcosf, 1)

y = rsind, (2)

& = #cos §—rfsin, (3)

4§ = #sin 76 cos 6, 4)

& = 7 cos 0— 270 sin §—1r6? cos 0—rfisin 6, (5)

4 = #sin 04276 cos §—r62sin 8-rf cos 6. (6)

The radial velocity of P, that is, its component of velocity
along OP, is Zcos0+ysinf = 7, )

by (3) and (4).
The transverse velocity of P, that is, its component of velocity
perpendicular to OP in the direction of 6 increasing, is

3 cos 0—zsin 6 = 76. (8)
The radial acceleration of P is
#cos 0-+gsin 6 = #—r62, (9)

The transverse acceleration of P is
§cos0—Esind = 276+ rf = ;%(rzé). ©(10)
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The problem to be considered is that of the motion of a par-
ticle of mass m attracted to a centre of force O by force m f(r)
and under no other forces. Let (r,8) be polar coordinates of the
particle in the plane containing O and the direction of projection
of the particle: since there are no forces perpendicular to this
plane the particle will always remain in it.

The equations of motion are, by (9) and (10),

F—rf? = —f(r), (11)
1d a6y
S ) =0, (12)
(12) gives immediately 726 = h, (13)

where % is a constant. Since the transverse velocity of the par-
ticle is 76, mr?%0 = mh is the constant angular momentum of the
particle about the centre of force.

By using (13) we can eliminate the time from (11) and get the
differential equation of the orbit. Instead of working in terms
of the radius r it is more convenient to use its reciprocal

1
° = - . (14)
Then

. d 1 1 du 1 dudb du

=gl = —wT- —wwa- "t
using (13). Also

L d (du\ d®udf 9.9 Q2U

F= —”a(@)— —hmg = Mg 19
again using (13). Substituting (16) and (13) in (11) gives

d*u
el pryd —
h?u T h2u f(1/u),
d*u 1 1

or _ W-{-u = h_z'u,_zf(i) (17)

This is the differential equation of the orbit: it may be solved
by the methods of § 55.

The general problem is: given the circumstances of projection,
find the orbit. Normally, at the instant of projection, { = 0, we
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are given the distance a, the speed V, and the angle g that
the direction of motion makes with the outward radius vector.
Thus the constant & of (13)is

h = VasinB. (18)

The angle ¢ between the tangent and radius vector of the
curve at any point is given by

1 dr d (1 1du
ww—‘@—”@tﬂ—“a@° (19
When t = 0 we have
du 1
u = 1l/a, ¢ = B, and BO—p = —~ cot B. (20)

Thus the initial conditions required for the solution of (17) are
known in terms of ¥, e, and 8.

It follows from (19) that when ¢ = 90°, that is, the particle
is moving perpendicular to the radius vector, du/df = 0. Points
at which this occurs are called apses.

Finally the speed v at any point of the orbit is, by (7) and

8 ’
® N -

using (15) and (13).

We now consider the solution of (17). First we remark that
if the law of force is the inverse square, or the inverse cube, or
a combination of the two, namely

1 =B,

so that I (1_1) = pu+Aud,

(17) is linear and its general solution can be written down
immediately.

For other laws of force, as in § 55 (7), we multiply (17) by
k2 du/df. This gives

d?u du W 1\ du
W e ap T 2f(«7)%'
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Integrating gives
2
w{if s [+

w? \u
- — f f(r) dr+C. (22)
By (21) thisis  jo2+ f firydr = C, (23)

which is the energy equation, § 73.

In the above we have studied the motion of a particle at-
tracted to a fixed point. The case of practical importance,
which is that of two particles of masses m, and m, attracted to
one another by force f(r), can be reduced to this (c¢f. § 76, Ex. 2).
The centre of mass of the two particles moves with constant
velocity, and the motion of m, relative to m, is the same as if
m, were fixed and the attractive force were {(m,-+m,)/m }f(r).

Ex. 1. The particle is projected from distance a with velocity V at an
angle B to the radius vector. The law of force is the attractive inverse square
flr) = pir®.

The differential equation (17) is

d*u _p .
where, by (18), h = Vasinf. (25)

If we measure § from the radius vector to the point of projection, it

follows from (20) that (24) has to be solved with
1 du 1
=, = -—Ecotﬂ, when 8§ = 0. (26)

The general solution of (24) is
w= }%{l+ecos(0+a)}, 27
where e and o are unknown constants to be determined from (26).
(27) may be written
! —14econ(f+a), (28)
where ! = b u = (VasinB)?}/u. (29)
Now the polar equation of a conic of semi-latus rectum ! and eccen-
tricity e, referred to a focus as origin and with § measured from its axis,

is 1
o= 14-ecosf. (30)



204 PARTICLE DYNAMICS CH. VI

Thus the orbit (28) is a conic of semi-latus rectum (29), eccentricity e,
and with its axis inclined at a to the radius vector to the point of projec-
tion. To find e and « we have from (26) and (28)

! = l1}ecosa, (31)
a
I .
——acotﬁ = —esina. (32)
From (31) and (32) tanq = l—l—cf%ﬁ (33)
l )2 lZ
2. __ (.l __ — 2
et = (a 1 +aacotﬂ

g 2l
== aig_ =
= —; cosec B -+

2V3asin?8  V4a?sin?B
=1— . 34)
PR (
Now the conic (30) is an ellipse, parabola, or hyperbola according as
e < = > 1. Thus from (34) the orbit is an ellipse, parabola, or hyper-
bola according as

Vi< = > 27”'. (35)
Ex. 2. 4 particle is projected with velocity V at a very great distance
Jrom an inverse square centre of repulsive force, f(r) = —pu/r?, in a direction

whose perpendicular distance from the centre of force is p. It is required to .
Jind the angle iy between the initial and final directions of its path.

The equation (17) is
d*u

e = — 5 (36)
and its general solution is
u = A cosf+ Bsin§—pu/hs. (37)
From the circumstances of projection we know that » = pV. Also at
the point of projection r is very large, u and 8 are very small, and
p = rsinf = 76, ' (38)
very nearly. Since  is small at the point of projection, we may replace
sinf@ by 0, and cos8 by 1, in (37), so that, using (38), (37) becomes
g=A+B0—}%. (39)
It follows that A = pu/h*, B = 1/p, and the equation of the path is

1 .
U = }%(cosl?—l)-{—;sm@- (40)

I

From (40) (%; = —}% sm0+}—1, cos . (41)
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Therefore du/df = 0 when '

By symmetry the required angle i is twice this angle, that is
2
Y= 2tan—1}% . (42)

This result leads to Rutherford’s scattering formula. Suppose that
there are N scattering centres per unit area of a plane normal to the
initial direction of the particle. Then the chance of the initial direction
lying between distances p and p+8p from one of these is

22 Np 8p. (43)

If ¢ = m— i is the angle of deflexion of the particle, (43) is the chance
of the particle being deflected through an angle between ¢ and ¢ 84,

. and using (42) in the form

p= % cot 3¢,

wuiN
V4

Ex. 3. Stability of a circular orbit.
Writing, for convenience, f(1/u) = ¢(u) in (17), this becomes

it becomes

cot 3¢ cosec? 3¢ 8. (44)

tu
‘-;7,4_14 = I#gﬁ(u). (45)

A circular orbit with v = b, d*u/d6* = 0, is possible under any law of
force provided the velocity in the orbit is chosen so that

B = I%:/;(b). (46)

We have to consider whether such an orbit is stable, that is, if the
motion is disturbed slightly, whether the particle will oscillate about the
circular orbit or will diverge from it. Suppose the particle is disturbed
by a small radial impulse so that A will remain unchanged. In the
equation (45) for the orbit put -

u=b+tuz, (47)
where z is supposed small, and (45) becomes

dix 1 '

= oz (1= 224 ) G®) +2p®) + )

b 2
_ 20 (sor-2ew), (49)
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where to get (49) we have expanded the right-hand side of (48), using
Taylor’s theorem and retaining only the terms in z. Using (46) this

becomes & b (0)
2

If the coefficient of x in (50) is positive the solution consists of trigono-
metric terms and the particle oscillates about the circular orbit, that is,
the motion is stable. If this coefficient is negative, x contains an exponen-
tially increasing term and the motion is unstable. Thus the condition

for stability is
bg'(b)
3> 50) (61)

For example, for the inverse nth power attraction f(r) = ur-?,
¢(b) = ub», (51) requires n < 3. Thus circular motion with the inverse
nth power law is unstable if n > 3.

63. Motion of a particle whose mass varies

If the mass m of a particle is not constant, Newton’s law of
motion must be used in the form § 53 (10), namely,

g o) = X, (1)
where v is the component of the velocity of the particle in the
direction of the z-axis and X is the component of the force on
it in this direction.

Integrating (1) with respect to the time from ¢ to ¢ 8¢ gives

[mv]i‘*a‘ = X &, (2)

that is, X 8t is the increase in time 8¢ of the momentum of the
particle in the direction of the z-axis.

In many problems of varying mass, for example the motion
of a raindrop which grows by absorbing smaller drops with which
it collides, or the motion of a rocket, the mass gained or lost has
momentum itself, and (1) must be generalized to account for this.
Only the case of motion in one dimension will be considered here.

Suppose that at time ¢ the mass is m and its velocity », and
suppose that in time ¢ to {+8¢ it gains mass m which moves
with velocity V. The gain in momentum in the time ¢ to 8¢
is thus

(m—+dm)(v+8v)—mv—V 8m = (v—V) dm+m dv.
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By (2), if force X acts on the particle the gain of momentum
must be X 8¢, and so
(v—V)dm+m dv = X dt,
or, in the limit as 8¢ — 0

dv dm
d dm
or a_t(""’)*VTi?=X' (4)

(4) reduces to (1) only if ¥V = 0.

In the case of a rocket the velocity of efflux U of the burnt
gases relative to the rocket is known, and in (4) we have
V = v—U. Thus the equations of motion of a rocket under no

forces are
d dm
&) —@—0) "2 =0,
dv dm
or m = U T (5)

If U is constant the solution of this is

-;} = —Inm+4-C,
so that, if the rocket starts from rest with initial mass M,
M
= Uln—.
v=Uln - (6)

If m, is the mass of fuel carried, so that m = M —m, when
all the fuel has been used, the maximum velocity attained is

M
i .
Uln T —m, (7)
If the rocket is projected vertically upwards under gravity,
(4) becomes dv dm
mc—ﬁ—,—U-d—t_: —mg. (8)

This may be written
U dm m d(v—i—gt).

dt dt
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The solution of this with m = M , =0, whent = 0, is

M
v = Uln-ﬁ—gt, (9)

assuming, as before, that U is constant.

64. Moving axes 7
Hitherto the position of the particle being studied has always
been referred to axes fixed in space. But it is often desirable to

(b)

Fia. 51.

use a set of axes which are moving. For example, in problems
on motion relative to the earth it is natural to use axes fixed
at the point of observation, such as the north and east direc-
tions, and these axes, being fixed to the earth, move and rotate
with it.

When we come to write down equations of motion, this has
to be done relative to fixed axes, and we choose fixed axes along
the instantaneous positions of the moving axes at the instant
under consideration. 4

Consider first the case of rotating axes with a fixed origin O.
For definiteness we shall take the rotating axes to be right-
handed rectangular axes OX, OY, OZ, and we suppose that this
system is rotating with angular velocity w relative to a set of
fixed axes along the instantaneous directions of 0X, 0Y, OZ.

Suppose that a is a vector specified relative to the moving
system OX, OY, OZ, and that we require the value of its time-
rate of change relative to the fixed system.
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The change (3a), in the vector a relative to the fixed axes in
an element of time 8¢ will be made up of two parts; (i) the change
3a relative to the moving system OX, OY, OZ, and, (ii) the
change w A a 8 due to the motion of the system OX, OY, OZ
carrying the vector a with it; cf. Fig. 51 (¢). That is,

(3a), = da-w Aa dt. 1)
Writing & = lim i_':‘ @)

for the rate of chamge of a relative to the moving system, and
taking the limit of (1) as 8¢ - 0 we get for the rate of change
of a relative to the fixed system

da .
(%), = atwAa. (3)
If (ay, a4, a3) and (wy, w,y, wy) are the components of a and w,

the components of (3) are
(dy+wy 83— w3y, dytwsty—w; 83, dytw Gy —wy@,).  (4)
We shall use these results to calculate velocities and accelera-
tions: they take into account the effect of rotation of the axes
about the origin O. If, in addition, the origin O is in motion,
its velocity and acceleration must be added to the values caleu-
lated from (3) to get results relative to an origin and axes at rest.

Ex. 1. Velocities and accelerations in plane polar coordinates.

Let the polar coordinates of a point be (r,8): choose OX along the
direction to the point from the origin, OY perpendicular to this in the
coordinate plane, and OZ perpendicular to the plane. Then the compo-
nents of the angular velocity of the moving axes are (0, 0,8). The point
we are interested in is (r, 0, 0).

By (4) the rate of change of its position is

. (1,79,0), (5)
and this is its velocity.

To find its acceleration we need the rate of change of the vector (5), and

by (4) this is (F—rb2, 4 270, 0), (6)
as in § 62 (9) and (10). Velocities and accelerations in other coordinate
systems may be found in the same way.

Ex. 2. Modtion relative to the earth.

Consider a point on the earth’s surface in latitude A. Choose axes 0Z
inclined at 37 —A to the earth’s axis; OX easterly, perpendicular to the
5206 P
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plane of OZ and the axis; and OY to make a right-handed system
(Fig. 51(b)). The earth rotates with angular velocity w about its axis,
and so the components of the angular velocity of the system 0X, 0Y, 0Z
about their instantaneous positions are

(0, wecosA, wsinA). (7)

If the position of a particle is (x,y,z), its components of velocity
relative to O along the instantaneous directions of 0X, 0OY, OZ are, by (4),
(Z+wzcosA—wysin, y+wzsind, £—wz cosA). (8)

To find the acceleration of the particle relative to the origin O we need
the components of the rate of change of the vector (8) along the instan-
taneous directions of the axes. By (4) these are

&— 2wy sin A+ 2wz cos A — wiz, 9)
i+ 2w3 sin A+ w?z sin A cos A — w?y sin?A, (10)
3 — 2wz cos A — w?z cos?A+w?y sin A cos A, (11)

In (9) to (11) the terms in w?r, w?y, and w? are negligible.
If the perpendicular from the origin O to the earth’s axis is of length p,
the origin has acceleration w?p towards the axis. Therefore components

of acceleration (0, w*psinA, —w?pcos) (12)

have to be added to (9)-(11) to get accelerations relative to fixed axes.

Since the earth is spheroidal, gravity will act in the plane YOZ: sup-
pose its direction is inclined at a (small) angle o to OZ. Then the
equations of motion of a particle of mass m under gravity are (neglecting
the small terms in w2z, ete.)

#— 2wy sin A+ 2wicosA = 0, (13)
j+2wEsind = —gsina—w?psin), (14)
i—2wEcosA = —gcosatwipcosA. (15)

The right-hand side of these equations is a force in the direction
obtained by compounding the earth’s attraction with centrifugal force.
If this direction (the direction of apparent gravity) is inclined at 7 —#8
to the axis (6 is the geographical latitude) and we take OZ in this direc-
tion and OY correspondingly, the equations (13)—(15) become

&~ 2wy sin 8+ 2wz cosf = 0, (16)
4+ 2wxsinf = 0, (17)
i—2wxcosl = —g. (18)

Suppose the particle falls from rest at the origin when ¢ = 0. Inte-
grating (16)—(18) gives

& — 2wy sinf+ 2wz cosf = 0, (19)

y+2wxsind = 0, (20)

2—2wzcosf = —gt. (21)
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Using (20) and (21) in (16),
£+ 4w = 2wgtcosf.
Therefore, using ¢ — 4 = 0, when ¢ = 0

gcos@
4wt

Since wt is small, expanding sin 2wt in (22) gives, very nearly,

z = — sin 2wt+% cosd. (22)

z = Jgwitdcosd,

a small deviation in an easterly direction. A much smaller deviation in
a southerly direction can be found from (20).

EXAMPLES ON CHAPTER VII

1. A simple pendulum is set in motion from the downward vertical
Pposition with angular velocity 2n, where n? = g/I. Show that it has just
sufficient energy to reach the upward vertical position, and that the time
it takes to reach the angle 8 is

1 (‘n’ 0)
;ln tan 1 +Z .

2. The earth’s attraction on a particle of mass m at height k above
its surface is mga®(a+h)~2, where a is the earth’s radius. If a particle
is projected vertically upwards with velocity ¥, show that (neglecting
air resistance and the rotation of the earth) its velocity at height A is

[aV2+h(V2—2ga)l}(a-+h)t.

Show that if V2 = 2ga, the time it takes to reach the height % is

2((a-+h)t—al)/3Val.

3. An elastic sphere of mass m and radius e, moving with velocity V,
collides with an equal sphere which is directly in its path. If the force
between the spheres is kr®, where 7 is the radius of the impression on
either sphere, show that the maximum depth of the impression is

[#SmV"’__]%
116k(2a)t
and discuss the motion. [Cf. § 55, Ex. 4.]

4. The force on a particle of mass m is max—2—mbz—2. It is released
from rest at x = X; show that it oscillates between 2 — X and
* = Xb/(2Xa—b) with period 2raX%2Xa—b)t.

6. The motion of a mass m in the direction of x increasing is resisted
by a compressed air spring which provides restoring force P(1—kx)~?,
where P, k, and y are constants. If a constant force P’ > P is applied
to the mass when it is at rest and z = 0, show that it comes to rest when

kP'z(1—y)+ P(1—kx)"r = P.

>
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6. The region 0 < x < @ contains a space charge of electrons (as in
a vacuum tube). The electric potential V in the region satisfies
dazv
padi AU ~%
e KJV-t,
where K is a constant and J is the density of electric current (also
constant). If V = 0 when 2 = 0, V = V, when « = a, and dV/dx = 0

when z = 0, show that J = 4VY/(9Ka?).
7. Show that the solution of
d*
g the =0,

with dv/dx = 0 and v = v, when z = 0, is
v = v,—21In coshz(}fe)t.

This corresponds to motion with a restoring force which increases
exponentially with the displacement. In the theory of the thermal
breakdown of a dielectric, the temperature v satisfies the above equation
with dv/dx = 0 when = 0, and v = 0 when # = 1. Find an equation
for \J(3Be"), where v, is the temperature at £ = 0, and discuss its solution
graphically.

8. A particle moves in a straight line under resistance to motion mkv?,
where v is its velocity. If the initial velocity of the particle is V, show
that the distance described in time ? is

{2kt V2 1) —1}/kV.

9. A particle is projected vertically upwards with velocity U in a
medium whose resistance varies as the square of the velocity. Show that
the particle returns to its starting-point with velocity UV(U?+ V4,
where V is the terminal velocity.

10. A particle of mass m is attached to a spring of stiffness mn?, and
its motion is resisted by a force mkv?, where v is its velocity. Derive a
linear first-order equation for »®. Show that if the particle is released
from rest at x = @, it next comes to rest at x = b given by

(14 2ak)e—20% == (1 2bk)e20k,

11. A battery of voltage E is applied at ¢ = 0 to an inductance L in
series with a non-linear resistance for which I = KV*; cf. § 57 (i). If
the initial current in the inductance is zero, show that if n = 3 the
voltage drop across the resistance at time ¢ is given by

Yy ¥V 14
—_ 2 —— — —
t= —3KBL (in(1 ,E)+E(l+2E)}’
while the corresponding result for the case n = 3/2is
t = 3KLEYtanh~\(V/E)}—(V/E)}}.
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12. A battery of voltage E is applied at £ = 0 to a capacitance C in
series with a non-linear resistance for which I = KV™". If the condenser
is initially uncharged, show that the voltage drop V over the resistance
at time ¢ is given by

(n—1)KE\WWrY = CE*1—CV"Y,

13. A non-linear inductance in which the flux ¢ is related to the
current I by I = A¢+ B3 is in series with a linear resistance R. If the
flux is ¢, at time ¢ = 0, show that its value at time ¢ is given by

- 35 B w.,‘é!)___ e—RA4t
(A+Bg2)t (A + Byt
14. For the equation of type § 58 (8),
I—e(1 —al—BI2)1 + n21 = 0,
show that if the amplitude of an oscillation at ¢ = 0 is a,, its value at
time ¢ is apetet{1 4 3agni(ect— 1))+,

15. Show that the period of oscillation in a circuit containing a non-

linear inductance specified by § 57 (9) and (10) is approximately

2m (1 IiBa’)—l

n 84/’
where n? = A/C, and a is the amplitude of the oscillation. - Discuss the
variation of ¢ with time.

16. A particle of mass m is pressed against a plane by a force P, the
coefficients of static and dynamic friction between the particle and the
plane being v’ and p respectively, and u’ > p. The particle is attached
to a spring of stiffness A, the other end of which is moved with constant
velocity V. Discuss the motion of the particle, and show that it will
perform stick-slip relaxation oscillations and find their period.

17. A particle is projected vertically upwards from ground level with
velocity U into air in which a horizontal wind of velocity « is blowing.
Assuming that the wind causes a horizontal force mk(u—v)? on the
particle, where v is the horizontal component of its veloeity, and that
there is resistance to vertical motion mk times the square of the vertical
component of its velocity, show that it reaches the ground again after
time T given by

T = tan—?! % +tanh™1! «—U—},

T+ 77
and that its direction of motion makes then an angle
tan— UV (1 +kTu)/[kTur(U2 + V2)i]}

with the ground, where V = ,/(g/k).
18. A particle is projected with velocity U at an angle « to the
horizontal in & medium in which the resistance is proportional to the

wl
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velocity. Show that for the range on a horizontal plane to be a maximum,
« must be given by

U(V+4Usina) = V(U4 Vsina)ln[14+(U/V)cosec o],

where V is the terminal velocity.

19. An electron gun emits a slightly divergent beam of electrons from
a point on the z-axis; all of these have the same speed V, but their
directions are inclined at angles up to 8 with the z-axis. Show that, if a
magnetic field H is applied along the z-axis, all the electrons will cross
this axis again at points whose distances from the gun lie in the range
from {27 Vme/eH) to (2nVmcjeH)cosf. Thus if 8 is small the electrons
can very nearly be focused at a point.

20. An electron is acted on by an electric field E, sin nt along the z-axis,
and a magnetic field H along the z-axis. Show that if w # n, where
w == eH/me, and the electron is emitted at the origin ¢ = 0 with zero
velocity, its path is

z = eEy{nsinwt—w sin nt}/mw(wd—n?),
Y = eE'(,{(w2 —n?)+n? cos wt—w? cos nt}/mwn(n®—w?).

Discuss also the case w = n.

21. An electron moves in the region between two concentric cylinders
parallel to the z-axis of radii @ and b, b > a. It is acted on by a magnetic
field H parallel to the z-axis, and by an electrostatic field between the
cylinders such that the force on the electron is radial, and its magnitude
is kfr, where r is the distance from the z-axis and k is a constant (the
components of this force along the z- and y-axes will be kx/r? and ky/r?).
Considering only motion in the zy-plane, show that if v is the speed of
the electron at any point, two first integrals of the motion are

imv? = kInr4+-C, and ay—yz = }wriC/,

where C and C’ are arbitrary constants, and w = eH/me.

If v = 0 when r = a, and when r = b the electron is moving in a
direction perpendicular to the radius vector (that is, it reaches the
cylinder » = b at grazing incidence), show that

2¢h . (2 1

This is the theory of the cylindrical magnetron, H being the field
which is just sufficient to stop electrons from reaching the anode. If the
anode potential is V, the constant % above has the value eV/In(b/a).

22. Deduce the result of Ex. 21 by working (i) in cylindrical polar
coordinates, and (ii) vectorially.

23. A particle is projected with velocity « at an angle « to the horizon-
tal under gravity in a medium in which the resistance to motion is mk
times the square of the velocity. If sis the length of the arc of its path
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from the point of projection, and i is the slope of the tangent at s, show
that

& = ucosae s,
seci‘c/: %{’ +(g/u?)e?*s secta = 0.

Find the intrinsic equation of the path by integrating the last equation.

24. A particle is moving under-a central force to the origin. Show that
the rate at which area is swept over by the radius vector to the particle
(the areal velocity) is 3k, where h is defined in § 62 (13).

If the path of the particle is known to be the ellipse I = #(1+ecosf),
show that the attractive force must be mkr—2, where k = h?/l, and that
the periodic time is 2alk—, where a is the semi-major axis of the ellipse.

25. A particle is projected at distance ¢ from a centre of force at the
origin with velocity v in a direction inclined at § to the radius vector.
If the law of force is an inverse square repulsion mu/r?, show that the
orbit is a hyperbola of eccentricity

2 in3 402 ain2R11
{l+2v csinif  vlc s:nﬁ},’
© 7
and that v? = I'—L—-2£',
a r

where a is the semi-major axis of the hyperbola.
26. A particle is attracted to the origin O by the force mur—2+mAr—3.
Show that it is moving perpendicular to the radius vector when

0 = nah(h2—X)14C,

where C is a constant depending on the circumstances of projection, » is
any integer, and k is defined in § 62 (13).

27. The equation of motion of a particle of mass m attracted by a
central force mf(r) to an origin O may be written

B = —r{f(r)r}, (0))

where r is the position vector of the particle relative to the origin O.

(i) Deduce the constancy of the angular momentum.H = mr AT of
the particle about the origin by taking the vector product of (1) with r.

(ii) Deduce the'energy equation, § 62 (23), by taking the scalar product
of (1) with F.

d
(iii) Show that  H A ¥ = —mrif(r) )
28. Show that the equation of motion of an electron of charge —e and
mass m in a magnetic fleld H is
= —(e/me)t AH.

Deduce that, whatever the nature of H as a function of position, the
speed of the electron is constant.
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If H is independent of position, show that
= —(e/me)r A\H+V,
and deduce that the particle moves in a helix.
29. Let r be the position vector of a point on a plane curve whose arc
measured from some reference point to the point is s. Show that t = dr/ds

is a unit vector along the tangent at r to the curve. If p is the radius
of curvature of the curve at the point r, show that

dt_n
ds p’
where n is a unit vector along the normal to the curve at the point r.
Show that T = ét, I = §t4(8/p)n,

and deduce the equations of motion § 61 (9) and (10).

30. A simple pendulum of length ! performs small oscillations in
latitude . If the origin is in its equilibrium position, and the x- and
y-axes are chosen as in § 64, Ex. 2, show that { = x--4y satisfies

L+ 2wl sin0+n2 = 0,
where n? = g/l. Show that the path of the pendulum is an ellipse which
rotates with constant angular velocity —wsin@.

31. A particle is projected with velocity 4 at an angle a to the
horizontal in a direction B to the north of east. Show that its deviation
to the left of the plane of projection at time ¢ is

{(usin a— 3gt)sin B cos 0 — u cos asin f}wt?,
where 8 is the latitude and w the earth’s angular velocity.

32. Assuming that, if p is the atmospheric pressure, the components
of force in the z and y directions on an element of mass p 823y of air
are —(dp/ox)dxdy and —(8p[oy) dxdy, respectively, where p is the
density of the air, show that the components of the velocity of the
steady wind due to this pressure distribution are

LW g L
T 2pwsinf 3y 2pwsin b oz’
where 0 is the latitude and w is the earth’s angular velocity. That is

(neglecting friction) the wind tends to blow s0 as to keep the low pressure
to its left in the northern hemisphere and to its right in the southern.
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65. Moments and products of inertia

SupPosE we have a rigid body and a set of fixed rectangular
axes 0X, OY, OZ. Let OR be a line through the origin whose
direction cosines are (I, m,n). We suppose the body to be divided
up into small elements of mass, of which

a typical oneis m at the point P, (z,y,2), =z R
of Fig. 52. The moment of inertia Ipp 4
of the body about the axis O R is defined P

m
a8 Top = 2 mP@?, (1) r
where PQ is the perpendicular distance o v
from the particle m to the axis OR, and x v
> denotes, here and throughout this \ X
chapter, a summation over the elements Frc. 52.

of mass comprising the body: if the
body is a continuous one these sums have to be evaluated
by integration by methods described in text-books on the
calculus.

If M is the mass of the body, the length k defined by

k* = Iop/M

is called the radius of gyration of the body about the axis OR.
For the chosen axes OX, OY, OZ we define six fundamental
quantities, namely

A = I m(y®+22), B =3 m(z2+a?), C =3 m(x*+y?), (2)
F =Ymyz, G =73 mex, H=7 mxy. (3)

A, B, C are by (1) the moments of inertia of the body about
the axes OX, OY, OZ, respectively. F, G, H are called the
products of inertia of the body for the axes OX, OY, OZ. We
proceed to show that, if these six quantities are known, the
moment of inertia I, about any axis can be expressed in terms
of them.
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From (1)
= 3 m{z? -y 22— (le+-my+nz)%}
= 3 m{z¥(1—1)+y*(1—m?) 4251 —n?)—
— 2mnyz— 2nlzx — 2lmay)}
= 3 m{zd(m?-+-n2) -2 (nd 4 12) + (P 4-m2) —
—2mnyz— 2nlzx— 2may}
= B m(y2+28)+m? 3 m+a) +n? 3 miat4y?)—
—2mn 3 myz—2nl Y max—2lm ¥ mxy
= AP+ Bm*+ Cn?—2Fmn—2Gnl—2HIm. (4)
This is the general result in three dimensions. It isinteresting,
and important for many purposes, to study the corresponding
two-dimensional problem of the variation of the moment of
inertia of a lamina in the xy-plane about an axis in this plane
inclined at 8 to OX. Since the lamina lies in the xy-plane, z = 0
for all its particles, and so # = G = 0, and C = A4 B. Also

the direction cosines of an axis in the plane will be I = cosé,
m = sinf, n = 0. Thus (4) becomes

Iy = A cos*0+ Bsin®0—2H sin  cos 0. (5)

To see the way in which the moment of inertia varies with 6

we may make a polar plot of Jy against 8, plotting a distance

proportional to [y in the direction 6. This is done in Fig. 53 for

the lamina of angle section shown dotted, and gives the dumb-

bell-shaped figure shown by the full line. To find the maxima

and minima of I, we have from (5)

aly

do

and thus Jj is stationary when

= (B—A)sin 20—2H cos 26, (6)

2H
tan 20 = B—4° (7

+ Note that m is used here in two senses, namely, as a direction cosine and
as the mass of the typical particle. The latter is always written immediately
after the sign of summation to avoid confusion.



§65 RIGID DYNAMICS 219

(7) gives two values of 6 at right angles, corresponding to
maxima and minima of the moment of inertia. The values of
the moments of inertia in these directions are called the Princi-
. pal Moments of Inertia of the lamina, and the directions them-
selves are called the Principal Axes of Inertia of the lamina.

L'%\IJ’
ViFaR
Y |
o ~ B
| ~ L V]
o X ] F—.
: :’ ' ‘ / —
L | '/ /
\ »L/
Fic. 53.

These results may be obtained in another way which leads to
a very simple geometrical picture. If, instead of plotting I
against 6 in a polar plot as was done above, we plot 1//(Iy), then
the rectangular coordinates of the point plotted will be

k .
X = ——¢osb, Y = ———sind, 8
«/(Io) ®)

where k is the constant of proportionality. Substituting these
values in (5) it appears that (X,Y) lies on the ellipse

AX2+ BY?—2HXY = k2. 9)

This ellipse is shown dotted in Fig. 53. It is called the

Momental Ellipse for the lamina. It is known that an ellipse
has two principal axes relative to which its equation is

A'X'? 4 B'Y'? = k¥ (10)

these axes will be the principal axes of inertia defined previously,

and their inclination to the original axes will be given by (7). By

inspection of Fig. 53 it appears that the momental ellipse is
elongated in the direction of the body, that is, that its major
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axis, which is the direction of least moment of inertia, lies
roughly along the greatest diameter of the body. We may also
remark that if the moments of inertia of the lamina in any three
directions are equal, the momental ellipse is a circle and there-
fore the moments of inertia in all directions are equal.

The same theory applies to the three-dimensional case (4). If a point
(X,7Y, Z) is plotted in the direction (I,m,n) at a distance k/vI from the

origin so that
gmn 80 tha Kl fem kn

X=TI, Y=W, Z=TI, (11)
then X, Y, Z lies on the ellipsoid
AX?4-BY®*4 CZ2—2FYZ—-2GZX —2HXY = k. (12)

This is the momental ellipsoid for the body. It has three principal axes
at right angles, which are the principal axes of inertia of the body.
Relative to these, (12) becomes

A' X2 BY 24+ C'Z"% = k2. (13)
The moments of inertia of the body in the directions of the principal
axes are called its principal moments of inertia.

So far we have regarded 4, B, C, F, G, H as given. For
complicated bodies they have to be determined by integration.
For simple shapes the results of these integrations are summed
up in Routh’s rule, which states that the moment of inertia
about an axis of symmetry of a body of mass M which has three
perpendicular azes of symmeiry is

% {the sum of the squares of the semi-axes perpendicular to the

one considered}, (14)

where n = 3, for a rectangular parallelepiped,

n = 4, for a circular lamina,
n = 5, for a sphere or ellipsoid.
For example, for a rectangular lamina of sides 2a and 2b the
moments of inertia about the axes of symmetry are
M2, 3Ma?, }M(a®+-b2), (15)
the latter being about the line through the centre perpendicular
to the plane of the lamina.

The results obtained by Routh’s rule (in which the axes, being
axes of symmetry, necessarily pass through the centre of mass
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of the body) may be extended by the use of simple results con-
necting the moment of inertia of a body about any axis with the
moment of inertia about a parallel axis through the centre of
mass.

z z'
m Y
z! Q
G Yy’ R
X , b
3 X
z
X
”f\i ’ o s a P X
X
(a) (b)
Fia. 54.

Let OX, OY, OZ be any rectangular axes, let (£, 7,Z) and
(z,y,z) be the coordinates of the centre of mass G of the body,
and the particle of mass m, relative to them. Let GX’, GY’,
GZ' be a set of parallel axes through G, and let (z",y’,2’) be the
coordinates of m relative to them, Fig. 54 (a). Then

x = T+, ¥y =J+y, z=Z42". (16)
Also, since the centre of mass of the body is at the origin of

the (z', ¥, 2) coordinate system, we have from the definition
of the centre of mass, cf. § 66 (18),

Sma' =3 my = mz' = 0. (17)
Relative to the axes OX, OY, OZ we have
4 = S mlgr+#) = 3 m{(G+y )Y
= (F*+2%) X m+2§ 3 my' +22 3 mz'+
. + 2 m(y*+2"%)
= M(7*+2%)+4cq, (18)

by (17), where we have used the fact that Z, 7, Z are the same
for all particles 7n and so may be taken outside the summations.
In (18) M is the total mass of the body, and 4,4 is the quantity
A for the parallel system of axes through the centre of mass.
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In the same way
F =3 myz =3 m(+y)(E+z2)
=gy m+gymd+Z3 my'+ > my'?
= Mji+Fg,. (19)
Similar resuits hold for B, C, G, H. These results may be
expressed by the statement that a moment or product of inertia
relative to any system of rectangular axes is obtained by adding
to the corresponding quantity for parallel axes through the
centre of mass a transfer term which is just the moment or
product of inertia relative to the original axes of a particle of
mass equal to the total mass of the body and placed at its centre
of mass.

As an example we find the moments and product of inertia relative
to the axes 0X, OY (Fig. 64(b)) of a right-angled triangular lamina of
sides @ and b.

To find 4, the moment of inertia about 0X, we consider the strip RS
of width 8z at z. If p is the surface density of the lamina, the moment
of inertia of this strip about 0X is, by Routh’s rule,

3py® dx.
Here y = b(a—z)/a, and, integrating from = = 0 to z = a we get

= a—-f(a z)? dxr = {5pabd. (20)

Interchanging a and b we get
B = 5pa®b. (21)
To find the product of inertia we use the fact that, because of its
symmetry, the product of inertia of the strip RS about axes parallel to
OX and OY through its centre of mass must be zero.
Thus the product of inertia for the strip RS relative to the axes 0X,
OY consists only of the transfer term

py dx 2 dy.
Integrating we get

H=g f w(a—z)* dz = Jgpatb?. (22)
0

Thus the momental ellipse (9) for the lamina relative to these axes is

%% +a%y?—abry = constant. (23)

And, by (7), the inclination 6 of the principal axes to OX and OY is
given by ab

tan20 = (;’—_b"
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66. Fundamental equations ‘
We regard a rigid body as composed of a large number of
particles held together by cohesive or internal forces acting
between them. In addition to these there are external forces
acting on the particles which may be of two types, either body
forces such as gravity which act on all particles, or applied
forces or reactions which we regard as being applied to certain
specified particles. The masses of the particles will always be
assumed to be constant.
Let m be the mass of a typical particle of the body and let
r be its position vector relative to a fixed frame of reference
with origin 0. Let P and P’, respectively, be the resultant
external and internal forces on the particle. Then its equation
of motion is d
dt
As in § 53 we use 3 to denote a summation over all particles
of the body, and write

(mi) = P4P'. (1)

L =Y mi 2
for its linear momentum, and
H=73rAmi (3)

for its angular momentum about O. Summing (1) over all
particles of the body gives

—=>P+3P. (4)
Also, differentiating (3) and using ¥ AT = 0,
dH d- ,
i Zr/\dt =3rAP+ 3rAP, 5)

using (1).

Some assumption has to be made as to the nature of the
internal forces, and here we shall make the simplest possible
one, namely, that they consist of forces of attraction or repul-
sion between the individual particles. Since for each such force
on a particle A due to a particle B there is an equal, oppositely
directed, reaction force on B due to A4, the sum of these, and
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also the sum of their moments about O, vanishes. And therefore,
summing over all particles,

SP =0, (6)
SrAaP' =o0. (7)
The results (6) and (7) are also true under less restrictive
conditions than those assumed above. Using (6) in (4) gives
dL
i (8)
This is the first fundamental result, and may be stated as:

1. The rate of change of linear momentum of the body is equal
to the vector sum of the external forces acting on it.

Again, using (7) in (5) gives the second fundamental result:

II. The rate of change of angular momentum of the body about
a fixed origin O is equal to the sum of the moments of the external

Jorces about O; that is,

dH E
— = . 9
7 >rAP (9)
If the forces on the body are in static equilibrium and it is

initially at rest, L. and H must remain zero, and (8) and (9) give
>P=o, SraP =0, (10)
which are the conditions of static equilibrium stated in § 53.

If (z,y,2) and (X,Y,Z) are the components of r and P relative to
right-handed rectangular axes through O, (8) becomes

d . d . d .
aZm_ZX, ‘—i«thy—ZY, aZmz=ZZ.

(1)
Also, using § 52 (18), (9) gives

5> miyi—z) = 3 (yZ—2T), a2

together with two similar equations.
An alternative method of deriving the fundamental equations should
also be noted. (1) may be written in the form

P4+P —mi = 0. (13)
Now in (13), —m# has the dimensions of a force, and in this sense is

referred to as the reversed effective force on the particle. The whole of
the forces acting on the system of particles which compose the body are
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now the external, internal, and reversed effective forces, and the equa-
tions of motion are obtained by writing down the conditions that these
be in static equilibrium. When this is done the internal forces will
disappear by (6) and (7), and the result may be stated in the form that
the external and reversed effective forces on all particles of the body
are in static equilibrium: this is known as d’ Alembert’s principle. In this
method the conditions for a set of forces to be in static equilibrium are
used, and are assumed to have been derived from statical considerations -
(cf. Chap. VI, Exs. 11 to 13).

If M = ¥ m is the mass of the body, the position vector T
of the centre of mass relative to O is defined by

ME =3 mr. (14)
Using this result in (2) gives
L = Mt, (15)

that is, the linear momentum of the body is equal to that of a
particle of mass M moving with the velocity of the centre of
mass of the body. Using (15) in (8) we get

d N
St =3P, (16)

which is the third fundamental result and may be stated as:
TII. The centre of mass moves like a particle of mass M placed
there and acted on by the vector sum of the external forces on the
body.
Now let r’ be the position vector of the typical particle m
relative to the centre of mass, so that
r=Ff4r. - (17)
From (17) I mr’' =Y mr — 3 mf =0, (18)
using (14). Substituting (17) in (3) we get
H = Y m(F+r)A@E+1)
=Y mEAF + I mr At + T mEAL+ 3 mr AT
= MEAE + 3 mr' AT, (19)
on taking ¥ and # outside the summations over the particles
and using (18).

The first term on the right-hand side of (19) is the angular

momentum about O of a particle of mass equal to the total mass
5296 Q
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M of the body placed at the centre of mass and moving with it:
the second term is the angular momentum of the body about
its centre of mass. Using (19) and (17) in (9) we get

d . d e = ,
Md—t(r/\f')—{-%Zmr A =FAY P+ S AP
By (16) this reduces to

%Zmr’/\i"=2r’/\P, (20)
that is:

IV. The rate of change of angular momentum about the centre
of mass is equal to the sum of the moments of the external forces
about the centre of mass.

The results II, III, IV are those usually needed in solving
problems and we shall refer to them shortly as ‘motion about
a fixed axis’, ‘motion of the centre of mass’, and ‘motion about
the centre of mass’, respectively.

To determine the angular momentum of the body about its
centre of mass in (19), suppose that its angular velocity about
its centre of mass is w, so that I’ = w Ar’ and

Smr' At =3 mr' A(wAr) =w > m(r'.r')— 3 mw.r')r.
(21)
If (w,;, wy, wg) and (2, ', 2) are the components of w and r’
referred to right-handed rectangular axes, those of the angular
momentum (21) are
(Aw,—~Hwy—Guwg, —Hw,+ Bwy—Fw, —Gw,— Fw,+Cwy),
(22)
where 4, B, C, F, G, H are defined in § 65 (2) and (3).
The kinetic energy T of the body may be studied in the same
way. It is

T =33mEP =1 3T mlf+i'2 == §M|E24+] 3 m|i'[ (23)

The first term on the right hand side of (23) is the kinetic
energy of a particle of mass M at the centre of mass of the body
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and moving with it. The second is the kinetic energy of the
motion about the centre of mass. With the notation of (22) it is

PImIE = 1 3 ml(wpr —wpy Vit (w5a'—en 2+
+(w Yy —w, z)%}
= HAw}+ Bwi+Cwi—2Fw,w;—2Gwsw,—
—2Hw, wy}. (24)
The result (24) also gives the kinetic energy of the motion of
the body about a fixed origin if 4,..., H are the moments and

products of inertia relative to fixed axes through this origin, and
in the same way (22) gives the angular momentum.

67. Motion about a fixed axis

In this case only the principle II of § 66 is needed. The
angular momentum about the axis may be written down from
§ 66 (22) but we derive it here ab initio.

P a {p 7 b
2
(a) b ™M X
: Fic. 55.

Let 8 be the angle between a marked plane in the body passing
through the axis of rotation and a fixed plane through the axis.
Let m be a typical particle of the body, and r its perpendicular
distance from the axis, Let the plane through m and the axis
make an angle ¢ with the marked plane in the body; cf. Fig. 55 (a).

Then the angular momentum of the body about the axis is

z mr2%(0+¢) =3 mrf =83 mrt = I, (1)

since ¢ is independent of the time, and # is the same for all
particles of the body.
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The equation of motion § 66 11 thus becomes -
1§ = couple. ' (2)
This is the equation often referred to in Chapter IV.

The compound or rigid body pendulum

It is required to find the motion of a rigid body which can
oscillate freely about a horizontal axis. Let 6 be the angle which
the plane through the axis and the centre of mass @ makes with
the downward vertical. Then if 4 is the distance of the centre
of mass from the axis, the sum of the moments of the external
forces (gravity) about the axis in the direction of 8 increasing
is —Mghsin@. If I is the moment of inertia of the body about

the axis, (2) gives 1§ = — Mghsin®, 3)

or, writing I = Mk?,
6+ (gh/k?)sin6 = 0. (4)

This is precisely the same as the equation of motion, § 55 (13),
of a simple pendulum of length 42/k. Thus a simple pendulum
of this length and the rigid body pendulum, if started with
the same values of 8 and 6, will keep step exactly. The simple
pendulum of length k2/A is called the simple equivalent pendulum.

The solution of (4) has been discussed in § 55.

Next we determine the reactions at the axis of rotation.
Consider first the case of a lamina which is freely hinged at a
point and which oscillates in the vertical plane through the
hinge. We wish to find the reaction at the hinge, and we may
either seek its radial and transverse components, B and 7,
Fig. 55 (b), or its horizontal and vertical components. Here we
shall find the former, and in § 68 the latter, as both methods of
procedure are important.

We now have to use the principle III of § 66, namely, that the
centre of mass moves like a particle of mass M placed there and
acted on by the resultant external force on the body, the
external forces being in the present case R, 7', and Mg. The
equations of motion § 61 (9) and (10) give

MK = T— Mygsiné, (5)
Mh62 = R—Mgcost. (6)
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From (5) and (4) it follows that

TR .
T = Mg(l—-k—z)sme. (7)

To determine R we need 62, and thus have to integrate (4). If
w is the value of 8 when ¢ = 0, (4) gives as in § 55

0% = w2+2792’—&(0030~1), (8)
and from (6)
9p2
R= Mg(l +“IT"2)cos 0+Mh(w2_@). 9)

We now consider the more general case of any rigid body which can
turn freely about a horizontal axis. It may be remarked that the present
theory includes that of a fly-wheel whose centre of mass does not lie on
its axis, and that the reactions on the bearings may cause important
vibrations.

Suppose that the axis of rotation is supported by two bearings P
and @, and that O, the foot of the perpendicular from the centre of
mass G on the axis, is distant a from P and b from ¢. Let R, and 7}
be the radial and transverse components of the reaction at P, and R,, T,
those of the reaction at @; cf. Fig. 55(c).

The preceding calculation gives the total radial and transverse com-
ponents of the reactions, that is,

R,+R,= R, _(10)
L+T =T, an
where R and 7 are given by (9) and (7). To determine the reactions
completely we need two more equations, and for these we must use
§ 66 IT or IV. A fundamental difficulty arises here which appears with
all irregularly shaped bodies: if we take axes fixed in direction, the
moments and products of inertia of the body relative to them change
as the body moves. Thus we must take a set of axes fixed in the body
and allow for the motion of these axes as in § 64. Take axes OX along
0@, OZ along the axis of rotation, and OY to make a right-handed
system. Let 4, B, I, F, G, H be the moments and products of inertia
of the body referred to these axes. The components of the angular
velocity of the body along these axes are

(0,0,0). (12)
The components of the angular momentum of the body along these
axes are by § 66 (22) (—G(i, —F9, 19). (13)

A Using (12) and (13) in § 64 (4), the components of the rate of change
of angular momentum of the body about the instantaneous directions

of the axes are (— GO+ Féo, — FG— Go2, 19). (14)
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The sum of the moments of the external forces about the instantaneous
directions of the axes are

(T,a—Tyb, Rya— Ryb, — Mghsin§). (15)

Equating (14) and (15) by § 66 1T we get
GJ—Ff® = T,b—T,q, (16)
~Fi— G662 = R a— R,b. (17)

¢ and 2 are given by (3) and (8), and (10), (11), (16), (17) are four
equations for R,, R,, T}, T}.

68. Motion in two dimensions

In this section we solve a number of two-dimensional prob-
lems.

Ex. 1. A thin rod of mass M and length 2a is initially at rest
in the vertical position of unstable equilibrium and rotates freely
about its lower end O, Fig. 56 (a). It is required to Jind the motion
and the horizontal and vertical components, F and R, of the reaction
at the point of support.

(a) (b) {c) (d)
Fic. 56

By Routh’srule, § 65 (14), the square of the radius of gyration,
k2, of the rod about O is 4a2/3. Thus the equation of motion of
the rod about O, found as in § 67 (3), is

2.,
4»?)—0=gasin0. A 1)
Integrating as in § 55 we have
%‘50'2 = g(1—cosf), 2)

since we are given 6 — 0 when 8 — 0.



§es RIGID DYNAMICS. 231

We now consider the motion of the centre of mass in rectangu-
lar coordinates x,y. We have

z = asind, y = acosd, (3)
& = af cosb, = —afsin6, (4)
# = ab cos f—ab?sin b, (5)
ij = —alisin—ab?cos§. (6)
F
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Fia. 57

Thus motion of the centre of mass, § 66 III, gives

M(ab cos §—af?sin ) = F, (7N
M(—absin 6—ab?cosb) = R— My. (8)
Using the values (1) and (2) in these, we get finally
F = :—Siiﬂ]sinﬁ(?) cos §—2), (9)
R = iji—g(3cos0——l)2. (10)

The way in which F, R, and F/R vary with 6 is shown in
Fig. 57. F changes sign as 6 passes through cos—1(2/3), so that,
for values of 8 larger than this, the horizontal component of the
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reaction is in the opposite direction to the arrow in Fig. 56 (a).
The curves will be discussed further in § 69. :

Ex. 2. A cylinder of radius a and moment of inertia Mk? rolls
down a perfectly rough plane inclined at « to the horizontal
[Fig. 56 (b)].

Let « be the distance the centre of the cylinder has moved
from its initial position, and let 8 be the angle through which -
a marked line on the cylinder has turned from its initial
position. Then z = af), (11)

and, differentiating, z = af. ‘ (12)
(12) might have been written down directly since z—af is
the velocity down the plane of the point of the cylinder instan-
taneously in contact with the plane, and since the cylinder rolls
without slipping this velocity must be zero.
Let F and R be the components of the force on the cylinder
at the point of contact; then motion of the centre of mass

(3 66 III) gives Mi = Mgsina—F, ©(13)
0 = R—Mgcosa. (14)

Also motion about the centre of mass (§ 66 IV) gives
Mk = Fa. (15)

Since, by (12), # = af, (13) and (15) give
i= 9% gina, (16)
k2+a2

= kT_*gTI-;;sin a. (17)

The cylinder thus rolls down the plane with constant accelera-

tion.

Ex. 3. 4 cylinder of radius a and moment of inertia Mk? rolls down
the outside of a perfectly rough cylinder of radius b {Fig. 56 (c)].

Let @ be the angle the plane containing the axes of the cylinders makes
with the vertical, and let ¢ be the angle between a marked plane through
the axis of the cylinder of radius @ and the plane containing the axes
of the cylinders. Then, since the lengths of the arcs of the two circles
which have rolled over each other must be equal, we must have

b8 = ad+-constant, '

and b0 = ad. (18)
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Let F and R be the components of the force on the eylinder of radius
a at the point of contact, then, using § 61 (9) and (10), motion of the
centre of mass (§ 66 I1I) gives .

M(a+b)§ = Mgsinf—F, (19)
M(a+b)f2 = Mgcosf—R. (20)

For motion about the centre of mass (§ 66 IV) we have to specify the
position of the marked plane on the cylinder, not relative to the moving
plane joining the axes of the cylinders, but relative to a fixed plane such
as the vertical with which it makes an angle (#+¢). Thus this equation
18 Mi(f+¢) = Fa. (21)

(18), (19), and (21) give

(a+b) (a2 +k2)f = ga®sinb. (22)

Ex. 4. A uniform rod of mass M and length 2a is supported in a hori-
zontal position by two equal springs of stiffness A at its ends. Discuss the
small vertical oscillations of the system ; cf. Fig. 56 (d). _

Let x, and z, be the extensions of the springs from their equilibrium
positions. The displacement of the centre of mass is }(z;+;) so that
motion of the centre of mass, § 68 II1, gives’

M (&) + &) = _MI—MS' (23)
The force of gravity is not included in (23) since x, and z, are measured
from their equilibrium positions.

The small angle through which the rod has turned is (x;—x,)/2a, so
that motion about the centre of mass, § 66 IV, gives

¥Ma(i,—#,) = —Aax,+Aaz,. (24)
It follows from (23) that x,+x, oscillates with frequency (2A/M)}/2m,
and from (24) that x, —x, oscillates with frequency (6A/M)}/2m.

69. Problems of rolling or sliding

When there is an imperfectly rough contact to be considered,
we do not know a priori whether there is slipping at this contact.
We must make one or other of two assumptions, calculate the
motion on this basis, and verify that it satisfies the required
conditions: if it does not, the other assumption must be used.

(i) Assume the point of contact to be at rest. In this case the
components of the reaction at the point of contact along and
normal to the surface, F and R, can be calculated and we must
have F << uR, where u is the coefficient of friction. If ¥
becomes equal to uR slipping commences.

(ii) Assume the point of contact to be moving. In this case the
tangential and normal components of the reaction, ¥ and R,
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are connected by ¥ = uR. The velocity of sliding of the point
of contact is then calculated: if at any time this becomes zero,
calculations must be continued with the assumption (i).

It should be remarked that the coefficients of friction p in (i)
and (ii) are respectively the static and dynamic coefficients and
that these are not necessarily the same [cf. § 30 (iii)], but here
we shall for simplicity assume that they are equal.

Ex. 1. A4 thin rod of mass M and length 2a is initially at rest
tn the position of unstable equilibrium with its lower end resting
on a horizontal plane, the coefficient of friction between the rod and
the plane being p.

If we assume that the point of contact is at rest, the rod turns
about it, and the equations of motion are those of § 68, Ex. 1.
F and R have been calculated in § 68 (9) and (10), and they and
F|/R are graphed in Fig. 57. For the point of contact to remain
at rest we must have | F/R| < p. If p is less than the maximum
at A4 of the curve F/R, Fig. 57, the point of contact will slip
" backwards at the angle 6,. But if u is greater than this maxi-
mum, the point of contact will remain at rest all the time that
friction acts forwards, and slipping will take place (forwards) at
the angle 0, at which — F/R = u. Slipping must occur before
# reaches the value cos—1(1/3).

Ex. 2. A cylinder of radius a and moment of inertia Mk? is placed at

rest on a plane inclined at @ to the horizontal, the coefficient of friction
between the cylinder and the plane being pu.

This has been discussed on the assumption of rolling, that is that the
point of contact is at rest, in § 68, Ex. 2. F and R are calculated in § 68
(17) and (14), and if the assumption of rolling is correct we must have

F k2
E ES 2—_{_—;,‘; tanoa < M. (1)
If this is not the case we must assume that the point of contact slips:
since the cylinder is initially at rest, the point of contact must slip down
the plane and the frictional force F = uR must act up the plane,
Fig. 58 (a).
« and § are now independent, and the equations of motion are
Mié = Mgsina—uR, (2)
0 = R—Mgcosa, (3)

Mk = pRa. 4)
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(2) and (3) give & = g(sina—pcosa),

£ = gi(sina—pcosa), (6)
gince # = 0 when t = 0,
(3) and (4) give
§ =% conc,
4= ’ik‘q?cos o, (6)

since § = 0 when ¢ = 0.
pg
9(4 2 2

a Mg !

(a) (b)
FiG. 58

\9

e

(5) and (6) give the velocity and angular velocity of the cylinder, both
of which increase steadily. The velocity of the point of contact is

t—al = gt{sina—p.(l—%%i)cosa}, 7

2
and thus is zero if tano = ;L(l +;—Z—2). (8)

This is the transition value between rolling and sliding found in (1).

Ex. 3. A cylinder of radius a and moment of inertia Mk? is placed
gently at ¢t = 0 on a horizontal table of coefficient of friction p. It has
initial velocity v and back spin Q [Fig. 58(b)].

‘We measure x in the direction of » from an origin at the initial position
of the cylinder, and # in the direction corresponding to roiling in this
direction.

Then when ¢t = 0, z=w, = —Q, (9)
and the velocity of the point of contact #—a# is v+aQ. Since the point
of contact initially slips forwards, the frictional force R must act back-
wards. The equations of motion are

. Mi = —puR, (10)
Mk*§ = pRa, : (11)
0 = R—Mg. (12)

From (10) with £ = v when t = 0,
& = v—pugt, (13)

that is, the velocity of the cylinder decreases linearly.
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. From (11) with § = —Q when ¢ = 0,
k20 = —kQ+pgat, (14)
that is, the backspin decreases linearly.
. The velocity of the point of contact is
E—al = (v+aQ)—pugt(1+a?/k3). (15)
This becomes zero, and so rolling commences, when
k*v+a
- E‘(;;%r%). (16)
At this instant the velocity of the centre is by (13)
2
e
If v > Qk%/a this is positive and the cylinder rolls forwards; if
v = Qk¥/a it comes to rest; and if v < Qk?¥/a it rolls backwards.

70. Impulsive motion

When impulsive forces act on a system of rigid bodies we
assume as in § 39 that the time r during which they act is so
small that the changes in position of the bodies during it are
negligible. By integrating the equations of motion over the
small time = the changes in velocity due to the blows can be

found.
If P is a typical impulsive force applied at ¢ = 0, we write

J=fra (1)

for the impulse of the blow.

We now obtain four results corresponding to § 66 I to 1V.

Integrating § 66 (8) over the small time 7 gives

L—L,=3%J, (2)

where L; and L, are the linear momenta of the body before and
after the blow. Thus:

I. The change in linear momentum of the body is equal to the
vector sum of the impulses of the blows applied to it.

Again, integrating § 66 (9) over the small time r and remem-
bering that the changes in the r in this time are negligible, gives

Hf;'H‘ = Er/\J, (3)
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where H; and H, are the angular momenta of the body about
the origin before and after the blow. That is:

I1. The change in angular momentum about a fixed origin is
equal to the vector sum of the moments of the impulses of the blows
about the origin.

In the same way from § 66 (16):

IIX. M times the change in linear velocity of the centre of mass
of the body is equal to the vector sum of the impulses of the blows.

And finally from § 66 (20):

IV. The change in angular momentum about the centre of mass
is equal to the vector sum of the moments of the impulses of the
blows about the centre of mass.

Usually IIT and either II or IV are used to determine the
change in the motion. If a system is set in motion by blows,
we have to determine the initial values of its velocities and
angular velocities by the methods of this section and subse-
quently to study the motion with these initial conditions as in
§§ 68, 69. If the Laplace transformation is used, treating a blow
of impulse J as a force J (t), the preliminary calculation of the
initial conditions is avoided, but this method is only available
when the equations of motion are linear.

Ex. 1. A lamina can rotate freely in its own plane about a hinge
0, its moment of inertia about an axis through O perpendicular to
its plane being Mk It is set in motion by a blow of impulse P
in a direction perpendicular to the line joining O and the centre
of mass Q.

If w is the angular velocity of the lamina after the blow, and
a is the distance of the line of action of P from the hinge,
Fig. 59 (a), we have by II

Mk?*w = Pa. ’ 4)

There will be an impulsive reaction at the hinge O: suppose
that X and Y are the components of this impulse in the direction
of P and perpendicular to it. Then if 4 is the distance 0G, we
have by III Mho — P+X, (5)
) 0=7Y. (6)
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Therefore, using (4),
ah
X = P(F—l). (7)

If @ = k%, the length of the simple equivalent pendulum,
X = 0, so that if the blow is struck at this point (called the

u“_,;w

C
X o
Yy, X U, . Y X Uz
dh gy 4 s Tyvc a_l, 4,
) 2 v =

(a) (b . ©) (d)
Fia. 59

centre of percussion for this reason) there is no reaction at the
hinge. If a > k%h the reaction X is positive, that is, in the
direction of the blow; if @ << k%/A it is in the opposite direction.

The case of any body free to rotate about an axis which is
carried in bearings may be treated as in § 67.

Ex. 2. Two equal uniform rods AB, BC, each of length 2a and mass M,
are freely hinged at B and are at rest in a straight line when a blow of
tmpulse P is struck at A in a direction perpendicular to the rods.

Let v, and v, be the velocities of the centres of the rods after the blow,
and let w; and w, be the angular velocities of the rods, Fig. 59 (b). Since
the velocity of B, calculated from the assumed velocity and angular
velocity of the rod A B, must be the same as that calculated from BC,
we must have V1—aw; = Dy-t-aw,. (8)
If desired, v, in Fig. 59 (b) could have been replaced by v, —aw, —aw,
and the use of (8) avoided; it is desirable to proceed in this way in more
complicated problems.

There will be a blow of impulse X on the rod 4B at the hinge, and
an equal and opposite blow on BC.

From IV we get Matw, = (P—X)a, (9)
Matw, = —Xa. (10)

Also from IIT My, = P+X (11)
My, = —X. (12)

(8) to (12) are five algebraic equations for v,, v;, w;, wy, X.
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Ex. 3. The rods in Ex. 2 are inclined at an angle «.

In this case we must assume components of velocity of the rods, and
components of the impulse at the hinge, both along and perpendicular
to the rod AB [Fig. 59(c)].

III and IV now give Mu, — Y,

My, = P4+ X,
X = —Mv, = —M(v,—-aw, —aw; cosa),
Y = —Mu, = —M(u;—aw;sina),
iMalw, = (P—X)a,
iMatw, = —aX cosa—aY sina.

Ex. 4. A sphere of mass M and radius a, spinning about a horizontal
axis with angular velocity w > uja impinges on a horizontal plane with
velocity v towards the plane and u parallel to it, Fig. §9(d). The coefficient
of resistution is e, and the coefficient of friction is p.

If R is the impulsive reaction normal to the plane we have from III

R = Muv(1+e). (13)

At the instant of contact, the horizontal component of the velocity

of the point of contact is
u—aw,

which by hypothesis is negative. We thus assume an impulsive frictional
force uR = uMv(l+e) acting forwards. Then if U and Q are the
horizontal component of the velocity, and the angular velocity, after

the impact M(U—u) = pR = pMo(1+e), (14)
2
2]‘2" (Q—w) = —pRa = —pMua(l+e). (15)
Therefore

U = utpv(l+e),
o
Q= w—2Z(1+e).

Thus the horizontal component of the velocity is increased and the
angular velocity decreased. ‘

71. The gyrostatt

A gyrostat consists essentially of a solid of revolution which
spins about its axis of symmetry. This axis is freely hinged at
a point O of itself. The centre of mass G of the solid is on the

t+ The name gyrostat is usually used for systems of this type in which gravity
has to be considered: the system is also that of a top spinning about a fixed
point. In the gyroscope the centre of mass is at the origin, so that gravity
exerts no moment about O, and the motion of the system caused by given
external couples has to be considered. In the usual mounting in concentric
rings or gimbals, § and ¢ specify the positions of the rings and so have a funda-
mental gignificance.
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axis and distant % from the hinge O, so that the force of gravity
has a moment about O. We shall consider the effect ‘of gravity
alone; if there are, in addition, externally applied forces they
are treated in the same way.

First we have to specify the position
of the solid in space. Let OX, OY, OZ be
fixed rectangular axes through the hinge O
with OZ vertical. We specify the position
of O¢, the axis of symmetry, of the body,
by its spherical polar coordinates relative
to the axes OX, OY, OZ: that is, 8 is the
angle between Of and OZ, and ¢ is the
angle between the planes ZO{ and ZOX.
We then take a system of axes O¢, Oy, O
such that O¢ lies in the plane ZO{ and
makes an angle 1746 with OZ, while Oy is
chosen so that O¢, Oy, O form a right-handed system of rect-
angular axes. Finally, let ¢ be the angle between a marked
plane in the body through its axis Of and the plane £0f. The
position of any point of the body is then known if 6, i, ¢ are
known; these are called the Eulerian angles and are used in most
problems of this type.

There are many ways of deriving the equations of motion of
the gyrostat: in this section we shall use moving axes; alterna-
tive deductions using Lagrange’s equations, and using the
energy and momentum equations, are given in §§ 76, 74.

We take the system O¢, On, Ol as moving axes; cf. § 64.
Their components of angular velocity about their instantaneous
directions are

Fic. 60

(—ysin 6, 6, ¢ cos 6). (1)

The components of angular velocity of the body itself in the
instantaneous directions of the axes are

(—z;':sin 8, 8,¢+1/1 cos ). (2)

Since O is the axis of symmetry of the body, its moments
of inertia about all axes in the plane {0y will be the same, say 4,
and all the products of inertia will vanish. If C is the moment
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of inertia about O, the moments of inertia about the axes O,

On, Ol will be A, A, C, respectively, and the components of the
| angular momentum of the body along the instantaneous direc-
| tions of these axes will be

{—Ayisin 8, 46, C($+ cos 8)}. (3)
The components of the moment of the external force (gravity)
about O are (0, Mghsin 8, 0). ' 4)

The equations of motion are now obtained by equating the
components of the rate of change of angular momentum along
the instantaneous directions of the axes Of, Oy, Of to the
components of the moment of the external force in these
directions. That is, using (3) and (1) in § 64 (4),

| —A g—t(tp sin 0)— A6 cos 6+ C(¢ -+ cos 6) = 0, (5)
A gi(é)~Axﬁzsin0003 64 Cyrsin 6(¢p+ycos 0) = Mghsin8, (6)

c %(¢+:/}cost9) = 0. N
(7) gives immediately
é+ycosd = n, (8)

where 7 is a constant (Cn is the angular momentum about the
axis of symmetry, and, in the absence of friction, this is constant).
Using (8), (5) and (6) become

4 %@m 8)+ A6y cos §— Cnf = 0, @

Al— Ag?sinfcos8+Cnysind = Mghsing. (10)
Multiplying (9) by siné, it may be written

%(Az/}sinﬁﬁ—l-(?n cosf) = 0. (11)
Therefore, integrating,

Ayisin?6+-Cncosf = H, (12)

where H is a constant (which is the constant angular momentum
5208 B
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about the vertica:l). Finally, multiplying (9) by ¢ siné, (10) by 6,
and adding gives

A00+Axpsm9 (zpsmﬂ) Mghfsind = 0. (13)

Integrating (13) gives
3A(62+yi2sin26)+ Mghcosf — E, (14)
where £ is a constant. This will be seen in § 76 to be the energy
equation. .

(8), (12}, and (14) are three first integrals of the motion. To
study the motion further we eliminate  from (14) by using
(12), and get an equation for 8 only. It is a little simpler to
work in terms of the new variable

x = cosf. (15)

Also, for shortness, we write )

Cn Mgh 2K

T =% %:b, — = 7=d, (186)
so that (12) and (14) become
=" (17)
B2+ y2(1—a2)? = (d—2cx)(1—z2). (18)
Using (17) in (18) we get
%2 = (d—2cx)(1 —x?)— (b—ax)? (19)

This js an equation of the form studied in § 55. We remark
that, writing f(x) for the right-hand side of (19), f() is a cubic
in z and so the complete solution of (19) will in general involve
elliptic functions [cf. § 55, Ex. 2].

Since z = cos 8, we are interested in the range —1 <z < 1
of z, and by (19) both f(1) and f(—1) are negative. But at the
point of projection 42, and thus f(z), must be positive. Thus f(x)
must have two zeros in —1 <{ = <{ 1, and so the motion consists
of an oscillation between two fixed values of z or .

The most interesting case is that of steady motion in which
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these fixed values coincide so that 6 = o, constant. Putting
6 = 0 in (9) we find that ¢ must be constant, and from (10)

Ayi? cos a— Cnyy+ Mgh = 0. (20)
This equation has real roots if
C?n? > 4MghA cos a. (21)

If this condition is satisfied, steady precession of this type is
possible with 8 = « and with either of the angular velocities

g = {Cn+\(C*n*—4MghA cos x)}/2A4 cosa.

Since, usually, the angular velocity of spin about the axis is
large, Cn > 4MghA cos« and these angular velocities become
approximately

Cn/Acosa, ‘quick precession’, (22)
Mgh/Cn, ‘slow precession’. (23)

These results, and extensions such as the period of small
oscillations about steady precession, can also be found from a
further study of (19)—the condition for steady precession at
cosa = z, is that f(z) should have a double zero at x,.

The gyro-compass

Suppose the gyroscope is pivoted so that its centre of mass coincides
with the hinge O of Fig. 60, and suppose further that its axis is constrained
to move in a horizontal plane. We consider the effect of the earth’s
rotation on its motion when it is in latitude A.

Suppose the axis Of of the gyroscope makes
an angle 6 with the axis OY of Fig. 51 (b), that
O¢ lies along OZ, and that Oy makes a, right-
handed system, Fig. 61, where the axes OX,
0Y, OZ are those chosen in § 64, Ex. 2.

The components of the earth’s angular velocity
in the directions of OX, QY, OZ are by § 64 (7)

(0, wecosA, wsinA). (24)
Therefore, in the directions Of, On, 0{ they are Fic. 61.

(wsinA, wcosAsinf, wcosAcosf). (25)

The components of the angular velocity of the system Of, On, Of
about their instantaneous directions are

(0+wsin), weosAsin, wcosAcosh). (26)
If ¢ and the moments of inertia are defined as before, the components
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of the angular momentum of the body along the instantaneous directions
of O¢, Oy, Of are

{4(0+wsin}), AwcosAsinb, C(d+w cosAcos §)}. (27)

There are no couples about the axes Of and Of. Thus, writing down
the rates of change of angular momentum about these axes by using
(27) and (26) in § 64 (4), we get

Af+ CweosAsin 0($+w cosAcosf)— Aw?cos?Asinfcosd =0, (28)
(%(¢+wcosaeos0) =0, (29)

(29) gives ¢+w cosAcosf = n, and substituting this in (28) and neg-
lecting the small term in w? gives

Ab4-Cnwcoslsing = 0. (30)

Thus there is equilibrium if § = 0, that is, if the axis points north,
and the period of small oscillations about equilibrium is
‘ 4 )*
_= ). 31
2”(Cn wcos A 31
The simple arrangement described above is unsatisfactory owing to
the friction introduced by the constraining couple, but the theory of the
systems used in practice follows the same lines.

EXAMPLES ON CHAPTER VIII

1. Show that the moments of inertia of a right circular cone of semi-
veftical angle «, height %, and mass M are

(3/10)MhA?tan®x, (3/20)Mh?(tan2x--4), (3/20)MhA¥(tanx+ 5sina)

about its axis, a perpendicular to the axis through the vertex, and a slant
side, respectively.

2. Show that the moments and products of inertia of a uniform triangle
of mass M relative to any axes are the same as those of three particles
of mass M/3 placed at the mid-points of the sides of the triangle. (Drop
a perpendicular from a vertex to the opposite side and take these lines
as axes,)

3. A thin wire ABCD whose mass per unit length is p is bent in a
plane so that AB = CD = a, BC = 2b, the angles ABC and BCD are
90°, and AB and CD are on opposite sides of BC. Show that the
principal axes at the centre of mass are inclined at # and 47»—8 to the
wire, where 3a%

0 = % tan_l 33 _a9-j2°"
a®—b%— 3ab?

4. 1 is the length of the simple equivalent pendulum of a rigid body
when it oscillates about an axis through O. Show that it will oscillate
with the same period about a parallel axis which is distant { from the
original axis measured in the direction towards the centre of mass, and
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is in the plane of the original axis and the centre of mass. Show also
that there are two other axes in this plane about which the period has
this value.

5. Show that if the period of small oscillations of a rigid body under
gravity about an axis fixed to it is 7" when the axis is horizontal, it is
T(sec )} when the axis is inclined at # to the horizontal.

6. A fly-wheel of mass M and moment of inertia Mk? about its axis
has its centre of mass distant 4 from the axis. Show that, if it is rotating
freely with maximum angular velocity w about a horizontal axis, the
horizontal component of the reaction on its bearings is '

3Mgh?
kﬁ

sinf cos G—Mh(wz——2z—:t)sin A
where § is the angle the plane containing the axis and the centre of mass
makes with the downward vertical.

7. A uniform thin circular disk of mass M and radius a is mounted on
a shaft through its centre which makes an angle ¢ with its plane. The
shaft is carried in two bearings, each distant b from the centre of the disk,
and rotates with angular velocity w. Show that the reaction of the
bearings is a couple of moment

iMalw?sin ¢ cos ¢

in the plane of the shaft and the perpendicular to the disk.

8. In a piston engine 40 is the crank of length @, A B is the connecting
rod of length b, and the crank rotates uniformly so that the angle AOB
is wt. If the angle ABO is ¢, show that, neglecting terms in (a/b)4,

cos¢ = 1—(a?/2b%)sin%wt.

If the reciprocating parts are of mass M and the connecting rod is
uniform and of mass m, show that the reaction on the crankpin in the
direction OB is

(M +m)w?a cos wt+ (a®w?/b)(M + m)cos 2w,

neglecting friction, and find the reaction in the perpendicular direction.

9. A mass M is hung by two single pulley blocks of mass M’; the wheel
in each is of radius ¢ and moment of inertia mk2. Show that if the rope.
is allowed to run out freely, the mass M will descend with acceleration

(M+M')g
M+ M’ + 5mk2/a?’

neglecting friction and the mass of the rope. Find the corresponding
result if friction is included.

10. A solid eylinder of radius b rolls without slipping on the inside of
a fixed, hollow, horizontal eylinder of radius @. Discuss the motion, and
show that the period of small osecillations about the lowest point is

27{3(a—b)/2g}}.
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11. A rod OP of length a+b, mass M;, and moment of inertia about O
of M, k3, is freely hinged at O. At P it carries in a frictionless bearing
a gear of radius a, mass M, and moment of inertia M#%2, which meshes
with a fixed gear of radius b and centre O. If torque T about O is applied
to the rod OP, show that its angular acceleration is

T/{M, ki + M(a+b)*(k*+a?)/a®}.

12. A straight uniform rod slides down in a vertical plane perpendicu-
lar to two smooth planes, one of which is vertical and the other horizontal.
Find its motion if it is initially at rest at an angle « to the horizontal and

with its ends in contact with the planes. Show that contact with the
vertical plane ceases when the inclination of the rod to the horizontal is

sin—1{(2/3)sin o}.

13. A uniform sphere is projected up an imperfectly rough plane
inclined at an angle a to the horizontal, the coefficient of friction being p.
If, initially, its velocity is V and it is not rotating, show that the distance
traversed up the plane while there is slipping at the point of contact is

2V*(6u cosa+sina)
g(Tpcos a+2sina)?’

14. Two equal uniform rods AB, BC, each of mass m, are freely
hinged at B and rest on a smooth horizontal table folded together so
that 4 and C are touching. The end 4 is pulled away from C by a blow
of impulse P. Show that the initial velocity of C is P/2m.

15. A circular cylinder of radius @ whose centre of mass is at a distance
h from its geometrical centre rolls on a rough horizontal plane. Write
down the equations of motion and show that the period of small oscilla-
tions about the position of stable equilibrium is

2m(k?/gh)},
where k is the radius of gyration of the cylinder about the generator
nearest to the centre of mass.

16. A rectangular plate of sides 2a and 2b and mass M is supported
on four equal springs of stiffness A and performs small oscillations. Show
that the normal modes consist of a vertical motion of frequency n/7, and
oscillations about the axes through the centre of mass parallel to the
sides with frequency (nv3)/m, where n? = A/M.

17. A mass M/6 is connected by a spring of stiffness A to one end of a
uniform rod of mass M and length 2a. The rod is freely hinged at its
centre, and its other end is connected to a fixed point by a spring of
stiffness A. In the equilibrium position the springs are perpendicular to
the rod, and the springs and rod are in the same plane. Show that the
natural frequencies of small oscillations are, writing n? = A/M,

(84 3v2)tn/2m,

and find the normal modes of oscillation.
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18. A uniform log 4B of length 2l is pushed with velocity V on to
a roller rotating with constant angular velocity w. The other end of the
log rests on a horizontal plane at the same height as the top of the roller,
and the direction of the log is perpendicular to that of the roller. If the
coefficients of friction between the log and the plane, and the log and
the roller, both have the same value u, show that when the mid-point
of the log is on the roller its velocity is ’

(V24 2ulg(2In 2— 13,
provided friction at the roller always acts forwards. Discuss also the
cases in which this assumption is not true.

19. A uniform rectangular plate A BOD is freely hinged at 4 and B,
and is struck a blow P normal to its plane at D. Show that the reactions
at A and B are - P/4 and 3P/4, respectively.

20. A uniform rod 4B of mass M and length a is freely hinged at B.
An equal rod is freely hinged at a point on the perpendicular to AB at B
and rests against the rod A B, making an angle of 45° with it. The rod
A B is struck at a distance b from B by a blow P normal to it and in the
plane of the rods; show that, if the contact between them is smooth and
the rods remain in contact, the initial angular velocity of AB is
3Pb/2Ma?. Discuss the validity of the assumptions made.

21. A gyroscope is pivoted so that it rotates about its centre of mass.
Find its equations of motion if couples G; and G, are applied to it about
the axes Of and Ox. Show that, if ¢ is kept constant, G; is proportional
to 0, and thus the gyroscope can be used to generate the differential
coefficient of a function mechanically.

22. Discuss the motion of a nearly vertical gyrostat as follows. Replace
sinf by # and cos# by 1 in the equations of motion, § 71 (9) and (10).
By adding ¢ times the first of these to the second, show that { = fei¥

satisfies Al— Cnit—Mgh{ = o.

Show that the path of a point on the axis of the gyrostat is an ellipse
which rotates with angular velocity Cn/24.

23. If a ship is sailing with a velocity whose northerly component is v,
show that a gyro-compass will point to the west of north by an amount

' v
wacosf’
where a is the earth’s radius and 8 is the latitude of the ship.

24. If H is the angular momentum of a body relative to an origin 0’
which moves with velocity v relative to a fixed origin O, and L is the.
linear momentum of the body, show that

H=G-vAL,
where G is the sum of the moments of the external forces about 0’.
Discuss the motion of a cylinder rolling down an inclined plane by taking
the point of contact as the origin O".
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25. A rigid body moves about a fixed point O. Taking the principal
axes of inertia at O as a system of moving axes, show that if Wy, W, Wy
are the components of the angular velocity of this system about their
instantaneous directions, and @,, G,, G, are the components of the
moment of the external forces about O in these directions, the equations
of motion (Euler’s equations) are

Ady—(B—C)wgwy = G, oto.



IX

THE ENERGY EQUATION AND
LAGRANGE’S EQUATIONS

72. Potential energy

WE consider first a single particle in a field of force. The field
is supposed to be a vector field, that is, at each point whose
position vector is r there is a force P on the particle, where P
is a given function of r. Let (,y,2) and (X,Y, Z) be the compo-
nents of r and P relative to fixed rectangular axes.

If the particle is at r and is given a small dlspla.cement or,
the forces of the field do work

P.or = X 8z+Y 8y+Z 82 (1)

on the particle. This conception needs stating a little more
precisely. We think of the particle as being placed in the field
and held there by some external agency which applies to it a
force which just balances the forces exerted by the field on it.
When the particle is ‘given a small displacement’, it is implied
that the forces due to the external agency are relaxed slightly
so that the particle can move a small distance, but they are
always maintained almost balancing the field forces, and the
process is carried out infinitely slowly so that the particle gains
no momentum. The amount of work (1) is then done by the field
forces, and it is absorbed by the agency which holds the particle
in position.

Now suppose that p, is some path joining two points A and B,
let 8s be the element of arc of this path, and let t be a unit vector
along its tangent at any point. Then the displacement dr in (1)
is t 8s, and the work done by the forces of the field on the par-
ticle when it is made to move in the manner described above
from A to B along the path p, may be written in any of the

forms
dx dy dz\ , _
f(XE§+Yd_8+Z‘TS)ds_fP.tds_fP.dr, )
P2 23

21
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where the integrals are taken from A to B along the path p,.
If this path is retraced from B to A, the same amount of work
would have to be done by the external agency which holds the
particle in position, since it has to exert force —P at the point r.
Thus in going from A4 to B and returning by the same path,
neither the field forces nor those of the external agency do any
net amount of work.

Clearly this need not be the case if the particle returns from
B to A by a different path p,; in this case the net amount of
work done by the field forces in the round trip is

fP.dr—fP.dr, (3)

and this amount of work is available to the external agency.
By repeating the cycle an indefinitely large amount of work can
be obtained.

The field of forces is called conservative if this cannot be done.
Clearly from (3) the condition for this is that the integral (2) be
independent of the path from 4 to B for all points 4 and B.
That is, the work done by the field forces on the particle in going
from A to B must depend on the points 4 and B only. Let §
be some point chosen as a standard position, then this work is

B B
f J(X +Y /12 )d——V(A) V(B), (4)

A
] Y ody o d
_ - ax ay az :
where V(4) _Jp.dr_f(x d8+Yd8+zds) ds.  (5)
A A

This quantity V(4) is called the potential energy at the point
A in the field. It is the work done by the forces of the field in
taking the particle by any path from the point 4 to the standard
position S; it is also equal to the work which has to be done by
an external agency in taking the particle from S to A.

When the potential energy is known, the forces of the field can
be calculated. For by (4) the work done by the forces of the field
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in going from (z,y,2) to (z+8x,y+8y,2+482) is
V(x,y,2)—V(x+8z,y-+8y,2+82)

—5;8 —5‘178 ——Z—Sz— , (6)
and by (1) it is X 8z+Y dy+Z 62.
Thus we have
x=_¥ y__Y %
ox oy oz

It will appear below that it is often simpler to calculate the
potential energy of a system and then find the forces by differen-
tiating in this way than to calculate the forces directly. Also
. the same method holds in other coordinate systems; for example,
if the position of the particle is specified by plane polar coordi-
nates (r,0) the potential energy is V(r,0), and if R, © are the
radial and transverse components of force on the particle the
work done by these in a small displacement (3r,r 86) is

R 8r4-70 80 = V(r,0)—V(r+8r,0+80)

ov av
= —3;81*——50— 8é...,
14 ov
a:nd thus .R = ——a—r, @ = —-r—aa- (8)

For an assemblage of particles, or a rigid body, the potential
energy is the sum of the potential energies of the several par-
ticles. In this connexion it should be remarked that a number
of common types of force do no work in a displacement of the
system. These are:

(i) the reaction at a smooth surface;
"(ii) the reaction at a frictionless hinge;
(iii) tension or compression in an inextensible rod connecting
two bodies ;
(iv) the reaction at a rolling contact.

In (i) the reaction is perpendicular to the displacement, while
in (iv) the displacement is zero; thus no work is done in either
case. In (ii) and (iii) there are equal, oppositely directed, actions
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and reactions on the two bodies and the displacements are the
same so the net work is zero.

We now calculate the potential energy in some systems of
practical interest.

(i) Gravity. Taking the z-axis vertically upwards and the reference
position as z = 0 we have

Z = —myg,
0
V= j (—mg)dz = mgz. 9
. 2z
(ii) A spring of stiffness A. Considering displacements along the z-axis,

and taking the reference position at the point * = 0 where the spring is
unstrained )z

0
V= f (=M} dz = A2, (10)

(a) (b cr
Fia. 62.

(iii) A spring of stiffness A which comes into contact with another spring
of stiffness A, when z = a. If 2 < a the potential energy is given by (10).
If x > a an amount )\, (x—a)?, corresponding to the energy stored in
the second spring, has to be added. These quantities are shown in
curves I and II of Fig. 62(a).

(iv) The anharmonic oscillator § 66 (28) in which X = —n2x— bx’
Taking the reference position as x = 0 we have

0
V= f (—nz—bad) do = nzd+ Joat. ) (l;)

If b > 0 the potential energy increases steadily as |x| increases,
Fig. 62(b). Ifb < O it vanishes when # = (— 2n%/b)} and has a maximum
(—n4/4b) when x = (—n?/b)}; cf. Fig. 62 (c).

(v) The anharmonic oscillator § 55 (29) for which X = —n?x—aax?. Here

V = in®2x?4 }aad. ' (12)
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If, for example, a > 0, the curve of V increases steadily for positive x.
For negative x there is a zero at £ = — 3n%/2a, and a maximum of n%/6a?
at x = —n3/a (Fig. 63 (a)).

|4
4
B 4
/ x —#r o @ 7 x
(ar (b) (c)
Fi1c. 63.

(vi) The simple pendulum. Taking the reference level as the lowest
point of the swing, we have z = I(1—cos8) in (9) and so, cf. Fig. 63 (b),

V = mgl(1—cos@). (13)

(vii) Inverse square attraction or repulsion. Suppose the particle is
attracted to the point 2 = 0 by force u/x?. The reference position is
taken as x = o0, Then ©

V=f(-—;—"i) = £ (14)

For repulsion the sign is changed.
(viii) Inverse square repulsion and inverse fifth-power attraction. The
force g a )
X=5Hh—= (15)
is attractive at small distances and repulsive at large ones.
Taking the reference position as 2 = oo,

) | |

a poa

V=f($-;s)dx=5-4—xr (16)
x

The potential energy has a maximum when x = (a/u)}. It is sketched
in Fig. 63(c). Curves of this sort have been used to represent atomic
nuclei.

(ix) The potential energy of a particle of mass m in the field of a spherical
shell of surface density o and radius a, each element of area dS of which
attracts the particle with force ymo dS|R®, where R i8 the distance between
the element of area and the particle, and vy is a constant.
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Suppose m is distant » > a from the centre of the shell. The potential
energy of m due to the stripe of the shell between the angles & and 6§--36,
all of which is at distance

R = {a®4-r*—2arcos§}} |
_2ma*moy sin 046

fomm, isby (14)  — s oy coslyt” |

(d)

Fic. 64.

Thus the potential energy of m in the field of the whole shell is
—_ 2 _ ,,‘._,,s,”,i,’},qﬁdo,,, — __21(1_"2_7 2 2 __ 1"
V= —2ra ma‘yf (@ Fri— 2arcosf)t = - [{a?+ 72— 2ar cos )]
0

= 2y ta)—tr—a} (17)

2
_ _41rarcym _ ~'y1lrlm, (18)

where M is the mass of the shell. Thus the potential energy of the mass m
is the same as if the mass of the shell were concentrated at its centre.
The same result holds for a solid sphere.

If the mass m is inside tlie shell, so that r < a, the calculation remains
the same to (17) in which r—a is to be replaced by a—r, and we get
finally in place of (18) Mm '
_r=n (19)

a

(x) Potential energy in the field of a dipole. An electric dipole of
moment u’ consists of a charge ¢’ at 4 and a charge —e’ at 4’, the
distance 44’ = 2d’ being very small and the product 2¢’'d’ = p’ being
finite, Fig. 64 (b). We calculate the potential energy of a charge e in the
field of this dipole: it is attracted to A’ with force ee’/4’ P2, and repelled
from A with force ee’/A P2, so by (14) its potential energy is

_e e
T AP AP

We may specify the position of ¢ by its distance » = OP from the
dipole, and its angular position § from the direction 4’4 of the dipole.’

Vv (20)
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Since d’ is very small we may neglect d’2 when it occurs, and so, to this
approximation,
AP = r—d’cosb; A’P = r+d’ cosf.
Then from (20)
V- e’ e 2ee’d’cosf e cosﬂ.
. r—d’cos® r+dcosf r? r?

By (8) the radial and transverse components of the force on e are

(21)

2ep’ cos @
R S T

In rectangular Cartesians with the z-axis in the direction of the dipole
we have cos§ = z/r in (21), and the components of the force on ¢ are

ep’sinf

73

’ 0= . (22)

ep’(322—1r2)
s L=

(23)

(xi) The potential energy of a dipole of moment p in the field of a dipole
of moment u’. Suppose the second dipole is at P, (r,8), relative to the
first, and that its direction makes an angle ¢ with OP. We may suppose
it to be composed of charges e at B and —e at B’, such that

PB=PB =d and 2de=p,

d being very small; cf. Fig. 64 (c).
Then by (21) the potential energy is-

e’ cos BOA ep’cos B'OA

V="por — po
__ep'{cosf+(d/r)singsin@}  eu’{cosf—(d/r)sin ¢ sin 8}
- (r+dcosé)? - (r—dcosé)?
= ’%I (sin@sing—2cosfcosd), (24)

where, throughout, we have neglected terms in d2.

Finally we define the gradient of a scalar function of position
and discuss its relation to the theory given above. Suppose ¢isa
single-valued continuous scalar function of position r, that is,
¢ has a given numerical value at each point r, and if $+5¢ is
its value at r+-8r, 8¢ — 0 as 8r — 0. If this is the case, a set
of equipotential surfaces can be drawn on each of which the value
of ¢ is constant; there is one such surface through each point.

Suppose that ¢ and ¢-+3¢ are the values of the function at r,
and r,46r, and that n is a unit vector normal to the equi-
potential surface through r,, Fig. 64 (d). If 8¢/on is the rate of
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change of ¢ at r, in the direction of n, the gradient of ¢ is

" defined as the vector

grad¢ = %n. (25)

The rate of change of ¢ in the direction of ér is

d . B 2

5? — all_rg)gf = é%’cosﬁ,
where 8 is the angle between n and 8r. It follows that the rate
of change of ¢ is greatest in the direction of n, and also that the
magnitude of the component of the vector (25) in the direction
of 3r is d¢$/or. In particular, é¢/ox, o¢/0y, and d¢/dz are the
magnitudes of the components of grad ¢ in the directions of the
z-, y-, and z-axes of a rectangular system, and if i, j, k are unit
vectors in the directions of these axes,

_ i 0 %
gradé =1i—-+] ay+kaz‘ (26)

The potential energy V in a conservative field of force is a
scalar function of position, and by (7) the force P at any point
is connected with it by

P= —gradV. (27)

73. The energy equation: applications
The equation of motion for a particle of mass m moving in
the direction of the z-axis under force f(x) in that direction is

mi = f(x). (1)
In § 55 (5) a first integral of this equation was found to be
x
me* = [ f(@) de +C, @)

where v is the velocity of the particle, and C is a constant.
Now 3mw? is the kinetic energy T of the particle, and by
§ 72 (5) its potential energy V referred to a standard position S is

s
V= ff(w) dzx. (3)
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Thus (2) may be written

T-+V = constant, 4)

or if T, and ¥, are the initial values of 7" and V,
T4V = Ty, (5)
This is the energy equation for the particle. It could have
been written down immediately in many of the problems pre-
viously discussed and the equations of motion found by differen-

tiating it. But perhaps its most important use is to give a
simple picture of the nature of the motion.

{a)
F1a. 65.

Suppose the curve of potential energy V as a function of z is
drawn, and we plot on it a horizontal line of ordinate 7V,
e.g. the line ABC in Fig. 65(a). Then by (5) the amount by
which this line is above the curve of V at any value of x is the
kinetic energy of the particle at that point. Thus between A
and B the kinetic energy is positive; at A and B the kinetic
energy is zero, and the particle comes to rest. The particle
cannot penetrate into the region to the left of A4, or into the
region BC, since its total energy is less than the potential energy
in these regions. Thus if it is set in motion at a point between
A and B with this total energy it will move between 4 and B
(the nature of the motion will be studied further below) and it
cannot get into the region to the right of C' where motion is also
possible with this total energy. On the other hand, if the total
energy is given by DE, Fig. 65(a), there is positive kinetic

energy, and motion is possible, for all values of = to the right
5206 s
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of D. The types of motion possible with the potential energy
curves of Figs. 62 and 63 may be seen easily from these con-
siderations.

To study the motion more closely it is a little more convenient
to use (5) in the form T = T,+V,—V, which gives 42 as a fune-
tion of x. Suppose this curve is as shown in Fig. 65 (b). Motion
is only possible in the regions in which %2 is positive, such as
AB, CDE. We consider now what happens at points such as
A, B, at which the velocity is zero.

Suppose that at B, z = b, 4% has a simple zero as in Fig. 65 (b).

Then i = (h—2)p(@), (6)
where ¢(b) > 0. From (6), by differentiating,
28% = —Zp(x)+(b—x)P’(x)z,
& = —3¢(x)+3(b—x)¢'(x). (7)
It follows from (7) that when x = b, & = —}4(b) and so is
finite and negative. Thus at the point b, where the velocity is
zero, there is a negative acceleration and the particle commences
to move backwards. Similarly when it comes to rest at 4 there
is a forwards acceleration. Thus the particle oscillates between
A and B.

. Next we consider the nature of the motion near a point D,
z = d, Fig. 65 (b), where %2 has a double zero. In this case

B2 = (d—x)2(x), (8)
where §(d) > 0. Differentiating (8)
28 = —2(d—2)p(@)E+ (d—a) (2)4,
‘ & = —(d—a)(@)+id—z) ¢ (2). 9
Thus & == 0 when # = d. Also from (8)
¥ — @—op@},

and thus the time taken to reach the point z = d is

! = o
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The integral (10) is divergent, so the particle would take an
infinite time to reach x = d. This case occurs, for example,
when a pendulum has just sufficient energy to reach the upward
vertical [cf. Fig. 63 (b)]). In the critical case of a double zero the
two regions CD and DE of Fig. 65 (b) are thus effectively sepa-
rated; if the total energy of the particle is increased slightly,
#* will become positive at D and motion takes place in the whole
region CE. .

Finally, a point such as F, Fig. 65 (b), corresponds to the
particle at rest in a pesition of equilibrium.

The above discussion, based on the behaviour of #2 as a func-
tion of z, is quite general and not confined to the one-dimensional
motion of a particle for which it was made. In more complicated
systems specified by several parameters an equation of type
#? = f(x) is usually obtained after some integrations and the
elimination of some of the parameters in favour of a chosen one,
z, and this equation is discussed as above. For example, an
equation of this type was found in §71 (19) for the motion of a
gyroscope, and many properties of the gyroscope can be found
from it, e.g. the condition for steady precession which is the
condition that § 71 (19) should have a point such as F, Fig. 65 (b).

The energy equation has been derived above for a particle
moving in one dimension. We now derive it for the general
motion of a system of particles or rigid bodies subject to the
assumption that any constraints imposed on the system are
independent of the time.t Let m at r be the typical particle
of § 66, then as in § 66 (1) the equations of motion of this particle

are mi = P+ P (11)
Taking the scalar product of both sides with i, and summing
over all particles of the system gives

>mi.t =3 P.i+ >P.1I. (12)
1 The discussion below is not valid if the system is subject to moving
constraints, for example, for a particle in a rotating tube or a body rolling on
a rotating plane. The reason for this is that in calculating potential energy
the displacements have to be congistent with the constraints; for example, for
& particle in a tube the displacement must be along and not perpendicular to
the tube. If the tube is rotating, the velocity of the particle will have a com-
ponent perpendicular to the tube because of its rotation, and the displacements
in (13) are taken to be proportional to the velocity.
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Integrating (12) with respect to the time gives

}Smit =3 [Pid+ 3 [P.ia
= zfp.dr+ zfp'.dr. (13)

The first term on the right-hand side of (13) is, except for an
arbitrary constant, —V, where V is the potential energy of the
system in the field of force. The second term vanishes, since,
as remarked in § 72, the internal forces between two particles,
etc., taken together, do no work in a small displacement. Thus
(13) gives the energy equation

T+V == constant. (14)

The result that the total energy of a system moving under
conservative forces is constant is referred to as the principle
of conservation of energy. There are many important cases in
which it does not hold:

(i) If the forces are not conservative.
(ii) If the system is subject to moving constraints.

(iii) If there is resistance to motion depending on the velocity.
In this case it is shown in § 77 that the total energy
diminishes steadily.

{(iv) If energy is supplied to the system from outside. For
example, it was seen in § 59 that in relaxation oscillations
the total energy in the system oscillates periodically,
instead of remaining constant as in oscillations under
conservative forces.

74. The use of conservation of energy and conservation
of momentum

As remarked in § 73, a first integral of the equations of motion
can be written down by the use of the energy equation if it is
applicable.

Also, if there is no component of external force on a system
in a fixed direction, the rate of change of momentum of the
system in this direction is zero, and thus the momentum of the
system in this direction is constant.

Again, if there is no component of external couple on a system
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about a fixed axis, the rate of change of angular momentum
about this axis is zero, and so the angular momentum of the
system about this axis is constant.

These results are known as the principles of conservation of
. momentum and conservation of angular momentum, and are
immediate consequences of the equations of motion. By using
them it is often possible to avoid writing down and integrating
the equations of motion of the system: thus the integrals § 71 (8)
and §71 (12) of the equations of motion of the gyroscope could
have been written down by conservation of angular momentum,
and the integral §71 (14) by conservation of energy. But the
process of writing down the fundamental equations of motion
and integrating them is very little longer and gives more com-
plete and logically connected information about the problem.

The principles of conservation of energy and momentum are
particularly useful when a complete solution is not desired, and
also when the motion of a system is suddenly changed by blows.

Ex. A uniform cylinder of mass M and radius a, rolling with velocity v
along a horizontal plane, comes to a kerb of height b (< a) parallel to its axis.
Find the velocity necessary for it to surmount the kerb.

We assume that the generator of the cylinder which meets the edge
of the kerb becomes fixed there, and that the cylinder rotates about this
line as axis. The generator is fixed by blows applied to it, and, since
these have no moment about it, the angular momentum about it is
unchanged.

The moment of inertia of the cylinder about its axis is $Ma3, so its
angular momentum about the kerb before the blows is by § 66 (19)

Mu(a—b)+ }Mav. (1)

If the angular velocity of the cylinder about the edge of the kerb after
the blows is (), its angular momentum about this axis is

3 Ma2Q). (2)
Equati 1) and (2),
quating ( )al'l 2 o _ ¥(3a—32b) \
B ®
The cylinder will surmount the kerb if its new kinetic energy,
) Mv?(3a— 2b)°
2002 .~ 7
iM a2Q)? — 1242 s
is greater than the required potential energy Mgb, that is, if
12ga?b

(3a—2b)*° (4)
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To complete the solution it is necessary to verify that the cylinder
remains in contact with the kerb during the motion, and for this the
reaction at the point of contact must be determined as in § 67.

75. Generalized coordinates

Suppose ¢;,..., ¢, are n independent quantities in terms of
which it is possible to specify the position of every particle of a
dynamical system. g¢,,..., ¢, are called generalized coordinates,
and n is called the number of degrees of freedom of the system.

For example a single particle needs three coordinates to
specify its position so has three degrees of freedom. Cartesian
coordinates (x, y, 2), spherical polar coordinates (r, 6, ), or any
other system may be chosen as the generalized coordinates.

A rigid body needs six coordinates to specify its position, say
three to fix the position of a point of it, two to specify the direc-
tion of an axis through that point, and one to specify a rotation
about that axis. Alternatively its position may be specified
by the positions of three points; for this nine coordinates are
required, but there are three relations between these since the
distances between the points are fixed so that three of the nine
coordinates can be eliminated leaving six as before, We shall
always suppose that such an elimination has been carried outt
so that ¢,,..., ¢, are independent.

Clearly a system of equations of motion expressed in terms
of the generalized coordinates is needed. These equations,
Lagrange’s equations, will be established in § 76; we first derive
some properties of generalized coordinates which are needed for
the proof.

Suppose that (z, y, 2} are the coordinates of a particular particle
of the system referred to fixed rectangular axes, then z is a
function of ¢,,..., ¢, which we shall write in the functional form

X = x(qli"'sQn)f (1)

with similar expressions for y and 2.

t There are important cases in which this cannot be done because the extra
coordinates are connected by differential and not algebraic equations. Such
systems are called non-holonomic; they arise in problems involving rolling
contacts. The present theory does not apply to them although it is easily
extended to do so.
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| Differentiation of (1) with respect to the time gives

z . ox
i=2 gt +2 g (2
! - aql ! agn )
G1s---» G, are called generalized velocities. From (2)
ox ox
—_— = — == 1 cee .
P e C=Lem ®)
Also
d [éx 2x % .
dt (6q) a0, 20, T g, aq,
o (ox ox
~ o, {&11 ht- +6qn }25717' “

As usual if we are dealing with a rigid body, we suppose
(x,y,z) to be the rectangular coordinates of an element of mass
m and use Y to denote a summation over all such elements.
| The kinetic energy 7' is

" T = 1S m(@+y2+2)

= >m {(—q1+ — )2+

N R

Multiplying out, this may be written in the form
T = a;;§3+201561 42+ @B+

= E 2 s G Gos (6)
r=18=1

where the coefficients a,, are functions of ¢,,..., ¢, which can be
written down from (5). If they are written out in full it appears
that a,;, = a,,.
The quantity p, defined by
oT = .

Dr = a—qr =8§1arsqs . ‘ (7)
is called the generalized momentum corresponding to the coordi-
nate ¢,. This definition may be regarded as being suggested by
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the result that, for linear motion of a particle of mass m with
velocity v, the linear momentum

my = %}(%m@;z): (8)

Since the equations of motion of the particle in (8) involve
d(mv)/dt, we may expect to have to study d/dt of the quantities
in (7), that is, d (2T

— =] 9
i (o) ©
To do this consider

aleg, ) =+ 5)

=%(¢§5_’) (10)
- 6qr+ dt (:;)

=a‘5:_;r+az2_; (1)
2522_:; 5 (1) (12)

where we have used (3) in (10), and (4) in (11).

Adding the corresponding equations for y and z, multiplying
by the mass m of the typical particle, and summing over all
particles, we get from (12)

d (oT\ oT
ala) 5= 2l i) oy

76. Lagrange’s equations

Suppose a conservative dynamical system is specified as in
§ 76 by generalized coordinates q,,..., g,. As before, let (z, Y, ?)
be the position of the element of mass m, and let (X,Y, Z)be
the total force on this particle (including both external and
internal forces, cf. § 66). Then its equations of motion are

mi = X, my=17Y, mE = Z. (1)
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Multiplying these by ox/2q,, dy/oq,, 0z/0q,, respectively, adding,
and summing over all elementary particles, gives
Lo0x .0y . Oz ox ay oz
Z m(x 3q,+y 6q,+z 6%) N Z (X 3qr+y aq, z 3qr)'
(2)
The left-hand side of this has been transformed in § 75 (13).
We now have to consider the right-hand side. Suppose a smali
change 3¢, is made in ¢,, all the other g being left unchanged
(this is possible since by hypothesis the ¢ are independent); the
resulting changes in z, ¥, z will be

ox oy oz
P sq, Hog, =
ag, " ag, " g,
and the total work done will be
ox oy oz
X = Y—+Z——)8,, (3
2(X T E ) )
on summing over all particles of the system.f Now this work
is also the decrease in potential energy of the system, that is

ov

g,

“‘EE 8Qr' (4)
Therefore, equating (3) and (4),
ox oy 3z) 14
X Z4Y 247 "= ——, 5
z( aqr+ aqr+ oq, o, ®

and, using (5) and § 75 (13) in (2), we get finally
d(er)_oT _ _ov
dt\og,] g, og,

r is unspecified in this, and the set of n equations (6) for
r == 1,..., n are Lagrange’s equations.

The form (6) will be sufficient for the present applications,
but there are simple generalizations} to: (i) cases in which the
forces are not conservative; (ii) cases in which the time appears

(6)

t The internal forces, which have been specifically included in (2), disappear
in the summation since equal and opposite contributions come from the two
particles between which any internal force acts. Also forces such as reactions
at smooth surfaces or hinges, or at rolling contacts, do no work.

1 Cf. Whittaker, Analytical Dynamics (Cambridge, 1927).
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- explicitly, i.e. = %(qy,...,4,,t); (iii) systems with redundant
coordinates connected by algebraic equations; (iv) systems with
redundant coordinates connected by differential equations (non-
holonomic systems).

If the system is not conservative we define the generalized
force corresponding to the coordinate g, by

%
Z(X T st q)aq,— Q, 89,

and (6) becomes
r. r
A great advantage of Lagrange’s equations for the solution
of dynamical problems is that forces which do no work, such
as reactions at smooth hinges, do not appear. In writing down
equations of motion in the ordinary way these usually have to
| be considered.
The equations may be extended to cover the case in which there is
resistance to motion % times the velocity. In this case (1) are replaced
by miké = X,  omjdkg =Y, mitki= 2, (8)
and (2) is replaced by

Z"’(‘”%J“)JFZ ( 6q,.+yaq,+ Baqz,) Z( 6q,+ ) ®

Now by §75 (3)

2 Heg oG reg) = D Heg g a)

oF
=2, 10
a4, (10)
where F = } 3 k(z*+y*422). (11)
Proceeding as before, Lagrange’s equations become
d (eT\ &7 oF ov
it (aq,r) 5};-}- 24, = s (r=1,..., n). (12)

The function F defined in (11) is called the dissipation function. Using
§ 75 (2) it appears that it has the form

F= 2 g b5 Gr Gos ) (13)

r=1

where the coefficients b,, are functions of g,..., ¢,, and b,, = b,,. It follows
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from (13), either by writing out the expressions explicitly or by using
Euler’s theorem on homogeneous functions, that

oF
Z S50 = 2F- (14)
r=
Also, it follows in the same way from § 75 (6) that
Z i =T (15)
r=1

We now proceed to study the way in which the total energy of the
system diminishes because of the resistance to motion. Multiplying the
equations (12) by d¢y,..., ¢,, respectively, and adding gives

i (‘i_i-(a_q,) qr+ Z g+ z g, = 0. (16)

n
aT

Now = q,+ Z a7
Using (17) and (14) in (16) gives

k3

oT . dT

Z 'dt(aq la_q',q’ ra F+_‘—0‘

Therefore- dn ) ar , dv 2F =0
i &5 (4) 4 ar 0

Therefore, using (15), (Tt(T—i—V) = —2F. (18)

Thus 2F measures the rate at which the total energy of the system is
being dissipated by friction. If F = 0, (18) is the equation of conserva-
tion of energy.

Ex. 1. The gyroscope.

The system is specified in § 71. The components of the angular velocity
of the body along the instantaneous directions of the axes are by § 71 (2)

(—¢sind, 8, +Jcosh). v (19)

The moments of inertia of the body about these axes are 4, 4, C.
Thus, by § 66 (24)

T = A2 sin20+8%)+ 3 C(d+ i cos 6)2. (20)
Also the potential energy is V = Mghcos#.
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Thus Lagrange’s equations for 8, i, and ¢ respectively are

(%(Aé)—-Az[:’sin B cos 8+ O+ cosB)sinf = Mghsin, (21)
%{Azﬁsin’ﬂ—i— Ccos 0(¢+(ﬁ cosf)} = 0, (22)
%(¢+¢cos0) = 0. (23)

(23) gives ¢+.ﬁcosﬂ = n. (24)

(21) to (23) are the same as § 71 (6), (11), (7). Also, using (24) in (20),
the energy equation becomes

}A(x/t’sin’ﬂ—i—ﬂ’)—f—MghcosO = constant, (25)
which is § 71 (14).

Ex, 2. The motion of two free, attracting particles.

Let m; and m, be the masses of the particles, and let (zy,¥;,2,),
(%3, Y¥3,25), and (X,Y,Z) be respectively the coordinates of the two
particles and their centre of mass, relative to fixed rectangular axes.
Write

T = X3~y Y=¥—Yo Z = 23—2y. (26)

Then, writing

My = my/(m;+m,), Mo = my/(m,+m,),
z = X—pa, Zy = X+u,
with similar expressions for y,, 2;, ¥;, z;. The kinetic energy 7' is
T = (X —pa 8P+ (¥ —pa 9+ (Z—pa 9} +
I {(X b (P P (S P (27)

The potential energy V is a function of 2, y, and z. Taking X, ¥, Z,

z, ¥, z as coordinates, Lagrange’s equations give
X=¥V=Z=0,
that is, the centre of mass moves with constant velocity. The other
three equations are ‘
. oV " av . ov

Mipa® = —5 =3 Mype Y = —5!7; Myfhae = —2>s (28)
that is, the motion of m, relative to m, is the same as if my Were fixed
and the potential energy were

Myt my o, (29)
m, :
Ex. 3. The problem of § 36.
Using the result § 72 (10) we have
= M, 3}4- 4 M, 3,

= $A 23+ FAy(y—2,)2
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Therefore Lagrange’s equations give
M, i, = — X2+ Ty — 1),
M, &, = —AfZy—2y),
in agreement with § 36 (1) and (2).

Ex. 4. Two equal uniform rods OA, AB of length 2a and mass M are
freely hinged together at A, and OA is freely hinged at a fixed point O.
They oscillate in a plane under gravity.

Let 6 and ¢ be the angles which the rods make with the vertical.
Then the horizontal and vertical displacements of G, the centre of mass

of AB, are z = 2asinf+asing,

y = 2acosf+acosd.
Therefore

@2+ y* = (2af cos§+ad cos$)? -+ (2ab sin 6+ ad sin ¢)?
= 4a2? a’cﬁ’ 4a’9¢cos(0 ).

The kinetic energy of 04 is (2M a?/3)02, and that of the motion of AB
about its centre of mass is (1‘1(:;"/6):#‘I Using § 66 (23) for the kmetxc
energy of AB, we have for the kinetic energy T' of the system

2Ma? 6’+

T = -—61 $*+ 1 M{4a%0* + a2 + 40204 cos(0— )}

8Ma’ 62+ 2Ma $?+2Mafd cos(6—d). (30)

Also the potentia! energy, measured from O, is

= —Mga{3cos@+cosd}. . (31)
Lagrange’s equations then give
:t 16Ma? 5 | 9Matd cos(f— ¢)}+2Ma’9¢sm(9 ~¢) = —3Mgasin®,
(32)
55{4Ma $-+2Matd cos(f— )| —2Marbsin(6—4) = ~ Mgasing.

(33)

Ex. 5. Lagrange’s equations and electric circuit theory.

The equations § 41 (5) and (4) for an L, R, C circuit with no applied
voltage are
LI+RI+-10Q =0, (34)

Q=1 (35)
Mﬁltiplying (34) by I and using (35) gives

%(;Llwé% Q’)+RI’ = 0. (36)
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Now RI2is the rate of dissipation of energy in the circuit, so (36) may

be regarded as the energy equation if we identify
1
21 _ " 02
P4 Q

with the total energy in the circuit. }LJ? is regarded as kinetic energy
asgsociated with current I in an inductance, and (1/2C)@® as the potential
energy associated with charge @ on a condenser.

Further, we may regard @ as a generalized coordinate specifying the
electrical state of the circuit and @ = I as the corresponding generalized
velocity. Taking

T~ 3L, - é%Qz, F — yRD, (37)
"Lagrange’s equations (12) give

d 1
aE(LI)—}-RI—f—aQ = 0,

in agreement with (34).

The general equations of electric circuit theory may be obtained in
this way. It has the advantage that in systems such as electric motors
which contain moving masses the kinetic and potential energies of these
may be included and the electrical and mechanical parts of the system
considered together.

77. Small oscillations about statical equilibrium
Lagrange’s equations of motion, § 76 (6), are

d [eT\ oT oV
_— = —— :12... . 1
dt (&1}) oq, o, " 1B M
At the position of equilibrium these must be satisfied with
g1 = ... = ¢, = 0, s0 that all the terms on the left-hand sides
vanish and (1) require
V_ Ty @)
94, %y

These are the conditions to be satisfied at a position of equili-
brium. They also express the fact that the potential energy V
is to be stationary at such a point. If it has a minimum there
the equilibrium will be stable. For if the potential energy has
a minimum ¥} at the position of equilibrium, and the system is
given a small amount of kinetic energy 7}, the motion must be
confined to the small region about the position of equilibrium
in which V < Ty+V,. That is, the system executes a small oscil-
lation about the position of equilibrium and so is stable. This
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argument is essentially the extension to n damensxons of the
ideas of § 73.

Ex. 1. The dipole p of § 72 (x4) s freely hinged at a point on the axis
of the dipole u’ and distant r from it.

In § 72 (24) we have 8 = 0 and so
M"

3)

There is equilibrium when dV/d¢ = 0, that is, when ¢ = 0 and when
¢ = 7. Now
axv 2;4.;1.
agt =
When ¢ = 0, (4) is positive, V has a minimum, and so the equilibrium
is stable.
When ¢ = m, (4) is negative, V has a maximum, and the equilibrium
is unstable.

cosd. (4

Suppose, now, that a position of equilibrium has been found
by solving the set of equations (2) and that we wish to study
small oscillations of the system about it. It is convenient to
change the origin of coordinates to the position of equilibrium
so that g,,..., g, vanish in the position of equilibrium and are
small throughout the motion. The potential energy ¥V can then
be written in the form

n n
=2 2 s, (5)
r=1r=1

which contains only terms of the second degree in the coordi-
nates. There will be no terms of the first degree since 8V /dq, = 0
when ¢, = ... = ¢, = 0, and a constant term can be neglected
since it will not affect the equations (1). Terms of the third and
higher degrees in the g, are neglected since we are assuming
that these are small. In the same way the kinetic energy T,

§ 75 (8), becomes n m
T :,';1 sglars 49 (6)

where now the a,, may be taken to be constants with the values
for the equilibrium position, since allowing for their variation
with position would introduce terms of the third degree in the
g and ¢ and these are negligible.
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Thus the equations (1) give

3 @niteas) =0 =1..m), (1)

which are a system of n linear differential equations in =»
unknowns.

If there is resistance to motion proportiona. to velocity there
will be a dissipation function F as in § 76 (13) given by

non
F = ;1 sglbrsq.rq.s’ (8)

where the b,, are constants with the values at the equilibrium
position. Lagrange’s equations in the form § 76 (12) then give

f§1(arsq.s+brsq.s+crsqs) =0 (r=1,.,n) (9)

Ex. 2. Small oscillations of the system of § 76, Ex. 4, about the vertical.
Retaining only terms of the second degree in the small quantities
0, 4, 0, 4 in § 76 (30) and (31) these become

2 2
7= 81‘;“ 92+§_ﬁ§_a $2+ 2Ma2ég, (10)
V = Mga(—4+36+3¢%). (1)
Therefore, by Lagrange’s equations (1),

2
161;’“ 0+ 2Ma2§+3Mgab = 0,

2 ..

41‘;“ ¢+2Ma39+Mga¢ = 0.

0!', writing nd = g/a, (16D3+9n2)0+6D2¢ — O,
8D%0+ (4D%+ 3n2)d = 0,
a pair of simultaneous linear differential equations.

EXAMPLES ON CHAPTER IX

1. A mass m is attached to a fixed point by a spring of stiffness A.
When its displacement is a it comes in contact with another spring of
stiffness A’. If it is set in motion from its equilibrium position by a blow
of impulse P, show that it will come to rest when

A2 X (z—a) = P?m,
if P > a(Am)t.

Which root of the equation is to be taken ?

2. A rod of mass m is freely hinged to a fixed point on a horizontal
plane. Its centre of mass is distant ! from the hinge, and its moment
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of inertia about the hinge is I. The rod is held in a nearly vertical
position by four equal springs, each of stiffness k and unstrained length
J/(a?+b?), attached to it at a distance ¢ from the hinge, and attached
symmetrically to the plane at distances b from the hinge. Show that
the period of small oscillations about the vertical is
2ka?b? ~4
it e

3. A uniform rod is hung in a horizontal position by two parallel
strings of length I (bifilar suspension). Show that the period of small
oscillations of the rod in which its centre moves in a vertical straight
line is 2m\/(1/39)-

4. A body rests in equilibrium on a rough surface, its centre of mass
being a distance k vertically above the point of contact of the surfaces,
and their common tangent plane being horizontal and the bodies on
opposite sides of it. If p; and p, are the radii of curvature of the surfaces
at the point of contact show that the equilibrium is stable if

1 1 1

B™pypa

5. A particle of mass m is at the point (x,¥) in the field of a uniform
thin rod —a < # < a, every element 8z of which attracts the mass m
with force ymp dx/r?, where y is a constant, p is the density of the rod,
and 7 is the distance between m and the element 8z. Show that the
potential energy of m is

mpln FmOF [E—al VT
(@+a)+[(@+a)+y°1

6. If heat is supplied at the constant rate of @ units per unit time at
a point in an infinite medium of thermal conductivity K, the steady
temperature at a point distant 7 from the point of supply is known to
be Q/2nKr.

Show that if heat is supplied at the constant rate g units per unit time
per unit-area over & square of side’ 2a, the steady temperature at the

centre of the square is-
4qa

Kn

and the average temperature over the square is
4qa {l —+2 }

o\ HIn(1+V2)).

7. A, B, C are the principal moments of inertia of a body of mass M
referred to its centre of mass O as origin. 7 is the distance of the typical
particle of mass m from O, and « is the projection of r along any axis 0X.
Show that S mst = A+ B+0),

3 ma? = }(A+B+C)-1,

where I is the moment of inertia of the body about OX. '
5296 T

In(14+~2),

'
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Deduce that the potential energy V of a particle of mass M’ at a point
on OX distant R from O, where R is large compared with the linear
dimensions of the body, is

V= —yM Y m(R*+r*—2Rx)}

M c-31
8. Four small magnets, each of moment ., are placed at the corners of a
square of side 2a and all point in the direction of a side of it. Show that
a small magnet of moment p’ placed at the centre of the square will
point in the same direction, and if its moment of mertla is I it will
oscillate about this position with frequency '

(pp'{1a®N2)} 27,

9. Four small magnets are pivoted at the corners of a square of side 2a
and oscillate under the influence they exert on each other. If their
magnetic moments are u and their moments of inertia are I, show that
the natural frequencies of the system are

R T IR

10. A particle of mass m is connected to the four corners of a square
by four equal springs of stiffness A. If x and y are its displacements
from the centre of the square in the directions of the diagonals, and z
is its displacement perpendicular to the plane of the square, show that
its potential energy for small displacements is

2M(x® 4+ y2) (1 — k) + 2A22(1 — 2k) 4 constant,

where £k is the ratio of the unstretched length of a spring to a diagonal
of the square. Find the natural frequencies of small oscillations of the
mass.

11. A uniform rod of length 27 has one end attached to a fixed point
O by a light string of length 5/12. Show that the natural frequencies of
small oscillations in a vertical plane through O are

(3g/5L)}/2x and (3g/l)Y/x.

12. A truck of total mass M has two axles carrying wheels of radius a,
the moment of inertia of each axle and its wheels being I. Show that
the acceleration of the truck when rolling down a plane inclined at «

to the horizontal is .
Mgsina

M+-21ja?’
13. A particle moves from 4 to B along any path in either free or
constrained motion in a field of force of potential ¥V, there being no
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resistance to the motion. Show that if V; and V3 are the values of its
potential energy at A and B, and v, and vp are its speeds there,
Imoj— o) = Vy—Vp.

Show that if the particle is charged the same result still holds if there
is & magnetic field present.

14. Discuss the nature of the motion under a central force by treating
§ 62 (22) asin § 73. Show that for the attractive force ur—", wheren > 3,
a circular orbit is unstable.

15. Show that the kinetic energy of a gyroscope mounted in gimbals
may be put in the form

2T = (A+A4,)0+{(4 40, )sin?0+ 4, cos?6+ I}t + C(d -+ cos 6)3,

where I and A4, are the moments of inertia of the outer and inner rings
about their axes, and C; is the moment of inertia of the inner ring about
a perpendicular to its plane, and the other symbols have their usual
meanings.

Deduce the equations of motion of the system.

16. Discuss the motion of a gyrostat by treating § 71 (19) as in § 73.
Writing f(x) for the right-hand side of § 71 (19), show that the condition
for steady precession with z = z, is

J(®o) = f'(2) = 0,

and deduce § 71 (20). Show that the period of small oscillations about
steady precession at x, with angular velocity w is

2m{— 4" (o)} = 2m{(a— 2wm,)* -+ w1 —af)}h

17. A uniform rod 04 of length 2a is freely hinged at the point O and
oscillates about it under gravity, 8 being its inclination to the vertical
and i the angle between the vertical plane through the rod and a fixed
plane. Find the equations of motion of the rod, and show that a steady
motion with § = «, = w, where w? = (3g/4a)seca is possible.

Discuss small oscillations about steady motion by putting § = a+=,
«/: = w-+y, and neglecting squares and products of z, y, #, §. Show that
the period of these oscillations is

{ 4acosa }%
7 39(1+3cos?a) ~

18. An engine governor consists of the rod OA of Ex. 17 which is hung
from a system of moment of inertia I which rotates about a vertical axis.
In order to keep the angular velocity of the system constant at the
value w of Ex. 17, a couple k(a—0) is applied about the vertical axis
when the inclination of OA to the vertical is §. Show that the equations
of motion of the system are

6—y2sinfcosf = —(3g/4a)sind,
(4ma?/3){yisin?0+ 20 sin O cos 0} + If = k(a—0).



276 THE ENERGY EQUATION CH. IX

Study the effect of oscillations about steady motion, and show that
the frequency equation for these i’a cubic with one real positive root,
_ 80 that the system is unstable (as discussed here neglecting friction).

19. One end 4 of a uniform rod of length 24 and mass M is rotated
with constant angular velocity w in a horizontal circle of centre O and
radius b (< a). The rod is hinged at A so that it can move freely in the
plane of 04 and the vertical. If 8 is the angle between the rod and the
downward vertical at 4, measured in the direction towards the down-
ward vertical at O, show that the kinetic energy of the rod is

M{4a20?+ 3w2(b—a sin 0)2+ a*w?sin?6}/86.

Deduce that there is always a position of equilibrium of the rod in
therange }7w < 0 < = and another in the range 37/2 < § < 27, and that
if w is sufficiently large there are two in the range 0 < 6 < ix. Show
that the position of equilibrium in the range }7 < 8 < 7 is unstable
(Lagrange’s equations may be used).

20. Show that the components of grad ¥V in the directions r, 8, z of

- eylindrical coordinates (the ‘direction 8’ is the direction in which the
point specified by (r,8,z) moves when 8 is increased, » and 2z being kep
constant, etc., see Fig. 91 (a)) are :

(@, Lev oy
er’ rof’ oz/°
Show that the components of grad ¥V in the directions 7, 8, ¢ of
spherical polar coordinates (cf. Fig. 91 (b)) are
’ (3V 18V 1 aV)
or’ rab’ rsinfog/’



X
BOUNDARY VALUE PROBLEMS

78. Introductory

THE problems of dynamics and electric circuit theory are initial
value problems in which we have to find the solution of a set
of differential equations which is valid for all times ¢ > 0 and
which satisfies certain initial conditions at ¢ = 0.

In this chapter we study some boundary value problems for
ordinary linear differential equations in which we have to find
a solution of a differential equation which is valid in a region,
say 0 < z < I, and which has to satisfy conditions at both ends
of the region. The region may be the infinite one x > 0, but_
in this case there will be conditions to be satisfied as z - o0
(e.g. that the solution remain finite), whereas in initial value
problems there are no conditions on the behaviour of the solu-
tion as t->oco: this is determined solely by the differential
equation and the conditions at £ = 0. )

In problems involving partial differential equations, Chapter
X111, it will appear that in many cases these have to be solved
with both initial and boundary conditions.

In this chapter we shall discuss the boundary value problems
arising in the theory of the deflexion of beams. These illustrate
very well the new types of phenomenon which arise. In§ 79, 80
a brief discussion of the differential equation and boundary
conditions is given, and in the subsequent sections various types
of boundary value problem arising from them are studied.

79. Bending moment and shear force

We shall usually consider beams which when undeflected are
straight and horizontal. The z-axis will be taken along the
beam, and the y-axis vertically downwardst so that deflexions
and forces are positive when in a downward direction. Usually

t This corresponds to using left-handed axes which is not very desirable,
but it is obviously convenient to have deflexion and load positive when
measured in their commonest direction. Right-handed axes with OY upwards
are also used.
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the beam will be of length ! and will be supported in some way
atitsends x = 0 and « = [.

We assume that all forces on the beam act in a vertical
direction: the extension to horizontal forces is made in § 86.
The loads on the beam may be of two types: (i) concentrated
loads W applied at definite points (the reactions at the supports
come into this category), and (ii) distributed loads w per unit
length, where w is a prescribed function of z.

w F

o X
rm‘ﬁ m{| |mesm
Y . F+4F
wdx
(a) (b}
F1a. 66.

We now define two fundamental quantities, shear force and
bending moment.

The shear force F at a point x of the beam is the resultant
of all the forces on the beam to the right of the point x, measured
positively in the direction OY. The shear force is thus discon-
tinuous at a concentrated load: this fact will often be used later
to calculate the reactions at the supports of a beam.

The bending moment M at a point x of the beam is the sum
of the moments about x (in the direction from OX to OY) of
all the forces to the right of =.

All the forces to the right of the point x are then statically
equivalent to a force F and a couple M applied at z.

If the beam has a distributed load « in a region, there are
important relations connecting w, ¥, and M. To derive these,
consider the equilibrium of the element of length 3z of the beam
between z, where the shear force and bending moment are F
and M, and z+3x, where they are F+38F and M-}-8M. The
load on the element is w 6x. The forces on the element are shown
in Fig. 66 (b); the forces on the beam to the right of 28z exert
force F-+-8F and couple M 4-8M at x-+8x on the element, while,
since the forces to the right of z exert force F and couple M
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at z, the portion of the beam to the left of x exerts equal and
opposite reactions on the element. The conditions of equilibrium
give, neglecting squares of small quantities,

8F 4w dx = 0,
SM{F éx = 0.

In the limit as 82 — 0 these become

a—:; = —W, (1)

aM

—=-F @)
a2M
dx?

These hold in any portion of a beam free from concentrated
loads.

The graphs of F and M against x are known as shear force
and bending moment diagrams. In simple cases these may be
calenlated by the methods of pure statics (for example, when a
beam is freely hinged at its ends at the same level), but in more
complicated cases, such as a beam with its ends clamped or a
beam which runs continuously over several supports, the re-
actions at the supports and thus the shear and bending moment
diagrams cannot be determined by statics alone since the elastic
properties of the beam enter into the problem. It will be seen
in § 80 that a knowledge of M is sufficient for the simpler design
problems of engineering, and it appears that in many cases the
theory of deflexion of beams has to be used to calculate M
although the deflexion itself is not of great interest to engineers.

Finally it should be remarked that, since the equations of
this section and the next are linear, the principle of super-
position holds, that is, the shear, bending moment, deflexion,
ete., of a beam due to a number of superposed loads are the sum
of the values for the separate loads. In particular, if a beam
carries a distributed and several concentrated loads, we may

‘make calculations for the distributed and concentrated loads
separately and add the results.

—w (3)
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In Fig. 67 bending moment and shear force diagrams for four
cases are shown. In Figs. 67 (a) and (b) the beam is freely
hinged at its ends, z = 0 and x = I; it carries a concentrated
load W at x = a in Fig. 67 (a), and a uniform load w per unit
length in Fig. 67 (b). Calculations for these cases are made in
Exs. 1 and 2 below. In Fig. 67 (d) and (c) the corresponding

W w

T a leT ﬁf’rw Ea'_"L‘E
F >~

(a) (b) (c) d)
Fic. 67.

_/

2

C

cases for a beam which is clamped horizontally at its ends at
the same level are given—these cannot be calculated by the
methods of the present section and are discussed in §§ 82 and 81,
respectively.
Ex. 1. The beam of length 1 is freely hinged at its ends and carries a
concentrated load W at x = a.
Taking moments about the points = ! and z = 0 gives for the
reactions R, and R, at the supports
Ry = W(i—a)l, R,= Wall. (4)
The shear is F= —R, = —Wal @<z <l
F=W-—-RBy=W(l—a)l (0<x<a).
The bending moment is
= —Ry(l—x) = —Wa(l—2z)/l ae<z<l),
M= Wa—z)—Ry(l—z) = —W(l—a)/l (0 <z < a).
F and M are graphed in Fig. 67 (a).
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. Ex. 2. The beam of length 1 is freely hinged at its ends and carries a
uniform load w per unit length.
Clearly we could determine the reactions, and proceed as in Ex. 1.
~ As an alternative which is useful for distributed loads, we use (3) and
the fact that M = 0 at the ends z = 0 and # = ! where the beam is
freely hinged. We have BAM

e , (5)
Integrating, % = wz+4, (6)

where A is an unknown constant. Integrating (8) gives
M = }wa*+ Ax+ B. 7)

The conditions M = 0 when = 0 and = = [ give
B=0, A4 = —ul,
and finally M = —}wx(l-x). (8)
Then by (2) F = jw(l—2x). 9)
F and M are shown in Fig. 67 (b).

80. The differential equation for the deflexion of a beam

To calculate the deflexion we need further information which
comes from the theory of elasticity. We consider a portion of the
beam and suppose it to be bent to a large radius of curvature
by couples M applied to its ends, Fig. 68 (a).

The beam is regarded as being composed of fibres which exert
no influence on their neighbours, and it is assumed that a plane
section of the beam remains plane after bending. Let AB and
A’'B’ be two sections of the beam which before bending were
perpendicular to its direction, and which after bending intersect
at a small angle 6 in a line through C, parallel to the direction of
the couples M and perpendicular to the plane of the paper in
Fig. 68 (a). The fibres at 44’ will have been extended and those
at BB’ will have been compressed, so there must be some inter-
mediate fibres OO0’ whose length is unchanged: the surface in
the beam containing these fibres is called the neutral axis.

Suppose Fig. 68 (b) is a section through the beam in the plane
through A B parallel to the direction of the couples M, and
suppose that we take OX and OY as axes in this plane, O0X
being through O, Fig. 68 (a), and parallel to the direction of the
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couples M. Then all fibres in the line 0X will have their lengths
unchanged.

Let R be the radius of curvature of the fibres 0O’ of the
neutral axis, so that 00’ = R, and this is the unstretched
length of all fibres between the planes AB and 4’B’. Now

[N
N

c
{a) (6)
Fic. 68.

consider the fibre at (z,y) in the plane XO0Y. The stretched
length is (R-+y)d so that its extension is y8. Therefore, if E is
Young’s modulus, the tension in it is

¥ _ By |
_ Em~ & @)
The forces across the cross-section may be determined by
combining the effects (1) of the individual fibres.

The total force across the cross-section in the direction of the

beam is B ‘
| 7| [ vz, @
and since by hypothesis this is zero we must have
ff y dxdy = 0, (3)

and thus the ‘centre of gravity’ of the cross-section must lie in

the neutral axis 0X.
The sum of the moments about OX of the forces across the |

cross-section is
E 2 _EI
% fj y? dydx = Nk (4)
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where I is the ‘moment of inertia’ of the cross-section about 0X.
Since the sum of the moments must be equa.l to M, this gives
the fundamental relation

EI

_— 5
=M. (5)
Finally, the sum of the moments about OY of the forces across
the cross-section is E
7 f f zy dzdy. (6)

This vanishes if OX is an axis of symmetry. Now the position
of O in OX has never been defined, so that if the cross-section
has a vertical axis of symmetry we may take this to be OY and
again (6) vanishes. If the cross-section has neither a horizontal
nor & vertical axis of symmetry, (6) does not vanish, Now there
is no couple on the beam about OY, so for the theory to hold
(6) should be zero: in the unsymmetrical cases the couple
(6) causes the beam to twist and the simple theory is inadequate.

If y, is the greatest distance of any fibre from the neutral
axis, and f, is the stress in this extreme fibre, we have from
(1) and (5)

_ Ey, - My,
Jo= N (7)

and so f, is determined in terms of M. A knowledge of fo is
required for the design of beams.

The theory above is known as the Bernoulli-Euler theory of
flexure and, while it is approximate, its results are sufficiently
near to those deduced from the accurate theory of elasticity for
most practical purposes.

(5) gives the radius of curvature of a beam bent by couples M
applied to its ends, so that M is constant along the beam. In an
actual beam in which M is a varying function of , (5) will give
the radius of curvature at a point of the beam in terms of the
bending moment M at that point. The radius of curvature R
is given in terms of the deflexion by

1 d?y/dx?

R~ 0T (v ®)
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and in the problems we shall consider the slope of the beam is
small and (dy/dx)* negligible so that (8) may be replaced by
1  d¥y
BT dx*

For problems involving large deflexions the complete ex-
pression (8) must be used and an awkward non-linear equation
results, which, however, can be solved exactly in some simple
cases (cf: Ex. 21, p. 302).

From (9) and (5) we get finally

9)

2,
EI%;%:M, (10)

which is the differential equation for the deflexion. % and I are
known, and M is supposed to have been determined by the -
methods of § 79.
For a distributed load w, (10) may be combined with § 79 (3)
to give d2 a2
& A
da? (EI de) =

or, if £ and I are independent of z,

(11)

EI @ - w. (12)

The differential equation to be solved for y is thus one of
(10) to (12). The connexion between the bending moment and
deflexion is given by (10), and, at points free from concentrated
loads, the shear F is by § 79 (2)
d®y
w,
provided E and I are independerntt of z.

The differential equations have to be solved with boundary
conditions depending on the nature of the supports at the ends.
The most common such conditions are:

F— _EI (13)

(i) 4 freely hinged end. Here y is prescribed (usually zero) and
M = 0. That is, by (10),
d2

d—;ﬂ =0, y given. (14)
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(ii) 4 clamped end. Here y and dy/dx are prescribed (both
usually zero). That is

. g% given, y given. (15)

(iii) A free end. Here M = 0, and F = 0 unless there is a
concentrated load at the end. That is, by (10) and (13),
dy d%
= gs=% (16)
If there is a concentrated load at the end, F is prescribed.
(iv) An elastic support. Suppose the beam is freely hinged

and supported by a reaction k times the deflexion y. Since the
shear at the end is — R, where R is the reaction, the boundary

conditions are M=o, R =y, (17)
d¥y d%y _
or T 0, EI w—ky = 0. (18)

81. Distributed loads

Problems of distributed loads on uniform beams are usually
best solved by integrating § 80 (12) with the appropriate boun-
dary conditions.

As an example we consider first a uniform beam of length I,
carrying a uniform load w per unit length, which is freely hinged

atx =0and x = 1.
Writing D for d/dx we have to solve

EIDY = w, (1)
with, by § 80 (14)

y =D =0, whenx=0and z=1.
Integrating (1) gives
EID¥ = wx+A4,
where A4 is an unknown constant. Integrating again,
EID%* = jwz?+ Ax+ B, (2)
and since D% = 0 when z = 0, B = 0, so that (2) becomes
EID% = Jwa®{ Ax. (3)
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Integrating this gives

EIDy = lux®+3Ax*+C, (4)
where C is an unknown constant, and integrating again we get
' Ely = Jowx*+3Ax*+Cax+-H. (6)

The condition ¥y = 0 when « = 0 requires H = 0. The re-
maining constants 4 and C are found from the conditions
y = D% = 0 when z = I. These require

Fwlt+3AP+Cl = 0,
Jwl4+4 = 0.

Solving for 4 and ¢ and substituting in (5) we get finally

wx

— 3__0ly2
Y = 24El($ 2x?413). (6)

Ex. 1. A uniform beam of length 1, carrying a uniform load w per unit
length, is clamped horizontally at the same level at its ends ¢ = Oand z = 1.
Here we have to solve (1) with the conditions
y=Dy=0, whenx =0, (7)
y=Dy=0, whenz =1 (8)
Integrating (1) four times as before and using (7), by virtue of which
the additive constants of the last two integrations vanish, we get
Ely = &wxt 4 3Ax3+3Bx?, (9)
where 4 and B are arbitrary constants. The conditions (8) then give
Twlt+ AR+ 3BIE = 0,
Jwlt 1A+ Bl-= 0.

Therefore A= —3wl, B = {swl?, (10)
_ wa¥(l—x)?
and 80 Yy == WI—-. (11)

We can now find the bending moment and shear force at any point
. of the beam; as remarked in § 79, this cannot be done from purely
statical considerations.

The bending moment is

M = EID%y
= jwr?+ Ax+ B
= Tgwl®— jwz(l—x). (12)
The shear force at any point is by § 80 (13)
F = —EID%
= —wxr—A4
= w(}l—=x). (13)
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When z = I, F = —}wl, and therefore the reaction at ! is $wi: this
could have been inferred by symmetry and (13) deduced. Bending
moment and shear force diagrams for this problem are shown in Fig. 67 (¢).

Ex. 2. A uniform beam of length 1, carrying a uniform load w per unit
length, s clamped horizontally at x = 0, and at x = 1 it 18 freely hinged
to a yielding support which provides reaction k times the deflexion.

We have to solve (1) with ¥y = Dy = 0 when = = 0, and, by § 80
(17) and (18),

Dy =0, EID%—ky=0, when z = [. (14)
As in Ex, 1, (9) we find
Ely = #awat + }Ax® 4 3 Ba?, (15)

where 4 and B arve to be determined from (14). This requires
it Al+ B = 0,
EI(wl+ A)— k(Fwls+ }AB+}Bi%) = 0.

Solving these for 4 and B and substituting in (15) gives y.

Ex. 3. A cantilever of length 1 has its end x = 0 clamped horizontally
and its end x = 1 free. It carries a uniform load w per unit length. Its
cross-section is constant in 0 < x < a, and has a different constant value
ma <z <l

Suppose that
. _L = <z <a)
EI~* ’
%za—hﬂ @a<z<l.
These may be writtén as in § 17
1
7= a+BH(zx—a). ) (18)
Since I is variable, the differential equation must be taken in the form
80 (10), that is
§80019 DYy = (a-+H(z—apM, (a7
where the bending moment M, calculated as in § 79, is
M = jw(l—=z). (18)

Using (18) in (17) we have to solve
DYy = Jow(l—z)'+ fu(l—2)*H(z—a)
= fow(l—z)*+ 4Pw{(z—a)*+ 2(x—a)a—1) + (—aP}H(z—a),

with y = Dy = 0 when z = 0. "

Integrating (19), using § 17 (8) for the integral of the Heaviside fune-
tion, gives

Dy = jow(lz—lzt+3a%) +

+puwii(z—aP+(z—a)a—1)+(x—a)(i—a)'}H(z—a),

where the additive constant is zero since Dy = 0 when x = 0.
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Integrating again, and using y = 0 when & = 0, we get finally
Y = Jow(Fl— §ia+ Fo) +
+1pwl{Ts(z—a)'+ Hz—a)(a—1)+ Hz—a)¥(l—a)}H(z—a)

2
= “—'2"%(612—4lx+x2)+

+ﬁﬂ§———4—a)z{6(l——a)’——4(l—a)(x——a)+(x—a)z}H(x——a). (20)

The use of the Heaviside function in this way avoids the necessity of
treating the two parts 0 < z < eaand a < z < I of the beam separately.
It may be used in the same way when the load changes discontinuously
at a point.

82. Concentrated loads. The Green’s function

Concentrated loads are a little more complicated to study
than distributed loads. To illustrate the difficulties and the
new ideas involved we consider in detail the case of a light
uniform beam 0 < z < [, clamped horizontally at the same level
at its ends, and carrying a concentrated load W at x = a.

Ag in § 81, Ex. 1, we cannot determine the bending moment
and shear by statical considerations, so we have to use the
differential equation § 80 (12), but now the two regions

0<z<a and a<z<l

must be treated separately.
Since we are neglecting the weight of the beam, w = 0 in
§ 80 (12) and this becomes

Diy=0 (0<2x<a), (1)

with y=Dy=0, whenz=0. (2)
The solution of (1) satisfying (2), found as in § 81, is

y = A3+ Ba?, (3)

where 4 and B are unknown constants.
Also in @ < z < I the differential equation is

Diy=0 @<z<l), (4)

with y=Dy=0, whenz =1 (5)
The solution of (4) which satisfies (5) is

y = $C(—ap+3H(1—2), (6)

where C and H are unknown constants. The four unknowns
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A, B, C, H are to be found from the conditions at z = a.
Firstly, at * = a the values of the deflexion y, slope Dy, and
bending moment M = EI1D?% of the beam, calculated from (3),

must be equal to their values ca.lcula.ted from (6). These con-
ditions give

%Aa3+%Bt12 = }C(l—a)P+3H(—a)?, (7)
}Aa®*+ Ba = —1C(l—a)—H(l—a), (8)
Aa+B = C(l—a)+H. (9)

Also, as we pass through the point = a from right to left,
the shear force ¥ increases by W. And, by § 80 (13),
F = —EID%. (10)
Thus the value of (10) calculated from (3) when x — @ must
be greater by W than the value calculated from (6), that is
—EIA = EIC+W. (11)
(7), (8), (9), and (11) are four equations for 4, B, C, H.
Solving we get
4 — _ W(—a)*(l+2a) B— Wa(l—a)?
Ers ’ Ene
and y= I/-Kg::—gI—_lgf{?»al—at:(l—l—2a)} 0 <z<a) (12) .
In the same way, solving for C and H we find
_ Wa(l—2)?
6EIP

(13) may be obtained from (12) by interchanging a and z.
The bending moment M = EID% is given by

{(Bl—2a)x—la} (a <=z <) (13)

M= M{al—x(l+2w)} 0<z<a)

W . (14)
M= _“_ (al—2042(3l—2a)} (@ <z <)

The shear force F = — E1D% is given by

F:w <z <a)
. (15)

5296 U
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Bending moment and shear force diagrams for this problem
are shown in Fig. 67 (d).

The solution for a concentrated load with given boundary
conditions is of fundamental theoretical importance, for by using
it the solution for any distributed load with the same boundary
conditions can be written down immediately. Write G(a, z) for
the deflexion at x due to a unit concentrated load at x = a given
by (12) and (13): the deflexion of the same beam with the same
boundary conditions and a distributed load w(x) may be ob-
tained by superposing the effects of concentrated loads w(a) 8a
in the region ¢ < x < a+8a, so that it is

1
f G(a, z)w(a) da. (16)
0

The same remark applies to any other boundary conditions.
G(a,x) is called the Green’s function for the given equation and
boundary conditions, and these results are special cases of a very
general theory discussed further in § 102. It may be remarked
that it follows from this theory that the result G(x,a) = G(a, )
which appeared in (12) and (13) is true in general: from the
present point of view this states that the deflexion at a due to
aload W at z is equal to the deflexion at « due to a load W at a.

83. Concentrated loads. Use of the § function
In § 17 it was remarked that a concentrated load W at x — a
could be trea,ted as a distributed load

w = Wé(x—a). (1)

We now discuss the problem of § 82 in this way. We have to
solve - pIDWy — Waw—a) (0<z<D), @)
with y=Dy=0, whenz =0and z =1 (3)

Integrating (2) and using § 17 (10) gives
EID3% = WH(x—a)+ A, (4)
where 4 is an arbitrary constant. Integrating (4), using § 17
(4), gives EIDY% = W(x—a)H(x—a)+ Ax+ B. (5)
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Integrating (5), using § 17 (5), we get
EIDy = }W(x—a)?H(x—a)+}Ax?+ Bx+C. (6)
The constant C must be zero since (3) requires Dy = 0 when
z.= 0, and H(z—a) = 0 when = = 0.
Finally, integrating again gives
Ely = }W(x—a)*H(x—a)+ 3 A2®+ 3 Ba?, (7
the arbitrary constant being zero by (3).
The conditions y = Dy = 0 when « = [ require by (6) and
(7) 1W(l—a)?+3A+ Bl — 0,
tW(l—a)®+3AB4-L1BI2 = 0.

Therefore
4 - W(l—al):(l+2a)', B— Wa(fz——a)z.
And, finally,
Bly = }W(z—a)*H(z— a)+%“_{3al (+2a)}, (8)
or, writing out the function H(x—a) explicitly,
Ely — Eﬁépﬂ{saz (+2)) (0<z<a) (9)
Ely — Eglai_’”)z{(zzz_za)x—za} @<z<¥. (10)

These are the results § 82 (12) and (13).

84. The beam on an elastic foundation

Suppose that deflexion of the beam in the direction OY of
Fig. 66 (a) is resisted by a force ky per unit length of the beam,}
and that the beam carries a load w per unit length. The effect
of the elastic foundation is to add a term. —Zky to the load, and,
for a uniform beam in a region free from concentrated loads, the
differential equation § 80 (12) for the deflexion becomes

Eld4y+ky —w. (1)

+ This implies that the support exerts a tension if y becomes negative.
Frequently this is not the case.
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Writing 40t =k/EI, (2)
this may be written w
(Dit+dolly = 2.

As an example we consider a uniform semi-infinite beam
z > 0 resting on such a foundation with the end x = 0 freely
hinged at zero deflexion.

The boundary conditions are

y=D¥% =0, whenz =0, ’ (4)

¥ to remain finite as x — 0. -~ (5)

(3

Asin§ 13, Ex. 5, the general solution of (3) with constant w is
Yy = e“¥(4 cos wx+ Bsin wz)+
+e~2%(C cos wx+ H sin wx)-l—w/lc (6)

In order that y may remain finite as 2 -> c0 we must have
4= B=0.
The conditions at = 0 give

C+wlk =0,
H =0,
and thus the solution is
y = %{1——2‘“‘”c coS wx}. (7D

85. A continuous beam resting on several supports at

the same level

In the other sections of this chapter the beams have been
assumed to be supported at two points only. The problem of a
uniform continuous beam. resting on a number of frictionless
supports at the same level and carrying a uniformly distributed
load w per unit length can also be treated fairly simply.

Let 4, B, C,... be consecutive supports and let AB = a,
BC = b. Take the origin at B with the z-axis along BC. Then
in BC we have to solve

EIDY = w, 1)
with y = 0 when x = 0 and when = = b. (2)
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Integrating (1) four times in the usual way and using y = 0
.when z = 0 we get

Ely = fwat+ § Px®+1Qx*+ Rz, (3)

where P, @, and R are arbitrary constants. The condition y = 0
when z = b gives

Hwb*+ 1 Ph34+1Qb2+ Rb = 0. 4)
TW— 1 & T~ ™, M, m, m,
(a) (b)
Fi1a. 69.

Also, if M is the bending moment at z,
M = EID* = }wxr*+ Px+Q. (5)

Now let M, My, M,... be the unknown bending moments at
the supports. Putting « = 0 and z = b in (5) gives

My= @, 0)
My = Juwb?+ Pb4-Q. (7
Also, if i is the slope of the beam at x = 0,
Eliz = R,
= —fwb*—}Pb*—$Qb,
= Job®— b Mo—3b My, (8)

where we have used (4), and then (6) and (7).

Now suppose, taking B as origin again, that we take the
z-axis in the direction BA. The bending moments calculated
in this way will be equal to those calculated with the axis in
the other direction, so that (8) still holds with the appropriate
changes of notation, except that, as can be seen from Fig. 69 (a),
the sign of ¢y is changed. Therefore we get from (8)

— Bliy = jwad—jaM,—Yally. (9
Adding (8) and (9) gives finally .
aM,+2(a+b)My+bM, = Jw(a®+b%). (10)

This is Clapeyron’s theorem of three moments. It is an
algebraic equation connecting the bending moments at three



294 BOUNDARY VALUE PROBLEMS CH. X

consecutive supports. Using it and the conditions at the first
and last of the supports, sufficient equations can be written
down to determine the bending moments at all the supports.
Since P, @, and R in (3) can be expressed in terms of the
bending moments by (4), (6), and (7), the deflexion at any point
of the beam then follows. The reaction at the support B, which.
is the difference between the shears to the right and left of B, is
1 1 1 1
%w(a—}-l')) + (&‘F Z)MB “a% 3
(10) and (11) and their many generalizations to more compli-
cated systems are of the greatest importance in practice.
Ex. 4 uniform semi-infinite beam rests on supports at

M. (11)

z=na (n=0,1,..).

Let M, be the bending moment at the nth support, Fig. 69 (b), then
(10) gives My, +4M,, + M, = jua?, (12)
to be solved with . My=0, (13)
and the condition that M, remains finite as n —» co.

We seek a solution of (12) of the form

M, = A+ Bk~ (14)
Substituting (14) in (12) we must have

A = fwad, (18)

k4 4k+1 = 0. (18)

The solution of (i6)is % = —2++3. 17)

For M, to remain finite as n — 0 we must have |k| < 1, and thus
must choose the value —2-++/3 of (17). Therefore a solution of (12} is

wa?
M, = -E+B(—-2+«/3)“. (18)
The condition M, = 0 gives B, and we get finally
2
M, = 55 (1—(—2+~3), (19)

86. A beam with transverse loads and axial tension or
compression
Suppose that a uniform beam lies along the z-axis, as in
Fig. 70, and is freely hinged at its ends x = 0 and z =L
Suppose that it carries a uniformly distributed load w per unit
length in the direction of OY, and that in addition there is
tension 7' along the z-axis.
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We take the differential equation in the form § 80 (10),
EID* = M, (1)

to be solved with y = 0 when x = 0 and « = I. The bending
moment M at the point = contains a term Ty, due to the axial
tension, as well as the term —jwx(l—x), calculated asin § 79 (8)
transverse load.

A X J B
TW" T
Y
Fic. 70.
Therefore M = Ty—iwx(l—zx),

and the differential equation (1) becomes

T

2 _—
Dy 7Y = TogT x(l x). (2)
'The general solution of this, found as in § 14 (ii), is

w | wlr wz?

y = ‘A sinh ax+ Bsinh o(l—x) — T+ — 57 (3)

where : a2 =T/EI (4)
The conditions y = 0 when x = 0 and x = [ give
Bsinh of = w/o®T,

Asinhal = w/e?T.
Therefore, finally,

wisinh ox +sinh o(l—2z)} _i wx(l—zx)
2T sinh ol 2T 2T

w (cosh a(}l—x) wx(l—zx)
2T{ cosh 3ol 1}—'_ 2T )

Other cases are treated similarly. If there is axial compression
instead of tension, trigonometrical functions appear in place of
the hyperbolic functions.
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87. Column formulae. Eigenvalue problems
In the theory of columns we consider a beam with axial com-
pression and no transverse loading.

W’P P p
Yo Yo a - 2
/g
X X . X X
o v W? W; oy
(@) (b) (c) (d)

Fia. 71.

The most important case is that of a column of length I, freely
hinged at its ends, with axial compression P, Fig. 71 (¢). The
bending moment M at the point x of the column is — Py, as in
§ 86, and the differential equation for the deflexion becomes

EID%* = —Py,
or (D*+w?y = 0, (1)
where w? = P/El. (2)
This has to be solved with y = D% = 0, when z = 0 and

z=1
The general solution of (1) is

y = A sin wz-+ Bcos wz. (3)

The condition y = D% = 0 when z = 0 requires B = 0, so
that (3) becomes
y = Asinwz, (4)

and the condition y = D% = 0 when z = [ requires
Asinwl = 0. ' (5)

Thus we must have either A = 0, in which case the solution
is ¥ = 0 for all  and the beam is undeflected, or

sinwl = 0, (6)
that is, S wl=n7r (n=1,2..). (7)
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Using (2), (7) gives

p_ Bl

e (=12, (8)
Thus, unless P has one of the values (8), the only solution of

the differential equation and boundary conditions is y = 0 for
all z. If P has the value n?s2E1/I?, another solution is

Yy = Asmylr—x (9)

where A is arbitrary.

From the practical point of view this result may be inter-
preted in the following way: if P << #2EI[I?, the first of the
values (8), the only solution is ¥ = 0 and the column is un-
deflected. Further discussion shows that this solution is stable,
that is, if the column is slightly bent it will return to the straight
form. When P reaches the value #2E/I?, another solution also
becomes possible in which the form of the column is 4 sinnz/l,
and now this solution is stable and the undeflected position
unstable: thus if the column is slightly disturbed it will assume
a bent position and for practical purposes will collapse. The
value 72E1/I? is known as the Euler load or crippling load, and
the above theory is the Euler theory.

From the theoretical point of view the problem is that of a
homogeneous linear differential equation which contains a
parameter w? and which has to be solved subject to homo-
geneous boundary conditions. In such problems there is always
a trivial solution which is zero for all values of x, and non-zero
solutions can be found only for a discrete set of values of the
parameter. These values are called the eigenvalues, the corre-
sponding solutions are the eigenfunctions, and such problems
are referred to as eigenvalue problems. '

Ex. 1. A column ts clamped vertically at its base x = 0, and is free
at x = 1.
Let y, be the deflexion at the top of the column (Fig. 71(b)).
The bending moment M at the point x is P(y,—y), so the differential
equation for the deflexion is
EID% = P(yo—y),
or (D*+e?)y = Wy, (10)
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where w?* is defined in (2). (10) has to be solved with y = Dy = 0 when
z = 0,and y = y, whenx = I. Itssolution which satisfies the conditions
atx = 0is

Y = Yo(l—coswx). (11)
If, in addition, we are to have y = y, when = = I, we must have
coswl = 0,
that is wl = (2";117—’ n=1,2,..),
— 1252 ’
or P= %ﬁﬂ (n=1,2,.). (12)

The crippling load, corresponding to n = 1 in (12), is #2EI/41%.

It is interesting to consider the problem from another point of view.
One objection to the Euler theory is that in practice it is impossible to
ensure that the load lies precisely along the axis of the column, and it
is not clear what effect a small eccentricity of loading may have. We
show that if it is allowed for, Euler’s result still applies.

Suppose, then, that the load P is applied a small distance a from the
axis of the column, Fig. 71 (c). The only change is that (10) has to be

replaced by (D*+w?)y = wXy,+a), (13)
which has to be solved as before with y = Dy = 0, when z = 0, and
with y = y, when # = l. The solution of (13) for which y = Dy = 0
when & = 0 is

Y = (Yo+a)l—coswzx), (14)
and the condition y = y, when z == [ requires
Yo = (Yo+a)(1—coswl). (15)

Solving (15) for y, and substituting in (14), gives
a{l —coswx)
= T eoswl -

This problem, of course, is not an eigenvalue problem: there is a finite
deflexion for any load. But it follows from (16), because of the denomi-
nator coswl, that the deflexion becomes very large as P tends to any
of the values (12), and this is effectively the same result as before.

Ex. 2. A column 18 freely hinged at its ends. Lateral displacement 18
resisted by a force per unit length equal to k times the displacement.

In this case we have as in § 86 (1)

EID%y = — Py-+M’, (1
where M is the bending moment at 2 due to the transverse loading —ky
at . Differentiating (17) twice, and using § 79 (3), gives .

EID% -+ PD*y+ky = 0. ' (18)

(16)

This has to be solved with
y= D% =0, whenz =0, (19)

y=D% =0, whenz =1. ‘ (20)
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The problem may be treated as above, but the eigenvalues may be
found very simply by noting that
sinn—Tv- n=1,2.)
satisfies (18) and (20), and it also satisfies (18) if

EIntn* Pnin?

o w tE=0
2.3 2
that is, if P— EIT':Z’_+;’§Z;, (21)

Ex. 3. Shaft whirling.

Another simple and important type of eigenvalue problem arises in
the following way. Suppose a uniform, straight shaft rotates with
angular velocity Q about its axis and is carried in bearings at z = 0 and
« = ! which may be regarded as free hinges.

Suppose the shaft is in a bent position as in Fig. 71(d). There is a
transverse loading of Q%yp/g per unit length on the shaft caused by the
centrifugal or reversed effective forces, where p is the mass per unit
length of the shaft.t

The differential equation for the deflexion y is

EID%—-Q*yflg = 0,
or (D*—kty = 0, (22)
where v k* = Q% /EIg. (23)

(22) has to be solved with y = D% = 0, when ¢ = 0 and when z = I.

Its general solution is

y = Asinkxz+ Bcoskx+ Csinh kx+ D cosh kx. (24) |
The boundary condition at £ = 0 requires )
B+D =0,
B—D =0,

8o that B = D = 0. The conditions at x = ! now give
Asinkl+ Csinhkl = 0,
, Asinkl—Csinhkl = 0.
Thus we must have either A = C = 0, corresponding to the un-

deflected position, or sinklsinh kl = 0. (25)
This gives k=mnr (n=12..)
nimtElg
. 2 = — 2 = ors)e
or Q o n=1,2,..) (26)

At these angular velocities deflected positions are possible (and the
undeflected positions are unstable) and the shaft ‘whirls’.

+ The units in which the various quantities are measured have not been
specified above. In the usual engineering practice gravitational units are used
for the loads, and therefore the reversed effective force is divided by g.
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EXAMPLES ON CHAPTER X

In all these examples I refers to the moment of inertia of the cross-
section of the beam and Z is Young’s modulus.

1. A beam of length 1, freely hinged at its ends, carries & distributed
load which increases linearly from zero at the ends to w per unit length
at the mid-point of the beam. Sketch the bending moment and shear
diagrams, and show that the maximum bending moment in the beam is
wi?/12.

2. A uniform beam of length 2! and weight w per unit length is rested
symmetrically on two supports distant 2¢ apart. Sketch the bending
moment and shear diagrams, and discuss the variation of the bending
moments at the middle of the beam and at the supports with a. Find
the maximum bending moment in the beam, and show that this is least
ifa = (2—+2)l.

3. Show that when two unequal concentrated loads a fixed distance
apart are traversed along a beam supported at the ends, the maximum
bending moment occurs when the heavier load and the centre of gravity
of the two loads are equidistant from the centre of the span, provided
that both loads are then on the span.

4. Show that the maximum bending moments which can be withstood
by beams of square and circular cross-section of the same area are in the
ratio 2vm/3.

5. Find the deflexion of a light uniform cantilever clamped horizontally
at z = 0 and free at =  for

(i) a uniformly distributed lc;a,d w per unit length,
(ii) a concentrated load W at z = L.

If the cantilever carries a uniformly distributed load w per unit length
and is propped at 2 = I to the same level as that at 2 = 0, show, by
combining the two above results, or directly, that the reaction at the
prop is 3wl/8.

6. A beam of length [ is freely hinged at the same level at its ends
and carries a uniformly distributed load w per unit length. At its mid-
" point it rests on a yielding support which provides a reaction of k times
the deflexion. Show that the reaction at this support is

Skewlt
384 K14 8kI3°

7. A tapered cantilever of rectangular section has constant width but
its depth decreases linearly to zero at « = 1. If w, is its weight per unit
length, and I, the moment of inertia of its cross-section at the origin,
show that its deflexion under its own weight is

w, 22?121,
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8. Show that the potential energy of the portion of the beam between
the planes 4B, A’B’, of Fig. 68 (a) is EI16/2R, and deduce that the poten-
tial energy of the whole beam is

gy e

Show by integrating by parts that for a beam 0 < x < ! this may be
put in the form

P+ uZ ] +§fwydx

9. A light beam of length a+b is freely hinged at its ends and carries
a mass M at the point a. Find the deflexion of the beam at g, and show
that the natural frequency of oscillation of M is

{3E1(0+b)!7}%/2
Ma?b?

10. A light uniform beam of length ! is clamped horizontally at the
same level at both ends. It carries a constant load w per unit length
for 0 < x < } and no load in the region §/ < x < I. Show that the
deflexion is given by

Ely = — Aule®+ Hcwlia+ Fwrs
for 0 < z < }, and find its valuein § <z < L.

11. A light uniform beam of length ! carries a load which is zero at
its ends and increases linearly up to w per unit length at its mid-point.
The beam is clamped horizontally at = 0 and freely hinged at the same
level at z = 1. Show that the deflexion at its mid-point is

53wlt
1536081

12. A uniform beam of length ! and weight w per unit length is freely
hinged at its ends and subject to axial compression P. Show that its
deflexion at the point z is, writing w® = P/EI,

ElIw {cOSw(q}l x)_l} _'wac(l x)
P2 cos twl 2P

13. A light uniform beam of length ! is freely hinged at its ends and
subject to axial compression P. It also carries & concentrated trans-
verse load W at = a. Show that the deflexion is

Wsmw(l——a)smwx W({i— a)z
wPsinwl Pl
if 0 < z < @, where w?® = P/EI.

14. A light semi-infinite beam x > 0 is attached to an elastic founda-
tion which provides restoring force k times the deflexion. It is free at
= 0 and carries a concentrated load W at z = a. Show that its
deflexion at = 0 is We—ws

28 I®

coswa,
where w* = kf4E1.
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15. Find the form taken by the equation of three moments when two
of the supports approach one another (corresponding to a beam clamped
horizontally at a point). Deduce the results of § 81, Ex. 1, in this way.

Show that if a uniform beam of length 2! is clamped horizontally at
z = 0 and is supported at this level at * = I and = = 21, the reaction
at the support at x = 1 is 8wl/1.

16. A uniform beam of length nl rests on n4- 1 equally spaced supports.

Show that the bending moment at the rth support is
(1 — k)~ kY1 — k")
ol {1 + k" )

where k = —2+4+/3 and w is the weight per unit length of the beam.

17. A light beam of length I is freely hinged at its ends. Find the
deflexion produced by unit force applied at its mid-point perpendicular
to the beam.

If a mass M is attached to the centre of the beam show that its natural

frequency is ( 48gE I) 3 /2
P .
If the beam carrying the mass M rotates about its axis, show that
the angular velocity of whirling is 27 times the above result.
18. A column is clamped vertically at x = 0 and freely hinged at
« = l. Show that the crippling load is EI«%/I2, where « is the smallest
(non-zero) root of

tana = a.

19. Deduce the result § 87 (21) by studying the solution of the differen-
tial equation and boundary conditions.

20. A uniform straight shaft of length I and mass p per unit length
rotates with angular velocity w and is subject to axial compression P.
Show that, if the ends are freely hinged, the whirling speed is given by

Ppe pwt ) } P o |
(4E212+gE1 TeEI T B

21. Show that for large deflexions of a thin wire caused by tension T',

the deflexion y at the point x satisfies
py = EI/T,
where p is the radius of curvature at . Show that an integral of this
equation with y = 0 when ¢ = 0 is
y = 2AEI/T)isin 3y,

where i is the slope of the tangent to the wire at any point.

Deduce that, if the origin of « is chosen at i = m,

z = (EI)T)¥{ntan })+2cos i},

and sketch the curve.



XI
FOURIER SERIES AND INTEGRALS

88. Introductory. Periodic functions

PEriopic functions arise in many branches of applied mathe-
matics. In electric circuit theory functions which are periodic
in the time occur: for example, the voltage applied to a circuit
by an alternator is periodic but usually not sinusoidal, while in
modern practice periodic voltages with forms such as ‘square
wave’, ‘saw-tooth’, etc., cf. Fig. 76, are common.

Fia. 72.

Because of the importance of functions which are periodic in
the time we shall take ¢ as the independent variable in §§ 88-90
and say f(t) is periodic with period 27" if

Thus if the value of f(t) is known in any interval of width 27
it is known for all £. We shall take — 7' < ¢t < T for the regiont
in which values of f(¢) are given; cf. Fig. 72.

A number of trigonometric functions are known which have
period 27'; these are the set of even} functions

cosn—;—t (n=0,1,2,..), (2)

of which the case n = 0 is the constant unity, and the set of odd
functions
.
sin = (n=1,2,..). 3)
t The period is taken to be 2T and the origin in the middle of the region
(instead, for example, of the origin at one end of the region which might seem
more natural) for convenience in the discussion of odd and even functions in
§ 89. The final results can easily be put in the appropriate form for functions
of period T'; cf. Ex. 6.
1 A function is even if f(¢) = f(—¢) for all t. It is odd if f(—t) = —f(2).
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The complete set of functions (2) and (3) possesses the property
that the integral from — 7" to T of the product of any two differ-
ent members of the set is zero. This property is known as
orthogonality over the region (—7,T). To prove it we have

T T
fcos’i;’_,fdt= fsin%”tdt —0 (n=1,23.), (4
-7 -7
ot mat 1L (mempmt | (m—n)
not . ma . (m—-n)m . (m—n)mt
jcos——Tsm—-i—dt =3 f {sm T ~+sin T }dt— 0,
-T -T (5)

for all m and n;

T T ‘
f costhl,t cos™™ gy 1 f {cos (m_;,n)wt-{—cos (m—-n)wt} dt
-7

T 2 T
=0, ifm#n; (6)
and similarly
T
.. nmal . mmt .
fmn-qumT dt =0, ifm#n. (7)
-7

The integrals from — 7" to T of the squares of the functions
(2) and (3), however, do not vanish. They are

r T
fsmzn__;fdt%“l_cos?”?”’}dt:T (n=1,2.., (8)

T
fcosﬁ?%‘ d=T m=1,23.), (9)
-7

T
fdt — oT. (10)
-7

It should be noticed that in (10), which corresponds to
(9) with n = 0, 27 occurs in place of 7.

It is natural to inquire whether any periodie function f(t) with
period 27, such as that of Fig. 72, can be represented in terms
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of the set of trigonometric functions (2) and (3) of period 27,
that is, whether there exists an expansion

= gq+ z a, cosn—"t—k Z b, sin ™ (11)

where the a, and b, are constants.

We first show that, if such an expansion exists and it is per-
missible to integrate the infinite series in it term by term, the
coefficients a,, a,, and b, can be found very simply. First, if we
integrate (11) with respect to t from —7 to T, all the integrals
on the nght-hand side except the first vanish by (4), and we get

fft) dt = a, jdt = 2Ta,. (12)

Therefore a =5 f £) de. (13)

In (13), ¢ has been written for the variable of integration in
the definite integral in place of ¢ as in (12). This will also be
done in (14) and (15) below in order to avoid confusion with ¢
in subsequent work.

To find a,, we multiply both sides of (11) by cosm=t/T and
integrate from —7 to 7. All terms on the right-hand side will
vanish except one, by (4), (5), and (6), and we get

T
ff t)cosﬂ"—t dt = a,, J cos”fr-nTlt dt = Ta,,
-7
using (9). Therefore, again replacing ¢ by ¢ in the definite
integral

a, i’l t)cos—-——dt m=1,2,3,..). (14)
Similarly T
b, ff(t) ’—”l"_dt m=1,23.) (15

In the same way, if we square both sides of (11) and integrate with
respect to ¢ from — 7T to T, the integrals of all products of different
5298 x
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functions on the right-hand side are zero, and, using (8), (9), and (10) for
the integrals of squares of trigonometric functions, we get

T
1 2 — a2 3 2 3 2
2~T_fT fOF de = a3+} 3 at+t 3 52 (16)

- These quantities a,, a,,, b,, can be found for any integrable
function f(¢) and are called its Fourier constants. It will appear
from later results that they provide a complete alternative
specification of the function, that is, if the Fourier constants of
the function f(¢) are known it is just as completely specified as
by the usual statement of the value of f(¢) for each value of ¢ in
(—=7,T). In some problems it is more useful to specify a func-
tion by its Fourier constants than in the ordinary way.

The process of finding the Fourier constants for a function
given numerically or graphically is called Fourier analysis or
harmonic analysis: there are many ways of doing this arith-
metically, also mechanical devices have been invented for
finding the Fourier constants of a function whose graph is
given, and for finding the graph of a function whose Fourier
constants are given.

The series on the right-hand side of (11) with the values (13),
(14), and (15) of ay, a,,, and b, inserted is known as the Fourier
series for the function f(¢). It ma,y be written as

T

1 PO | nmt nat’

oT Jf(t)dt +TZcos—— ff(t €os - dt’+
- n=1

nart

+ sm—- ff(t)su —t’dt’, (17)

or, combining the last two serles, as

o ff(t)dt Tz ff(t Jeos ™™ ”dt' (18)

n=1_°
The above argument has not proved that (17) or (18) is equal
to f(¢). It has merely been a ‘plausibility’ argumentt to intro-

1 Such arguments are often not true and must always be supplemented by
careful pure-mathematical discussion. . For example, the result would have
been equally plausible if the constant term a, in (11) had been omitted. .
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duce the Fourier constants and the series (17). To prove the
result suggested in (11) it is necessary to show that the series (17)
is convergent and that its sum is f(t). Whether this will be the
case or not depends on the nature of the function f(t), and it is
important to allow f(t) to be fairly general: in particular, since
discontinuous functions appear so often in applications, these
must be considered. The restrictions usually placed on f(¢) are

that it satisfy ‘Dirichlet’s conditions’, a simple form of which,
adequate for our purpose, is that f() should be continuous in
(—T, T), except at a finite number of ordinary discontinuities,
and that it should have only a finite number of maxima and
minima in this region.
Fourier’s theorem then states that, if f(t) satisfies Dirichlet’s
conditions, the series (17) is convergent and its sum is
(i) f(t) at all points where this function is continuous,  (19)
(i) 3{f(t+0)+f(t—O0)} at points where f(t) is discontinuous,t
' (20)
(i) H{f(T—0)+f(—T+0)}att = +T. (21)
Thus if f(¢) is the function shown in Fig. 73, the sum of the
series has the value 4 when ¢ = #,, and the value B when
* ¢t = 47T, and for all other values of ¢ is given by the graph.
It is in this sense that the expansion (11) is true.
The proof of Fourier’s theorem is rather long} and will not
be given here.
We also state without proof the ‘uniqueness theorem’ that if
+ We write f(¢t+0) for lim f(s) and f(¢t—0) for lim f(r).
T>¢-4+0 T—>t—0

t Cf. Carslaw, Fourier's Series and Integrals (ed. 3, Macmillan, 1930);
Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1941),
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two Fourier series can be found for the same function the
coefficients in these must be equal.
Finally, it should be remarked that series of the general type

Z ‘a cos” yd + b,s 'nn;t} (22)
n=1

are called trigonometric series and are perhaps, next to power
series D a,¢", the most important type of series in mathematics.

-T o T
(b

If a, and b, in (22) are the Fourier constants (14) and (15) of
some function f(¢), the series becomes a Fourier series, but there
are many trigonometric series of type (22) which are not the
Fourier series of any function.

Ex. 1. The repeated pulse of width (T —T,) of Fig. 74 (a).

In this case f®) =0 (~T<t<Ty),
fi)y=1 Ty<t<T).

Here (13), (14), and (15) give

]
]

[ R

b | (“"‘
Ml -

0
(a)
Fia. 74.

T
1 T—1,
“°=ﬁ'f‘““ 3T
T
T
1 t ., 1 maT)
I =g | 08T W= e T
Ty

= L™ ar — L aymn g osm ]

bm_-ffsm Tdt —'mm'(.l) +cos 7
T,

Thus the Fourier series for f(2) is

T—T, 1~ 1_. maT,
— —gin

mrrt
ST 7 L omtTp st

m=1
i
m=

mrt
o

{( —1)m+1 | cos MTI} sin

T (23)

=!I»-
§l'—
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By Fourier’s theorem, (19)-(21), the sum of this series is 0 if
—T<t<Ty; 1if <t<T; and } when t =T, or t = +T.
Ex. 2. The half-wave rectified sine wave, Fig. 74(b).

Here f=0 (-T<t<o0),
JO =sin} © <<
By (13) and (14), respectively, we have

ay = 2Tf in——-dt’

1 mt’ mat’ .,
Ay, = T smTc sTdt
1 f 1)t/ 1)nt’
0
. i{l—cos(m-{—l)-rr l—cos(m—l)-:r} .
=2 mrl  m—1 ) ’fm>1]. (24)
= 0, ifm=1
It follows from (24) that @, = O if m is odd, while if m is.even, say
m = 2r
’ .1 2 2 } _ 2
Gar =9, ‘2r+l T2r—1 a4t =1)’ (26)
Similarly by (15)
1 . mt’ . mmat’ .,
by, = T f sm—fsm—T——dt
0
L 1 (m+1)
m— 7rt' m 7wt .,
= ‘Tf RO }d‘ ’
0
so that b,, = } if m = 1, and is zero if m > 1.
Therefore, finally, -
2r7'rt
£t = -+ 3sin Z T (26)

89. Odd and even functions: Fourier sine and cosine
series

If the function f(¢) of § 88 is either odd or even, important
simplifications occur.

Suppose, first, that f(t) is even so that f(—t) = f(t) for all ¢,
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Fig. 75 (a), and, in addition, of course, f(t) is periodic with period
2T. It follows that f(T—0) = f(T+0), so that the function
mustt be continuous at +-7'.

vV T

(b)

v

(a)
Fia. 75.

In this case from § 88 (13), (14), and (15), using the fact that
f() is even,

a0 =g if(t yat = 1 f £ M
1 ; t’ 2 : mt’
a,, = T_J;' J (' )cos ﬁ;—-dt’ = TJ. J(t")cos ~1T—dt’ (2)
T
b, = % f i )s1n7—'—";—t’dt —o, 3)
Sr

and the series

ITfT ) dt' + %i os"_"‘fft)cos__dt (4)

is convergent, its sum being f(¢) at points where the function is
continuous and }{f(¢-+0)+f(t—0)} at points of discontinuity.

The series (4) is called a Fourier cosine series; its coefficients
a, and a, could have been determined directly by the method
of § 88 instead of quoting the results of that section.

1 Except, of course, for the trivial possibility f(T'+0) = f(T—0) # f(T),
which we exclude.
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If the function f(2) is odd, so that f(—¢) = —f(¢), Fig. 75(b),
we have from § 88 (13), (14), and (15)

@,=0 (m=01,2..), (5)
T .
b, = % f f(t')sin"‘T”tdt', (6)
0
\
:
(a) = S =
2 ' ]
] 1 —
[] 1 »
(6) o
bl
t ]
{c) f/;r : -
-Tg o V
(d) = >~ =
F1q. 76.
and the series -
%; sin nrt f f sm"-lft—dt' (7

is convergent, its sum being f(t) at points where this function
is continuous and {f(t+0)+f(t—0)} at points where it is dis-
continuous. In particular, if f(t) is-discontinuous at £ = 0, the
sum of the series must be zero there since f(4-0) = —f(—0);
also, if f(¢) is discontinuous when ¢ = 7', the sum of the series
must be zero when ¢t = T since
f(T—0) = —f(—T+0) = —f(T+0),

cf. Fig. 75 (b). The series (7) is called a Fourier sine series, and
the remark above establishes that the sum of such a series is
zero whent =0 and t = T'.
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Ex. 1. The ‘square wave’ of Fig. 76 (a) defined by
Jiey=1 O0O<t<T),
=—1 (=T <t<0).
This is an odd function, and so by (6),

b, = fsm——dt'————{l-(—l)’"} (8)

Thus b,, is zero if m is even, and if m is odd, say m = 2r4-1,
byt — —
T m(2r 1)
Thus, by (7) the Fourier series for f(t) is

0

4 1 . (2r+D)mt

;Zozm-lsm T @
r=

The sum of the series (9) is zero whent = Oor T, and unity if0 < ¢ < T'.
It is of some importance to study the way in which a Fourier series
such as (9) converges to its sum. When such a series is used in practice
it is usually hoped that the results
derived from the first few terms will
give an adequate approximation to the
result. In Fig. 77 the sums of 1, 3, and
6 terms of the series (9) are graphed: it
appears that 6 terms give a reasonable
approximation to the function except}
near the ends of the interval where it
has a maximum which is rather large.
F16. 717. The example chosen is rather an un-
favourable one, but it serves to illus-
trate the fact that the convergence of the series is often rather slow for
practical purposes, particularly when discontinuous functions are
involved.

Ex. 2. The function of Fig. 76 (b) defined by

fy=1, —3T <t < 3T,

J@&) = —1, when —T <t < —4T and }T <t < T.
In this case f(t) is an even function of ¢, and by (1) and (2)

ag = 0,
2 i 2 F 4
mnt’ ., mat’ .
=Tj cos —dt —7p | cos—p dt _m”smimn.
1] 1T

¥ This maximum moves towards the ends of the interval as the number of
terms is increased but it does not disappear. This is an illustration of the
Gibbs phenomenon, caused by non-uniform convergence of the series.
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Therefore a,, = 0, and

= B

Thus the Fourier series for f(z) is

(—1F  (2r4+1ymt
p= . @&+ 7T
=

(10)

The function f(£) of this example and the last are the same except for
a shift of origin. This illustrates the fact that, since any point may be
taken as origin, many apparently different expressions for the same
periodic function may be obtained. (9) reduces to (10) on putting
t= }T+¢.

Ex. 3. The saw-tooth wave, Fig. 76 (c),

fey=t (—-T<et< ).
Here f(t) is an odd function of ¢, and from (8)

= ft sm———dt

T
Tt mm-t’ £
[___ cos L2 f Os"id,'
0

_ 2T m—1,
mar (Y

Therefore the Fourier series for f(t) is

(11)

2 5 (=)t it
T

Ex. 4. The function of Fig. 76 (d)
Jf@) =¢ O<t< T,
J@) = —t (=T <t<0).
This is an even function, and proceeding in the usual way we find

T 4T < 1 2+ 1)mt
f““=§-;?22<m+1v“m(”2’"- (12)
r=0

Ex. 5. Summation of important infinite series.
The sums of a number of important series may be found by inserting
particular values in Fourier series.
For example, the sum of the series (9) when ¢ = 37" is 1, so putting
= 3T i ives
t = 37T in (9) give © (- 1y
1

r=0

(13)

NE
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The sum of the series (12) when ¢ = 0 is zero, so

1 i
Z @2r+12" 8" (14)
r=0
Putting ¢ = 0 and ¢ = 4T, respectively, in § 88 (26) gives
< 1 1 :
#1739 (15)
r=1
S (=1y 1
—_ m
and Z P il Sy (16)
r=1
90. The Fourier series of a function defined in (—7, T) or

(0, T)
In §§ 88 and 89 we have discussed the representation of
periodic functions by Fourier series. But in the theory the fact

4
’

~
~
AS

T\

that the function was periodic was never used; in particular, in
the integrals § 88 (13)-(15) for the Fourier constants only the
values of f(t) in the region (—7,T) appear. Thus Fourier’s
theorem § 88 (19)-(21) may be regarded as a statement about
a function f(¢) defined in (— T, T'): namely that theseries § 88 (17)
is convergent for all values of ¢ between — 1" and 7', and that its
sum is f(f) at points where the function is continuous and
#{f(t+0)+f(t—0)} at points where it is discontinuous. But since
the terms of the series § 88 (17) are all periodic with period 27,
the sum of the series is periodic also, and thus repeats the set
of values of f(?) in the range (— T, T), irrespective of whether
J(t) has any values, or different values, outside this range..

For example, if f(t) = ¢!, —T <t < T, its Fourier series
repeats periodically the portion of the graph of ¢ between — T
and 7T as in Fig. 78.
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In the Fourier cosine and sine series of § 89 (4) and (7) only
the values of f(t) in the region (0, T') are needed. The sums of
these series are respectively even and odd functions of ¢ as well
as being periodic with period 27'.

\
\

F

(b) T 3 T

Fia. 79.

Thus suppose we form the cosine series of the function defined
by f(t) =t in 0 < ¢t < T, the sum of the series, being an even
function, must be symmetrical about ¢ = 0 giving Fig. 79 (b).
If we form the sine series of the same function, it gives Fig. 79 (a).

91. Fourier series in electric circuit theory
If a periodic voltage V(t) of period 27/w is applied to a circuit,
we express it by its Fourier series

Vi) = i a,, cos nwt+ i b,, sin nwt (1)
n=1 n=1
= 3 A, sin(not+p,), @)
n=1

as in § 88, 89, and treat each term separately. Thus, for
example, using the result of § 44 (11), the steady current in an
L, R, C circuit due to the voltage (2) is

> Lrsinnot+$,—6,), 3)
n=1""
where Z,= {(an—--L)z-{-Rz}% (4)
" nCw ’

0, = ta.n“l{(nL —1—;217—;) / R}. (5)
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It is frequently necessary to know the mean value of the
square of a periodic quantity, or the mean value of the product
of two such quantities. These can be written down as in § 88 (16).

Suppose V is the voltage applied to a circuit, and I the current
at its point of application, and that

V =ay+ Z a, cosn—ﬂ-t—{— z bnsm (6)
n=1
I = ay+ za cosr-b—"—t-{— Z b, sin —. (7)
n= n=1 |

Then by § 88 (16)
T @
op | 7dt = a3 @, (8)
o r=1
In the same way
1 ¢ 2
o f VIdt = aydy+3 S (a,a,4b,5)), (9)
r=1
T

which is the mean rate at which energy is being supplied to the
circuit.
Similar analysis occurs in the theory of rectifiers. Suppose that voltage
given by (8) is applied to a rectifier with a non-linear characteristic
I =f(V). (10)
Using (6) in (10) gives by Taylor’s theorem

I =f{ao+ i (a,,cos%rt—}-b,,sin%—t)}

n=1

= flay)+f"(a,) z (ancos——+b i "’;z)_*_

n=1
& v )2
+i‘f”(ao){ z (ancos%ﬂ-}-b”sinn—;—t)} +.
n=1

flay,) is the current due to the steady component a, of the voltage V,
so writing I’ for the change of current, I —f(a,), due to the periodic part
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of (6), we get for the mean change of current, using § 88 (4)—(9),

T
gr | 72t = 170 3 @450+
-7

= ") f"(ag)+ ..
where (v2) is by (6) and (8) the mean of the square of ¥ —a,, the depa.rture
of the voltage V from its steady value.

92. Fourier series in mechanical problems
As an example we treat the slider-crank mechanism whose
theory is fundamental for the study of reciprocating engines.

Suppose that a crank OP of length R
rotates with constant angular velocity w,
and that the point A4, which is connected
to P by a connecting rod of length 7, is
constrained to move in g straight line
through O. If the connecting rod is very
long the motion of A4 is very nearly F16. 80.
simple harmonic, but for shorter connect-
ing rods the departure from this is of importance in problems of engine
balancing.

Writing wt = 6, measuring 8 from the line 04, we see that 04 = =z
is an even function of @ with period 27 and thus may be expanded in
the Fourier cosine series

x = ay+ § a,cosnf. (1)
n=1
From the triangle OAP it follows that
sing = ksind, (2)
where k= Rjr. (3)
Also xz = Recosf+rcos¢ = Recosf+r/(1—k?sin®f). (4)

The coefficients ag, @;,... in (1) may now be found from § 89 (1) and
(2). Thus

=1Ir-

Ed in
f {Rcosf+r/(1—k?sin%0)} df = f J(1—k2sin26) d, (5)
0 0

a, = -?rf Rcos® d0+§ J- rcos 0,/(1—k?sin%0) d6 = R. (6)
0 0

Also, for m > 1,

Ay = ? f cosf cosm@ df +¥ f cosmb./(1—k?sin?0) db,
0

o
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so that U1 =0 (n=1,2,..), (7)

b e
gy = %chos2n04(l—k’sh1’0) dé (n=1,2,..). (8)
0

Thus, finally, replacing 8 by wt we have
z = ay+ Rcoswt+ . ay,cos 2nwt, (9)
n=1

where a, and a,, are given by (5) and (8). It appears that only even
harmonics are present.

There are no simple expressions for a, and a,,, in terms of elementary
functions, for example a, involves the elliptic integral E(k, 3#); of.§ 55 (20).
But since & < 1 we may expand the square root in (8) by the binomial
theorem and interchange the orders of integration and summation: since
in most practical systems & < } the series obtained in this way is rapidly
convergent. Thus we have from (8)

in
Ay, = ;j; f cos 2n0{1 — }k?sin®0— k4 sintd...} d
0

7
Tk f cos 2nf{sin20+- }k?sin*d ...} db. (10)
0
Therefore a, = Yrkt+4 frkt+.... (11)
In general, since
in
f cos 2nfsin2™f df = 0 (m < n)
0 }, (12) -
= (—D'gmp m=mn)
agy = (— 11 132G =3) oy (13)

2311—1” [

and thus the amplitude of the term in cos 2nwt is proportional to k2n.
For example, if k is so small that k° is negligible, the departure of 4
from its mean position is

3
R{cos wt+ (e~ f5k3)cos 2wt — ’é—‘i cos 4wt} .

93. Fourier series in boundary value problems

In this section we give some examples of the use of Fourier
geries in deflexion of beams. Further examples in connexion
with partial differential equations will be given in § 111.
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Ex. 1. 4 uniform beam is freely hinged at 2 = 0 and x = I, and carries
a load f(x).
We have to solve

1 .
= 1
Dty = 57 f(@) 1
with y=D% =0 whenzx=0andzx =1 (2)
If we assume a sine series for y,
O
Y= Z ansmriqu’ (3)
n=1

the boundary conditions (2) at # = 0 and z = I will all be satisfied, since
it was shown in § 89 that the sum of a sine series is zero when x = 0 and
z = l. Now suppose that the sine series for f(x) is

flz) = Z b, sin—— n-rr:v 4)
‘ where, by § 89 (6), !
%f (x )sm——dx (8)
| :
‘ Substituting (3) and (4) in (1) requires
o0
44
n—; a,,sinn%x = ELI Z b,,sinn—}ﬂf. (6)
n=1 n=1
Comparing coefficientst of sinnzz/l on the two sides gives
ld
“n = Bl v ™
Thus the deflexion y is given by
or8 © i
Y= EInt na si Jli"f (x')sm——dw’ 8)
n=1 0 ’
If f(x) = w, constant, (8) becomes
o
4awlt 1 . (2r4+ 1)z
V=& Zo @ry1p™ 1 - )
=

If f(x) = W8(x—a), a concentrated load W at x = a, (8) becomes
2w i 1 . -nmx . nma

= Flmt L, piSn s (10)
n=1

1 This is justified by the uniqueness theorem stated towards the end of § 88.
It should be remarked also that arguments involving the differentiation of
Fourier series need pure-mathematical justification: this can be supplied for
the cases considered here.
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The solutions (9) and (10) are extremely useful in practice because they
converge very rapidly.

Ex. 2. The problem of Ex. 1 except that in addition the beam rests on
an elastic foundation giving restoring force per unit length of k times the
displacement.

The differential egquation (1) is now replaced by

EIDY = —ky+f(z),

or (Dot = E’_If(x)’, (11)

where w* = k/EI,
Assuming the sine series (3) and (4) for ¥ and f(x), respectively, and
substituting in (11) gives

@
. . NI Z i T
Z(w + 0 )ansm 5 = %I b, sin 7

n=1
ld
Henco = BTt )

and, finally, l
@0
s nmar ~onmx’ o,
Z (l‘w‘-{—n‘ﬂ‘) Tff(x )Sln—l dx’. (12)
n=1 0

94. Double and multiple Fourier series

Such series are often required in the solution of partial dif-
ferential equations: for example, a double Fourier series is used
in the theory of deflexion of rectangular plates in much the same
way that an ordinary Fourier series was used in the theory of
the deflexion of beams in § 93; cf. Ex. 18.

Here we give only a.brief sketch of the theory of the double
sine series: other types of series involving both sines and cosines
may be obtained in the same way, or the whole theory may be
developed ab initio along the lines of § 88, 89.

Suppose f(2, y) is defined in the region 0 < z < a,0 < y < b,
then, as in § 89, we can expand f(z,y) in a sine series in x

foy) = Z bu(y)sin™=, (1)

in which the coefficients
a
2
b,y =2 f J®'y) sin”
0

are functions of y.

dx , (2)
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Since b, (y) is a funetion of y in 0 < y < b we can expand it
in the sine series

baly) = D CmasinTgY, (3)
where m

b
2 . mmy ,,
Cmn = f b,(y')sin Zy dy
0

b a
_ 4 . mmy , , r e mmx
_abJ‘sm_—b dy J‘f(x,y)sm———a dx (4)
b a
ibff (=',y")sin Zy sm—— dm'd - (5)
00

Thus, finally, with this value of ¢, ,, we have the double sine

series © oy
m
Com sln— sin —~= 6
a b (6)
m=1n=1
whose sum is f(z,y) at every point in the rectangle 0 < x < a,
0 <y <b. Asin §89 it follows that the sum is zero on the
boundaries of the rectangle and that, outside it, it is periodic
and odd in z and y.
Ex. To expand f(z,y) = 1in 0 <z < a, 0 < y < b in a double sine
series.
Asin § 89, Ex. 1, thesine seriesfor 1l in0 <z < ais

a0
4 1 . (2nt+lme
;22n+1sm a L

n=0
Expanding each of the coefficients (again constants) in a sine series
in0 <y < b we have

16 < < 1 . (2n+Dmx . (2m4L)my
?Z;zo(zm-u)(znﬂ)sm e —sm—p— =1 ()

95. Fourier integrals

Fourier series are trigonometric series for a function f(¢) de-
fined in (—7', T'): if this interval becomes infinite, so that the
function is defined in (—c0,0), they tend to Fourier integrals

which are trigonometric double integrals.
5298 Y
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To see the form of these, consider the Fourier series, § 88 (18),

for f(t) . T
1 wap g < Nens PTE—E) .,
ﬁif(t)dt +.T_Zl _J;f(t eos™ " ar, ()

and suppose that 7' - oo in this. First we must assume that

o

[ rwyar (2)

—Q0

is convergent, and if this is the case the first term of (1) tends
to zero as T' — 0.

Next we have to consider what becomes of the series in (1) as
T - o0. Writing h=nT 3)

for the small quantity /7', the series in (1) can be written

T T
}T{h f f(t')cosh(t—t') dt’ +h f f(t')cos 2h(t—t') dt’ +
-7 -7

T
+h j f(t')cos 3h(t—t') dz'+...}, (4)
-7

and as 7' — 00, h > 0. As T — oo, all the integrals from —7 to
T become integrals from —co to co, also remembering that in
the limit as 2 - 0

hig()+$(2h)+(3h)+ ...} > [ () dov,
0

it appears that, as 7" — o0 and & - 0, (4) tends to the double
integral

%B’.dw—.[) J(t')cos w(t—t') dt’. (5)

This is Fourier’s integral for the function f(f). As before, the
above discussion is illustrative only, but the exact theory shows
that if f(t) satisfies Dirichlet’s conditions, and the integral

@

[ 1£@y ae (6)

-0
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exists, the double integral (5) has the value f(t) at points where this
SJunction is continuous, and the value

Hfe+0)+f(t—0)}
at points where f(t) is discontinuous.

The Fourier integral representation of a non-periodic function
plays the same part in the theory of aperiodic phenomena that
the Fourier series does in that of periodic phenomena. But it
has one important restriction, namely that f(¢) must be such
that the integral (6) is convergent: this is not the case for such

common functions as sin wt or a constant, though the theory can
be extended to include them.

If f(t) is an odd function of ¢, (5) simplifies into
f@) == f sin wt dw f J )smwt dt’ (7)
0 .

while if f(t) is an even function of ¢, it simpliﬁes to

@

J@) = J‘ cos wt dw f f(t Jeos wt’ dit’, (8)

these being known as Fourier’s sine and cosine integrals respec-
tively. In (7) and (8), as always, f(¢) is to be replaced on the left
by #{f(t+0)+f(¢—0)} at points of discontinuity.

96. Fourier transforms. Applications

For simplicity we consider only a continuous function f(t)
satisfying § 95 (6). Then, by § 95 (5),

foy =2 f deo f f(€)oos wlt—t) dt

—®

€x
1
=-—|d
21rf “

since the inner integral is an even function of w.

J()eosw(t—1t') dt’, (1)

§ s
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Ao L f do | f@E)inwt—t)dr = o, @)
Xra

|
8%—58

since the inner integral is an odd function of w.
Adding (1) and (2) gives

<«

1 f eiol dy f et (1) dt’ = f(t). 3)
27 ,

This is called the complex form of Fourier’s integral theorem.
In applications it is most convenient to express it in a slightly

different way. Let

Flw) = [ et f@)ar, (4)

then (3) states thatv
7(t) ='_21; f ¢t F(w) de. (5)

F(w), defined in (4), is called the Fourier transformt of f(t);
it is obtained from it by multiplying f(¢) by e~** and integrating
from —oo to oo, just as the Fourier constants of a function
defined in (—7',T) are obtained by multiplying by sinnmt/T
or cosnnt/T and integrating over the region in which the func-
tion is defined. By (5), if the Fourier transform F(w) of a
function f(¢) is known, the function can be found by a similar
integration.

(4) and (5) are the usual form in which Fourier’s integral
theorem is applied to boundary value problems. In initial value
problems a further simplification is often possible, since usually
f(&) = 0if ¢ < 0. If this is the case (4) becomes

0
F(w) = [ et ) dr', (6)
0
t An extensive table of such transforms is given by Campbell and Foster,

Fourier Integrals for Practical Applications, Bell System Technical Monograph
B-584 (1931). The Fourier transform is often defined as (2n)y P (w).
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while (5) gives

2%] {ei F(w)+e i F(—w)}dw = f(t), ift>0 )

=0, ift<o0
If, in addition, f(t) is real, it follows from (6) that F(—w) is

the conjugate of F(w), and (7) becomes

%RJeiWF(w) do = @), ift>0| )

=0, ift <0

The similarity of (6) to the Laplace transform § 18 (1) is
evident, iw simply appearing in place of p. But it must be
remembered that the integral (8) is often not convergent for
common functions. We may state that, if the Fourier transform
F(w) of a function f(t) exists it is just f(iw) and thus may be
written down from the table of Laplace transforms.

For example, if

i

B 1
Similarly if
ot _ b
f(t) = e~%sinbt, f) = m»
b

As an example of the use of the Fourier transform we consider the
response of a circuit to an aperiodic voltage f(z) applied for ¢ > 0.

First the Fourier transform F(w) of f(¢t) has to be calculated, and then
(8) may be regarded as expressing f(Z) in terms of vibrations of all possible
frequencies, the complex voltage of the component of frequency w/27
being 1
p F(w) dw. (11)

If this voltage is applied to a circuit of impedance z(iw) the steady
complex current of period 27/w in it is

Flw) dw

m2(3w)

(12)
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and the whole current is

1. [ Flw) do
K )
o

This procedure is exactly analogous to that of § 91 for a periodic
voltage—the effects of all the harmonics are calculated separately and
then combined. It has an advantage over the Laplace transformation

technique of § 51 because of this analogy, but results obtained by it are
rather harder to evaluate.

Ex. The ideal low-pass filter.
This is defined as having

2(iw) = o0, if w > w,, and 2(iw) = Zei™iw, @ < wy,

where Z is a constant. In this case the current I given by (13) is
Wo

— ___1,_ i (—mfwg)
I_ﬂZRje wo) F(w) dew. (14)
0

Suppose we wish to calculate the response of this filter to a unit pulse
of applied voltage,
f®) =0, fort<Oandt > T} (15)
f=1 O0<t<T ’
Then by (6)
T
Flw) = [ e dt’ = (2/w)eHTsin jo T,
0

and by (14)
2 I d,
= < iw(t—4T—mjwo) gj dw
I ﬂZRfe o) sin T
0

Wo
2 . dw
=5 f cos w(t— 3T —m/wy)sin T -
0

= ;IZ {sin w(t—m/we) +sin w(T —t-+7/w,)} d:(:')

e;’g

- 1—:7{Si(wot-—-rr)+Si(w, T—wyt+m)}, (16)
sinw

@
where Siz = {Tdu (17)
0

is a tabulated function.
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The effect of unit voltage applied for ¢ > 0 may be found by letting
T— oo in (15) and (16). Using the result 8i(o0) = 4w, (16) becomes in

this case 1(1 1
It should be noticed that this result cannot be obtained by taking
f(¢) = 1 for t > 0 since this does not satisfy § 95 (6).

EXAMPLES ON CHAPTER XI

1. If f(t) = |sinwtl, full wave rectified alternating current, show that

2 4
f@) = g 2 cos 2rwt.
2. If fy=1 ©<t<T,
fity =0 (T, < t < T—Ty),

f&)=—-1 (—T<t<T),

show that the cosine series for f(¢) is

fi 1 (@rlnly (24 Dnt
m Ly ¥l T T

r=0

3. Show that the sine series for sin%wtin 0 < t < 7w/w is

8 1 .
” Zo ErrDE— @@+ Det.

4. By expanding sinmz and cosmx in sine and cosine series,
respectively, in 0 < 2 < =, show that

. 2 . Z (—1Y-Yrsinrz
sinme = —sin mar —_—

r3_m? ’
r=1
2 { (—1)y~'mcosrz cosrz)
cosma = =sinmm E e
- r2—m
ra=]

5. By expanding z-2? in a series of sines and cosines in —w <% <,
show that .

o
x+a? = 1—;—{- Z (—l)"{%cosm—’—?sinm} (—r <z <m),

Nu=l

< 1_
and E -
'n
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6. Show that the series of sines and cosines which represents f() in

O<z<lis
ay+ Z (a,,cos 2nm:+b in————2nl"x )

n=1
i 1

where a, = ll f f(’) dz’s a, f Sz )cos
0

dx',

f(2")sin 2";’” d’.

2
b=2-

e, ©

7. If C V=(1—e) (0<t<T),

and V is periodic with period 7' (this is the voltage drop over the con-
denser in the circuit of Fig. 49 (a)), show that

V= L4 (e T+

‘ ~ 20T cos(2nnt/ T)+ dnmsin(2nmt/T )
—~al _
+(e 1 z a?T2 4 4n2y?

n=1

8. Show that the sine series for the function §(t—¢,) in 0 < ¢ < 7' is

This series, of course, is not convergent, but correct results may often
be obtained very simply by using it. Deduce § 93 (10) in this way.
9. Show that if p and ¢ are positive integers less than n, and p # ¢,

n—1
- T
E erp sm— =0,
n n
r=1

and that if p = ¢ the sum has the value }n.
The values y;, ¥3,..., ¥,_; of a function at the points ¢ = sT/n
(s =1, 2,..,, n—1), are known; show that

g = Z 5, smr‘rrt

where E Z sm’ﬂ
n
s=1
passes through all these points. (The condition that y should pass through
the (n—1) given points gives n—1 equations for b,,..., b,_; which are
solved by using the first result given.) This gives a sine series of period
2T which passes through n—1 given points.



§ 96 FOURIER SERIES AND INTEGRALS 329

10. Show that if

Y = ay+ Z (a,cos——+b sin 2L;—E)

r=1

passes through'the points (0, ¥y ), (@, ¥1)s..-s (270, Y45 )s Where o = T/(2n+1),
1 i w2 ZZ" o 28
%=t o-”" Ly | oy“’ @nt1)’
8= 8=

b — 2 i in 2nrrs
"TEamtlL Y o 1)
Py
11. A uniform beam of length ! is freely hinged at its ends. Show that
the bending moment M in it is

4wl i 1. (@rtlms
T L, @yt i

if the beam carries a nniformly distributed load w per unit length, and

2le 1 . nwz . e
) T R B
n=1

if it carries a concentrated load W at z = a.
12. Assuming the result

deduce that

o
3+1fsm“”dw=1, ifr> 0,
2 = w
0
=3 ift=0,
=0, ifte<O.

This gives a representation of the unit function H(t).
13. Show that if f(t)y=0 ift <O,
J@) = et ift>0,
where o > 0, Fourier’s integral theorem § 96 (8) gives

o
1 [acoswitwsinet ,
o f —-—-m— dw = e t>0),

=0 < 0).
Deduce that

o0

wsmwt — acoswtd _-rre_u‘
a’+w’ At T2 :

0
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14. Show that the Fourier transform of the functlon f(t) which is zero
for ¢ < 0 and has the value te~*f for ¢ > 0 is
1
(a+tw)?”
If this voltage is applied to an L, R, C circuit, show that the amplitude
of the component of frequency w/2n of the current is the real part of

1
m(a+iw)(Liw—1i/Cw)+ R}’
15. If J@t) = coswet (t] < T,
=0 el > 1),

show from either § 96 (5) or § 95 (8) that

coswt dw.

_ 1 [ [sin(wy—w)T _ sin(we+w)T
f(t)_wf{ Wp—w + wo+w
[\)

»

This shows that if radiation of frequency w,/2x is emitted for time 27,
the amplitude of the component of frequency w/2z is -

1 {si:x(wo—w)T+sm(wo +w)T}
r wy—w wo+w

Discuss the variation of this with 7', and show that as T is increased
the relative importance of frequencies near w, increases steadily.

16. Voltage e—! is applied to the ideal low-pass filter of § 96 for ¢ > 0.
Find the current in it, and deduce § 96 (18) by letting « — 0. [Use the
last integral evaluated in Ex. 13.]

17. Show that a function of x which is defined (and satisfies Dirichlet’s
conditions) in 0 < .2 < ! may be expanded in the form

f(x) = z a,,cos(2n-;-—-—ll)1—rz;,

n=0

where == f [z )cos(2n+2l1)"x dx’.

[Expand the function defined by f(z) in 0 < # < I and —f(2l—2) in
l < x < 2lin a cosine series in 0 < x < 2L.]
18. The deflexion z of a uniform plate ca.rrymg a load w per unit area
satisfies oz 2z o2 w
axt ' " oxdoy? +3y“ D

where D is a constant depending on the material and thickness of the
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plate. For a rectangular plate 0 < z < @, 0 < y < b, simply supported
at its edges, z has to satisfy

8%

z2=1;:=0, when y = 0 and y = b,
o y y
4.

z=0—z=0, when 2 = 0 and z = a.
ox?

If w is constant, show by using § 94 (7) that

Z Z sin[(2m + )7z /alsin[(2n+ 1)y /b)
rr‘D (2m+1)(2n+ 1)[(2m + 1)2/a%+(2n+1)3/b3]?°



XI1

ORDINARY
LINEAR DIFFERENTIAL EQUATIONS
WITH VARIABLE COEFFICIENTS

97. Introductory
Ix this chapter we consider the general linear equation of the
nth order with coefficients which are functions of z,
{A@)D*+fy(x) D+ fula)ly = f()- (1)
In a few special cases the solution of this equation may be
made to depend on the solution of types previously studied.
For example the ‘Euler’ equation
{pola+bz)"D"+py(a+ba) D"+ +p.Jy = flx), (2)
where p,, py,..., P, are constants, is reduced to a linear equation
by the substitution atbx = ¢, (3)
cf. Ex. 2 on Chapter II.
Again, if the operator can be factorized the solution is reduced
to the solution of a chain of first-order linear equations. For

example the equation 2
 {zD*+(a*+$)D+2z}y = 0, (4)
can be written (D-+x)(xD+-2)y = 0, (5)

where it must be remembered that the operators are not com-
mutative. To solve (5) put

(xD+2)y = v, (6)
so.that (5) becomes (D4x)p = 0,
and the solution of this is :
v = Ae- ¥, (7)
Substituting (7) in (6) gives the first-order equation for y,

(xD4-2)y = Ae—1=*,

Methods such as these are clearly only applicable to limited

and rather unimportant classes of equation to which the equa-
tions which arise most commonly in applied mathematics do not
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belong. The most important of these latter are second-order
equations in which the coefficients f(x), fo(x), f3(x) are poly-
nomials in z. The method adopted for the solution of these is
to seek a solution in the form of an infinite series

y = a(ayta, x+a,2%+...). (8)
By substituting this series in the equation and equating the
coefficients of the successive powers of z to zero we obtain an
equation, the indicial equation, for ¢, and a set of equations for
the coefficients a,, a,, a,,.... Naturally matters such as the
existence of solutions of this type need careful discussion. Here
only the process of solution will be given; for its justification the
reader is referred to the works on differential equations listed
in the footnote 1 below.

Since the equations we are considering are linear, the general
golution of (1) consists of a linear combination of » independent
solutions with arbitrary coefficients. In the examples of the
second order which we shall consider, two independent solutions
are required and usually they correspond to two different values
of ¢ in (8): occasionally the method gives only one solution, and
a second is obtained by devices due to Frobenius.t In§§ 98 and
99 we shall obtain the series solutions of the two most important
equations, Bessel’s and Legendre’s, and give a brief sketch of
their properties. '

The equations studied in §§ 98-100 are homogeneous: methods
for solving inhomogeneous equations are given in §§ 101, 102.
Approximate solutions are discussed in § 103. Finally, in § 104
equations with periodic coefficients are discussed briefly.

98. Bessel's equationt of order v

. d¥y ldy ve
LA Wpuiai“ 4 1y =
This is dx2+x ix ( x2)y o, 1)
where v is any (real) number, fractional or integral: the usual

1 Cf. Piaggio, Differential Equations (Bell, 1925); Ince, Ordinary Differential
Egquations (Longmans, 1927).

1 The standard works on Bessel functions are Watson, Bessel Functions
(ed. 2, Cambridge, 1944); Gray and Mathows, T'reatise on Bessel Functions
(ed. 2, Macmillan, 1922); McLachlan, Bessel Functions for Engineers (Oxford,
1934).
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convention is to use v for a fraction, and to replace it by = if it
is integral. v is called the order of the equation.
To solve (1) we assume that an expression of type
Yy = 2%(ay+-a, x+ayx?4-...) (2)
satisfies (1), and seek to find ¢ and the successive coefficients
@y, a,,.... Substituting (2) in (1) gives
c(c—Daga°—24-(c+1)ea, 21+ (c+2)(c+ a2 ...
Fcag 224 (c+1)a, a*-1+ (c+2)agx®+-...
-+ Ay ...
—vlay2f-2—yla, 21— Vg, ac—... = 0.

Equating the coefficients of 2°-2, 2¢-1,... to zero we find

(c2—v¥)a, = 0, (3)
{c+1)2—1¥a, = 0, (4)
{lc+2)2—1¥)a,+ay = 0, (5)
{(c+8)—ag+a, = 0, (6)
{(ct+4)P—va,+a, = 0, (7)

We may assume a, 3 0, since taking a, = 0 is equivalent to
changing the value of ¢. Then (3) gives

¢ = 4. (8)

For either of these values of ¢, (4) gives a, = 0, then by
(6), ag = 0, and s0 on, that is

U =@y =@y = ... = 0, 9)

so all the odd coefficients vanish. The even coefficients come
successively from (5), (7),...

a %o
2T v (e 2)?
a
a, Qg 0

B G L e T e ey,
and so on.
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Using these results, the solution for ¢ = v becomes

’ x? 4
G0 {1 - v+ 2)2~—v2+{(v+ 2)2—v2}{(v+4)2——v2}— }
oy (3=)? (3=)*
= %® {1 —it (v+1)(v+2)2!_'“}
oy S (=1r(dz)*
= ho¥ {1+ 2o 1)(u+2)...(v+r)r1,' (10)

Taking the negative sign, ¢ = —v, in (8) gives the same result
except that v is replaced by —v. Thus if v is not an integer we
have found two independent solutions of (1) which behave like
z¥ and 7, respectively, as z —> 0.

If v is a positive integer #, or is zero, this procedure only leads
to one solution. For if v = 0, (3) only gives one value of c,
namely ¢ = 0; while if » = n, taking ¢ = n gives the series
(10) with v = =, that is,

<> (=) }
agx™ 1 PR 11
| 0 { + »21 (n+1)...(n+r)r! ( )
but if ¢ = —n, the coefficient of a,, in the chain of equations
(3), (4),... vanishes; this requires that a,,_s = ... = a, = 0, and

if the procedure is carried through in detail the result is found
merely to be a constant multiple of the result for ¢ = n.

Those cases in which the order is zero or a positive integer
are in fact much the most important, and their solutions are
tabulated for a very wide range of n and z. The function chosen
to study and tabulatet is a constant multiple, namely 1/(2%a,n!),
of the series (11); the notation J, () is used for it so that

0

_ 2 (=irdar
hE) = 2 2

This is called the Bessel function of the first kind of order =.
When n = 0 it becomes

sy = > R (13

t Tables are given in the works quoted above, also Jahnke-Emde, Tables
of Functions (Teubner).

r=0
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When = = 0 we have from (12) and (13)

J0) =1, but J,0)=0 (n=12,.). (14)

‘We now derive some important properties of J, (x). From

(12), assuming that the infinite series may be differentiated
term by term, we get forn > 1,

e%{zn W(2)} = d {z 2(_1)'z2ﬂ+2r }

mErintr)]
—1 )rz2n+21-1
= z 2n+2r-1p|(p4-r—1)!

_ S (Sl Gapren
=z Z)

ri(n+r—1)!
= x™J, _,(x). (15)
Therefore, writing J, (x) for (d/dx)J,(x),
2 (@) +ndy @) = 2, 4(@). (16)
In the same way '
d
e @) = —o @), a7)
and so zd () —nd,(x) = —xJ,,,(x). (18)
Adding and subtracting (16) and (18) gives
2J, (x) n—l( )_Jn-u(x)’ (19)
2
2@ = T @)+ T @). (20)

(19) and (20) are called the recurrence relations. It appears
from (20) that if we know Jy(z) and J;(z) for any value of z, Jy(z)
can be calculated, and then J3(z) and so on. (19) gives the
differential coefficient J,(zx)if n > 1. If » = 0, it follows imme-
diately by differentiating (13) that

Jo(z) = — (). . (21)

For large values of x the Bessel functions can be shown to

oscillate steadily with decreasing amplitude; in fact

e = [ (%)cos(w—%nw—imow—*), (22)
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where O(x-1) is written for a term which decreases like 2~ when

2 becomes large.
The graphs of Jy(z), Ji(z), and Jy(x) are shown in Fig. 81 (a).

(a) th)
Fia. 81.

The zeros of the Bessel functions are of importance in practice
and are tabulated. The first few zeros of Jy(z) are 2-4048...,
5-5200..., 8-6537....

Before considering the second solution of Bessel’s equation of
positive integral order, we return to the solutions (10) of the
equation of fractional order. These can be expressed in a form
similar to (12) by the use of the gamma function.

The gamma function I'(v) is given by

() = f e—=zv-1 da, (23)
0

if v > 0. Integrating (23) by parts gives, if v > 1,
' ') = v—1)T(r~-1). (24)

I'(v) is tabulated in most books of tables for values of v be-
tween 1 and 2: its graph in this region is shown in Fig. 82. By
repeated application of (24) the gamma function of any argu-
ment may be expressed in terms of the function whose argument

lies between 1 and 2.
5296 z
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If v = n, a positive integer, (24) gives
I'n) = n—1)'(n—1) = (n—1)(n—2)...1.I(1) = (n—1).
(25)
Thus the gamma function provides a generalization of n! to

non-integral ».
10

x)

o9

10 15 20
Fic. 82,

Two other properties which are frequently needed may be
quoted here; firstly I'3) = =, (26)

and secondly that gamma functions of negative argument may
be expressed in terms of those of positive argument by the

relation -

sinvr

[W)I(1—v») = 27
As v — 0, or to a negative integer, I'(v) - co. The representa-
tion (23) does not hold for gamma functions of negative argu-
ment, but (24) remains true.
We now define the Bessel function J,(x) of order v by

. . X (—1)'(%@')""’2"
(@) = Pt riD(+r4+1)° (28)
By (25) this definition agrees with (12) if » is a positive
integer n. Also by (24) it can be seen that it is a constant
multiple of (10). Thus if » is fractional, J (x) and J_,(x) are a
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pair of independent solutions of (1), and so its general solution is

y = AJ,(x)+ BJ_,(x), (29) -
where A and B are arbitrary constants. Frequently, however,
the linear combination ¥,(x) of J,(z) and J_,(x) defined by

J(x)cosvr—J_,(x)
sinvm ’

Y, (x) = (30)

is taken as the second solution of (1) so that its general solution is

y = CJ@)+DY,(z). (31)

Y, (x) is called the Bessel function of the second kind of order v.

The main reason for its introduction is that it provides a second

solution for the equation of integral order. If v is zero or a

positive integer, both the numerator and denominator of
(30) vanish, but it can be shown that

imY,(x) . (32)

exists. We write this Y,(x), and it is the required second solution
for functions of integral order. These Bessel functions of the
second kind are of less importance than those of the first kind

SinC®  y(r)>—co and Y,(z)->—m0 as x>0,  (33)

and for this reason they are excluded from the solutions of
problems in applied mathematics for regions including the
origin x = 0. The graphs of Y (x), ¥,(x), and Y,(x), showing this
behaviour as z — 0, are given in Fig. 81 (b).

Y, (x) satisfies the same recurrence relations (19), (20), (21) as
J.(x), and Y, (x) and J,(z) also satisfy these relations with n
replaced by v for all v. Finally the important formula

L@@~ Y, @)Tyz) = = (34)

may be quoted.
The most important functions of fractional order are those
of orders 4 and §. By (28) and (24)

2t 3 x
R G T

= [(2)sinz, (35)
J=)
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using (26) and the series for sinx. Similarly

J_ (@) = A/ (7—72:—;)003 x, (36)

and other functions of half-integral order may be expressed in
terms of these by the recurrence relation (20).

The importance of the Bessel functions of order } arises from
the fact that the solution of the equation

d%y _
Y tay =0 (37)
is y = AxtJy(3a1)+- BatJ_y(Rat). (38)

A number of second-order equations, of which (37) is the most
important, can be transformed into Bessel’s equation by an
appropriate change of variables and thus their solutions can be
expressed in terms of tabulated functions.

Finally the equation

d¥%y ldy ve

a4~ T 14—y =

- +5y=o (39)
which corresponds to (1) with « replaced by ¢z, should be men-
tioned. It is called the modified Bessel equation and is of almost
equal importance to Bessel’s equation. Its theory may be de-
veloped in the same way.

The solution analogous to J,(x), which is called the modified
Bessel function of the first kind of order v and is denoted by
I(z),is ©

’ _ S aaper
L= = ;r!l‘(v—l—r—f—l)’ (40)
it is- proportional to J,(iz). The modified Bessel function of the
second kind, corresponding to Y, (x), is defined by

K(x) = %ﬂ_I—-v(x)—_Iv(x) .

sinvr (41)
For integral or zero order, the solutions are
ki 2r
IL(z) = Qe 42
o(2) Zo P (42)

and K, () = lim K (x). (43)
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Asz > 0, Io(é:) - 1; I(x) - 0,v 7 0; and K, (x) > co. But the
behaviour of I(x) and K, (x) as # — oo is fundamentally different
from that of J,(z) and Y, (x): it is

1) = os{14+0(z)} R
K,(z) = (E’;)*e—r{l n o(é)} (45)

99. Legendre’s equationt
The differential equation is

(l—xz)z—::yi—2x%+n(n+l)y= 0, (1)

where n is zero or any positive integer. The case of fractional n
may be treated in the same way.
As before, we seek a solution of type

y = 2(ap+a,z+a,2%+...), (2)
with a;, 7% 0. Substituting in (1) gives
¢(c—1)agx°-2+
+(e+1)eay -1+ (c+2)(c+1)ay a°+(c+-3)(c+ 2)ag 2+ +-...—
—c(c—1)ay z° —(¢+1)ea, actt—...—
—2ca, x° —2(c+1ay xe+ti— . 4
+n(n+1)a,x° +n(n+1)a, 2°+14-... = 0.

Equating coefficients of the powers of x to zero we get

clc—1)a, = 0, (3)
cle+1)a; = 0, 4)
(c+1)(c+2)a,—{c(c+1)—n(n+1)}a, = O, (5)

(c+2)(e+Bag—{(e+1)e+2)—n(n+1)a, =0,  (6)
(c+3)e+Da—{(c+2)c+3)—n(ntDay =0,  (7)

Since a, % 0 it follows from (3) that ¢ must be zero or unity.

1+ Macrobert, Spherical Harmonics (Methuen, 1927); Hobson, Spherical and
Ellipsoidal Har ics (Cambridge, 1931) ; Byerly, Fourier’s Series and Spherical
Harmonics (Ginn, 1895).
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If ¢ = 0, (4) is satisfied, so a, is unspecified. Putting ¢ = 0 in
(5), (6),... we get

= n(n2—'|—1) a,, by = (n— 2)n(n4—'|-1)(n+3) 8)
g =, (=3t

3 = 31 ay, 5 = 51

\ (9)
Thus with ¢ = 0 we get for the solution of (1)
ao{l_n(nz—:-l)xz_i_(n—2)n(n4—:-1)(n+3) }+

+a1{x (n—-lz))’(:t+2) 3+(n—3)(n 1)(n+2)(n+4) }

(10)

The solution (10) consists of arbitrary constant multiples of
two independent series, and so is the general solution of (1).
The other choice ¢ = 1 from (3) merely gives the second series
in (10).

If n is even, the coefficients of x»+2 and the higher powers of x
in the first series in (10) are zero, and so the series reduces to
a polynomial of degree » in z. If » = 0, only the first term, 1,
remains; if n = 2, the series reduces to 1—322, and so on.
Similarly if » is odd, the second series in (10) reduces to a
polynomial.

Thus in either case the solution of (1) consists of one infinite
series and one polynomial. We define P, (z), the Legendre Poly-
nomial or Legendre coefficient of degree n, to be a constant
multiple of this polynomial, namely

PR B Y SV VI
Bo) = (=D —g o X
(1), (n—=2n(n+1)(n+3)
X{l n 51 2+ 0 4 — “}’

if » is even, (11)
1.3.5.n ( (n—1)(n+2)
RS ) R TR }
if n is odd. (12)

P(x) = (—1)k»-D
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If the polynomials (11) and (12) are written in the reverse
order, beginning with the terms in z", they both take the form

F.(z)
- (2n)! [ n nr—1) . . nn—1)n—2)n-3) . _ ,
= Pl 2En1)® T 2.4@n—1)@n—3) ° 4""'}’
(13)
This leads immediately to Rodrigues’s formula
1 d» "
| F(z) = W&T;"(xz—l) ’ (14)

| as may be verified by expanding (¥2—1)* by the binomial
’ theorem and differentiating » times.
A constant multiple of the infinite series solution of (1) is
called @, (x), the Legendre function of the second kind of order n.
It is of less importance than the Legendre polynomials since -
Q,(x) > o0 as x> +1, and because of this has to be excluded
from the solution of many physical problems.
The first few Legendre polynomials are

P =1, (15)
Pfa) ==, (16)
© Bz) = }(32*—1), (17)
Py(x) = }(62%—3z); (18)

they are obtained easily by Rodrigues’s formula.
Next we derive the important result

(1—2ha4-h2)—+ = iohnpn(x), (19)

that is, that the Legendre polynomials P,(x) defined above are
the coefficiénts of A* in the expansion of the function on the left
of (19). To derive (19), assuming that A is sufficiently small to
ensure convergence, we expand the left-hand side of (19) by the
binomial theorem and rearrange the resulting series. In this
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way we get
(1— 2ha+-h¥)+ = 1+§(2x—h)h+é_"_i(zx__h)zhz+...+

1.3...(2n—1) .
S T el A

= 1+zh-+}(322—1)h2+ §(5a®— 3x)A3 - ...
= Py(2)+hP,(@)+Py@)+ ..
as required.

The importance of (19) in applied mathematics arises from the
fact that it gives an expansion of 1/ R in ascending or descending
powers of r, where R is the distance between the points whose
polar coordinates are (r,0) and (a, 8), so that

1 1 1 i (2)"1;(,0 (r>a), (20)

= — =
R {r*4a?—2ra cos 6} r & \r

i(g)"m (r<a) (21)

n=0

1
T a
where u = cos§.

Many important properties of the Legendre polynomials
follow from (18). For example, differentiating it with respect

to h gives w
(x—h)(1—2hx+h?)-t = 3 nh"-1P,(z).
=1
Therefore *

(x—h)ngoh”Pn(x) — (l—2hx+h2)n§:1nh"—1Pn(x). (22)

Equating coefficients of A” in (22) gives
(n+1)P, ;1 (x)— (2n4- 1)z P, (x)+nP,_i(z) = 0, (23)
which is the recurrence relation connecting the polynomials of
degrees n—1, n, and n--1.
Next we evaluate some important integrals involving Le-
gendre polynomials. Writing D for d/dx, consider
1 1
27n! f P, (x)xm dx = f am™{D™(x?— 1)} dx
1

-1

1
= [e"Dr-Ya2— 1)t —m [ em-YDr-Yat—1)") do, (24)
-1



§ 99 WITH VARIABLE COEFFICIENTS 345

where Rodrigues’s formula (14) has been used. Since
Dn—l(xz__ 1 )n

has z2—1 as a factor, the integrated part in (24) vanishes at both

limits. If the process of integrating by parts is continued the

final result is zero if m << n, and if m = n it is

1 in
(—1)"n! f (22 —1)" dz = n! [ cos®"+19 df
-1 -3

_ 2n(2n—2)...2

= 2m) Gt En—1).3

. 22n+1(y1)3 '

= Gt (25)

Since P,(x) is a polynomial of degree » in z, it follows from
these results and (13) that

1
j P(x)Py(x)dz =0 (m < n), (26)
: - 1 2! 1
. f [Po(2)]? dx = 2(7-(:)!;)2 J P(x)z" dx
-1 -1
2
= ot (27)

Since m and » in (26) are interchangeable, this result holds
also for m > n. It is analogous to the results of § 88 for trigono-
metric functions and may be stated in the form that P, (x) and
P, (x) are orthogonal in —1 <« < 1. Using (26) and (27), a
function f(x), defined in —1 <<z < 1, may be expanded in a
series of Legendre polynomials. Assume

f@) = 3 a, Bufe). (28)

Multiplying (28) by P, (), integrating with respect to x from
—1 to 1, and using (26) and (27), we get

1
= 2] f F(@)Py(2) da. (29)
-1
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This corresponds exactly to the procedure used in § 88 for
determining the coefficients in a Fourier series, and, as in that
case, the processes used have to be justified carefully from the
pure-mathematical point of view.

Finally we consider the equation

d%y dy m?
—a) Y9, %Y - -
(1—x )dx2 2 o [n(n+l) l—xz]y 0, (30)
where m and n are integers.
Putting y = (L—a?)imz, (31)

(30) becomes
(1—=?) éz—i— 2(m-+1)x ilin,-[n(n-',— 1)—m{m+1)Je = 0, (32)
dx? dx / ’

and this equation is satisfied by
amy
dx™
where v is any solution of Legendre’s equation (1). (30) is known
as the associated Legendre equation, and its solutions
anp,(x)
zm

, (33)

Px) = (1—a?)im (34)

as the associated Legendre functions of the first kind. For the
important case in which x == cos § the first few of these are
P} =1, P = cos b, P} = siné,
P = }(3 cos?0—1), P} = 3sinfcos¥, P? —= 3sin?.

100. Schrédinger’s equation for the hydrogen atom
This is, in effect, a rather more complicated problem on

solution in series. The problem is to find the conditions on &
under which the differential equation

d?R  2dR 1 & W41

—_— _—— —_— —— = 1

& T p dp+( it )R * M)
where [ i8 zero or a positive integer, will have a solution which
remains finite as p -~ 0 and as p »co. This is an eigenvalue
problem: the values of k£ found will be the eigenvalues, and the
corresponding solutions the eigenfunctions. (1) has, of course,
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solutions for all values of k, but these do not satisfy the required
conditions. N
First we make the change of variable
R = ve-¥r, (2)
in (1). This is suggested by the fact that if p is so large that
1/p is negligible (1) becomes
R
dp?
and the solution of this which is finite as p — oo is e-¥#,
Substituting (2) in (1) gives

—}R =0,

d% (2 )dv {k——l l(l—{-l)]
—_— ——1}= _— v = 0. 3
: dp2+ p dp+ P P @)
We seek a solution ®
v=p 3 a, " (4)

of this. Substituting (4) in (3) gives
c(e—1)ag p°~24 (c+1)cay po~t+(c+2)(c+ Dag p°+... 4+
+2cag pt~24-2(c+1)a, pot +2(c+2)ag p°+...—

—cay pt! —(c+1ay po—...+
Fh—Dagpt?  +(k—1)aypote—
—l(l+1)a, po~2—I(l+1)ay pct —l(I4+Vay p°+... = O.

Equating the coefficients of the powers of p to zero we get
c(c+1)—Il(l41) = 0, (5)
{(c+1)(c+2)—Ul+1)}a,—{c—(k—1)}a, = 0, (6)
{(c+2)(c+3)—Ul+1)}ag—{(c+1)—(k—1)}a, = 0, (7)

{(e+n)(c+n+1)—=l(l+1)}a,—{(c+n—1)—(k—1)}a,_, = 0. (8)

(5) gives ¢ =1 or ¢ = —I—1. In order to have v finite as
p —> 0 we must choose the solution with ¢ = I. Then the other
equations give

_ H4n—k B
a, = m)an—l (n =1,2,.) (9)

from which the solution (4) can be written down.
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Now for large » it follows from (9) that

a, 1

a,, N

approximately. Thus when n is large the terms of the series
(4) behave like those of ¢?, and R, given by (2), behaves like
e¥?, and so tends to infinity as p —> o0 and thus does not satisfy
the required conditions. The only exception to this is the case
in which k is an integer, I-+». Then by (9), a,, and all subsequent
coefficients in (4) vanish, so that v becomes a polynomial in p of
degree I4+n—1, and R — 0 as p — oo as required. Thus the con-
ditions are only satisfied if

k=1l4+n, wheren=1,2,3,...
Since in the problem of the hydrogen atomt % is

2n*m 2%\ }

‘__W_}’ (10)
this leads to the formula for the energy levels of the hydrogen
atom

2mimet Z32

E=—firar ®=12-) (1)

101. Inhomogeneous equations. Variation of parameters

The solution of an inhomogeneous linear differential equation
with variable coefficients, just as in the case of constant coeffi-
cients, consists of the sum of a particular integral and the com-
plementary function. The complementary function is found
by methods such as those of the preceding sections. Variation
of parameters is a method for finding a particular integral when
the complementary function is known.

t Schrédinger’s equation for an electron of charge —e and mass m in the
field of a nucleus of charge Ze is

872 Ze?
v+ T (2420 = o,

where % is Planck’s constant and E is the total energy of the electron. If, as
in § 115, we seek a solution of type

¥ = R(p)Pp(cos 0) ‘:; mé,

where p = 4mr(— 2mE/h?)1, the equation (1) for R results with k given by (10).
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Suppose the differential equation is
D*y+P(z) Dy+Q(z)y = R(x), (1)

and that % and v are two independent solutions of the corre-
sponding homogeneous equation, so that

D*u+P Du+Qu = 0, (2)
D*+P Dv+Qv = 0. (3)
We seek a solution of (1) of the form
y = utyo, @)
where ¢ and ¢ are functions of z to be determined. Differentiat-
ing (4) gives
Dy = ¢ Du+y Dv+u Dg+v Dy, (5)
and if we requiret
| Dy = ¢ Du~+ Dv, (6)
we must have by (5)
w Dé+v Difp = 0. (7)
Differentiating (6) gives
D2y = ¢ D?*u~+ D*v+DpDu+ Dy Do. (8)
Substituting (6), (8), and (4) in (1), and using (2) and (3), gives
D¢ DuADyDv = R(z). (9)
(7) and (9) are a pair of equations for D$ and Dy. Solving
them we have (, 1)), Du) D = — Rz}, (10)
(u Dv—v Du) Dy = R(x)u. (11)

Integrating (10) and (11) gives ¢ and i, and the complete
solution of (1) is finally

y = Au+ Bv+dutyv, (12)
where 4 and B are arbitrary constants. The method can be
extended to equations of higher order.

102. Inhomogeneous equations with boundary condi-
tions. The Green’s function
The method of variation of parameters given in the preceding
section is an analytical device for finding a particular integral

1 That is, we make Dy have the form it would have if ¢ and ) were constants.
This is often done in problems of this type; cf. § 58 (10) and (11) for another
example.
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of any inhomogeneous second-order equation. In this section
we give a method for finding the complete solution, satisfying
given boundary conditions, of an inhomogeneous second-order
equation of the formt

{pe F)—aew = re 1)

in terms of a special solution of the corresponding homogeneous
equation and the same boundary conditions. This special solu-
tion is called the Green’s function and it has a simple physical
interpretation. Suppose we have to find a solution of (1) with
the boundary conditions

a Dy+by =0, whenz =20, (2)
a’ Dy+b'y =0, whenz =1, (3)

where a, b, a’, b’ are constants, and D is written for d/dx.
Let G(x, &) be the solution of the homogeneous equation corre-
sponding to (1) which satisfies the boundary conditions (2) and

(3), and which is continuous at x = ¢ but has a discontinuous
first derivative at x — ¢ such that

lim[p(z) DOTEETE = —1. (4)
€0
G(z, £) then satisfies
Dip(x) DG}—q(=)G = 0, (8)
a D@+bG@ =0 (x=0), {(6)
a’' DG4+6Q@ =0 (z=1). (7

Multiplying (1) by G, (5) by y, and subtracting, gives
GD{p(x) Dy}—yD{p(z) DG} = r(z) G.
Integrating with respect to x from z = 0 to x = [ gives
1 1

[ (6D[p(x) Dy]—yDlp(x) DG} dz = [ r(x) G(x,£) da.  (8)

0 0

Because of the discontinuity of D@ at x = ¢, the integral on
the left has to be split into integrals from 0 to £—e and from

t The equations of §§ 98, 99 can be put in this form.
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§-+e€ to l. Integrating by parts it becomes
[G(x, &) p(x) Dy—y(x) p(x) DOz, &)];, +

’ 1
+[G(@, £)p(z) Dy—y(@)p(@) DO, O} = [ r@)G(=,8) dz. (9)
0

The terms on the left vanish at the limits I and 0 by (2), (3),
(6), and (7), and we are left with

1
lim y(¢){p(x) DG(a, £)]fHE = [ r(2)0(x, §) da,
€0 0

t
or, using (4),  y(£) = — f r(x) G(x, £) de. (10)
0

Thus when G(z, £) has been found, the required value of the
solution y at any point is found by simple integration. It can
be shownt that the Green’s function ((x,¢) is a symmetrical
function of x and £, that is,

G(z,§) = G(¢,2). (11)

The theory can be extended to equations of order »; in this
case G and all its derivatives up to D*»-2@Q are to be continuous
at x = ¢, and D™-1@ is to be discontinuous there.

The fourth-order equation for deflexion of beams has been
studied in § 82, and G(z,£) in that case was found to be the
deflexion at £ due to a unit concentrated load at x.

103. Reduction to the normal form. Approximate
solutions
If the change of variables

y = zexp{—} [ P(z) da} (1)
is made in the second-order linear equation

d*y dy _
ggzj‘,+P(x) 1—1—92+ Qx)y = R(x), (2)

t By the type of argument leading to (9) except that in place of G(z, ¢) and
y two Green’s functions G(z, ¢) and G(z, 1) are used.
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the resulting equation for z is

%—2+{Q(w)_% ds;x)_}[P(x)]z}z = R(x)exp{; J‘ P(x) dz}
(3)

This is called the Normal Form of (1). By using it, it is often
possible to decide whether two different equations can be trans-
formed into one another.

Since any second-order equation may be put into this form we
are led to consider the equation

d?
=0, (4

where ¢ may be a complicated function of . It is often useful
to have an analytical approximation to the solution of this
equation. We consider first the case in which ¢ is a slowly
varying function of  which does not vanish in the range of z
in which we are interested.

Making the substitution

2= exp{f ) dx}, (5)

suggested by the form of the solution of the first-order linear
equation, we get from (4) the differential equation for %

%+ﬁ=¢ (6)

If ¢ is slowly varying as we have assumed, d7/dx will be small,
and as a first approximation » = +¢t. Taking the positivesign,
and substituting % = ¢t in the small term dy/dx in (6), gives for
the second approximation

2 gt
where ¢’ is written for d¢/dx. Taking the square root we get
g

to the same approximation, and (5) gives

2 = exp f (¢~ &) as) = - exp{ f . dx}. ®
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Approximate solutions of this type have been much used in
quantum mechanics.

An entirely different type of solution arises near a zero of ¢(x).
Suppose that ¢(z) has a simple zero at x = a, so that

$(x) = (x—a)d'(a), (9)
near this point. Putting ¢ = z—a, ¢'(a) = k, (4) becomes
g—;—-lcfz =0. (10) *
If ¢ < 0 and & > 0, putting £ = —{ the solution of (10) is
PYSOS (B8 apg @i+ BOT LGB, (11)
while in the same way if £ > 0 and k > 0 it is
CEL(RIMY + EEK (§RIEY). (12)

These solutions are often required in a study of the behaviour
of waves near their point of reflection.

104. Linear differential equations with periodic co-

efficients

The theory of these equations is relatively difficult and cannot
be given here. At the same time a surprisingly large number of
mechanical problems involve differential equations of this type,
and it is desirable to indicate the new phenomena which arise.
This is done below, briefly, and without proof.

We consider Mathieu’s equationt
Y+ Ovtycosaty = o, (1)
in which A and y are constants and so the coefficient of y is periodic
with period 27/w. We remark first that, since the equation is
linear, the general solution will as usual be a sum of arbitrary
constant multiples of two linearly independent solutions.
Secondly, while it is true that (1) has solutions with period 27/w,
it is not true (as might perhaps be supposed) that all solutions
of (1) are periodic: in fact here we shall discuss only the

1 There is no standard notation for this equation: many different ones have
been used. For an account of Mathieu functions see, for example, Whittaker
and Watson, Modern Analysis (Cambridge); McLachlan, Mathieu Functions
(Oxford, 1949).

6208 A8
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non-periodic solutions. The equation (1) also arises in the solution
of Laplace’s and Maxwell’s equations for an elliptic boundary,
and in such problems it is the periodic solutions which are of
interest. '

Fia. 83.

There is a theorem (Floquet’s theorem) which states that the
general solution of (1) has the form

y = A p(t)er'+ Bp(—t)et, 2)

where 4 and B are arbitrary constants, ¢(¢) is a periodic function
of ¢ with period 27/w, and p is a constant depending on A and .

The way in which p depends on these quantities is shown in
Fig. 83 in which the (A, y)-plane is divided into shaded and un-
ghaded regions.

If the point whose abscissa is A/w? and whose ordinate is y/w?
falls in a shaded region, u is pure imaginary, and the solution
(2) is finite for all values of £. These shaded regions are called the
stable regions for the equation.

On the other hand, if the point (A/w?, y/w?) falls in an unshaded
region, u is complex, and thus one or other of the termsin (2) will
increase without limit as ¢ increases; the solution is unstable,
and the unshaded regions in Fig. 83 are called the unstable
regions for the equation.
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A great deal of information can be obtained from a study of
this figure. For example, as w? is increased from 0 to o0, Ajw?
will decrease from o to 0 if A is positive, and thus the point
(A/w?, y/w?) will pass through a number of unstable regions: for
instance, if A/w? = }, so that w = 2+~A and therefore the fre-
quency w/27 is twice the natural frequency of the system with
y = 0, the system is usually unstable. These points are dis-
cussed more fully in the examples below.

Equation (1) may be regarded as the equation of motion of a
mass attached to a spring whose stiffness varies harmonically;
similar results occur if the stiffness varies in any periodic fashion,
or if the mass or damping coefficient varies periodically.

Ex. 1. The inverted pendulum with vertical harmonic motion of the
support.

Suppose the pendulum to consist of a mass m at the end of a light
rigid rod of length . Let 8 be the inclination of the rod to the upward
vertical, and ¢ the upward displacement of the point of support.

The equations for vertical and horizontal motion of the mass m are

m ;l—:,—{f—{—lcosﬁ} = —mg-+ Pcosé,
da: . .
mﬁ(lsmG) = Psin#,

where P is the stress in the rod. These give
£—1fsinf—10%cosh = —g-+(P/m)cos?,
W cos0—102sinf = (P/m)sin.
Eliminating P we get

0—(%’+§)sin0 = 0. (3)

For small oscillations we replace sin by 6.
If £ = acoswt, (3) becomes

d— (n’ _4_1?_‘ or)Swt)O =0, (4)

where n? = g/l.

This corresponds to (1) with A = —n? and y = aw?/l.

Suppose, for example, that a/l, the ratio of the amplitude of the
vibration to the length of the pendulum, is }. Then y/w? = }, and this
is the ordinate of the line 4B in Fig. 83. A/w?, the abscissa in Fig. 83,
is —n®/w?, and as w is increased the point (y/w?, A/w?) moves to the right
along the line 4 B and finally enters a stable region at the point B. Thus
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if the frequency of oscillation is increased sufficiently, an inverted pendu-
lum can be stabilized.

Ex. 2. The hanging pendulum with vertical harmonic motion of the
support.

If the pendulum hangs in the usual way and its point of support is -
given a downwards vertical motion acoswt?, the equation of motion,
found as above, is

g+ (n*+‘iz-“"cosmt)e = 0. (8)

This corresponds to (1) with A = n?, y = aw?/l. We have a positive
ordinate as before, but A/w? = n?/w? is now positive, and is large for
small w. As w is increased this decreases, and, for the ordinate shown,
passes mostly through stable regions, but crosses narrow bands of
instability near n?/w? = }, 1, 4,..., corresponding to w = 2n, n, #n,....
In these regions the motion is unstable, and oscillations of large ampli-
tude can be excited.

Ex. 8. Forced oscillations in an L, C circuit due to a harmonically
varying capacitance.
The differential equation § 41 (8) for the charge on the condenser is

L¥Q. 9 _

Lag+to= (6)
Suppose the capacitance is varied in such a way that
1
t.
o 0°-|- oA cosw

Then (6) becomes
. aQ (
an T\Ig, +LC
Writing A = 1/LC,, y = 1/LC,, we regain (1). Suppose now that the
ratio C,/C; = k is fixed so that y = kA, and that w is steadily increased
from zero. The point (A/w?, y/w?) then travels in towards the origin along
the line CO of Fig. 83, passing through a number of unstable regions.
When o is such that the point lies in one of these, the circuit will
oscillate.

cOSwt)Q = 0. (N

EXAMPLES ON CHAPTER XII
1. Show that

L ) = da@, L @) = —a @),

f 2 g (x) dx = «t1J,,4(x), f v J (x) de = —a'vJ,_\(x).
2, Show that



§ 104 WITH VARIABLE COEFFICIENTS 357
3. Show that ztJ;(2z}) and x4, (2z1) satisfy

d3
z E{-{—y = 0.

4. Show that xJ]j5(y2f) and 24Y) ye(yF) satisfy

2.
%M‘v’x”"y =0,

where § and y are positive constants. !
5. Kelvin’s ber and bei functions (which occur in the theory of the
skin effect in alternating currents) are defined by

berx+ibeiz = Iy(zVi).

Show that
(=)t | (4x)°
berx = 1—‘—(—2!—)2 (4!)“‘""
(3 10
beix = (ix)’—((gﬁ;’—{-%x—!))?—....

6. If P(z) and Q(x) are any two solutions of Bessel's equation, show
that ’ ’
P(z)Q'(x)— P'(x)Q(z) = Clz,
where C is a constant. '
[Write down the equations satisfied by P and @, multiply the former
_ by @ and the latter by P, and subtract; use the form of Bessel’s equation
given in Ex. 10.] § 98 (34) is found in this way, the value of the constant

C being found from the series expansions of J,(x) and Y, {z). Deduce
from § 98 (34) that -

Iy (@)Y ()~ T (@)Y, (7)) = 2/nz.
7. Show that

exp §a(t— 1) = Jo(w)+“§.‘l{t"+(—t)‘"}J..(x)-

[Expand the left-hand side in the power series and collect terms in ¢".]
The function is called the generating function; compare the similar result
§ 99 (19) for Legendre polynomials.
8. By putting ¢t = ¢* in the result of Ex. 7, show that
cos(zsing) = Jy(x)+ 2Jy(x)cos 24+ 2Jy(x)cos 4.,
sin(zsing) = 2Jy(x)sin -+ 2Jy(x)sin 3 +....

Replacing ¢ in these by 37—, deduce two similar formulae, and also

exp(izcosd) = Jy(x)+2 §1 it J(x)cos s¢.

9. By multiplying results of Ex. 8 by cosn¢ and sinn¢, and assuming
that the series can be integrated term by term, show that if r is zero or
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any positive integer
m

f cosngcos(zsing) dp = wdy(x) (0 = 2r),
° =0 (n = 2r41),

fsinn¢sin(xsin¢) dé =0 (n = 2r),
’ = nh(e) (= 2ri1),

n

f cos(ng—xsing) dd = wJ,(x).

0

The results of this example and the last are fundamental in the theory
of frequency modulation.
10. Show that J,(ar) satisfies

L) o -

if « is any constant. Show that

f rdy(ar) T (Br) dr = 0,
0

where a and B are any two different roots of J,(az) = 0. [Multiply the
equation for J,(ar) by J,(8r), multiply the corresponding equation for
Ju(Br) by J,(ar), subtract, and integrate by parts.] Prove that the above
result holds also if « and B are roots of J,(ax) = 0 or of
xJ y(az)+hJp(ax) = 0,

where A is a positive constant.

11. Writing v = J,(ar) for shortness, show, by multiplying the first
equation of Ex. 10 by 2r%*du/dr), that
d ( du)2 du? du?

Rl PO 22 B2 0% .
a\"ar) T T e 0

By integrating this equation from 0 to @ show that
a
[ (Tnlor)yt dr = $a?[ T (oa)?
0
if « is a root of Jy(ax) = 0.
12. Assuming that f(r) can be expanded in the series

fr) = "}'_fla,. To(reey),

where ay, ay,... are the positive roots of Jy{azx) = 0, show, by using the
results of Exs. 10 and 11, that

2 a
a, = m f rdo(ra,)f(r) dr.
0
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The series is called a Fourier-Bessel series; cf. Chap. XI and § 99 (28)
for similar results.

(- o]
13. Show that 122 _lraw) |
a 1 a, Ji{aay,)

n=
where a;, a,... are the positive roots of Jy(ax) = 0.

14. Prove that if n is a positive integer
dPy(z) dP,_y(*)

dx de
[Equate the expansions for (1—2hx4-h2)~} obtained by differentiating
§ 99 (19) with respect to z, and with respect to k.]

Using this result, and differentiating § 99 (23), show that
APy () __dPn—l(x)

dx dxr ’

nP(r) = x

(2n+1)FP,(x) =

[ Puer ds = 5 Praato)— P

15. Using § 99 (19), show that if » is a positive integer
Pn(l) =1,
P(—1)=1 (if n is even),
= —1 (if n is odd).
P (0)=0 (if n is odd),
1.3...(2r—1)
2.4..(2r)

Sketch the graphs of the first foew F,(x) for —1 < z < 1.
16. Show that if f() is defined for 0 < 6 < 7

Ppu(0) = (—1)

£6) =} §0(2n+1)1>,,(cos0) [ £(0)Py(cos B)sin  do.
n= 0

If fH=1 (0<6<a)
=0 (x<b<m),
show that (using the result of Ex. 14)
F) = H1—0080)+} 3 (Pas(005a)— Prys(c0s }Pa(c050)
And if f(0) = §(8—«), show that
£ = 3 3 (2n+1)P,(cos B)P,(cosa)sina.
n=0

17. Show that P,(cos8) has n zeros between § = 0 and § = =. Thus
if it is represented on a sphere this is divided into n+1 zones by the
zeros of P,{cos 8); for this reason this function is called a zonal harmonie.
Show that if Pf(cosf)cosm¢ and Py(cos8)sinme are represented in the
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same way, the sphere is divided into tesserae bounded by great circles
through § = 0 and 6 = 7 and small circles. Sketch the patterns for the
cases n = 1, 2, 3. These functions are called tesseral harmonics.

18. By writing

(1—2hcosf+h3)+ = (1—hel)—H1—hei0)-#

and expanding both expressions on the right by the binomial theorem,
show that
1.3...(2n—1 ) i 11.3...(2n—3)

2.4..9n t234.2n9)

Deduce that | P,(cos8)| < 1 for all 8.
19. The rth Laguerre polynomial L,(z) is defined by

3P, (cosf) = cos(n—2)8+-....

dl‘
L,.(x) = e%® d—;'(x'e"”);
verify that it satisfies the differential equation
dx,+(l w)dx+ry =0.
Show that its sth derivative
Li(z) = -— Lr(x)
. d%y dy
satisfies z @5+(8+ 1—=x) d—x-i-(r—a)y = 0.
Show that § 100 (3) has the polynomial solution
PILEETY(p),
if k is any integer greater than or equal to I+ 1.
., an
20. If Hy(x) = (—1)"%* d?(e"’"),

show that y = H,(x) satisfies

diy dy
85:—1—231 d—1;+2ny = 0.
< 1
Show also that e~ti+ate — z mH,,(x)t".
n=0

These are the Hermite polynomials which occur in Schrédinger’s
equation for the harmonie oscillator in the same way that the Laguerre
polynomials of Ex. 19 occurred in the theory of the hydrogen atom.

21. If Tolz) = 1, To(x) = 27" cos(n cos™1x),
@
how that -2 _ > (@ T)
show tha o @)

n=0
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and that y = T,(x) satisfies
dly _dy
(1—=?) e T d—;-}-n’y = 0.

These are the Tchebycheff polynomials which are of importance, e.g.
in the theory of filter circuits.

22. The Laguerrs, Hermite, and Tchebycheff polynomials are all
examples of ‘orthogonal polynomials’ in the sense that if two different
ones are multiplied by an appropriate function and integrated over an
appropriate range the integral vanishes (cf. § 88 (6), § 99 (26), and Ex. 10
above for similar results).

Show that

1
| Tu(@)Tn(z)(1—a%)tde = 0 (n % m),
-1 .

[ e Haa)Hp(z) dz = 0 (n 3 m),

@
O

j e *La(x)Ly(x)de = 0 (n # m).

0

23. A particle of mass m is attached to the mid-point of a string of
length I stretched to harmonically varying tension

T = Ty(1+kcoswt).

Show that the system is unstable if w = 2n/r, approximately, where
r=1,2,3,..,and n? = 47,/ml.

24. The point of support of a simple pendulum is rotated with constant
angular velocity w in a vertical circle of small radins a. Show that the
motion is unstable if

w=2n/r (r=1223,..),

approximately, where n? = g/l.



XIII
PARTIAL DIFFERENTIAL EQUATIONS

105. Introductory
Ix this chapter we shall give a brief account of the most impor-
tant simple types of linear partial differential equations.f
Naturally nothing more than a sketch can be given, but it is
useful to know how such equations arise and how the methods
given earlier may be used to solve them.

First we derive the most important equations in two variables,

namely 2% 1ov o "
ox® kot
v 1 o
a?  c?ol? ’ (2)
o o™
—~ =0 3
St =0 (3)

where « and ¢ are constants. The first of these is the diffusion
equation, the second the wave equation, and the third Laplace’s
equation. In (1) and (2), t is the time, and the equations have
to be solved with ¢nitial conditions at t = 0 and boundary con-
ditions at certain values of x. In (3), x and y are both space
variables, and the equation has to be solved within a region in the
(x,y)-plane, and with conditions at the boundary of the region.

The first point to notice is that the nature of the boundary
conditions under which they can be solved, the methods of
solution applicable to them, and the properties of their solutions,
differ widely between the three types. The generallinear second-
order partial differential equation in # and y with constant
coefficients is

ay,+ "axay+-" At =0 @)

axz + b

t+ The standard works are Bateman, Partial Differential Equations (Cam-

bridge, 1932); Frank-von Mises, Differentialgleichungen der Physik (Vieweg,

1930) ; Webster, Partial Differential Equations of Mathematical Physics (Teub-
ner, 1927).
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This is said to be of elliptic, parabolic, or hyperbolic type
according as the conic

ax?4-by?+-2hxy -+ 2gx+2fyt+c = 0 (5)

is an ellipse, parabola, or hyperbola, that is, according as
ab—h? 2 0. This classification is intimately connected with the
detailed theory of the nature of the solutions of the equation, and
the three types have very different properties and methods of
solution. It appears that (1) is of parabolic type, (2) of hyperbolic
type, and (3) of elliptic type.

In § 106, 107, 110 the equations (1)-(3) are derived. Each
of them has some simple special solutions which follow imme-
diately from the equation and because of their simplicity and
generality are of great physical importance. These are given
with the equations. The equations for the uniform transmission
line, which are of hyperbolic type and contain (1) and (2) as
special cases, are given in § 109.

The general methods of solution are next discussed. Fourier
series are applicable to all three equations if the range of the
independent variable concerned is finite; if it is infinite, Fourier
integrals are used in the same way. The Laplace transformation
may be applied to (1) and (2) but is not very suitable for (3).
But the method of conformal representation allows (3) to be
solved for a wide variety of bounding surfaces.

In §§ 114 to 116 the equations corresponding to (1)-(3) but
in two and three space dimensions are discussed briefly. Nor-
mally these can be solved only for regions bounded by the sur-
faces of some simple coordinate system, rectangular, spherical
polar, cylindrical polar, elliptic, etc., in which case they can be
split up into a number of equations in the separate coordinates.
Fourier series and integrals and analogous expansions in Le-
gendre and Bessel functions are used in the process of solution.

Finally the question of uniqueness must be mentioned. For
each of the equations considered a unigueness theorem can be
proved which states that (subject, of course, to pure-mathemati-
cal restrictions on the nature of the functions involved) there is
only one solution of a completely stated problem on a linear
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differential equation and boundary conditions. This might be
regarded as obvious from the physical point of view. The impor-
tance of it is that it allows us to assert that if we can find a
solution by any method, this is in fact the unique solution of
the problem.

106. The equation of linear flow of heat. Simple solutions

We suppose heat to be flowing in the direction of the z-axis,
the temperature being the same over any plane x =.constant.
Let v be the temperature at the point z, and let K, p, and ¢ be
the thermal conductivity, density, and specific heat of the
medium, which are assumed to be constant.

The fundamental assumption of the theory of conduction of
heat is that the rate of flow of heat, per unit time per unit area,
across the plane x is ov
-k Z, (1)

ox

The differential equation is found by considering a region of
unit area of the medium between the planes x and z+8x. Heat
flows into this region across the plane x at the rate (1). It flows
out of it across the plane x5z at the rate

ov 0 ov
Thus the region gains heat by flow across its surfaces at the
rate
%
K P dx (3)

per unit time. This gain of heat causes a rise of temperature in
the region, and since the thermal capacity of the region is pc 8z,
its rate of rise of temperature dv/of is

v K dx &%
ot pcdx ox?
. v 1ow
Th ) — =0, 4
at is P Rt 0 (4)
where x = K/pc )

is called the diffusivity of the medium.
(4) is the required differential equation. It has to be solved
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in some region such as 0 <2 <!, x >0, or —o0 < < 00,
with a given initial value of v(x,?) at the instant ¢ = 0, and
with boundary conditions at the ends of the region. The usual
boundary conditions are:
(i) Prescribed temperature v. This may be constant or a
given function of the time.
(ii) Prescribed rate of flow of heat. In this case, by (1), ov/ox
is prescribed. If there is no flow of heat, ov/ox = 0.
(iii) The rate of flow of heat proportional to the temperature
difference between the solid and its surroundings which
are at v,, that is

& ¢ Hw—vp) = 0, (6)

where H is a eonsta,nt

(iv) If the region extends to infinity the tempera.ture must be

finite there.

The differential equation (4) and the boundary conditions
above are all linear, and it is this fact which makes it possible
to go so far with the theory. In practice non-linear boundary
conditions of type

K gg'l‘H(”‘"”o)"- =0 (7)

often arise, but little can be done with these.

In this section we give some simple solutions of (4) for the
infinite region —o0 < « << <o, and the semi-infinite region z > 0,
which are of great practical importance. They depend on the .
fact that v = {—te~@-Tt (8)

. where 2’ is a constant, satisfies the equation (4). This may be
verified immedia,tely by differentiation. Thus from (8)

@ {_2_t!+(x ') }e—(:c—z’)’M:d

4kt
8_v _ (=) o
ox it ’
8_21) — 4+ (_x —Z _) ez~ Mt 1 v
ox? 2Kti 42t PY N

as required.
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Thus (8) satisfies the equation of conduction of heat for all
values of 2’. We next find a physical interpretation for it. The
total quantity of heat per unit area in the region —o0 < 2 <00
when the temperature is given by (8) is

@ = pc fvdx

-]

0
= %f e~ @ nt gy — 2pcict f e d¢ = 2pc(sem)t, (9)

and thus is independent of the time.

Also, from (8),ifx # 2, v —>0ast—> 0;butifx = 2', v = ¢+
and v - oo as ¢ > 0. Therefore, multiplying (8) by a constant
determined by (9), we get the result that

Q e—@ —x')?|4xct ( 1 0)
2pc(mit)t

18 a solution of the equation of conduction of heat which corresponds
to releasing instantaneously when t = 0 a quantity of heat ¢ per
unit area on the plane x = x', the solid being at zero temperature
when t = 0.

“From this elementary solution many important results can be
derived. For example, suppose that the solid —o0 << # <C o0 has
temperature f(x) when ¢ = 0, and we wish to find its tempera-
ture subsequently. This initial temperature may be produced
by liberating an amount of heat @ = pc f(2’) 8z’ per unit area
in the region between each pair of planes (', ' 8z'). Putting
this value of @ in (10) and integrating with respect to z’, the
temperature at x in the solid at time ¢ is found to be

«©
1 .
"Ne—~@—2 Pt Jo 11
sy | T da (1)
As a second example on these elementary solutions we note
that, since (8) satisfies (4), all its derivatives and integrals will
do so, and in fact they all have a fundamental significance in
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the theory. Thus ‘

z p af2(xtyt
~ahjant T g
f RN ) f e (12)
will satisfy (4).
10
N
>
os
o 1 2
z
Fia. 84.
z
The function erfz = -{/2— f e d¢ (13)
w
(1]

is called the error function and is tabulated; its graph is shown
in Fig. 84. Its principal properties are

erfz—>1 asz— o0, (14)

erf0 = 0. (15)

It follows from (12) that 4
x

v = I{,erfm, (186)

- where V} is a constant, is a solution of the equation of conduction
of heat. By (14) and (15) this solution has the properties

v=20, whenz =0, forall {>0,
v=1"V, when t=0, forallz>0.
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Thus (16) is the solution of the problem of the region x > 0
with initial temperature V, and with the surface x = 0 kept at zero
temperature for t > 0.

In the same way, the solution of the problem of the region
z > 0 with zero initial temperature and with the surface x = 0
kept at constant temperature Vy for t > 0 is

v = Vo(l—erf (17)

x
2J(xt))'

As a final example of a different type we study the steady
periodic oscillations in the temperature in the semi-infinite solid
x > 0 due to periodic surface temperature. The results have
important applications to the annual and diurnal fluctuations
of soil temperature, and to temperatures in the cylinder walls
of reciprocating engines.

Following the usual procedure for finding steady periodic
solutions, we seek a solution of (4) of the form

v = V(x)ei, (18)

where V(x) is a function of z only. Substituting (18) in (4) gives
the differential equation for V,

@V _iwy . (19)

The general solution of (19) is
V = Ae+dzwi20t | Be—~(1+intwi2et
and, since V must be finite as 2 - 00, 4 must be zero. Therefore
¥ = Be-+hx(/2d +iwt

Taking the imaginary part we find that
v = V, e-zwi2ut sin{wt—x(g)%} (20)
K

is the required solution for harmonic surface temperature
v == Vsin wt.
The temperature oscillations at depth z diminish in amplitude

a8 z increases, and they lag in phase by an increasing amount
behind the surface oscillations.
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Many important extensions of (4¢) may easily be derived in the
same way. If heat is produced in the solid at a rate A(x,?) per
unit time per unit volume, (4) is replaced by

v lov  Alx,i)

@ xa - K 1)

Clearly (4) and (21) hold for a rod with no loss of heat from
its surface. If the rod is so thin that its temperature is uniform
across its cross-section and it loses heat from its surface at a rate
proportional to its temperature, (21) is replaced by

P v, 1w_ A

o k kot K ’
where v is a constant depending on the size and material of
the rod.

Differential equations of type (4) arise in many other con-
nexions, notably in the theory of laminar motion of viscous fluid
and in the theory of diffusion. In the latter case, if ¢ is the con-
centration of a dissolved substance, the fundamental assumption
is that the rate at which this substance crosses any plane is

(22)

dc
-DZ, (23)

where D is the diffusion constant. Then in the same way the
differential equation for ¢ is found to be

Foe 1o _,

oxt D ot
For this reason the differential equation (4) is often called the
diffusion equation.

(24)

107. The wave equation in one dimension. Simple
solutions
This equation appears in many connexions with different
notations, for example in the longitudinal vibrations of rods,
transverse vibrations of stretched strings, sound waves, water
waves, etc.
We derive it first for the longitudinal vibrations of a bar of
uniform cross-section. Let u be the displacement of the plane
5296 ! B b
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of the bar whose normal position is at z, and let u+3u be the
displacement of the plane z+8x. Let X be the stress in the
bar across the plane whose normal position is at x, then, by
Hooke’s law,

du
X ES E S?v‘ ’
where £ is Young’s modulus. That is, in the limit as 8z > 0
x-82% (1)
ox

We now find the equation of motion of the element of the bar
whose normal position is between the planes  and x-4-8x. The
displacement of this element is , and its mass is p 8z per unit
area of the bar, where p is the density of the material of the bar.
The forces per unit area on the element are —X on the face z,

and
X+ o0X Sz
ox
on the face x4 6x. Thus its equation of motion is
otu 80X
X — = — O,
ot? ox
. ou 1 %
or, using (l“), R 0, (2)
where e = Efp. (3)

The common boundary conditions are:

(i) prescribed displacement u;
(ii) prescribed stress E du/ox;

(iii) the bar attached to a mass ma, where a is the area of the
bar. In this case the equation of motion of this mass
gives a boundary condition

d*u ou
mw=—X=——E~&—z- (4)
Before discussing the solution of (2) we derive the correspond-
ing equation for transverse vibrations of a stretched string. Let
T be the tension in the string, o its line of density, y the displace-
ment at the point x, and i the slope of the tangent at this point.
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Consider an element of the string of length 8s at . The forces
on this in the direction of y increasing are

T sin(y-+8p)— T'sinyp = T 8¢, (5)

since  is small. Therefore its equation of motion is

2,
o8s2Y — T3y,

‘ . ot?
or in the limit as s > 0
oy T
— T — 6
A= (6)

where p, the radius of curvature of the string, is ds/a. Also,
since the string is nearly straight,

1_%
P o
very nearly, and (6) becomes
oty 1 0%
g~ TI 7
ox? c? o ’ ™
where 2 = T/o. (8)

We now consider some simple solutions of (2) or (7). These
depend on the fact that, if f(z) is any differentiable function of z,
it follows immediately by differentiating that

fle+ect) (9)
satisfies (7). Physically it represents a disturbance, whose form
when ¢ = 0 is f(x), travelling to the left with undisturbed shape
and with velocity c. In the same way

F(x—ct) (10)
is also a solution, and represents a wave travelling to the right
with velocity c. )

Thus the general solution of (7) may be regarded as a combina-
tion of motions to the left and right given by (9) and (10).

These results enable us to find the solution of (7) for an infinite
string —oo0 << # <C oo set in motion at ¢ = 0 with initial displace-
ment y = ¢(x) and initial velocity dy/ot = )(x). Taking for the

general solution y = f(x+ct)+ Flz—ect), (11)
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the initial conditions require

fl@)+ F(z) = $(x), (12)
cf '(w)—cF'(x) = (). (13)

Integrating (13) gives
cf(x)—cF(x) = fn,b(x) dx. (14)

From (12) and (14),

f@) = 1gta)+g; [ ) e

F@) = 19(e) —; [ 4@ de:

[0}
D

Fi1c. 85.

Using these values in (11), we get finally
z+ct
v = Hplete) Hole—cti g [ e de ()
x—ct

For the case in which §(z) = 0, the solution corresponds to
two waves, each of half the original wave form, propagated to
the left and right respectively.

This type of solution for the infinite string may be extended
to give the solution for a finite string of length [.

Suppose that the string is fixed at 4 and B, and is plucked
at one point O as in Fig. 85. Suppose that we repeat this pattern
indefinitely to make an odd periodic function of period 2, and
regard this as an initial displacement of an infinite string. Then
the general solution (15) consists of half the displacement moving
to the right and half moving to the left. From the figure it
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appears that the sums of these displacements at 4 and B are
both zero, so that the solution obtained in this way is a solution
of (7) with y = 0 at 4 and B, and thus is the solution of our
problem. The form of the string is shown in Fig. 85; it consists
of three straight portions, AC, CD, DB.

Finally, a fundamental distinction between the results of this
section and the last should be pointed out. Solutions of the wave
equation are propagated with finite velocity ¢, so that if portion
of the medium is initially undisturbed it remains so until the
wave front reaches it. In diffusion problems, on the other hand,
there is theoretically .a disturbance at all points at all times,
though for large distances this will be negligibly small.

108. The wave equation. Natural frequencies

It was found in Chapter IV, when studying the vibrations of
a system consisting of a finite number of masses, that such a
system had a finite number of natural frequencies, that with
each frequency there was associated a normal mode of vibration,
and that the most general motion consisted of a sum of vibra-
tions of these types with coefficients determined by the initial
conditions.

The natural frequencies and normal modes were found by
seeking solutions of the equations of motion in which all quanti-
ties were proportional to e, The same procedure applies to the
wave equation in one or more dimensions. As an example con-
gider the vibrations of & stretched string whose ends, z = 0 and
x = I, are fixed. The differential equation § 107 (7) is

gﬁaé%:o 0<z<l), (1)
with y =0, when £ =0 and z =1l (2)
We seek a solution of this of the form
y = Y@, ®
and, substituting in (1) and (2), ¥ must satisfy ’
eV @y o, (4)

&t
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with Y =0, whenz=0, (5)
Y =0, whenz =1L (6)
The general solution of (4) is

Y=Asinw7x+Bcos%0, (7

and (5) requires B = 0. Thus by (8) we must have
A sinﬁl = 0, (8)

c
so that either 4 = 0, which gives the trivial solution ¥ = 0, or
sinc—u-l =0,
¢

that is, w="" n=123,.). (9)

The problem is an eigenvalue problem (cf. § 87). The eigen-
values (9) give the natural frequencies (nc/2l), n = 1, 2,..., and
the corresponding eigenfunctions,

Ansin’fl"_‘” (n=1,2,..), (10)

are the normal modes of vibration. A combination of these,
namely w
z {Ansinn—”l—ct—an cosg";—d}sin@, (11)
n=1
gives the most general solution of (1). The 4, and B, in (11) are
determined from the initial conditions by the use of Fourier
series as in § 111, But, just as in the case of the vibrations of a
finite number of masses, the natural frequencies and normal
modes are usually easy to find and frequently supply as much
information as is needed. ‘
The normal modes (10) are shown in Fig. 86, which may be
compared with Fig. 17 for a finite number of masses.
As an example of the determination of the natural frequencies
in a more complicated case we consider transverse vibrations of a
uniform beam of length 1 freely hinged at its ends.
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Let y be the displacement of the point x of the beam, and p
the mass per unit length of the beam. Then the reversed effec-
tive force, § 66 (13), at x due to the motion of the beam is

po%y
_Pr 12
e (12)

N\
[N\ /N

Fic. 86.

per unit length. Treating this as a load on the beam, and neg-
lecting any static loads, § 80 (12) gives for the equation of trans-
verse vibrations of the beam

oy  p %y
PYY _o. 13
Bl gty o (13)

As before, we seek solutions of (13) of the form
y = Y(@)e',
then Y has to satisfy

ay .
kY =0 14
T k » (14)
where kt = w?p/EIg, and
i/.;_glz_Y:'O’ when z = 0 and = = L. (15)
da?
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This eigenvalue problem has been discussed in § 87, Ex. 3,
and, using the results of that section, it appears that the eigen-
values are given by

kl=nr (n=1,2..). (16)
Therefore the natural frequencies, w/2x, are
n?*x(EIg\} _ -
W(T) (n=1,2,..). (17)

Incidentally it appears that they are identical with the critical
frequencies for whirling of the shaft.

109. The equations for the uniform transmission line
Suppose the line has inductance L, resistance R, capacitance

C, and leakage conductance G per unit length. Let I be the

current in the line and V the voltage drop across it at z, and let

A > C
v V+4v
—E— 1/Géx
Céx I
481
B — L —e D
x x+4X
Fic. 87.

I4-31 and V+-3V be the corresponding quantities at z—+8z. We
may replace the portion of the line between z and xz4-8x by the
four-terminal network shown in Fig. 87. The circuit relations
for this are

LSxZ—tI-}-RSxI: —sV, (1)
O'Sx—ag;-{—GSxV: 1. )

Dividin'g (1) and (2) by 8z and taking the limit as 8z — 0 gives
the equations I %{+RI _ %,’ | ®
c %Itf—}- GV = —-z;;. ' (4)



§ 109 PARTIAL DIFFERENTIAL EQUATIONS 377 |

These are a pair of simultaneous linear partial differential
equations of the first order for ¥ and I. They have to be solved
with given initial values of the current and voltage drop in the
line as functions of x, and with boundary conditions at the ends
of the line such as:

(i) prescribed voltage ;

(il) prescribed current;

(iii) a relation between I and V when the line is connected

to a terminal impedance.

Either I or,V may be eliminated from (3) and (4) and a second-
order equation obtained. For example, eliminating 7, the equa-
tion for V is

o2V
‘ox?

In special cases this reduces to equations which have been
considered earlier:

(i) For the ‘lossless’ line in which R = G = 0, it becomes

2 2
ev_1av_, 6)

LC——(LG+RC)———RGV_0 - (5)

with ¢ = 1/LC, which is the wave equation of § 107.
(ii) For the ideal submarine cable in which L = G =0 it
becomes 2V 1oV
2 r ol =V, (7
X Kk ot

with k = 1/RC, which is the diffusion equation of § 106.
(iii) For Heaviside’s distortionless line in which R/L = G/C
it becomes
2V & , R\2
- R Es = 0. 8
o L0+ ) V=0 ®
In these cases solutions of transient problems may be obtained
by the methods of § 106, 107, 111, 112. The complete solution
for the general equation (5) is complicated, and here we shall
consider only the steady state behaviour for this case.
Suppose that complex voltage E’, in the notation of § 44, is

applied to the line at z = 0. Let V' be the complex voltage drop -
at the point z of the line and let I’ be the complex current there:
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these are now functions of . V'e!! and I'e'*! will be solutions
of (3), (4), and (5), and of these (5) gives
dazv’ ,
*@‘g—)’zV = 0, (9)
where y = {(R+ Lwi)(G+ Cui)}}, (10)

and, for definiteness, the square root in (10) is chosen so that its
real part is positive. The quantity y is called the propagation
constant of the line.

As a first example suppose that the line extends to infinity.

In the general solution

V' = Ae-r*4 Ber (11)
of (9), B must be zero since ¥’ must remain finite as x — co.
Also since V' = E’ when z = 0, 4 = E’ and we get finally

V' = E'ere (12)y
for the complex voltage drop at the point x of the line. The
complex current I’ is from (3)

, 1 av
I'= —ffiwi iz (13)
(G4 Cwilh
=E {R+Lwi, e (14)

The input impedance z, of the line, which is the ratio of E’ to
I’ when x = 0, i8 given by
R+ Lwi\}
== _— - 1
0 (G—|— Cwi) (15)

This quantity is called the characteristic impedance of the
line.

Next we consider the case of the line 0 < x << I, with complex
voltage E’ applied at x = 0 as before, but terminated at x = 1 by
a complex impedance z.

The boundary conditions are now

V' = E, whenx=0, (16)
2I"=V', whenx=1 (1)
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The solution of (9) is |
V' = A4 sinh yxz+ B cosh yr. (18)
The condition (16) gives B = E’, and (17) gives, using (13) and
the notation (15),
_i {4 coshyl-+ Bsinhyl} = A sinhyl+ B cosh yi.

Solving for A and substituting in (18) gives finally

E'{zysinh yl+z cosh yl}cosh yr—
, — E’{zsinh yl4-z, cosh yl}sinh yz
V' = - . (19)
2y 8inh yl+2z cosh ¢l

The input impedance is

[K] % sinh yl+4z cosh yI
z=0

I 02, cosh yl+zsinhyl’ (20)

If z = 0, i.e. short-circuit at = [, the input impedance z, is
by (20) 2, = zytanhyl, (21)
while, if 2 = oo, open circuit at x = [, the input impedance 2, is

Zop = Zgcothyl. (22)

From (21) and (22) 25%0p = 2.

110. Laplace’s equation in two dimensions. Simple
solutions
Laplace’s equation arises in a very large number of contexts
in mathematical physics. Perhaps the most fundamental of
these is the expression of continuity in steady flow. As an
example of this we consider the steady flow of heat in two
dimensions. ’

‘Take rectangular axes OX, OY, and consider the rectangle
bounded by the planes x, 48z and y, y+38y. Since the flow
is steady the temperature is independent of time, and therefore
the net flow of heat into this rectangle must be zero.
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The rates of flow into the region over the faces x, x4 8z, y,
and y+38y are, respectively, by § 106 (1),

—K Z—Z 8y, |
_:_K gﬁ Sy—a%[K Z-;) Sy] Sx},
—K % 82,
_‘_K Z—; 890—-%[1( g—; Sx] Sy}.
Adding these we have, if K is independent of z and y,
it )

This is Laplace’s equation in two dimensions in rectangular
Cartesian coordinates.

Before discussing it, we derive the corresponding equation in
polar coordinates. This can be done by transforming (1) into
polars r, 6, or it may be obtained by applying the argument used
above to the element of area bounded by the circles r and r4-3r,
and the rays 8 and 6+30. The expression of the fact that the
net rate of flow of heat into the region is zero is

_k®, 50 _K%, sa_ﬁ[m 59 Sr}—
or or or or

_Kf’iSr_.{_Kﬁar 4 [_Kf’iasf r80}=0.
r o0

rod  rab raé
. a[ ov o
That is, r 5;[7' 5;] 4-3—0-2 =0, (2)

o lov 1 8%

A Tra g 3)

or
Laplace’s equation in the form (1) has simple polynomial

solutions 1, 2, y, zy, 22—y?, 2®—3ayl,....
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In the form (2) it is satisfied by

cos
" nl
sin

for any n, and also by logr.
- Ex. Radial flow of keat in the hollow cylinder a < r < b. r = a kept
at vy, and r = b at v,.

The differential equation (2) gives, since the solution is to be indepen-

dent of 0, ii_(r@)—o
ar\ drl — 7
dv
TE=A,
v=Alnr+B,

where A and B are unknown constants to be found from the conditions
at r = a and r = b. These give

v, = Alna+B,
vy = AInb4 B,
7 In(b/r)+ v, In(r/a)

and therefore v = n(b/a) (4‘)

The rate of flow of heat through the cylinder per unit length is
~amK =P ®
Laplace’s equation in two dimensions occurs also in the flow
of current electricity in plane sheets, in the flow of viscous fluid
between parallel planes, in the theory of torsion of shafts, in the
deflexion of a soap film or a sheet of rubber, and in two-dimen-
sional problems in hydrodynamics, electrostatics, and the flow
of incompressible fluid through a porous medium.
The inhomogeneous equation
2 2
gl ®)
is Poisson’s equation in two variables. It arises, for example, in
the steady flow of heat in a medium in which heat is being
generated. Thus if heat is generated at a rate Sf(z,y) per unit
time per unit area in the medium, the net rate of loss of heat
calculated in (1) is to be equated to this and we get
o % 1
63—x2+51}_2= —Kf(x,y)- (7)
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In other fields the relation between Laplace’s and Poisson’s
equations is the same: Poisson’s equation occurs in regions
where there are sources of heat or current, charges, etc., and
reduces to Laplace’s equation in regions free from such sources.

111. The use of Fourier series
Fourier series are applied in the same way to all the equations
of §§ 106-10. A simple solution of the differential equation and
some of the boundary conditions which is a product of trigono-
metrical or hyperbolic functions is written down; the solution
of the problem is assumed to be a series of such terms, the
coefficients in which are found from a Fourier series determined
by the remaining boundary conditions.
To illustrate the method we first consider Laplace’s equation
)
3—2‘2 5‘?;5 =Y (l)
and seek a solution of this in the rectangle 0 <z <a,0 <y <b
which satisfies the boundary conditions

v = 0, whenx =0 (0 <<y <Cb), 2)
v =0, whenz =a ((0<<y<b), (3)
v =0, wheny =56 (0 <z <a), (4)
v=f(z), wheny =0 (0<2z<a). (5)

We notice first that

sin®ginh"C=Y) (19, ) (6)
a a.

satisfies the differential equation (1) and the boundary con-
ditions (2), (3), and (4). This suggests that the series

Z Ansm;mxsinhnw(?;—y), )
n=1

where the 4,, are unknown, will also satisfy them. When y = 0,
(7) reduces to o
> 4,sinh b in 7Y (8)
= a a
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Now suppose that f(x) is expanded in the sine series, § 89 (7),

f@) = bysin™ZZ, (9)
n=1
where b, = g J\f(oc')sinﬁ%gi dx’. (10)
(1]

Comparing coefficients between (8) and (9) gives

A, sinhn%b =b,,

and thus, finally, the solution of the differential equation and
boundary conditions is

L < , sin{nnwz/a)sinhnw(b—y)/a 1
v= nZl on sinh nwb/a ’ (1)

where b,, is given by (10).

For example, if v = 1 on y = 0, 0 < z < @, the solution is,
using § 89 (9),
4 i sin[(2r 4 1)mz/a]sinh[(2r+1)m(b—y)/a] (12)
™ (2r41)sinh{(2r -+ 1)mb/a] )

r=0

V=

Of course the above argument is not rigorous and needs pure-
mathematical justification ; this is easily supplied for all the
examples of this section. ’

If the writing down of (6) is considered too abrupt, it may
be obtained by the following method, which will also be used
in § 115 for the study of equations in three variables. We seek
a solution of (1) which is the product of a function of x and a

function of y, say v = X(@)Y (). (13)
Substituting (13) in (1) we get

2 2
1d:X 1 &Y _

Xde Vg (14)
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This is satisfied if

. (16)
%‘dl_g = k2, (16)
where %2 is any number.

The general solution of (15) is
X = Asinkx+ Bcoskz. (17)
If (17) is to satisfy the boundary conditions (2) and (3) we
must have B =0, (18)
Asinka = 0. (19)

From (19), either 4 = 0, giving the trivial solution v = 0, or

k= ”7:’ m=1,2,...), (20)

so that in (15) and (16), £ must be nr/a and X must have the
form A4, sinnmz/a (n = 1, 2,...). The numbers (20) are in fact
the eigenvalues of the differential equation (15) with the
boundary conditions (2) and (3), and the corresponding values
of X are its eigenfunctions (cf. § 87).

The general solution of (16) with one of the values (20) of k&
may be written

Y = osinh’_‘l’%lbrpeosh"ﬂ?E, (21)

and the condition (4) gives D = 0. Thus, finally, the solutions
of (1)-(4) of type v = X(x)Y (y) must be of type

v= A4, sinn—Z—aZsinh?—lj—T(—l:;_—y—)» (n =1, 2,.), (22)

in agreement with (6). -
The same argument may be used to derive (28) and (38) be-
low. :

Ex. 1. Conduction of heat in the region 0 < x << l. The endsx = 0 and
x = 1 kept at zero temperature for-t > 0. The initial temperature f(r).
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We have to solve § 106 (4), namely |

v léow
5% R o =0 (0<z<l), (23)
with v=0, whenz=0andz=1 ¢>0, (24)
" and with v=f(x), whent=0, 0 <z <l (25)
We suppose f(x) to be expanded in the sine series § 89 (7)

@
fl@) = Z basin 27, : (26)

n=1
where f S )sm—— dz’. (27)
. Now e—"”’""/”sin"%r—% ’ (28)

satisfies (23) and the boundary conditions (24). Thus

o«
ZA e-xntmtits i VT (29)
R=1 ¢ ‘
does so also. When ¢ = 0, (29) has the value

z A,sin™. ' (30)

Comparing coefficients between (26) and (30) we find 4, = b, and
the solution is finally

© 4
= % Z mrminit sinf‘lﬂf f(x')sin'—";—’i de’. (31)
n=1 0
If the initial temperature is constant, ¥}, this becomes
. 4V,, J——t—— sin(2r+ 1)/l
=2 1 31 . (32)
r=0

Ex. 2. The problem of Ex. 1 except that there is no flow of heat at x = 0.

The only change is that the boundary condition at = 0 is 8v/x = 0.
To satisfy this we take as the elementary solution

@Al oog Q@"_x (33)

and expand f(x) in the cosine series of Chapter XTI, Ex. 17.

Ex. 3. A string is stretched between the points * = 0 and x = l and is
set in motion at ¢ = O with initial displacement f(z) and zero initial velocity.
5206 ce
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The differential equation, § 107 (7), is

%y 1 o%y

A =0 ©0<z<, (34)
to be solved with
Yy=0, whenz=0andxz=1 ¢>0, (35)
% -

5=0’ 0<:v<l, t=0, . (36)
y=fx), O0<az<l, t=0. (37)

(34) and (35) are satisfied by
sin'r—lllx{A,,cosnﬂTd-{—Bﬂsinn—ﬂlcf} n=1,2,..). (38)

This has already been derived and its significance discussed in § 108.
To satisfy (36) we must have B, = 0in (38). Thus (34), (35), and (36) are
satisfied by

a0
Z A,,sinn%xcosn—";c—t. (39)
n=1
and when ¢ = 0 this reduces to
@0
Z 4,507, (40)
n=1

If we expand f(x) in the sine series (26) and (27), comparing coefficients
with (40) gives A,, = b, and the final result is

a0 1
Y = lg z sin?cosrj”;—d f f(ar:’)sin"i;i dx’. (41)
n=1 bt

Suppose, as an example, that initially the string is plucked a distance
d at x = b, so that

Sf(x) =dz/b (0 <z < b), (42)
Jlz) = dl—2)/1-b) &<z <. (43)
Evaluating the integral in (41) we get
24P <"1 . nmb . nmw  nmet
y:m 1gzsm~l—sm—7—cos—l—. (44)
-

Ex. 4. Laplace’s equation in the infinitestrip0 < y < I, —o0 < z < o0,
withv = f(x)ony = 0,and v =0ony = L.

In this case the region is infinite instead of finite, and a Fourier
integral must be used instead of a Fourier series. The solution is sketched
below merely to show the correspondence.

% oW
ot Tyt T

with the boundary conditions stated above.

We have to solve 0, (45)
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We notice that sinh w(l— y)ete® (46)

satisfies (45), is finite as # — 4- o0 and vanishes when y = ! for all w.
Therefore

jpcﬁ(eu)sinhw(l—-y)e""”c dw (47)
does so also. To satisf;:he boundary condition at y = 0 we must have
f $(w)sinhlwe’® dw = f(x).

—
And, by § 96 (4) and (5), this gives

w0
2rd(wlsinhwl = [ eiorf(z’) da, (48)
and the solution is - k

©
1 f sinh wl—Y) 0 g,

Snh ol f e—iw'f(x') da’. (49)

-

112. The use of the Laplace transformation

This is one of the most powerful methods for solving equations
of parabolic and hyperbolic types. We suppose the equations
have to be solved for ¢ > 0 with initial conditions at { = 0.
Suppose that v(,t) is the solution; its Laplace transform with
respect to ¢t will be

7= [ e®lvdi, 1
|

which is a function of p and . The Laplace transform of ov/o¢
is w @

i et dt = [veP + ve—P! dit

a = o TP
1] [1]

= —v,(x)-+7, (2)

just as in § 18 (21), except that the initial value, v, (¥), is now a
function of x.

Similarly the Laplace transform of %v/ot? is

w@“‘v‘ —pt 2s
2 ° dt = —pvy(x)—v,(x)+p*s, (3)
0

where v,(z) is the value of dv/ox when ¢ = 0.
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Finally, the Laplace transform of 6%v/ox? is

>

2
fe-pl—-dt & f ey dt = g';, (4)

assuming that the orders of dlﬁerentla.tlon and integration in
(4) may be interchanged.

Now suppose we multiply our partial differential equation by
e~?' and integrate with respect to ¢ from 0 to co. For the
equation § 105 (1) we get, using (2) and (4),

i ) (6)
From the equation § 105 (2) we get
% _1%; o= L @) — 5 (). T
And in the same way from § 109 (3) and (4) we get
9V + (Lp+ B = LIa) (1)
2 Opr a7 = CRe) ®)

where I(x) and Vy(x) are the values of 7 and ¥ when ¢t = 0.

(5), (6), and (7) and (8) are the subsidiary equations corre-
sponding to the partial differential equations and their initial
conditions. They have to be solved with boundary conditions
which are the Laplace transforms of the given boundary con-
ditions. When this has been done, the Laplace transform & of
the solution » has been found. To find v from ¥ two methods
are available; (i) an extension of the Table of Transforms of § 18
together with the development of more theorems of the type of
§ 18, Theorem 1; (ii) what is in effect an extension of § 18 (28)
which allows series of Fourier type for v to be written down
from #. To go into these points would take too longt and we
merely solve one example to illustrate the way the method
applies to an interesting type of problem.

1t For further details see Carslaw and Jaeger, Operational Methods in Applied
Mathematics (Oxford, 1948); Churchill, Modern Operational Mathematics in
Engineering (McGraw-Hill, 1944); Gardner and Barnes, Transients in Linear
Systems (Wiley, 1942).
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Ex. A bar of length | with its end x = 1 fized is at rest and unstrained,
when at t — O the end = 0 is given a small displacement a.

The differential equation, § 107 (2),

Pu 1 %u
a—x*—ﬁ'a‘z?=0 O<az<l, t>0), 9)
has to be solved with
u=0 whent=0 (O<z<l), . (10)
Z’: 0, whent=10 (0 <z<), (11)
w=0, whenz=1 (t>0), (12)
w=ga, whenz=0 (t>0). (13)
a PR—
o x/c e . 2kx)e 2l+xl/c
Fic. 88.

Writing 4 for the Laplace transform of u, the subsidiary equation for
(9) with initial conditions (10) and (11) is by (6)

‘;—:3,_%: @ =0. (14)

Taking the Laplace transforms of (12) and (13), using § 18 (7), this has
to be solved with @—0, whenz =1, (15)
G = %’ when z = 0. (16)

- The solution of (14) satlsfymg (15) and (16) is .
oo

To find % from % we expand (17) in a series of negative exponentials

as follows
a{e“”“/"—- —p(sl—z)[c}

p{ 1— —wllc}
— % (gpale_ gpal-2Ne){1 } e~tPlof e~4PU L L)

U =

‘3

g{e—wlc_ —p(zl—x)/c_l_ e—p(zl+z)/c }

'Then, by § 18 (9),
"= a{H(t—?c-)—H(t—m ’”)+H( 2”’”)—...}. (18)

c
The graph of u as a function of ¢ is shown in Fig. 88.
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113. The use of conformal representation

While the use of Fourier series as in § 111 gave solutions of
the fundamental problems on the wave equation and the dif-
fusion equation, it only provided asolution of Laplace’s equation
for a region with rectangular boundaries. By the use of the
theory of functions of a complex variable many two-dimensional
regions can be transformed into regions with rectangular boun-
daries and in this way Laplace’s equation solved in them.

Suppose that { = £4-i7 is a function f(z) of a complex variable
2 = z-+1y. We represent z by its rectangular coordinates (z,y)
in the ‘z-plane’, and in the same way { by its coordinates (£, 1)
in the ‘-plane’. Then the relation

{=f(= (1)

defines a correspondence between points in the z- and {-planes,
and we shall suppose this to be one to one, that is, to each
point of a region 4 in the z-plane there corresponds one point
of a region B in the {-plane, and vice versa. The region 4 is
then said to be mapped on the region B.

The function (1) is called an analytic function in a region if {
has a definite differential coefficient with respect to z at each
point of the region. That is, if

exists and is independent of the way in which 8z = Sz Sy
tends to zero in the (x,4)-plane. Now

o .0y (7] . On
8L _ 8(¢+in) _(52“ 55) 8”(@*’ 37,) i )
8z S(xfiy) dx+1 8y )

If this is to have a limit independent of 8y/8x, the coefficient of
3y in the numerator must be 1 times the coefficient of 8, that is

o6 .on _ .[of . On
a—y+z oy z(ax-}-z ax)' (3)
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Equating real and imaginary parts of (3) gives

o oy
on _ 9% '
Py (5)
These are the Cauchy-Riemann differential equations. If
th tisfied
ey are satisfie ‘E=§§+i€2_ ©
dz ox ox
1t follows from (4) and (5) that
o2 9% _ 0%y 0% _
and ég a—§= -_-?’—7 97—’ (8)‘
ox| oy oy| ox
dl

Also

- (- o

The relation (7) states that the real and imaginary parts of
any analytic function of a complex variable satisfy Laplace’s
equation. Also the property of satisfying Laplace’s equation is
preserved by the transformation (1), that is, we shall prove that
if

o |
P T =0, (10)
v
then 5172—*—5‘;/—5 = (11)
To verify this we have
. ovdE ovom
o ot ox ' onox’
P P Sefln)' o g B e
ox?  0f% \ox on?\ox ot ox? ' on ox® o£dn ox ox
(12)
Similarly
B _ Syt (o)t B ity B0t
oyt oe\ey) Tom\oy| T ok ot omayt T dkamoy oy
(13)

Adding (12) and (13), and using (4), (5), (7),and (10), gives (11).
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Sinceif f(z)is an analytic function of z, d{/dzhas a unique value
independent of the way in which 8z - 0, an infinitesimal figure
in the z-plane will be similar to the one which corresponds to
it in the {-plane; in particular the angle at which two curves
cut in the z-plane will be equal to the angle at which the corre-
sponding curves in the {-plane cut. The word conformal is used

¢
-E" o
7 ¢ NN 5
T ' H
n g R /" /7R ”
144 P Q ’ ( Q
Ho o
£ 0o |4 BE X B A o A B X
£ £, £
W W Z
{-plane : z-plane
Fic. 89.

to denote this property, and the transformation is said to give
a conformal representation of portion of one plane on the other.

In particular, if &, £, 9o, 1, are constants, the region bounded
by the curves § = §,, é = &;, 7 = 7, 7 = 7, in the 2-plane is
transformed into a rectangle in the {-plane.

The nature of the correspondence set up by a transformation
is best appreciated by the detailed study of examples. The
theory of two-dimensional hydrodynamics and electrostatics is
largely founded on the study of such transformations, and an
account of the useful onest is given in works on those subjects.

Ex. 1. { =22 (14)
£+in = (z+iy)t = a®—y?4 2izy,
g=al—ys, =20y (15)

If 8 = argz, and ¢ = arg{, we have ¢ = 26, and thus the upper half
0 < 0 < 7 of the z-plane is mapped on the whole 0 < ¢ < 27 of the
{-plane. The positive half of the z-axis, § = 0, and its negative half,

t Cf. also Churchill, Introduction to Complex Variables and Applications
(McGraw-Hill, 1948).
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0 = 7, both correspond to the positive half of the £-axis. The positive
half of the y-axis, § = }, corresponds to the negative half of the £-axis,
¢ =
The line £ = &, becomes the hyperbola
wr—y? = &, (16)
in the z-plane. ¢ = 0 becomes the pair of lines y = L.
The line 5 = 7, becomes the hyperbola

2wy = 70r an -

and the line = 0 becomes the pair of axes 0X, OY.

The rectangle PQRS in the {-plane corresponds to the figure PQRS
in the z-plane bounded by four hyperbolas, cf. Fig. 89,

(a) _ (b)
Fia. 90.
Ex. 2. z = cos . (18)
z+1y = cos(é+1n) = cosécoshn+isinésinhq.
x = cos{coshy), (19)
y = sinésinh . (20)
Therefore . . .
LY _
cos?{ sin?f 1 (21)
e 42
coshity T sinkip — (22)

The line ¢ = £, in the {-plane corresponds to an hyperbola (21) in
the z-plane, and the line 7 = 7y in the {-plane to an ellipse (22); cf.
Fig. 90 (a).

These ellipses and hyperbolas are confocal: 7 = 0 corresponds to the
degenerate ellipse consisting of the segment S§’ joining the foci, while
¢ = 0 corresponds to the degenerate hyperbola consisting of the lines SX
and S§’X’ running outwards from the foci. Thus the transformation will
be useful for studying either an isolated strip or a plane with a slit in it
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(for example, the hyperbolas are the stream lines for flow through a slit
in & plane).

The detailed correspondence between points in the z- and {-planes is
best followed by fixing (say) € in (19) and (20) and following the varia-
tions of # and y as 7 varies. It will be found that the whole of the
z-plane is mapped on the strip 0 < £ < 7, —© < % < o of the {-plane.

Ex. 3. {=mZ2. (23)

Since the logarithm of a complex number z is given by
Inz = In|z|+iargz,

it follows from (23) that E—06-8 (24)
n = lnr/r', (25)

where r and 7’ are the distances of the point P, (x,y) from the points
(Fe,0), and 6 and 6’ are the angles PCX and PDX, Fig. 90(b). The
curves 7 = 7, in the z-plane belong to & system of coaxial circles with
C and D as limiting points, and the circles £ = £, are a system of circles
through C and D.

Now suppose that we wish to solve

v oW

42 =0 26

st =0 (26)

in a region bounded by the curves ¢ = §;,, £ = &, 7 = 7,,

n = 7y, 1in the (z, y)-plane which are determined by a transforma-

tion { = f(z), and that v is to have specified values on the
boundaries. We solve

»

o (27)

in the rectangle £, << £ < &, 7y < n < %, giving v at each
point of the boundary the prescribed value at the corresponding
point in the z-plane. This can be done as in § 111. By (10) and
(11), this solution, expressed as a function of # and y, satisfies
(26), and since it has the required value at each point of the

boundary it is the required solution.
In most practical problems much less than this is needed.

Interest is usually centred on the equipotentials on which v is
constant. In such cases we take v itself to be the imaginary
(or real) part of an analytic function

w = utiw = f(z)
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of z. Then, as in (7), both » and v satisfy Laplace’s equation;
the curves u =— constant, which by (8) are orthogonal to the
equipotentials, also have a fundamental significance in the
theory (e.g. in electrostatics they are the lines of force). As an
example, suppose we consider

w = 22
already studied in Ex. 1. The lines » — constant are the hyper-

bolas zy = constant

of Fig. 89: they are the equipotentials when the planes OX and
OY are held at constant potential, or the lines of flow of a perfect,
incompressible fluid in a right-angled corner.

114. The wave and diffusion equations in two dimensions
The theory of § 106 extends immediately to give

vy v low
o kw M
for the equation of conduction of heat in rectangular Cartesian
coordinates in two dimensions.
The wave equation in two dimensions is

v o 1 &%
e — =0 2
oxt oyt ctot (2)
in rectangular Cartesian coordinates, or

% low 10 1%
AT TR A ®)
in polar coordinates.
Equations (2) and (3) hold, for example, for the vibrations of
a membrane, for water waves, and in many problems arising
from Maxwell’s equations. As in § 111, these equations are
treated by forming series of elementary solutions, and deter-
mining their coefficients by Fourier or other series or integrals.
Ex. 1. Symmetrical vibrations of a circular membrane of radius a.
Since we are concerned with a circular boundary we take the wave
equation in the form (3), and since we are given that the vibrations are
symmetrical (that is, independent of #) this reduces to

v lov 1%
wtrar om0 “
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Suppose we seek a solution of (4) of the form

v = R(r) cos @ (5)
then R(r) must satisfy
d’R 1dR o
e Talk=0 @

This is Bessel’s equation of order zero, and the solution of it which
remains finite when 7 — 0 is as in § 98

W) "

If the membrane is fixed at » = a, the displacement at r = ¢ must be
zero, and we must have
) o

that is w = cazla (n=1,2,.), (8)

where the a,, are the roots of Jy{a) = 0; the first few of these are given
in § 98. The values (8) of w give the natural frequencies of the membrane,
and the general solution of (4) is

> %) e

n=1

. opct
nsin 222, (9)

the coefficients 4, and B, for given initial conditions, are then found
from a Fourier-Bessel series analogous to a Fourier series (cf. Ex. 12 on
Chapter XII).

Ex. 2. Maxwell’s equations for a rectangular wave guide.

The wave guide is parallel to the z-axis and consists of the rectangle
bounded by the planes =0, x =@, ¥y = 0, y = b. A solution of
Maxwell’s equations of the form

elwt=vid(z,y) (10

is sought, where w/2m is the frequency of the radiation and y is a constant.
It is found that ¢ has to satisfy

ap .
s (Gr)e =, ()
and has to vanish on the boundaries of the rectangle. Clearly
sin 7% gin 7Y
a b
n = 1,2,.;m =1, 2,..., vanishes on the boundaries of the region. Also

it satisfies (11) if . . .
(”—+'1)w2—%’;—y= = 0. (13)

(12)
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This determines y in terms of m and n, and the required general solu-
tion is a sum of terms of type

Ay et sin EZE sin 7—”51/, (14)

with 9 given by (13). This corresponds to a disturbance propagated
along the z-axis only if y is imaginary, that is, if * in (13) is negative,
i.e. if

w? n? +m2
17202 a! bz *

(15)

In practice the frequency and dimensions are usually arranged so that
this is only true forn = 1, m =0, orm = 1, n = 0, so that only this
solution is propagated. For all other values of m and n, ® given by (13)
is positive and the corresponding solution (14) dies away exponentially.

115. Laplace’s equation in three dimensions
In rectangular Cartesian coordinates this is

o
ox?

+ 2—!— (1)

6z2

It could be derived, as in § 110, for steady flow of heat or
electricity in three dimensions. It is also the fundamental equa-
tion for the potential in electrostatics in a region free from
electric charges, and arises in the same way in magnetostatics
and the theory of potential generally.

As in § 113, the form (1) is suitable only when the equation
has to be solved in a region with rectangular boundaries. An
elementary solution of it is

sin ﬁgf sin mTvry ( 4+ bz)%ﬂz (2)
and, by superposing such solutions and using the theory of double
Fourier series, (1) may besolved in the rectangular parallelepiped
bounded by the planes x =0, x =a, y =0, y = b, 2=0,
z = ¢ with assigned values of v on the boundaries.

In the same way, solutions of (1) can be obtained for a region
bounded by the surfaces of any orthogonal coordinate system
by transforming it into the appropriate coordinates. We shall
consider only cylindrical polar coordinates and spherical polar
coordinates.
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CH. XIII

In cylindrical polar coordinates, Fig. 91 (a), the point P is
specified by (r,6,2) and the surfaces of the coordinate system
are cylinders, r = constant; axial planes, § = constant; and
planes perpendicular to the axis, z = constant. In these coordi-

nates (1) becomest

2 1 8% 0%
6r2+r 6r+rz 302+6z2

X
{a)

Fia. 91.

We seek an elementary solution of this of the form
v = R(r)0(0)Z(2),
then, substituting (4) in (3), we get
1(d*R 1dR 1 d*0 1 d?Z
ﬁ{‘d‘ﬁ*‘ﬁ? Yo Tz @ =
1 d?Z

It Zaa ™ =0
so that Z = sinh mz
cosh "™
and’ (t) ‘fzg-{-nz =0,
sin
so that 0= cos no,
1dR s N
(5) becomes. 72 + e -+ (m ———r—z)R = 0.

@)

4)

(5)
(6)
M
(8)
9

(10)

1 This result and (13) may be derived either by direct change of variables

in (1) or as in Ex. 29 at the end of the chapter.
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This is Bessel’s equation of order n, and as in § 98 its general

solution is AJ, (mr)+ BY,(mr). (11)
Therefore

O 12 % (AT, (mr)-t BY,(mr)} (12)

satisfies (3) for any values of m and n. There are restrictions
on the possible values of m and n caused by the boundary
conditions (cf. Ex. 30).

In spherical polar coordinates, Fig. 91 (b), a point is speci-
fied by 7,0,¢, and the surfaces of the coordinate system are
spheres, cones, and axial planes. Equation (1) becomes

0f 400 1 of. ,ov 1 v
a—r(r 5;)+m é—e(sm()a—o)—}-m%—z_ 0. (13)
As before, we seek an elementary solution of this of the form
= R(r)0(0)0(¢), (14)

and (13) becomes

—l—i(rzd———R)-i———i—— d( n0d®)+_-l—@=0. (15)

Rdr\ dr] ©sinfdl @ sin?0 dp?
This is satisfied if
1df,dR
R dr( dr) =% (16)
1d%p  _, '
o Wz'l‘m =0, (17)
1 df. ,doO m?
Osind @(smed_ﬂ)—sin%—i-a =0 (18)

where m and « are any numbers.
(186) may be written

d R+2r¢£‘——R—-ch = 0.

It is satisfied by R = Ar¥, where A is a constant, if
v(v+1)—a = 0.
If we write a = n(nt+1),
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which can always be done, we have v = n or v = —(n--1), and
R = (Ar*+ Br—"-1), (19)
where 4 and B are arbitrary constants.
. . cos
(17) is satisfied by D — sin mg.
Finally, putting cos§ = u, (18) becomes
d o 4O m? .
e R e s CEC R CO

which is the associated Legendre equation § 99 (30).

In the above, m and » may have any values, but these will
be restricted when the region in which the equation has to be
solved is known. Thus if it is the interior of the sphere r = a,
m must be integral, since if we add 27 to ¢ the value of the
solution must not be affected. Also » must be an integer, since
if » is not integral the solutions of (20) tend to infinity as
p—>—1 ‘

Thus the solution of (15) appropriate to the interior of a

sphere is cos

AP () g md. @)

Ex. To find the solution of (1) for the region 0 < r < a which takes the
value f(j1) on the surface of the sphere, where . = cos a.
Since the solution is to be independent of ¢, (21) takes the form

ArnB, (),
and the general solution of (1) will be
o0
S A4,r"P,(r). (22)
n=90
On the sphere r = a this has the value
0
> A,a"FPy(u). (23)
n=90

Now if we assume f(u) to be expanded in the series § 99 (28), (29),

© 1
fEy= 2 (DR [ SEORW A (20)
= -1

Comparing coefficients between (23) and (24) gives 4,, and we get
finally ;

v= i (n+3)(2) "Bate) fl F@Pu) du. (25)
n=0 -1 ~
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116. The diffusion equation and the wave equation in
three dimensions
P Po, P 1w,
ot ot 2 kot
v o o 10w
2 oyt ot o A
The procedure is much the same for both, and we consider
only the latter. In the form (2) it has elementary solutions

These are

(1)

and 0. (2)

cos (lrr_x) cos (m"y) cos ("LZ) o8 ot (3)
sin\a/sin\ b /sin\ d [sin
12 mz ,n2 2
Where (a—2+E§ + Eé)ﬂ'z =1 %. (4)

The values of I, m, n will be restricted by the boundary con-
ditions: for example if the solution has to vanish on the planes
z2=0r=a,y=0y=05b2z2=02= d they must be integers.
Each set of values of I, m, n determines a value of w, and w/27
is the corresponding natural frequency.

In cylindrical polar coordinates, (2) becomes

2 lov 18 o 1%

o,y =0, 5
672+ r 6'r+r2 862 ' 022 c? ot? 0 ®)
and elementary solutions of this are
cos [nmz\ cos cos
sin (——l—) sin mB{AJm(aT)—{—BYm(ar)} sin wt, (6)
nir?  w?
where o? +_-lz— =5 (7)

Here, again, o and n are determined by the boundary con-
ditions, and for each value of them w is determined, and /27
is the corresponding natural frequency. ’

In spherical polar coordinates (2) becomes

& 200 1 0 o 1 2 1%
ov, a0 L Oly_ M, - - _C =
or r 6r+'7'2 a,;{( # )6y}+r2(1—p.2) op2  c* o ’
8
where p is written for cosf. As in § 114 we seek a solution
cos
sin

v = R(r)0(6) ®(¢)

© 5298 pd

wl (9)
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of this, and for the region inside a sphere we will have
cos
) = S md,

0(0) = PR(u),
whete m and n are integers, so that the equation for R becomes

@R 2dR | ,fw? n(n+1))
PR R{—— }*0' (10)

c? 72

Putting R = (‘%r)—% Y, (10) gives

Y 1dY | Lfw? (n+PH
T ST TP

c? r2

the solutions of which are J, ;(wr/c) and J_, .p(wr/c). The latter
of these is inadmissible in the interior of a sphere since it tends
to infinity as r > 0. Thus the required elementary solution of (8) is

wr\—% wr cos cos
(7) J,.H(;)P::‘m) % mp % . (12)

As remarked in § 98 (35), the Bessel functions of half-integral
order which occur in (12) can be expressed in a simple form.

Ex. Radial vibrations in the sphere r < a with v = 0 when r = a.
For the case in which the solution is independent of 8§ and ¢, (12) re-

duces to

wr\~? _ {wr) cos 2\t ¢ | wrcos

—) Jl—=) . wt=|=-) —sin— " wt, (13)
c ¢/ sin 7/ wr ¢ sin

by § 98 (35).
In order to have v = 0 when r = @ we must have

L = 1,2,..),
c
and the general solution of (8) for the case is
i A, . (nm') cos (mrct)
—gin{—) {—1}.
r a/sin\ a
n=1

The natural frequencies are nc/2a (n=1, 2,...).
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117. The divergence of a vector and the equation of

continuity

In this chapter, which has dealt mainly with special problems
involving one space variable, vectors have not been used. But
in developing the general theory of any of these subjects in three
dimensions vector ideas are extremely useful, and also they help
to emphasize the connexions between different subjects in which
much the same mathematics occurs, but in different notations
and with rather different points of view.

In deriving the diffusion equation and Laplace’s equation in
§§ 106, 110 the fundamental calculation was that of the amount
of heat flowing into a small region; this determined the rise in
temperature in the region. Similarly, the amount of compres-
gible fluid which flows into a small region determines the in-
crease of density of the fluid in that region. Equations based
on such considerations are called equations of continuity, and
they are most simply expressed in terms of the idea of the

divergence of a vector.
" Suppose F is a vector function of position, and that we take a
small closed surface S surrounding any point P, (x,y,2), in which
we are interested. Let n be a unit vector in the direction of the
outward normal to the surface S at any point, so that F.n is
the normal component of F at the point. Then if dS is an
element of area of the surface at the point,

f j F.nds, : (1)
S

taken over the whole of the surface S, is sometimes called the
flux of the vector F over the surface. For example, if the vector
F were pv, where v is the velocity and p the density of a fluid
at any point, the integral (1) giées the (mass) rate at which
fluid is flowing out over the surface S.

The divergence of the vector F, div F, at the point P is defined
as the limit of the ratio of the flux given by (1) to the volume 8V
bounded by S as this surface shrinks on to the point P, that is

1
ivF = lim — nds. 2
divF alvlf'iosVUF“ (2)
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If this limit exists it will be independent of the shape of the
surface 8. As in all such definitions, there will be pure-mathe-
matical restrictions on the nature of the function F in order that
the limit may exist, but these are in fact simply the obvious ones
that the components of F should be differentiable. Since the
value of div F is independent of the shape of the surface, we may
calculate it for the simplest surface, namely a rectangular
parallelepiped whose sides are the planes x4 8z, y+8y, 248z.
If F, is the value of the component of F in the x direction at
(x,y,2), its value on the face z-+6x will be

BT

neglecting terms in (8x)?%, 828y, etc., and the contribution to the
integral in (2) from the face x—i—Sx will be

4F, dydz 4 = F“ 8x8y8z
The contribution from the face x—8x will be
oF,
—l4 —4 7=
{ F, 8ydz o SxSySz},

and there will be similar results for,the faces y4-8y and z4-5z.
Thus the value of the integral in (2) is

88%83/8{ + —|— }

and, dividing by the volume 8 BxSySz of the parallelepiped, we
get finally F

divF_ + + 3)

The value of div F in terms of its components in the directions
of cylindrical or spherical polar coordinates may be found in the
same way; cf. Ex. 28,

If the vector F is the gradient of a scalar function of position ¢,

so that F — grad 4, 4)
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and by § 72 (26)

_% _% _%
z_ax’ Fy'—"a_?—/: -FI,,"— az’ (5)
. , ¢ o2
3 L A Tl Eih
(3) gives diveradd = T5+ 75+ (6)
For shortness the notation
2 o2
P S __r —
Vi = Fra oy ' o2? ™
is often used, and (6) becomes
divgrad ¢ = V2. (8)

It is in this way that the quantity V3$ which has appeared
so much in this chapter usually arises in applied mathematics.

Considering conduction of heat first, if v is the temperature
at the point P in a solid, the vector

F = —Kgradv

describes the direction and magnitude of the flow of heat at the
point P (this is a generalization of § 106 (1) and may be regarded
as a fundamental assumption based on experimental evidence).
Then the amount of heat flowing out of a small element of
volume 8V containing P in the small time 3¢ is

3VstdivF,
and since this must be equal to the loss of heat from the region
we get —pc 8Voy = 8VtdivF.
That is, in the limit as 8 — 0,
ov .
PO = — divF (9)
= div(K grad v). (10)

This is the equation of conduction of heat in three dimensions
for a medium in which K may be a function of position or
temperature. If K is constant, the right-hand side of (10) be-
comes K divgradv = KV, giving § 116 (1).

The equation of continuity for compressible fluid follows in
the same way. If v is the velocity of the fluid at a point P, and
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p its density there, the mass which flows out of a small volume
8V about P in time &t is
313V div(pv),

and this must also be —8p3V. Equating these we get
% +div(pv) = 0, (11)
which is the equation of continuity.
For incompressible fluid this becomes
divv = 0. (12)

In certain types of motion (irrotational motion) the velocity v
is given by minus the gradient of a scalar ¢ called the velocity

potential that is v = —gradé, (13)
and (12) becomes Laplace’s equation
Vi = 0.
Finally we notice that ¢ = r-1, where r is the distance of the

point (z,y,z) from the point (z',y’,2’), satisfies Laplace’s equa-
tion. For

% _ x—x ﬂ + (x z')?
o 3 ox? ’
and, adding these results, vy = 0. (14)

If V is the potential energy of a particle at P in the field of
a number of centres of force which attract or repel according
to the inverse square law, it follows from § 72 (14) that

V= z ’_r‘—: (15)

the summation being taken over all the centres of force, r, being
the distance of P from the sth centre and y, a constant depend-
ing on its strength. It follows from (14) that

V2V = 0, (16)
that is, that the potential energy satisfies Laplace’s equation.
This holds for potential due to gravitational, electric, and mag-
netic forces. For a continuous distribution of attracting material
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the sum in (15) is replaced by an integral, and the result still
holds provided the point P is not within the distribution.
By § 72 (27) the force P on the particle is

P = —gradV, an
and so, by (16),

divP = —divgradV = —V?V =0, (18)
provided, again, that the particle is not within a continuous
distribution.

EXAMPLES ON CHAPTER XIII

1. The region —a < z < a of the infinite solid —0o < < o is
initially at constant temperature V, and the remainder of the solid is
at zero. Show that the temperature at any point z at time ¢ is
a—x

at+x
PN O 24(,¢)}'

2. Heat is supplied in the plane x = 0 of the infinite solid at the rate
Q per unit area per unit time for ¢ > 0, the solid being initially at zero
temperature. Show that the temperature at the point x at time £ is

QI(xt\Y s x }
RGN oo awert i)
[Combine solutions of type § 106 (10) at times from O to ¢.]

If the semi-infinite solid z > 0 is heated over the plane z = 0 at the
rate Q per unit area per unit time, show that its surface temperature is
2Q(xt)§-

'\)

3. Astring 0 < z < I ofline density o is stretched to tension 1' = ac?.
If it is plucked a distance d at its middle point and then released, show
by the method of Fig. 85 that for 0 < ¢ < I/2¢c the form of the string
consists of a straight portion of length 2ct parallel to the x-axis, which
is joined to the points x = 0 and x = 1 by straight portions of slope
tan—1(2d/l), that is, in the original direction of thestring. For ¢ > 1/2c this
form repeats itself on the other side of the z-axis, and so on. This result
may also be obtained by the Laplace transformation method of § 112.
The Fourier series of § 111 (44) with b = }! is the Fourier sine series for
the above curve at time 2.

4. A particle of mass M is attached to the end ¢ = I of a bar of length/
and area a whose end = = 0 is fixed. If the system oscillates longitudi-
nally, show that the natural frequencies of the system are

E ‘)i
ol garriy)

%V{erf
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where a;, ay,... are the positive roots of
atana = alp/M,

Show that if m = alp is the mass of the rod, and A = aE/l is its stiff-
ness regarded as a spring, the lowest natural frequency is approximately

. . A/(M + fm)}/2m,
if m/M is small.

5. Show. that the natural frequencies of a uniform beam of length !
and weight w per unit length, clamped at both ends, are

a¥( EIg/4n®plt)t,
where o, ay,... are the positive roots of cosacosha = 1.
Show that if the beam is free at both ends, the natural frequencies
are the same as those given above.
Show that for the natural frequencies of a cantilever of length I, the
a, in the above expression are the roots of

cosacosha = —1,

Discuss graphically the nature of the roots of these equations.

6. The surface r = a of a hollow cylinder a < » < b is kept at tem-
perature v;. At r = b the cylinder loses heat into a medium at tempera-
ture v, at a rate proportional to its temperature excess above v,, that is

dv 3
E...{_h(v_vz) =0, r=>5b.

Show that under steady conditions the rate of loss of heat from the

cylinder is b

1-+-hbln(b/a)’

Discuss the behaviour of this expression as b increases from a, and
show that if ak < 1 it has a maximum when & = 1/A, that is, that in
certain circumstances it is possible to increase the heat loss from a
cylindrical surface by covering it with insulating material.

7. Writing y = a+18, 2, = R+:X in the formulae § 109 (21} for the
short-circuit impedance of a uniform transmission line of length I, show
that if z, is real

R = z,sinh al cosh al[cosh?al cos?Bl+ sinh?ad sin2Bl} L,
X = zysin Slcos Blfcosh?al cos?Bl +-sinh?al sin?BIJ-1,
and discuss the general case in which 2z, is not real. )

Find the input impedance (R?-+ X2)t of the line, and show that, if «
is small, it has maxima near Bl = (n+4%)r and minima near Bl = n.

Discuss the input impedance of the open-circuited line in the same way.

8. If the points * = R/z,, y = X/z, are plotted, representing the resis-
tance and reactance of the short-circuited line of Ex. 7, show that the
curves of constant al are circles of centre (coth 2al, 0) and radius cosech 2af,
while the curves of constant I are circles of centre (0, —cot 28l) and

2nK(v;—v,)
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radius cosec 28l. Using this result, charts of coaxial circles can be drawn
from which the resistance and reactance of any line can be read off.
9. A uniform string of line density o and length ! is stretched to tension
T — gc?. It is set in motion at ¢ = 0 from its equilibrium position with
velocity ¢(x). Show that its displacement at any time is
l
2 S 1s'in T sin narct f $(z’)sin naa’ dx’
e n l i ! )
n=1 °
If the string is set in motion by a blow of impulse P applied to a very
short length of the string at * = @, show that the displacement is

[ =]
2P 1. nmx . nma . nuct

weo n i i l
n=1

10. Show that if #(p) is the Laplace transform of (), then e~%7:E(p)
is the Laplace transform of z{¢—a)H(t—a), that is, of the function which
is zero up to time ¢ = a and subsequently bas the values of z(¢) shifted
to the right by a distance a.

11. A uniform bar of length { and unit area has its end « = 0 fixed.
At ¢t = 0, when the bar is at rest and unstrained, a constant tension T
is applied at © = I. Show that the stress at z = 0 is

l 3l 5l
2ol (-2 ().,
and, using the result of Ex. 10, find the displacement at any point of
the bar.

12. The bar of Ex. 11 is struck by a blow of impulse P at = = L.

Show that the stress at * = 0 is

2P{8(t— é)—a(t—%’)Jr...}.

13. A bar 0 < z < I of density p is moving along the z-axis with
velocity — V, when at ¢ = 0 the point z = 0 is fixed. Show that the
stress at z = 0 is

BV om{e- ) yom(e-¥) ).
c c c

This may be regarded as the problem of the collision of two equal rods
moving along the z-axis with equal speeds in opposite directions. Show
that the rods separate after a time 2l/c.

14. Voltage V(¢) which is any function of the time is applied at ¢ = 0
to the end z = 0 of the semi-infinite lossless line x > 0, cf. § 109 (6),
which has zero initisl charge and current. Show that the voltage at the
point z is zero up to time x/c, and is

V(t—z/c) Tort > z/c,
that is, it is exactly the voltage applied at z = 0 delayed by time x/c.
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For the distortionless line § 109 (8) with the same conditions, show that
the voltage at « is zero up to time z/c, and is
e~BzlLeY(t—gfe) for t > x/c,
that is, it has the same form as the applied voltage, but is attenuated
by the factor exp(— Rx/Lc).
15. Given that the Laplace transform of
1—erf[}ax(xt)-*]
is (1/p)exp[—a(p/i)}]), deduce the result § 106 (17).
The region —! < # < lis initially at zero temperature, and for ¢ > 0
its surfaces x = —land @ = [ are kept at constant temperature V. Show
that the temperature at the point x at time ¢ is

< . @n+1)i—z  (2nt+1i+z
%;(-—1) {2—~erf i) Bt }

Use the method of § 112 and the Laplace transform given above. A
solution of this problem in the form of a Fourier series may be deduced
from § 111 (32) or derived independently. The Fourier series converges
slowly for small values of the time and the series given above is more
useful.

16. Discuss the transformation of § 113, Ex. 3, in greater detail and
show that the whole of the z-plane is mapped on the strip —7 < ¢ < =,
—o < 7 < o of the {-plane.

Verify, by writing down its Cartesian equation, that if 7, is constant

r/r’ = em%
is a circle, and show, by writing down its values for the points E, F,
Fig. 90 (b), that if this circle has radius a and its centre is at the point (d, 0),
et = di—a?, atyd—at) ..
a
17. Discuss the nature of the equipotentials v = constant, where u is
the real or imaginary part of the functions
(i) cosz, (ii) In{(z+e¢)/(z—¢c)}, (iii) 1/z.
18. Show that the imaginary part of
V(z+a¥fz),
where V and a are constants, gives a solution of Laplace’s equation
which vanishes on the circle » = a and tends to the value Vy at large

distances from the origin.
19. Show that the ‘bilinear’ transformation

_otf
. T yzt-8’
where a, 8, v, § are constants, gives a one-to-one correspondence between
the z- and {-planes, and that there are just two points which are un-
changed by the transformation.
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Show that it may be built up from the three successive transformations

a Py—od 1
=4z 2y = —, 29 = yz+3.
{ 'y+ y 1= 3 = Y2
Show that each of these transformations possesses the property of
transforming ecircles into circles, 8o that the bilinear transformation will
do so also (straight lines are regarded as limiting cases of circles).
20. Show that the transformation

{ = —iln(z/a)

transforms concentrie circles and radii through the origin, respectively,
into the lines 7 = constant, and § = constant.

Using the result § 111 (12), show that the solution of Laplace’s equa-
tion in the half-ring bounded by concentric circles ofradiica and b, b < a,
and by the portions § = 0 and 6 = = of the z-axis, which has the value 1
on r = a and vanishes on the other boundaries, is

4 i sin[(2s+ 1)81sinh[(2s+-1)(10— )]
™ Ly (284 1)sinh(2s--1)7, ’
8§=

where 7, = In(a/b), 7 = In(a/r).

21. The rectangular corner x > 0,y > 0 is initially at unit tempera-
ture, and for ¢ > 0 its surfaces v =0 and y = 0 are kept at zero
temperature, Show that

z _y_
ot o Jxt) " 2(cd)
satisfies the differential equation and boundary conditions.

92. Show that the normal modes of vibration of a rectangular mem-
brane 0 < z < a, 0 < y < b, fixed at its edges, are

nwEr . My cos

sin —- sin . wt,
a b sin
n2 md w?
where - 2GR =F

Sketch the nodal lines (lines of zero displacement) for the first few
normal modes. :

23. In a cylindrical wave guide of radius g, § 114 (11) in cylindrical
polars has ta be solved with ¢ = 0 when r = a. Show that the solutions
independent of § are of type

elot=v2Jy(ra,/a),

where a, is a root of Jy(x) = 0, and

. W@,

a? c?

Show that this mode is propagated only if w > ca,/a.
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24. The temperature of an infinite circular cylinder of radius a has
the constant value V when ¢ = 0, and for ¢ > 0 its surface is kept at
zero temperature. Show that the temperature at the radius r at time ¢
is

W P ety _olr)
a oy Jaa,)’
n=1
where o, ay,... are the positive roots of Jy(axz) = 0. [Use the result of
Ex. 13 on Chap. XII.]
25. Show that

(@—2' P +(y~y )+ (z~2)
ool - }

Q
c(mct)‘ 4kt

8p

satisfies the equation of conduction of heat and represents the tempera-
ture at (x,¥, z) due to a quantity of heat @ liberated mstantaneously at
the point (z',y’,2’) at ¢ = 0.

Deduce that if a quantity of heat @ per unit length is liberated at
t = 0 along the z-axis, the temperature at (z,y) at time ¢ will be

Q 24
i P (@Y%) At}
268. Show that the solution of Laplace’s equation in the region

0<zx<a,0<y<b0<z<c withv =1 on the surface z = 0 and
v = 0 on the other surfaces, is [using § 94 (7)]

2 sinh l{c—z)sin[(2p + 1)z /alsin[(2¢4- l)wy/b]
z (2p+1)(2g+1)sinhel
p=0g=
(2p+ 1)’#” (29+1)*n?
a? b2 ’
27. Show that, if € is small, the surface

r = a+ePycosf)

where 12 =

is very nearly a sphere of radius @ with its centre displaced a small
distance ¢ from the origin. Show that a function v which satisfies
Laplace’s equation, vanishes on this sphere, and has the value unity on
the sphere r = b, where b < a, is

b(a—7r) eab(r3—b?)
r{a—b) ' r¥(a—b)a®—b?)

Py(cos 8).

28. Show that if F,, F,, F, are the components of a vector F in cylindri-
cal coordinates (i.e. Fy is the component in the direction in which the
point specified by 7,8,z moves if 8 is increased, r and z being kept con-

stant, etc.) 108, oF,
]

divF =2 ( F)+r of +az
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And if F,, Fp, Fy are the components of a vector F in spherical polar
coordinates, show that

1 _oF,
0 20 rsin @ 3¢

29. Using the results of Ex. 28 and of Ex. 20 on Chapter IX, deduce
the expressions-of § 115 (3) and (13) for

V2 = divgradv

leF_. e (r )+ (smOFoH-

in cylindrical and spherical polar coordinates.
30. Show that Laplace’s equation in cylindrical coordinates, § 115 (3),
has solutions of type

cos cos

sin ™ gin n@{AI,(mr)+ BK,(mr)}

in addition to those specified in § 115 (12).

Discuss the choice of solutions appropriate to the ﬁmte cylinder
0<r<a, 0<z<1l Show that the solution of Laplace’s equation
which takes the value 1 on the curved surface of this cylinder and is
zero on the plane ends is

((23—{— l)-n-z) I{(2s+ 1)mrr/l}
Z (2s+ 1) ) I{(2s+1)7mafl}’

31. The free vibrations of air in a sphere of radius a involve the
solution of the equation of wave motion, § 116 (8), with the boundary
condition

o _ =0, whenr =a.
or

Find equations for the natural frequencies, and show that those corre-
sponding to radial vibrations are ca,/2na where a,, # = 1, 2,... are the

roots o
positive roots of tano = o
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NUMERICAL METHODS

118. Introductory

It will be clear from the difficulties which have appeared earlier
that explicit solutions can only be obtained for relatively simple
problems. In many branches of mathematics there is a need for
solutions of important special problems for which exact solutions
cannot be found. For these, numerical methods must be used,
and at the present time a great deal of attention is being paid
to their development.

The methods available fall sharply into two classes, ‘digital’
and ‘analogue’. The analogue methods, which will not be studied
here, depend on replacing the problem of which a solution is re-
quired by an analogous problem (that is, one whose basic theory
involves the same system of equations) whose solution can be
found by measurement. The result can thus only be obtained
with an error depending on the errors of measurement and of the
construction of the system. The analogy between mechanical
and electrical systems has already been studied in § 43. Another
good illustration comes from the solution of Laplace’s equation,
§ 110, in an irregular region: this equation occurs in the theory
of electrostatic potential, flow of heat, flow of electric current,
deflexion of a membrane, etc.; of these the deflexion of a
membrane is easy to measure and from it solutions of the
corresponding problems in the other fields may be obtained (this
is the principle of the ‘rubber table’); alternatively, the voltage
at a point in an electrolyte is easy to measure, so this again may
be used to give the solution of the other problems (the ‘electro-
lytic tank’).

The most important analogue machines in use are the differen-
tial analysers.t These contain only mechanical elements and
depend on the principle that if 8 and ¢ are the rotations of two
shafts connected by a continuously variable gear whose gear

1 Hartree, Math. Gazette, 22 (1938), 342; Crank, The Differential Analyser
(Longmans, Green, 1947); Bush, J. Franklin Inst. 212 (1931), 447.
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ratio f(6, ) is a prescribed function of § and ¢, then

de

"’lz = f (0, ¢)
By combining a number of such variable gears, together with
elements such as gears of constant ratio for multiplying, and
differential gears for adding, the analogues of many ordinary
differentisl equations can be set up. This machine has the great
advantage that it applies to non-linear differential equations.
It can be used for solving partial differential equations by
replacing them by a system of ordinary differential equations
by the methods of §122.

Digital methods involve the carrying out of the processes of
numerical mathematics on digital machines. These are essen-
tially machines to which numbers are supplied by a keyboard
(hence the name digital) and which perform the basic mathe-
matical processes on them; they range from simple desk machines
which form the sum, product, or quotient of two numbers, to the
complicated types such as punched card machines and electronic
*'computers, in which long sequences of these processes are carried
out automatically. All such machines have the property that
the accuracy obtainable from them is limited only by the number
of figures they can hold; thus they are suitable for calculating
functions to a large number of significant figures at fairly widely
separated intervals. The numerical methods described below are
required in the process of calculating functions in this way and
of using the results when calculated.

The basic theory consists of a number of formulae, essentially
due to Newton, for interpolating and extrapolating from a set
of tabulated values. From these, formulae for the differential
coefficient and integral of a function given in this way can be
found. These formulae can then be used in various ways for the
solution of ordinary and partial differential equations, the com-
monest method being to replace the differential equation by a
difference equation, which is in effect a set of algebraic equations
for the values of the solution at regularly spaced points. Relaxa-
tion methods are one way of solving such a set of equations.



416 NUMERICAL METHODS CH. XIV

It must be emphasized that most of the processes given below
are intended to be carried out on a desk calculating machine, the
simplest type will suffice: without such a machine the work is
disheartening, but with one it is extraordinarily rapid. Needless
to say, also, such work abounds in short-cuts and tricks which
are well worth learning if a great deal of numerical work has to
be done but not otherwise.

119. Interpolation

Suppose we know the values ..., Y1 Yo» Y1, Y2»-.. Of & function
at regulart intervals b of its argument, say at the points ...,a—5,
a, a-+h, a+2h,.... The object of interpolation formulae is to
estimate the value of the function at intermediate points, say
a+-60h where 8 is fractional, as accurately as possuble in terms
of the given values.

We define
Ayn =Yn+1 " Yn (1)
Azyn = Ayn+1—Ayn = Yns2— 2Yn1t Y (2)

Asyn = Azyn+l—A2yn = Yn4s— 3yn+2+3yn+1~yn’ (3)

these are called the first, second, third,... forward differences of
Y, To find them we build up a table, called a difference table,
by first writing down the values of the function, subtracting
each of these from the following one to form the first differences,
and entering these in the lines between the values of the func-
tion; treating the first differences in the same way to form the
second differences, and so on. The result is shown schematically
in Table I.

It should be noticed also that (1), (2), (3) can also be used to
obtain values of the funection if the differences are known. For
example, if y,, Ay,, A%,, A%y, A%y, along the diagonal line in
Table I are known, we have y;, = y,+ Ay,, and so on, and can
fill in the part of the table below this line down to y,. If, in
addition, the subsequent fourth differences A%y, Aty,,... are

t For further theory see Whittaker and Robinson, The Calculus of Observa-

tions (Blackie, 1924); Milne, Numerical Calculus (Princeton University Press,
1949). They give corresponding formulae for unequal intervals of the argument.
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TABLE 1
Differences
Argument | Function First Second Third Fourth
a—4h Y_a
Ay_,
a—3h Y_s Awy_,
Ay, A%y,
a—2h Y_a A%y g Aty _,
Ay_, A%y,
a—h Y Aty_, Aty_,s
Ay, As B3y 4 At
a Yo _eRY Y s
\\Ayo<‘ - Asy_y"
a+h % \A’Zlo\ Aty ,
Ay, \A’yo\
a+2h Y, Ay, —Aty,
Ay, Ay,
a+3h Ys Ay,
Ay,
a+-4h Ya

known, the values ¥s, ¥, of the function can be found. This
process is known as ‘building up’. '

In Table I1, values of cosx at intervals of 0-1 of x have been
taken from tables and formed into a difference table.t In such
a table the number of places of decimals is always known (in this
case five) and labour is saved, and the results made much easier
to read, by omitting the decimal point and any noughts between
it and the non-zero figures.

+ A number of important practical points may be referred to briefly here.

(i) Rounding-off errors. The values in Table IT have been taken from a
fifteen-place table and ‘rounded-off’ by taking the nearest five-decimal number
to the one tabulated. Thus their last figures may be in error by as much as
0-000005, and the possible errors in the successive differences increase steadily
(cf. Ex. 2) and eause the fluctuation in A% in the table. These errors, called
‘rounding-off errors’, always make the last figure unreliable, and for this reason
calculations are always made with one, or better, two more figures than are
required in the result. These extra figures are called ‘guarding figures’.

(ii) Checking tabulated values. An error in the tabulated values of a function
will show up readily in the higher differences (cf. Ex. 3).

(iii) Checking. It is not desirable to check a calculation by repeating it since
it is easy to repeat the commonest type of error (ef. Ex. 3). If possible an
independent check should be devised: for example, Table IT should be checked
by reversing the process and working backwards from the fourth differences
to the values of the function.

52968 Ee
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TABLE 11
x cos z A Ar A At
0-0 1-00000
— 500
01 0-99500 —993
—1493 o 13
02 0-98007 — 980 12
— 2473 25
03 0-95534 — 955 10
—3428 35
04 0-92106 —920 9
. —4348 4
[113:1 0-87758 —876 6
— 5224 50
0-6 0-82534 — 826 13
— 60580 63
0-7 0-76484 —763 3
—6813 66
0-8 0-69671 — 697 10
—17510 76
09 0-62161 —621
—8131
1-0 0-54030

The differences of a polynomial are of great importance in the
theory, and we consider first the special polynomial [6]" of degree
7 in 6 called the factorial polynomial which is defined by

(6] = 6(6—1)...(0—n+1), (4)

with []° = 1. This is connected with the general binomial
coefficient for non-integral 8 by the relation

(o) _8(6—1)...0—n+1) 2%[9],,. %)

n n!

The importance of these polynomials arises from the fact that
their differences, for unit differences in the argument 8, have a
very simple form. Thus

A[f]* = [0+1]"—[6]
= (0+1)0(6—1)...(6—n+2)—08(8—1)...(0—n—+1)
= n[f]*-L (6)
The analogy between the result (6) and the formula for the
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differential coefficient of z” is the reason for the choice of the
notation (4). It follows from (6) that

A0 = n(n—1)... n—r+1)[0]", (7
A"[6]* = n!. (8)

Thus the nth differences of [#]* are constant, and since any
polynomial of degree » can be expressed in the form

a,,[a]"+a,,_l[0]"—l+ ...+a1[0]+a0, (9)

where a,,,..., o, are constants, it follows that the nth differences
of any polynomial of degree n are constant.

The Gregory-Newton formula. This is the fundamental for-
mula of interpolation. Suppose that the values y,, ¥,,..., ¥, of
the function at the points a+6k, § = 0, 1,..., =, are known, and
that we wish to estimate the value of the function at a point
a-+6h, where 0 is fractional. To do this, we find the polynomial
f(a+-6h) of degree n which passes through the n+1 points

(@,y,), (@+h,y),..., (a-+nh,y,)

and take the value of this polynomial at the intermediate point
a-+6h as our estimate of the function there. This function
f(a+6h) will be called the interpolating polynomial.f

Instead of proceeding in the obvious way, that is by assuming
a polynomial in 6 for f(a+6h) and determining its coefficients
from the result f(a+rh) = y,, r = 1, 2,..., n, it is simpler to take
f(a+06R) as a linear combination of factorial polynomials as in
(9) and to determine the coefficients in this from the relation
Arf(a) = A7y, r = 1,..., n. Since, as remarked earlier, the values
of y3,..., ¥, are determined by the values of y,, Ay,,..., A"y, this
leads to'the same result.

Taking f(a+-6k) in the form (9) and differencing this »n times,
using (6), (7), or (8) and remembering that a step of & in the

t The term interpolation will always be used here in this sense; strictly the
process is ‘ polynomial interpolation’ and is the most common but by no means
the only method of interpolation; thus, for example, Exs. (9) and (10) of
Chapter XI are formulae for trigonometric interpolation.



420 NUMERICAL METHODS CH. XIV

argument a+-6h of f(a--6h) corresponds to a step of 1 in 6, gives

Jle+6h) = g0 [ 0]+ op[ 0] +.ta, [0, (10)
Af(a+-6R) = o +20[0]4 oo t-n0,[0]7 2, (11)
A%f(a+-60h) = 205 +...4n(n—1)o,[0]*2, (12)
Arf(a+6k) = n!la,. (13)

Putting § = 0 in these we get
% = f(a) = y,; oy = Af(a) = Ay,; (14)

1 1 ) 1
Qg == —2—-!— A2f(a,) = E!_ A2y0; eeey oy == ’;",_Y Anyo,
and using these results and (5) in (10) gives finally
g 0
Sla-+6k) = g0+0Ayo+(2)A2yo+...+(n)A"yo. (15)

(18) is the Gregory-Newton formula, and its value for frac-
tional 6 gives the interpolated value of the function. For
example, to calculate cos 0-22 from the values in Table II we
have, taking a = 0-2, § = 0-2,

g g 6 9
(1) = 0-2, (2) = —0-08, (3) = 0-048, (4) = —0.0336,

and 8o, using the differences in Table II,
cos 0-22
= 0-98007—0-2 % 0-0247340-08 X 0:00955-0-048 x 0:00035
= 0-97590.

The accurate value is 0-975897.... Tt is usually most con-
venient, but not essential, to choose the starting value a so that
@ is less than unity, as was done above.

The Gregory-Newton formula is fundamental, but it is not
always the most convenient since the differences involved in it
run down the sloping line in Table I. In practice a table, e.g.
Table II, has a beginning and an end; at the beginning, the line
of differences runs downwards and the Gregory-Newton formula
which involves the first of each column of differences must be
used ; at the end of the table the differences slope upwards and
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there is an appropriate formula (‘Gregory-Newton backwards’;
cf. Ex. 7) which must be used; at any point in the middle of the
table, and this, of course, comprises the vast bulk of it, while
either of the above formulae still can be used, it clearly would
be more convenient to have formulae which mvolve differences
in the same horizontal line.

The first step in this direction consists in deducing a formula
involving the differences running in the zigzag dotted line shown
in Table I. This is the Newton-Gauss formula

fla+-6h) = yo+( )Ayo+( JIS

.;_(9‘“) _1+(0+1)A4y yFoe. (16)

The first few terms of (16) may be derived from (15) by
substituting ‘
Atyy = Ny +A%.,, A%y, = Ay, +A%y
etc., and using (17). There are many general proofs.
If we eliminate the odd differences in (16) by using

Ayo = 1—Yo OB%_y = A%,—A%_,, APy, = Aly_,—A%_,,...
" and use the relation
0+1\ [ @ 0
L)L
(16) becomes
9 2
fa-+6m) = (1—0>yo+("+ 1)Mm—( +2 )A4y -

+0y1—(§)A2y-1~(04g1)A4y_2+.... (18)

These formulae are rather more simply expressed in the cen-
tral difference notation which we now define. This notation is
also the one most commonly used in applications, but it is used
in conjunction with the forward difference notation A and does
not supplant it. The notation is

81:’/n.+} = Ayn =Yn+1—Yns . (19)
8%y = 04— 0Wny = AYn—DYn1 = Yn1—2Yn+¥Yn-1, (20)

and so on.

.
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In this notation Table I becomes

TABLE 111

Y_a 8%y _, 8y _s
dly_y 8%y

Y 3%y _y *y_y
3ly_y 3y g

Yo 8%y 3y,
'Yy 3%y i

Y 8%y, 3y,
Styy Say;

Y2 3%, 3y,

where, now, quantities in the same horizontal line have the same
suffix.

In addition the unoccupied places in the table may be filled
in with the arithmetic mean of the quantities above and below
them. The prefix p is used to indicatet quantities derived in this

veys thus sy, = o) = Hon-y), @D
p8%y = 8%, +8% 4},
pd%y, = H8%:+8%0},

etc Using this notation (18) becomes

fla+om) = 1= (3) sy~ (") o9+

6+1 0+2
+6y1+( T )82y1+( t )84y1+-.-- (22)
Putting ¢ = 1—0 and using (5) this becomes for 0 < 8 <1

Jlath) = dyo 4 LD gy SOV D g

( be—1)@—4) 5,

+6y, + 1) 3%y, + =0

(23) is Everett’s formula., which is the one most commonly
used for interpolation from tables when a large number of figures
is needed. Numerical values for the coefficients in it are pub-
lished to facilitate its use. It only requires the even differences
in the same horizontal line for two values of the argument.

. (23)

1 In complete treatments of the subject the quantities § and u are defined,
following Sheppard, as the operators

Yn = Ynit~Yn-p  HYn = HUniytUn_y)
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Thus the values of cosx given in tables would read

z cos x 52 &
0-20 0-98006 658 — 979 250 9783
0-30 0-95533 649 —054 541 9 539

And, using these values with 8 = 0-2, ¢ = 0-8, (23) gives
co8 0-22 = 0-97589745 which is the accurate value.

Finally it should be remarked that though we have always
spoken of the Gregory-Newton formula as an interpolation
formula it can also be used for extrapolation beyond the begin-
ning of the table—with a corresponding loss of accuracy, of
course. Thus changing the sign of 8 in (15) gives

fla—th) = yo—0ago+ X pry oy

+(—1)"0(0+1) 15?*" D ang,. (24)

For extrapolation beyond the end of a table, the s1mplest
result is given in Ex. 8,

120. Differentiation and integration

Suppose, as before, that the function is tabulated at the points
a-+rh, r = 0, +1, ete., and that we wish to find its derivatives
in terms of either the tabular values or their differences. We
interpolate between the values by the polynomial f(a+6k) of
§ 119 and find the derivatives of this function by differentiating
the formulae of §119. Thus differentiating the Gregory-Newton
formula §119 (15) gives '

hf(@+0k) — Agy+3(20—1)A%y, -+ §(302—60+2)A%,+ ..., (1)

REf"(a-+0h) = A%y +(0—1)A3y,+.... (2)

These formulae are most useful near the beginning of a table.
Usually it is the values at the tabulated points that are needed,
and these may be expressed in terms of either the differences,
or the tabulated values, as desired. Thus

Bf'(@) = Ayo—3A2y+ 3034+ ..., (3)
= H—3yo+4y1—¥2)+30%0-., (4)
hf'(a-+h) = Ayy+3A%,— A%+ ..., (6)

= H—Yo+Y2) — 0%+ ... (6)
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For calculating derivatives at points in the body of a table,
results expressed in central difference notation are a little
more useful. Differentiating the Newton-Gauss formula § 119
(16) gives

hf'(a+0h) = Ay,+3(20—1)A%_,+3(362—1)A%_, +
| 45469 —662— 20+ 2)AYy_,+..., (7)

R¥f"(a+4-6h) = A%_;+0A%_,+4(1202—120—2)A%y_,+.... (8)

Putting § = 0 in these gives results for the derivatives at the

point @ which may be put in many different useful forms.

hf'(a) = Ay,—3A%y_ —3A% _ +HA% o+ ...
= %{A.’/o'f‘Ay —1} ’—112{/33?/—1 +A3y —2} +..

= pdlyy—4udyo+dud®yo—-.. 9)

= Hy1—¥-1)— (3%, — 3% 1) +45(8%; — 8% _,)—... (10)

= 31— Y)W~y ) T84y, — 8%y ) —..., (11)
Rf"(a) = APy_y—HA% o+ :

= 0%o—150"Yo+00°Yo— - (12)

= (¥1— 240+ Y1) —15*Y0+ %0 — .- . (13)

For integration, suppose, as usual, the function is specified by
its values ..., y_;, ¥, ¥1,... at the points a+-rh. The integral is
taken to be the integral of the interpolating polynomial f(a+6k)
of § 119 between appropriate limits. The most useful results
come from taking the limits symmetrical about the point a.
Thus, using § 119 (16),

a+h 1

f fla+0h) dw = h | f(a-+6h) b
a—-h -1

= 2h{yo+4A% 1 —1hA'y 5+ ..}
= 2h{yo+35%0— kS0 + -}
= (Y1 +4yot+y1)—dsh Syt (14)
This is Simpson’s rule including a correction term involving
the fourth central difference. Similarly,

a+2h

[ fla+6m) dz = h(2y_s—yo+201)+ 14k Styo—....  (15)
a—2h
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It should be noticed that (15) does not involve the ordinates
y, and y_, at the ends of the interval, but that the fourth differ-
ences are much more important in it than in (14).

121. Ordinary differential equatiohs

The problem is to solve a given equation with initial of
boundary conditions which are given numerically. Suppose,
first, that we have to solve the first-order equation

W — gw.y) 1)

with y = y, when & = 0. S

We choose an interval & at which we wish to tabulate y, and
the process of solution consists of calculating successively the
values ¢;, ¥y, of y at the points h, 2h,.... The choice of the
interval & is of considerable importance: if small intervals are

_chosen, relatively simple formulae which ignore higher differences

‘may be used at the expense of the increase of labour involved
in calculating many points; on the other hand, if relatively large
intervals are used, allowance must be made for high differences
and the procedure becomes more involved.

Whatever method is used, the first step consists of calculating
the values of y at anumber of the early pointsk, 2k,... (the number
of values needed depends on the method, and varies from one
to three). This may be done by forming the Taylor series for y,
or if this is not convenient other numerical methods are avail-
able. When these values have been calculated, they areextended
by an extrapolation formula which may be derived by either of
two general methods: (i) replacing the differential coefficient in
(1) by an expression in finite differences, or (ii) by integrating
equation (1) and using one of the integration formulae of §120.

There are many methods suitable for serious computation; of
these the Milne-Simpson method given below is probably the
simplest, and another, the Adams—Bashforth, is given in Ex. 19:
these are both of the second type referred to above. We give
first a very simple method of the first type to illustrate the ideas
involved and the way in which errors arise: this follows from
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the result § 120 (10), namely

h(%)r = 3ra1—Yr) — 808%,+ .. 2)

Neglecting the third differences, this gives

d
Yre1 = Yr- 1+2h(d1/)

= y,_1+2hg(7‘h, yr)’ (3)

if y satisfies (1). Thus if y,_, and y, are known, y,,, can be
calculated, and so on.

d
Ex. To solve ‘_l% =Ytz (4)

with y = 1 when x = 0, at tntervals of 0-1 in x.

Before the process (3) is started the value y, of y at = 0-1
has to be calculated. Asremarked above, thisis done by forming
the Taylor series for y. It follows by differentiating (4) that

d%y dy d%
dx? +dx dz® ~ da?’ o
and therefore

y= yo+x(gx) + 3 ( ) 3,(3;) +.

= l4ota*+ x3+ x4+ (5)

Using this series with « = 0-1 gives y, = 1-1103, and then
(4) gives 1-2103 for the value of dy/dr when x = 0-1. Then
using (3) with » = 1 gives y, = 1-2421 and so on. Continuing
in this way gives the values entered in Table IV.

The values of the differences of y are also given in the table,
and these provide an indication of the error. Third differences
were neglected in (3), and since they enter the third place of
decimals it is likely that the solution will be in error at least to
this extent. The accurate value for z = 1 is 3-43656.... One
disadvantage of simple methods such as this is that it is difﬁcult
to estimate the error.
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TABLE IV
z  |g(zy)=zty y Ay Ay | A%

0 0 1 1

1103
1 01 1-2103 1-1103 215

1318 33
2 02 1-4421 1-2421 248

1566 17
3 03 1-6987 1-3987 265

1831 37
4 04 1-9818 1-5818 302

2133 22
5 05 22951 1-7951 324

2457 44
6 06 2:6408 | 2-0408 368

2825 29
7 0-7 3-0233 2-3233 397

3222 50
8 0-8 3-4455 2-6455 447

3669 40
9 09 39124 30124 487

4156
10 1.0 3-4280

The Milne—-Simpson method

Writing ¥, and g, for the values of y and g(x,y) at the point
x = rh, and integrating (1) from z = rh to x = (r-+4)h gives,
using § 120 (15),

Yrra—Yr = $h(20, 11—y 2297 13) +4h 39, 0. (6)

Neglecting the fourth differences, this can be used to give ¥,,,
if the values of  up to y,,, are known. This extrapolated value
may be made more accurate as follows: using Simpson’s rule,
§ 120 (14) in the same way gives

Yriea—Yreze = %k(gr+4+49'r+3+9'r+2)—§16h 34g,.3- (7)

(7) will give more accurate results than (6) if in both cases we
neglect the fourth differences, since the term involving these in
(7) is 1/28 of that in (6). But (7) cannot be used immediately
to calculate y,., since it involves the unknown g,,,; however,
if we take the value of g,,, calculated from (6) as a first approxi-
mation, and use this in the right-hand side of (7), we get a more
accurate value of y,,4.
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TABLE V |

x|y (corrected) | g (corrected)| 1y (estd.) g (estd.)

0 1-00000 1-00000
0-1 1-11034 1-21034
0-2 1-24281 1-4428]1
03 1-39972 169972
0-4 1-58365 1-98365 1-58364 1-98364
05 1-79744 1-79743 2-29743

The process is set out in Table V for the equation (4) discussed
previously. yq,..., y; are found from the Taylor series (5), and
915+, 93 are calculated from them. Then (6) with » = 0 gives
the estimated value y, — 1-58364 with the corresponding
94 = 1-98364; using this value in (7) gives the corrected
¥4 = 158365, and so on. The fact that the correction is only
one in the fifth place indicates that the full power of the method
is not being used, and we could either have calculated to more
places of decimals or increased the interval 4. Clearly the
method gives a substantial increase in accuracy over the cruder
one discussed earlier without a great increase of labour.

Considering next the second-order equation

dy dy)

3?2 = g(xsy,% y

(8)

we may either replace the derivatives by differences using § 120
(10) and (13), or we may replace (8) by the pair of simultaneous
first-order equations

dy | A

T = Y, (9)
dy :

“z; = g(x::% Y): (10)

which may be solved by an extension of the methods given
above. For example, using the Milne-Simpson method, y,, ,,
Y2 Y3 and X;,..., ¥; are found from a Taylor series and g,;..., g,
are calculated from them. Then, using (6), ¥, is estimated.
Using this result and (7) y, is estimated, and then an estimated
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g, is calculated. Using this and (7) gives the corrected Y,, and
then the corrected y,. The first two steps of the solution of

d2
ﬁé‘*‘ 4y =0
with y = 1, dy/dz = 0, when = 0 are given in Table VI.

TABLE VI
z v Y g y (estd.) Y (estd.) g (estd.)
1] 1:00000 0 —4-00000

0-1 | 0-98007 | —0-39734 | —3-92028
0-2 | 0-92106 | —0-77884 | —3-68424
0-3 | 0-82534 | —1-12928 | —3-30136
0-4 | 0-69671 | —1-43472 | —2-78684 | 0-89671 | —1-:43453 —2-78684
056 | 0-54030 | —1-68204 0-54031 | —1-68278 | —2-16124

One very important point remains to be mentioned. In the
earlier chapters the distinction between initial value problems
and boundary value problems was stressed. This distinction
persists into the numerical methods for their solution. The
problem treated above was an initial value problem, and the
method used, described as a step-by-step method, was clearly
an appropriate one for it. But in a boundary value problem the
values of both y and dy/dx when z = 0 would not be known,
for example dy/dx might not be known. To solve such a problem
we would have to calculate solutions for various assumed values
of dy/dx until we found one which satisfied the other boundary
conditions. This process, though practicable, is laborious, and
it will be seen in § 124 that relaxation methods are more suitable
for boundary value problems.

122. Partial differential equations

Suppose we are given a partial differential equation in two
variables such as those of § 105. It will have to be solved in
some region such as the ‘open’ region of Fig. 92 (a) or the ‘closed’
region of Fig. 92 (b).

We wish to calculate the values v,, , of the solution v at each
pointt x = mh, y = nh, of a rectangular mesh such as that in

+ There is no need for the intervals k in = and y to be the same: the modifica-
tions to be made if they are not are obvious.
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Fig. 92 (b). The usual method of solution consists of replacing
the partial derivatives by partial differences, and first these
latter have to be defined.

Partial differences with respect to = (that is, ¥ being kept
constant) are denoted by a suffix z, so that

(Avm,n ):c = Un+1,n " Vm,n- (1)
Simlla’rly s (A'vm,n)y = Vman+1— Vmn- (2)
t y
P4 x
(a) (6)
F1a, 92.

Clearly, with these additions, the whole of the results of § 120
can be taken over and, in particular, from §120 (10) and (13)

0
h(ég) = %(vnﬂ-l,n"’vm—l,n)—%(F‘Savm,n)x-*_ ens (3)
mn v
of PPV 1(88
k a_:;é = m+1,n_—2vm,n+vm—1,n_i§(8 vm,n)x+"" (4)

o% %
hz(“—) + hz(_—) = vm+1,n+vm—l,n+vm,n+l+Um.n—1—
mmn mn

ox? oy?
__4vm,n_i1§(84vm,n)z_°Tlﬁ(s‘ivm,n)y"' . (5)
It follows from (5) that, neglecting fourth differences, Lap-
lace’s equation 2 %
PR )
becomes
vm+1,n+vm—1,n+vm,n+1+vm,n—1_4vm,n =0, (7)
that is, the value of v at any point is the arithmetic mean of the
values of v at the four points nearest to it.
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A distinction similar to that mentioned at the end of § 121
between initial and boundary value problems for ordinary dif--
ferential equations again appears. Equations of elliptic type
such as (6) have to be solved in a closed region such as Fig. 92 (b)
and relaxation methods are the most suitable for this. Equa-
tions of hyperbolic and parabolic types such as § 105 (1) and (2),
on the other hand, have to be solved in an open region such as
Fig. 92 (a) and step-by-step methods have to be used for these.

 As an example of the latter we consider the equation of con-

duction of heat v lov

—— == 8

oxt kOt (8)

in the region 0 < & < 1, ¢ > 0. Using (4) in this, neglecting the
fourth differences, and taking for év/ot the crudest possible

value, namely o
T('a_t) = (vm,n+1 - vm,n) ’ (9)
mn .

where 7 is the interval in ¢, and the first suffix refers to z and

the second to ¢, gives
23

U+l 2vm,'n+vm—1.n - ; (vm,n+1 _'vm,n) =0. (10)

If the intervals A in 2 and 7 in ¢ are connected by

h?® = 2«71,
(10) takes the specially simple form
Vmn+1 = %(vm—l,n+vm+l,n)’ (ll)

that is, the temperature at any point at time ¢} is the arith-
metic mean of the temperature at the two neighbouring points
at time ¢. This result is known as Schmidt’s method; it is very
simple to use either numerically or graphically.

123. Solution of equations

In the course of this book many equations have occurred
which have to be solved numerically; these have usually been
frequency equations and may be either algebraic or transcen-
dental. Various methods for the numerical solution of such equa-
tions are given in text-books on algebra [cf. Whittaker and
Robinson or Milne, loc. cit.], but from the present point of view
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it is simplest to regard the finding of real roots of both types as
a problem of inverse interpolation, that is, if we have to solve

fl@) =0, (1)
we tabulate y = f(z) at suitably chosen points and have to find
the value of z between two of these at which the function takes
a given value, namely zero.

o1 N\~ P x,+h

13
o Xnet X Xo \ly\,
(b)

(a)
F1a. 93.

The first stage, then, is the approximate location of the roots
of the equation from a rough table and graph. The root is then
- located as precisely as desired by a process of iteration or suc-
cessive approximation. This may be either controlled, as when
an iteration formula is applied successively, or discretionary,
in which case the computer uses his judgement.

" The simplest example of an iteration formula is Newton’s,
which states that if z, is an approximation to a root of the
equation (1) and y,, and y,, are the values of y and its derivative '
at x,, then v
Tpiy = Tp—27 (2)

n

is a better approximation. This is obvious from Fig. 93 (a). The
formula (2) is then applied successively until the desired accu-
racy is attained. There are many similar simple formulae.

As an example of a simple discretionary method which is
particularly useful when dealing with functions which are tabu-
lated, suppose that y, and y, are the values of y at the points
%, and xy+h; then for the case y, > 0 and y, < 0 it follows
from Fig. 93 (b) that if the function ran linearly between these
two points it would vanish at P which is z,-}«h, where

o= Yo . 3
Yo+ 191l )
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Two convenient points on either side of xy--ah at which the
function is tabulated are then selected and the process repeated.
The solution of tanx—2z = 0 is entered in Table VII.

TABLE VII
x tan z— 2= Approx. sol.

1-1 —0-2352

1-2 0-1722 1-158
1-155 —0-0452

1-185 —0-0025 1-1656
1-1654 —0-0007

1-1656 0-0001 1-1656

124. Relaxation methods
These methods were originally developed by Southwellf for
the determination of stresses in frames, and subsequently ex-
tended to cover ordinary and partial differential equations. The
basis of the method is a very flexible iteration procedure for
solving a system of » linear algebraic equations in » unknowns.
To illustrate, consider the equations

82, —xy+23—200 = 0, (1)
2, —102y+422,—112 = 0, (2)
— 2, — 22,4 623—81 = 0. (3)

We wish to solve these by a process of successive approxima-
tion, that is, to find values of z,, z,, x; which will make the left-
hand sides differ by an arbitrarily small amount from zero.
Denote the differences of the left-hand sides from zero for any
values of x,, z,, 23 by R,, R,, R, so that

8x, —x,+x3—200 = R,, (4)
2, —10z,+2x,—112 = R,, (5)
— 2z, —2x5+ 63— 81 = R, (6)

These quantities R, R,, R; are called the residuals, and the
method of solution consists of changing x,, x,, z; systematically
until the residuals are sufficiently near to zero. It is convenient

1t Relazation Methods in Engineering Science (Oxford, 1940); Relazation

Methods in Theoretical Physics (Oxford, 1946).
5296 Ff
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for this to construct a table showing the changes 3R in the
residuals caused by unit changes in x,;, z,, and x;. This runs as
in Table VIII.

TABLE VIII
SR, SR, 5B,
8z, =1 8 1 —2
Sy =1 —1 —-10 -2
dry = 1 1 2 8

In its simplest form the method consists of assuming initial
values of z,, x,, ; which may be an obvious approximation if
one exists, otherwise they are taken all to be zero. The residuals
are then calculated, and the x associated with the largest resi-
dual is changed in such a way as to make this residual nearly
Zero.

TABLE IX
x, z, Ty R, R, Ry
0 0 0 —200 —112 —81
20 0 0 —40 —92 —121
(1} (1] 20 —20 —52 -1
0 -5 (] —15 —2 - 9
2 0 0 1 0 5
0 0 -1 0 —2 -1
22 -5 19 0 —2 -1
0 0 0 0 —200 —100
0 —20 0 20 0 —60
0 0 10 30 20 0
—4 0 0 -2 16 8
0 2 0 -4 —4 4
0 0 -1 —5 —6 -2
0 ~1 0 —4 4 0
-4 —19 9 —4 4 0

If we take all the z to be zero initially, R,, R,, R, given by
(4)—-(6), are —200, —112, and —81. These values are entered
in Table IX. The largest residual is B, = —200, and it appears
from Table VIII that a change of 20 in z, will reduce this to —40
and will increase R, by 20 and R, by —40. These results are
entered in the second row.
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Note that there is no point in reducing the residual accurately
to zero: the great thing is to choose as simple figures as possible
at any stage so that the arithmetic may be performed quickly
and accurately.

The largest residual is now R, = —121 and, by Table VIII,
a change of 20-in z; reduces this to —1 and adds 20 and 40 to
R, and R, respectively. This gives the third row of Table 1X,
and the process is continued until in the sixth row the residuals
are reduced to one or two units. At this stage it is wise to add
the changes in the # to get their final values and to check that
these values of x do give the residuals on the right. This is done
in the seventh line of Table IX. We notice that this line is
equivalent to the statement that, if we write »; = 422,
x, = x3—5, 3 = x3-+19, (1) to (3) become

82y —xp+x3 = 0, (7)
3 —10x3+2x5—2 = 0, . (8)
— 2 —2x,+6x5—1 = 0. (9)

Since it is always convenient to work with whole numbers only,
we form the equations whose roots are 100 times the roots of
(7) to (9). These are

8 —af+a§ = 0, (10)
x]—10x5+2x5—200 = 0, (11)
— 27— 2x5+623—100 = 0. (12)

To solve these we start with z] = 23 = x5 = 0, the residuals
being 0, —200, and —100, and proceed as before. Thus, fo get
another two places of decimals at any stage we multiply the residuals
by 100. This is done in the second part of Table IX and to this
order the solutions are
2, = 21496, =z, = —519, a3 = 1909,

the last figures being unreliable. If further accuracy is required
we again multiply the residuals by 100, giving —400, 400, 0
and continue the process.

There are many methods by which these processes may be
shortened; also it should be mentioned that there are types of
equation for which the method in the simple form given above
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is not suitable (in such cases the residuals will be found to
diminish slowly or to oscillate) and special methods have been
developed to handle these.

In applying these methods to the solution of ordinary or
partial differential equations, the differential equation is re-
placed by a difference equation, and the set of algebraic equa-
tions so obtained is solved by the process given above. Usually
the simplest difference equations, neglecting higher differences,
are used, so that to get reasonable accuracy the interval & must
be taken to be fairly small.

As an example suppose that we wish to solve Laplace’s equa-
tion, § 110 (1), in a square ABCD, with » = 100 on AB, and
v = 0on BC, CD, DE. Taking h = }A B, we know that v = 100
at each of the points in 4B, and v = 0 at each of the points in
the other sides. The difference equation is § 122 (7),

Um+1,n + Vm-1,n + Y+l + Vmn-1—" 4vm,'n = 0. ( 1 3)

This equation has to be satisfied for each internal point of the
square. We write

Rm,n = vm+1,n+vm—l,n+vm,'n +1+’”m,'n—1_ 4vm,n (14)

for the residual corresponding to v,,,, and proceed as before to
reduce these residuals to zero. First we assume values of v at
the points P, @, R, 8, which we may take to be zero; these
values are written to the left of the vertical through the point
concerned. The corresponding residuals are calculated from
(14) and entered to the right of the corresponding vertical. The
residuals at P and @Q are 100, and those at R and S are zero.
We now proceed as before to reduce the largest residual. By
(14), a change of 25 at P reduces the residual there to zero, and
adds 25 to the residuals at R and . Thus we enter 25 against v
at P, and change the residuals at P, @, R to 0, 125, and 25,
respectively. Note that, to save writing, only the changes in v
and the new values of the residuals which change are entered.
A change of 35 in v at @ makes the residual there —15 and
increases the residuals at P and S both to 35. Proceeding in
this way we get the result of Fig. 94: at R and S the values of v
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are both 12, and at P and @ they are both 37, all the residuals
- being 1.

As usual, these residuals should be checked. The accurate
values, calculated from § 111 (12), are 11-9 at R and S, and 38-2
at P and @, so that the results above are surprisingly accurate
considering the large mesh taken.

D (4 [4 C
1
9 1
7 -1
- -3
2las 45
! 10|28 12|38
o olo ol 0 o
R|1 S
-1 1
7 -1
5 7
2|-s -5
10|35 2|-15
25l0 aslizs
[} o Jroo olroo o
I 4 Q
A 100 100 B
F1c. 94.

As a second example consider the solution of Laplace’s equa-
tion in the L-shaped corner of Fig. 95, the value of v being 100
on the face A BC, and zero on DEF. For simplicity of demon-
stration we take only one row of points between the faces as
shown. Away from the corner, it is known that v varies linearly
between the faces, so we may assume v = 50 for the initial
values (there is no objection to taking ¢ = 0 as before, but if
there is an obvious approximation as in this case it shortens the
work to use it). The residuals are zero except at the point G
midway between B and E where the residual is 100. The solu-
tion then proceeds as before, and is shown in Fig. 95. By
increasing the number of points the accuracy can be improved
and values of v found over the whole of the interior of the
corner: there is more arithmetic but the process remains simple.
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In the past few years Southwell and his co-workers (loc. cit.)
have applied the method to a wide variety of partial differential
equations and boundary conditions. It has the advantage that
it applies to ‘mixed’ boundary conditions, that is, to problems
in which boundary conditions of different types occur on the
boundary. Also it can be extended to cover bounding curves
of any shape.

B 100 100 00__ c
o
-2 -1
-4 -3
12 5 o
4] 6 211 8
25l o0 6|25 2{6
oo S0 |100 s0| 0 solo
G
-1
-3
s
211
6125
100 So{o " 0
--F
E
0o
8
216
00 S0lo0 0o
A D
Fic. 95.

\
PROBLEMS ON CHAPTER X1V

1. Form a difference table from the following

] cos x cos
5-0 0-28366 55 0-70867
51 0-37798 56 0-77557
52 0-46852 57 0-83471
53 0-55437 58 0-88552
5-4 0-63469 59 0-92748
6-0 0-96017

Estimate values of cos 5-075, cos 5-25, and cos 4-97. [0-35472, 0-51208,
0-25477.]

2. Show that the differences of the set of numbers ...0, 0, 1, 0, 0,...
are ...0, 0, 1, —1, 0, 0,..,, ...0, 1, —2, 1, 0,..., etc., the numbers in the
nth difference being

(—1yrC,.

Discuss the effect of rounding-off errors on the successive differences.
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3. The most common errors in numerical work are: (i) interchanging
two figures, e.g. writing 9478 for 9748, and (ii) doubling the wrong figure,
e.g. writing 9447 for 9477. Discuss the effect of these errors on the
differences and show how they can be traced (in the first case the errors
in all differences are multiples of nine).

Show that in the following set of values of a function
1-0000, 0-9406, 0-8824, 0-8245, 0-7696, 0-7150, 0-6616, 0-6094,...

the fourth should probably read 0-8254.

r

4. Show that Ay, = z {(— 1)’(:)31,, r—g
=0
r
r
and Yoqr = Z (8)A'_’yw
. 8=0
5. Show that [x]7t! = (x—n)[x]".

Deduce that if S{™ is the coetficient of "~ in [x]",
S = S —nS,.

Using this result, build up the first few S, starting from S{V = 1.
Show how to use these results to express a polynomial as a sum of
factorial polynomials, and prove that

b — 428+ 5+ = [zx]*+ 2[x]3+ 3[x].

6. From the following entries

z Ei(z) 5 8
5-0 40-18527 0-23761 0-00176
51 43-27571 0-25871 0-00192

find the value of Ei(5:073). [42-41671.]

7. If f(a—0Oh) is the polynomial which takes the values y_, at a—rh,
r = 0, 1,..., n, show that

fa—0h) = yo—08y_+(%)amy_yt ot (= 1(f) Ay

This is the ‘ Gregory—Newton backwards’ formula. It can be deduced
from the Gregory—Newton formula for the function which has the values
1_, at the points a+rh by comparing the difference tables for the two
functions. Alternatively the argument of § 119 (10) to (15) may be used,
assuming f(a+0h) = ap+oy[01 a0+ 112+ et oy [0+n—11"

From the figures given in Ex. 1, estimate the value of cos5-95.
[0-94501.] i

8. Replacing 8 by —8 in the result of Ex. 7, derive the extrapolation
formula

siat0) = o+ 08y s+ (05 ) ary st ot (0 am,
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From the figures given in Ex. 1 estimate the value of cos6-03.
[0-96812.]
Show that

1
[ Fla+6R) d8 = yot }Ay_s+EA% o+ 3A% s+ 333AY o+ ...
0

9. Calculate the derivative of cosx from the values in Ex. 1 for the
following values of z: 5-0, 5-05, 5-4, 6-0. [0-9589, 0-9436, 0-7728, 0-2794.]

10. o, Y1, Y2» Y5 are the values of a function at four equally spaced
points. Show that its derivatives at the first two of these are

1 1
@(— 11y,+ 18?/1‘—9ya+2ya)—EA‘3/o,

1 .1
o (—2y0— 3y1+ 6ya—ys) +m Aty,.

11. Deduce the results of Ex. 10 without the difference correction by
assuming a polynomial of the third degree to pass through the four
points. Deduce § 120 (14) and (15) in the same way by assuming an
appropriate quadratic.

12. If y,, y;, y;,... are the values of a function and its successive
differential coefficients at the point a-+7k, show by Taylor’s theorem
that B3 1S
© 1Yo = hyot a0 + 5 Y+

8%y = h2y +hhyiv + gishoyi 4 ..,
84y = Ry - Fhéyf ...

13. Show as in § 120 that

a+h '
[ 9dz = hiyo+$0yo— A% 1 —AAY_;+HodY_g )

a

h 11n
= ﬂ{_?/—1+13?/o+ 133/1—?/2}+WA4?/._2+--- .
XY 15 Yos Y1sees Ynys @T0 the values of y at & = 7k, 7 = —1,0,..., n+1,

show by adding results of the above type and neglecting the fourth
difference correction that

nh h
J ¥ dz = 3o+ v+ vat o+ yna+ gy WY1 F Ve~ Yar)
o

The first term of this is the trapezoidal rule, and the second a correcting
term which improves its accuracy considerably.
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59
14, Evaluate f cosz dz
61

from the values given in Ex. 1 using (i) Simpson’s rule § 120 (14);
(ii) Milne’s formula, § 120 (15); (iii) the result of Ex. 13, neglecting
fourth differences in all cases. Compare the results with the accurate
value, which is 0-55194.
15. Show that if g, ¥1, ¥;,... are the values of y at the points 0, &, 25,...
n .
dz
fyx} = 5h¥(9Yy+ Ty, — ;) +FshiA%,.
J .
Derive the corresponding result for

3
fx-nydz 0O<n<l.
0
16. Y,,2) Yry1s Yy 8TO cOnsecutive values of y in the solution of
dy
Ty = 0
by the method of § 121 (3). Show that
Yrpat+2hYp 1 —y, = 0.
Proceeding as in § 85 Ex., show that this is satisfied by
Yr = A{—h—(h*+1)}} 4 B{—h+(h*+ 1)}y,
where A and B are constants determined by ¥, and y,.

Discuss the errors involved in this method of solution.
17. Solve the differential equation

Z——Z == x—iy’
at intervals of 0-1 in z, with ¥y = 1 when # = 0. Show that y = 0-9725
when = 0-8.

18. Solve the differential equation

dy
=0

at intervals of 01 in z with y = 1, dy/dz = 0, when z — 0. Show that
y = 1-0868 when = = 0-8.
19. y satisfies the differential equation

d

2 = g@,9).
Yos Y15 Ya».-.. 8T0 the values of y at the points x = rh, r = 0, 1, 2,..., and
Jo> J1» J2»--- 8re the values of g(z,y) at these points. Using the result
of Ex. 8, show that

Yria—Yr = Mg, +IAg, 1+ A%, o+ 3A%, 3+ ...}
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Solve the differential equation § 121 (4) with A = 0-1 using the values
of ¥4, Y1 Ys» Y5 given in § 121, Table V. Find the values of gy, gy, g2 g3
and difference them, then calculate y, from the above formula and repeat
the process. This is the Adams—Bashforth method.

20. Show that the simplest finite difference equivalent of Laplace’s
equation in three dimensions is the statement that the value of the
function at any point is the arithmetic mean of its values at the six
nearest points of a rectangular lattice.

21. Show that the first four roots of

ztanzx = 0'5
are 0:6533, 3-2923, 6:3616, 9-4775.
22. Show that the smallest root of
coshzcosz = 1

is 4-7300.
23. Show that the roots of
xt— 223 — 6224 250x—28 = 0,
to three places of decimals, are —3-193, 2-193, 1-500 - 1-3231.
24. Find an approximate solution of the equations
Tx,+ 22+ x4 = 750,
2, + 12z, + 3z, = 1850,
x, — 3z, + 6xg = 260.
[z, = 59, z, = 121, z; = 94.]
25. Taking h = A B/4, show that the solution of Laplace’s equation

in a square A BCD which has the values 100 on AB and zero on the
other sides has the value 25, approximately, at the centre of the square.




INDEX

Admittance, 129.

Amplifier circuit, 187.

Analytic functions, 390.

Angular momentum, 164, 224.

Angular velocity, 161.

Anharmonic oscillator, 172, 185, 187,
252,

Arbitrary constants, elimination of,
7 ; occurrence of, 9.

Associated Legendre equation, 346.

Aurora, 197.

Auxiliary equation, 13.

Bending moment, 278.

Bernoulli’s equation, 54.

Bessel’s equation, 333.

Bessel functions, of the first kind,
335 ; of the second kind, 339 ; recur-
rence relations for, 336.

Boundary conditions, 284, 362, 365,
370, 371.

Boundary value problems, 10, 277,
429,

Cauchy—-Riemann equations, 391.

Central forces, 200.

Centre of percussion, 238.

Circular orbit, stability of, 205.

Columns, 296 ; with lateral loads, 295.

Complementary function, 19.

Complete primitive, 8.

Complex current, voltage, and impe-
dance, 128; vector representation,
164.

Complex numbers, 23.

Conduction of heat, equation of, 364,
395, 401, 405,

Conformal representation, 390.

Conservation, of energy, 260; of
momentum, 261.

Conservative forces, 250.

Continuity, equation of, 405.

Coulomb friction, 66, 73, 233.

Critical damping, 71.

Cylindrical coordinates, 398.

d’Alembert’s principle, 225.

Dampéd harmonic oscillator, free
vibrations, 67; with applied force,
72, 76, 106.

Damping coefficient, 69.

Deflexion of a beam: differential equa-
tion and boundary conditions, 284 ;
with an axial load, 294; on an
elastic foundation, 291.

Delta function, 37, 290.

Difference equations, 133, 294.

Differences, forward, 416; central, 421.

Differential analyser, 414,

Differential equations,
etc., 1.

Differential equations, ordinary, of
the first order: separable, 49;
linear, 52, 59; homogeneous, 56;
exact, 57; of higher degree than
the first, 60.

Differential equations, ordinary linear
with constant coefficients, 2;
homogeneous, 15; inhomogeneous,
19; simultaneous, 28; Laplace
transformation method for, 42.

Differential equations, ordinary linear
with variable coefficients, 332 ; solu-

‘tion in series, 333; with periodic
coefficients, 353 ; approximate solu-
tions, 8352; normal form, 352; in-
homogeneous equations, 348.

Differential equations, ordinary, nu-
merical solution of, 425; Milne—
Simpson method, 427; Adams—
Bashforth method, 442; relaxa-
tion methods, 436.

Differential equations, partial, types
‘of, 363; numerical solution of,
430, 436.

Diffusion equation, 369; in two and
three dimensions, 395, 401.

Dipole, 254.

Dirichlet’s conditions, 307.

Dissipation function, 266.

Divergence, 403.

Duality, 123.

definitions,

Eigenvalue problems, 297, 346, 374,
384.

Electric circuit theory,
and fundamentals, 113.

Electric transmission line, 376; ‘loss-
less’, 377.

Electrical networks, 116; two- and
four-terminal, 126.

definitions
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Eleoctron, motion in electric and mag-
netic fields, 192.

Elliptic integrals, 171.

Energy equation, 169, 203, 256.

Equipotential surfaces, 255, 394.

Error function, 367.

Euler load, 297.

Eulerian angles, 240.

Everett’s formula, 422.

Extrapolation, 423, 439.

Factorial polynomial, 418.

Filter circuits, 133, 326.

Floquet’s theorem, 354.

Forced oscillations, 77, 87, 91.-

Fourier constants, 306.

Fourier integrals, 321.

Fourier series, 306; sine and cosine
series, 310; double series, 320;
applications, 315, 317, 318, 382.

Fourier transforms, 324; applica-.

tions, 326, 386.
Fourier’s theorem, 307,
Frequency equation, 85.
Friction, static and dynamic, 73, 233.

Gamma function, 337.

Geared systems, 100.

Generalized coordinates, 262; veloci-
ties, 263.

Gibbs’s phenomenon, 312.

Gradient of a scalar function of posi-
tion, 255.

Green’s function, 349; for deflexion
of a beam, 288.

Gregory—Newton formula, 419 ; back-
wards formula, 421.

Gyrocompass, 243.

Gyroscope, 239.

Gyrostat, 239, 267.

Heat interchangers, 34.

Heat, steady flow of, 33, 381.

Holonomic systems, 282.

Hurwitz’s criterion, 139. .

Hydrogen atom, Schrédinger’s equa-
tion for, 346.

Impedance, 127; transfer, 129; com-

plex, 127 ; generalized, 150 ; charac-

teristic, 378.
Impulsive forces, 105, 236.
Impulsive voltages, 146.
Indicial equation, 333.

Initial value problems, 9, 107, 277,
429.

Integrating factors, 58.

Interpolation, 416.

Inverse square law, 203.

Inverted pendulum, stabilizing of,
355.

Tteration, 187, 432.

Kinetic energy, 226, 263.

Kirchhoff’slaws, 117 ; for steady state
alternating currents, 130; in Lap-
lace transformation form, 148.

Kryloff and Bogoliuboff, 183.

Lagrange’s equations, 264; for elec-
tric circuits, 269.

Laplace’s equation, in two dimen-
sions, 380; in three dimensions,
397, 406; solution by conformal
representation, 394; solution by
Fourier series and integrals, 382,
386 ; numerical solution, 436.

Laplace transformation method, 11,
39; applications, 107, 147, 387.

Laplace transforms, table of, 41.

Legendre polynomials, 342; recur-
rence relations for, 344; integral
properties, 345 ; expansions in, 345.

Legendre’s equation, 341.

Linear and non-linear problems, 2, 4,
5, 168, 180, 182.

Linear flow of heat, 364, 384, 431.

Lissajous figures, 192.

Logarithmic decrement, 70.

Longitudinal vibrations of a bar, 370,
389.

Mass action, law of, 50.

Mathieu’s equation, 353 ; stable solu-
tions, 354.

Mechanical analogies, 66, 121.

Mechanical systems, fundamental
elements of, 65.

Membrane, vibrations of, 395.

Mesh-currents, 121.

Milne—Simpson method, 427.

Modified Bessel functions, 340.

Moment of a force about a point, 163.

Momental ellipsoid, 220.

Moments of inertia, 217, 283.

Motion relative to the earth, 209.

Moving axes, 208.

Mutual inductance, 119.
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Natural frequencies, 86, 95, 98, 373,
396, 401.

Nature of the motion of a dynamical
system, 258.

Newton—Gauss formula, 421,

Non-linear resistances and inductan-
ces, 180.

Non-linear systems, oscillations of,
182,

Normal modes of oscillation, 86, 95,
98, 374.

Numerical differentiation and in-
tegration, 423.

Numerical methods: digital and ana-
logue, 414; for solution of alge-
braic and transcendental equations
431; for systems of linear alge-
braic equations, 433; for ordinary
differential equations, 425; for
partial differential equations, 429,
436.

Opera.tor D, 11.
Orthogonal polynomials, 361.
Oscillator circuits, 140, 183.

Partial differences, 430.
Particular integral, 9, 19.
Pendulum, simple, 170, 199; com-
pound, 228.

Periodic functions, 303.
Plastic flow, 104,

Poisson’s equation, 381.
Polynomial interpolation, 419.
. Potential energy, 249, 406,
Principal axes of inertia, 219.
Principle of superpesition, 3.
Products of inertia, 217.
Projectile, motion of, 190.

Rectifiers, 316,

Relaxation methods, 433.

Relaxation oscillations, 75, 188.

Resisted motion, 65, 76, 89, 175, 190.

Resonance, 78, 82.

Reversed effective force, 224.

Reynolds number, 177.

Rheological problems, 102,

Riccati’s equation, 54,

Rigid body, equations of motion of,
223.

Rocket, motion of, 206.

Rodrigues’s formula, 343.

445

Rotating axes, 208.

Routh’s method, 30; rule, 220.
Rubber-like substances, 102,
Rutherford’s scattering formula, 205.

Schmidt’s method, 431.

Servomechanisms, 144.

Shear force, 278. ¢

Simple equivalent pendulum, 228.

Simpson’s rule, 424.

Singular solutions, 61.

Spherical polar coordinates, 398.

Stability, 138.

Static equilibrium, general conditions
for, 163, 224, 270.

Step by step methods, 429, 431.

Stiffness, 85.

Submarine cable, 377.

Subsidiary equations, 42, 148, 388.

Tangential and normal accelerations,
198.

Terminal velocity, 176.

Three moments, equation of, 293,

Transformer, 120,

Transient, decay of, 77, 108.

Transverse vibrations of a string,
371, 385; of a beam, 374.

Triode, 135; characteristics of, 136;
amplification factor of, 136.

Uniqueness, 363.
Unit function, 36, 287.

Vacuum tubes, 135,

van der Pol’s equation, 183, 189.

Variable mass, 206.

Variation of parameters, 348.

Vector function of position, 164, 403.

Vectors, algebraic theory of, 154;
free and localized vectors, 160.

Vibration dampers, 100.

“Vibrations of systems of several

masses, 84; of a stretched string,
371, 385.

Wave equation in one dimension,
369; in two and three dimensions,
395, 401.

Wave guide, 396.

Whirling of shafts, 299.

Zeeman effect, 196.



PRINTED IN
GREAT BRITAIN
AT THE
UNIVERSITY PRESS
OXFORD
BY
CHARLES BATEY
PRINTER
TO THE
' UNIVERSITY




Elrfioresy




	mm0025
	mm0027
	mm0029
	mm0030
	mm0031
	mm0032
	mm0033
	mm0035
	mm0036
	mm0037
	mm0038
	mm0039
	mm0041
	mm0042
	mm0043
	mm0044
	mm0045
	mm0046
	mm0047
	mm0048
	mm0049
	mm0050
	mm0051
	mm0052
	mm0053
	mm0054
	mm0055
	mm0056
	mm0057
	mm0058
	mm0059
	mm0060
	mm0061
	mm0062
	mm0063
	mm0064
	mm0065
	mm0066
	mm0067
	mm0068
	mm0069
	mm0070
	mm0071
	mm0072
	mm0073
	mm0074
	mm0075
	mm0076
	mm0077
	mm0078
	mm0079
	mm0080
	mm0081
	mm0082
	mm0083
	mm0084
	mm0085
	mm0086
	mm0087
	mm0088
	mm0089
	mm0090
	mm0091
	mm0092
	mm0093
	mm0094
	mm0095
	mm0096
	mm0097
	mm0098
	mm0099
	mm0100
	mm0101
	mm0102
	mm0103
	mm0104
	mm0105
	mm0106
	mm0107
	mm0108
	mm0109
	mm0110
	mm0111
	mm0112
	mm0113
	mm0114
	mm0115
	mm0116
	mm0117
	mm0118
	mm0119
	mm0120
	mm0121
	mm0122
	mm0123
	mm0124
	mm0125
	mm0126
	mm0127
	mm0128
	mm0129
	mm0130
	mm0131
	mm0132
	mm0133
	mm0134
	mm0135
	mm0136
	mm0137
	mm0138
	mm0139
	mm0140
	mm0141
	mm0142
	mm0143
	mm0144
	mm0145
	mm0146
	mm0147
	mm0148
	mm0149
	mm0150
	mm0151
	mm0152
	mm0153
	mm0154
	mm0155
	mm0156
	mm0157
	mm0158
	mm0159
	mm0160
	mm0161
	mm0162
	mm0163
	mm0164
	mm0165
	mm0166
	mm0167
	mm0168
	mm0169
	mm0170
	mm0171
	mm0172
	mm0173
	mm0174
	mm0175
	mm0176
	mm0177
	mm0178
	mm0179
	mm0180
	mm0181
	mm0182
	mm0183
	mm0184
	mm0185
	mm0186
	mm0187
	mm0188
	mm0189
	mm0190
	mm0191
	mm0192
	mm0193
	mm0194
	mm0195
	mm0196
	mm0197
	mm0198
	mm0199
	mm0200
	mm0201
	mm0202
	mm0203
	mm0204
	mm0205
	mm0206
	mm0207
	mm0208
	mm0209
	mm0210
	mm0211
	mm0212
	mm0213
	mm0214
	mm0215
	mm0216
	mm0217
	mm0218
	mm0219
	mm0220
	mm0221
	mm0222
	mm0223
	mm0224
	mm0225
	mm0226
	mm0227
	mm0228
	mm0229
	mm0230
	mm0231
	mm0232
	mm0233
	mm0234
	mm0235
	mm0236
	mm0237
	mm0238
	mm0239
	mm0240
	mm0241
	mm0242
	mm0243
	mm0244
	mm0245
	mm0246
	mm0247
	mm0248
	mm0249
	mm0250
	mm0251
	mm0252
	mm0253
	mm0254
	mm0255
	mm0256
	mm0257
	mm0258
	mm0259
	mm0260
	mm0261
	mm0262
	mm0263
	mm0264
	mm0265
	mm0266
	mm0267
	mm0268
	mm0269
	mm0270
	mm0271
	mm0272
	mm0273
	mm0274
	mm0275
	mm0276
	mm0277
	mm0278
	mm0279
	mm0280
	mm0281
	mm0282
	mm0283
	mm0284
	mm0285
	mm0286
	mm0287
	mm0288
	mm0289
	mm0290
	mm0291
	mm0292
	mm0293
	mm0294
	mm0295
	mm0296
	mm0297
	mm0298
	mm0299
	mm0300
	mm0301
	mm0302
	mm0303
	mm0304
	mm0305
	mm0306
	mm0307
	mm0308
	mm0309
	mm0310
	mm0311
	mm0312
	mm0313
	mm0314
	mm0315
	mm0316
	mm0317
	mm0318
	mm0319
	mm0320
	mm0321
	mm0322
	mm0323
	mm0324
	mm0325
	mm0326
	mm0327
	mm0328
	mm0329
	mm0330
	mm0331
	mm0332
	mm0333
	mm0334
	mm0335
	mm0336
	mm0337
	mm0338
	mm0339
	mm0340
	mm0341
	mm0342
	mm0343
	mm0344
	mm0345
	mm0346
	mm0347
	mm0348
	mm0349
	mm0350
	mm0351
	mm0352
	mm0353
	mm0354
	mm0355
	mm0356
	mm0357
	mm0358
	mm0359
	mm0360
	mm0361
	mm0362
	mm0363
	mm0364
	mm0365
	mm0366
	mm0367
	mm0368
	mm0369
	mm0370
	mm0371
	mm0372
	mm0373
	mm0374
	mm0375
	mm0376
	mm0377
	mm0378
	mm0379
	mm0380
	mm0381
	mm0382
	mm0383
	mm0384
	mm0385
	mm0386
	mm0387
	mm0388
	mm0389
	mm0390
	mm0391
	mm0392
	mm0393
	mm0394
	mm0395
	mm0396
	mm0397
	mm0398
	mm0399
	mm0400
	mm0401
	mm0402
	mm0403
	mm0404
	mm0405
	mm0406
	mm0407
	mm0408
	mm0409
	mm0410
	mm0411
	mm0412
	mm0413
	mm0414
	mm0415
	mm0416
	mm0417
	mm0418
	mm0419
	mm0420
	mm0421
	mm0422
	mm0423
	mm0424
	mm0425
	mm0426
	mm0427
	mm0428
	mm0429
	mm0430
	mm0431
	mm0432
	mm0433
	mm0434
	mm0435
	mm0436
	mm0437
	mm0438
	mm0439
	mm0440
	mm0441
	mm0442
	mm0443
	mm0444
	mm0445
	mm0446
	mm0447
	mm0448
	mm0449
	mm0450
	mm0451
	mm0452
	mm0453
	mm0454
	mm0455
	mm0456
	mm0457
	mm0458
	mm0459
	mm0460
	mm0461
	mm0462
	mm0463
	mm0464
	mm0465
	mm0466
	mm0467
	mm0468
	mm0469
	mm0470
	mm0471
	mm0472
	mm0473
	mm0474
	mm0475
	mm0476
	mm0477
	mm0478
	mm0479
	mm0480
	mm0481
	mm0482
	mm0483
	mm0484
	mm0485
	mm0486
	mo0026

