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Preface

This volume is an outgrowth of a course intended for first year graduate
students or exceptionally advanced undergraduates in their junior or
senior year. The purpose of the course (taught at Northwestern University
in 1956-1957) was twofold: (a) to provide the necessary elementary back-
ground for all branches of modern mathematics involving “analysis”
(which in fact means everywhere, with the possible exception of logic
and pure algebra); (b) to train the student in the use of the most fundamen-
tal mathematical tool of our time — the axiomatic method (with which
he will have had very little contact, if any at all, during his undergraduate
years).

It will be very apparent to the reader that we have everywhere
emphasized the conceptual aspect of every notion, rather than its compuia-
tional aspect, which was the main concern of classical analysis (see [26]);
this is true not only of the text, but also of most of the problems. We
have included a rather large number of problems in order to supplement
the text and to indicate further interesting developments. The problems
will at the same time afford the student an opportunity of testing his
grasp of the material presented.

Although this volume includes considerable material generally treated
in more elementary courses (including what is usually called “Advanced
Calculus”) the point of view from which this material is considered is
completely different from the treatment it usually receives in these courses.
The fundamental concepts of function theory and of calculus have been
presented within the framework of a theory which is sufficiently general
to reveal the scope, the power, and the true nature of these concepts far
better than is possible under the usual restrictions of “classical analysis.”
It is not necessary to emphasize the well-known “‘economy of thought”
which results from such a general treatment; but it may be pointed out
that there is a corresponding “economy of notation”, which does away
with hordes of indices, much in the same way as “vector algebra” simplifies
classical analytical geometry. This has also as a consequence the necessity
of a strict adherence to axiomatic methods, with no appeal whatsoever
to “‘geometric intuition”, at least in the formal proofs: a necessity which
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vi PREFACE

we have emphasized by deliberately abstaining from introducing any
diagram in the book. My opinion is that the graduate student of today
must, as soon as possible, get a thorough training in this abstract and
axiomatic way of thinking, if he is ever to understand what is currently
going on in mathematical research. This volume aims to help the student
to build up this “intuition of the abstract” which is so essential in the mind
of a modern mathematician.

It is clear that students must have a good working knowledge of
classical analysis before approaching this course. From the strictly logical
point of view, however, the exposition is not based on any previous
knowledge, with the exception of:

1. The first rules of mathematical logic, mathematical induction, a.nd
the fundamental properties of (positive and negative) integers.

2. Elementary linear algebra (over a field) for which the reader may
consult Halmos [14], Jacobson [16] or Bourbaki [4]; these books, however,
contain much more material than we will actually need (for instance we
shall not use the theory of duality and the reader will know enough if
he is familiar with the notions of vector subspace, hyperplane, direct sum,
linear mapping, linear form, dimension, and codimension).

In the proof of each statement, we rely exclusively on the axioms and
on theorems already proved in the text, with the two exceptions just
mentioned. This rigorous sequence of logical steps is somewhat relaxed
in the examples and problems, where we will often apply definitions or
results which have not yet been (or even will never be) proved in the text.

There is certainly room for a wide divergence of opinion as to what
parts of analysis a student should learn during his first graduate year.
Since we wanted to keep the contents of this book within the limits of what
can materially be taught during a single academic year, some topics had
to be eliminated. Certain topics were not included because they are too
specialized, others because they may require more mathematical maturity
than can usually be expected of a first-year graduate student or because
the material has undoubtedly been covered in advanced calculus courses.
If we were to propose a general program of graduate study for mathemati-
cians we would recommend that every graduate student should be expected
to be familiar with the contents of this book, whatever his future field
of specialization may be.

I would like to express my gratitude to the mathematicians who have
helped me in preparing these lectures, especially to H. Cartan and
N. Bourbaki, who allowed me access to unpublished lecture notes and
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manuscripts, which greatly influenced the final form of this book. My
best thanks also go to my colleagues in the Mathematics Department of
Northwestern University, who made it possible for me to teach this course
along the lines I had planned and greatly encouraged me with their ¢onstruc-
tive criticism.

April, 1960
J. DIEUDONNE



ERRATA
p- 40, 18th line from top: ‘a d’ should read ‘and.’

p. 169, 12th line from bottom should read:

that for each n the derivative ,‘:,(0,\ exist and that there exist a number 4 = 0
and a number § > 0 such that, for any ¢ such that lt] < 6, |falt) — 1a(0)] << At
for every =,

p. 174, 13th line from top: the ‘p’ following ‘ax’ should be a superseript.

p- 189, 18th line from bottom should read:

where all the f, are indefinitely differentiable and fol2) = f(0,...,0).
p. 207, 6th line from bottom: change ‘these values’ to ‘small values.’
p. 232, 9th line from top: place a colon after ‘follows.’

p. 311, paragraph 2) should read:

2) Let u,v be two elements of % (E), where E is a complex Banach space. Show
that, with the notations of problem 1, the intersections of S(uv) and S(vu) withC — {0}
are equal. (Observe that if f,g¢ are two elements of Z(E) such that l1—fg is
invertible, and A «= (1 — fg)~, then 1 4 ghf is the inverse of 1 — gf.)

p. 334-335, delete the last 8 lines on page 834 and the first 7 lines on page 335.
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Notations

In the following definitions the first digit refers to the number of the chapter in
which the notation occurs and the second to the section within the chapter.

= equals: 1.1

=4 is different from: 1.1

€ is an element of, belongs to: 1.1

3 is not an element of: 1.1

c is a subset of, is contained in: 1.1

2 contains: 1.1

¢ is not contained in: 1.1

{x € X|P(x)} the set of elements of X having property P: 1.1
%] the empty set: 1.1

{a} the set having @ as unique element: 1.1
P(X) the set of subsets of X: 1.1

X —Y, (Y, (Y complement of Y in X: 1.2

u union: 1.2

n intersection: 1.2

(a,b) ordered pair: 1.3

Pry ¢, pryc first and second projection: 1.3

EACSC Y product of two sets: 1.3

X, X Xy X...x X, product of n sets: 1.3

pr; z ith projection: 1.3

X" product of n sets equal to X: 1.3

F(x) value of the mapping F at x: 1.4

V=, F(X,Y) set of mappings of X into Y: 1.4

% — T(x) mapping: 1.4

F(A) direct image: 1.5

F-1(A) inverse image: 1.5

F-Yy) inverse image of a one element set {y}: 1.5
Ta natural injection: 1.6

Bl inverse mapping of a bijective mapping: 1.6
GoF composed mapping: 1.7

(%1)ser family: 1.8

N set of natural integers: 1.8

xi
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{%5,. . . %} set of elements of a finite sequence: 1.8

LA, LA, union of a family of sets: 1.8

Ael A

NA. NA; intersection of a family of sets: 1.8

A€l A

R set of real numbers: 2.1

x4+ v sum of real numbers: 2.1

xy product of real numbers: 2.1

0 element of R: 2.1

— opposite of a real number: 2.1

1 element of R: 2.1

= 1y inverse in R: 2.1

FY, V=X order relation in R: 2.1

XYy relation in R: 2.1

la,b[, [ab], [4,b, Jab] intervals in R: 2.1

R, R set of real numbers >0 (resp. > 0): 2.2

lel it T absolute value, positive and negative part of a real
number: 2.2

Q set of rational numbers: 2.2

7 set of positive and negative integers: 2.2

Lu.b. X, sup X least upper bound of a set: 2.3

glb. X, inf X greatest lower bound of a set: 2.3

sup f(#x), inf f(x) supremum and infimum of / in A: 2.3

XEA xEA

R extended real line: 3.3

+ 00, — o0 points at infinity in R: 3.3

<y, V2% order relation in R: 3.3

d(A,B) distance of two sets: 3.4

B(a;7), B'(a;7), S(a;7) open ball, closed ball, sphere of center & and
radius 7: 3.4

d(A) diameter: 3.4
A interior: 3.7
A closure: 3.8
Fr(A) ) frontier: 3.8
lim f(x) limit of a function: 3.13
X—ra,XEA
lim x, limit of a sequence: 3.13
Q(a; ) oscillation of a function: 3.14
log, x logarithm of a real number: 4.3
a” exponential of base a (x real): 4.3
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C set of complex numbers: 4.4
z4+27z, 2 sum, product of complex numbers: 4.4
0%l i elements of C: 4.4
Kz, Sz real and imaginary parts: 4.4
Z conjugate of a complex number: 4.4

|z] absolute value of a complex number: 4.4
x+y, Ax, xA sum and product by a scalar in a vector space: 5.1
0 element of a vector space: 5.1

||| norm: 5.1

®

28y, sum of a series, series: 5.2
n=10

2y sum of an absolutely summable family: 5.3
zEA
(co) space of sequences tending to 0: 5.3, prob. 5
Z(E;F) space of linear continuous mappings: 5.7
[oe]| norm of a linear continuous mapping: 5.7
Z(E,,....E,;F) space of multilinear continuous mappings: 5.7
(e space of absolutely convergent series: 5.7, prob. 1
(s space of bounded sequences: 5.7, prob. 1
(x|y) scalar product: 6.2
Py orthogonal projection: 6.3
I S Hilbert spaces of sequences: 6.5
Be(A), By(A), Bo(A) spaces of bounded mappings: 7.1
Ce(E) space of continuous mappings: 7.2
) %r (E) space of bounded continuous mappings: 7.2

flx+), flx—) limits to the right, to the left: 7.6
['(x), Df() (total) derivative at x,: 8.1
Tes Dy derivative (as a function): 8.1
fa(@), D f(«) derivative on the right: 8.4
f(8), D_{(B) derivative on the left: 8.4
(G integral: 8.7

e, exp (x), log x (x real): 8.8

D,f(ay,a5), Dyf(a,,a,) partial derivatives: 8.9

f;i('fv- &) 9/a&f(&,,...,E,) partial derivatives: 8.10
(A AN R A
Dy, .8 &6
(o), D2(%,), f?(x,), D?f(%,) higher derivatives: 8.12
f*p regularization: 8.12, prob. 2

jacobian: 8.10
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&E(A) space of p times continuously differentiable mappings:
8.13

&, M, D% Dy, (o composite index): 8.13

e, exp (2) (z complex): 9.5

sin z, cos z sine and cosine: 9.5

4 9.5

log z, Am(z), (‘), (1 +2)* (2t complex numbers): 9.5, prob. 8§

n
' opposite path: 9.6
Y1V Y juxtaposition of paths: 9.6
[, f(z)dz integral along a road: 9.6
ilay) index with respect to a circuit: 9.8
E(z,) primary factor: 9.12, prob. 1
I'(z) gamma function: 9.12, prob. 2
¥ Euler’s constant: 9.12, prob. 2
[, f(z)dz integral along an endless road: 9.12, prob. 2
wla;f), w(a) order of a function at a point: 9.15
Z(E) algebra of operators: 11.1
1Y composed operator: 11.1
1 identity operator: 11.1
S(u) spectrum: 11.1
E(¢), E(;u) eigenspace: 11.1
i continuous extension: 11.2

N(2), N(Ad;u), F(2), F(d;4) subspaces attached to an eigenvalue of a
compact operator: 11.4

k(A), R(A;u) order of an eigenvalue: 11.4

u* adjoint operator: 11.5



Chapter |

Elements of the Theory of Sets

We do not try in this chapter to put set theory on an axiomatic basis;
this can however be done, and we refer the interested reader to Kelley [18]
and Bourbaki [3] for a complete axiomatic description. Statements
appearing in this chapter and which are not accompanied by a proof or
a definition may be considered as axioms connecting undefined terms.

The chapter starts with some elementary definitions and formulas
about sets, subsets and product sets (1.1 to 1.3); the bulk of the chapter
is devoted to the fundamental notion of mapping, which is the modern
extension of the classical concept of a (numerical) function of one or several
numerical “variables”. Two points related to this concept deserve some
comment:

a) The allimportant (and characteristic) property of a mapping is
that it associates to any ‘““value” of the variable a single element; in other
words, there is no such thing as a “multiple-valued” function, despite
many books to the contrary. It is of course perfectly legitimate to define
a mapping whose values are subsets of a given set, which may have more
than one element; but such definitions are in practice useless (at least
in elementary Analysis), because it is impossible to define in a sensible way
algebraic operations on the ‘“‘values” of such functions. We return to this
question in chapter IX.

b) The student should as soon as possible become familiar with the
idea that a function f is a single object, which may itself “vary” and is
in general to be thought of as a “point’ in a large ‘““functional space”;
indeed, it may be said that one of the main differences between the
classical and the modern concepts of Analysisis that, in classical mathemat-
ics, when one writes f(x), f is visualized as “‘fixed” and x as ‘“‘variable”,
whereas nowadays both f and x are considered as ‘‘variables” (and sometimes
it is x which is fixed, and f which becomes the “varying” object).

1 WIGAN

CENTRAL
LIBRARY
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I. ELEMENTS OF THE THEORY OF SETS

The last section (1.9) gives the most elementary properties of denu-
merable sets; this is the beginning of the vast theory of ‘cardinal
numbers” developed by Cantor and his followers, and for which the
interested reader may consult Bourbaki ([3], chap. III) or (for more
details) Bachmann [2]. It turns out, however, that, with the exception
of the negative result that the real numbers do not form a denumerable set
(see (2.2.17)), one very seldom needs more than these elementary properties
in the applications of set theory to Analysis.

1. Elements and sets

We are dealing with objects, some of which are called sets. Objects
are susceptible of having properties, or relations with one another. Objects
are denoted by symbols (chiefly letters), properties or relations by combina-
tions of the symbols of the objects which are involved in them, and of
some other symbols, characteristic of the property or relation under consid-
eration. The relation x = y means that the objects denotéd by the symbols
x and y are the same; its negation is written x = y.

If X is a set, the relation x € X means that x is an element of the set X,
or belongs to X; the negation of that relation is written x ¢ X.

If X and Y are two sets, the relation X €Y means that every element
of X is an element of Y (in other words, it is equivalent to the relation
(Vx)(xe X >2€Y)); we have XX, and the relation (XcY and
YCZ) implies XcZ. If XcYand YcX, then X =Y, in other words,
two sets are equal if and only if they have the same elements. If XcY,
one says that X is contained in Y, or that Y contains X, or that X is a
subset of Y ; one also writes Y D X. The negationof X € Y is written X ¢ Y.

Given a set X, and a property P, there is a unique subset of X whose
elements are all elements x € X for which P(x) is true; that subset is
written {x € X|P(x)}. The relation {x € X|P(x)} € {x € X|Q(x)} is equivalent

o (Vx e X)(P(x) = Q(x)); the relation {xe X|P(x)} = {x € X|Q(%)} is
equivalent to (Vx € X)(P(x) < Q(x)). We have, for instance,
X ={reX|x = #}, and X = {x € X|x € X}. The set Oy = {r € X|x # x}
is called the empty subset of X; it contains no element. If P is any property,
the relation x € ¢ = P(x) is true for every x, since the negation of x € Oy
is true for every x (remember that Q =P means “not Q or P”). Therefore,
if X and Y are sets, x € @y implies x € &y, in other words Oy c @y, and
similarly @, €@y, hence @y = @y, all empty sets are equal, hence noted @.

If a is an object, the set having a as unique element is written {a}.



2. BOOLEAN ALGEBRA 3

If X is a set, there is a (unique) set the elements of which are all subsets
of X; it is written P(X). We have g € B(X), X € B(X); the relations
x€X, {x} € B(X) are equivalent; the relations Yc X, Y € B(X) are
equivalent.

PROBLEM

Show that the set of all subsets of a finite set having » elements (n => 0) is a finite
set having 2" elements.

2. Boolean algebra

If X,Y are two sets such that Y € X, the set {x € X|x ¢ Y} is a subset
of X called the difference of X and Y or the complement of Y with respect
to X, and written X —Y or [xY (or { Y when there is no possible
confusion).

Given two sets X, Y, there is a set whose elements are those which belong
to both X and Y, namely {x € X[x €Y}; it is called the intersection of
X and Y and written X NY. There is also a set whose elements are those
which belong to one at least of the two sets X,Y; it is called the union of
X and Y and written XU Y.

The following propositions follow at once from the definitions:

(1.2.1) X—-X=0, X—-g=X.
(1.2.2) XuX=X, XnX=X
(1.2.3) XuY=YuX, XNnY=YnX

(1.2.4) TherelationsXCcY, XUY =Y, XNnY = Xareequivalent.
(1.2.5) XcXuY, XnveX.
(1.2.6) The relation “XcZ and YCZ” is equivalent to XuYcZ;
the relation “ZcX and ZCY” is equivalent to ZcXnY.
(1.2.7) XU(YUZ) = (XUY)UZ, written XUYUZ.
Xn(YnZ)y=(XNnY)nZ, written XNYNZ
(1.2.8) Xu(YnZ)y=(XuY)n(XuZ)

Xn(YUuZ)=(XnY)u(XNnZ) (distributivity).
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(1.2.9)  For subsets X,Y of a set E (with {{ written for ()
(Cx=X;
(Xun)=CX)nCY)., CXnY)=(CX)u (V.

The relations X € Y,[ X[ Y are equivalent; the relations XnY = @,
Xe(Y, Yc[X are equivalent; the relations XUY = E, (Xcy,
CY € X are equivalent. The union {x}U{y} is written {#,y}; similarly,
{x}u{y}u{z} is written {x,v.2}; etc.

3. Product of two sets

To any two objects a,b corresponds a new object, their ordered pair
(a,b); the relation (a,b) = (a’,b") is equivalent to “a = a’ and b = b'";
in particular, (a,b) = (b,a) if and only if a = b. The first (resp. second)
element of an ordered pair ¢ = (a,b) is called the first (resp. second) projection
of ¢ and written a = pr, ¢ (resp. b = pr,¢).

Given any two sets X,Y (distinct or not), there is a (unique) set the
elements of which are all ordered pairs (x,y) such that x € X and y € Y;
it is written X X Y and called the cartesian product (or simply product) -
of X and Y.

To a relation R(x,y) between x € X and y€Y is associated the property
R(pry z, pryz) of 2€ X X Y; the subset of X X Y consisting of the elements
for which this property is true is the set of all pairs (,y) for which R(x,y)
is true; it is called the graph of the relation R. Any subset G of X x Y
is the graph of a relation, namely the relation (x,y) € G. If X'c X, Y'CY,
the graph of the relation “x € X’ and ye Y’” is X’ x Y'.

The following propositions follow at once from the definitions:

(1.3.1) The relation X X Y = @ is equivalent to “X =@ or Y = 0.”
(1.3.2) If X X Y s @ (which means that both X and Y are non-empty),
the relation X' X Y€ X x Y is equivalent to
“X'cX and Y'CY.”
(1.3.3) XXxY)uX'xY) =(XuX) xY.

(1.3.4) X XxY)n(X xY)=(XnX) x(YnY).
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The product of three sets X,Y,Z is definedas X X Y X Z=(X X Y) x Z,
and the product of #» sets is similarly defined by induction:
Xy XXy Xooox X, =(X; x X, X...xX, ;) XxX,. An element z of

Xy X ... xX, iswritten (xy,%,,. . .,x,) instead of ((...(%y,%5),%3)...,%,_,),%,);
x; is the 4-th projection of z, and is written x; = pr;zfor 1 << ¢ < n.
X, =X,=...=X,=X we write X" instead of X x X X...Xx X
7 times.

4. Mappings

Let X,Y be two sets, R(x,y) a relation between x€X and yeY;
R is said to be functional in v, if, for every x € X, there is one and only one
vy €Y such that R(x,y) is true. The graph of such a relation is called a
functional graph in X x Y; such a subset F of X X Y is therefore char-
acterized by the fact that, for each x € X, there is one and only one y € Y
such that (x,y) € F; this element y is called the value of F at x, and written
F(x). A functional graph in X X Y is also called a mapping of X into Y,
or a function defined in X, taking its values in Y. It is customary, in the
language, to talk of a mapping and a functional graph as if they were two
different kinds of objects in one-to-one correspondence, and to speak
therefore of “the graph of a mapping,” but this is a mere psychological
distinction (corresponding to whether one looks at F either “‘geometrically”
or “analytically”). In any case, it is fundamental, in modern mathematics,
to get used to considering a mapping as a single object, just as a point or
a number, and to make a clear distinction between the mapping F and any
one of its values F(x); the first is an element of B(X X Y), the second an
element of Y, and one has F = {(x,y) € X X Y|y = F(x)}. The subsets
of X X Y which have the property of being functional graphs form a
subset of B(X x Y), called the set of mappings of X into Y, and written
Y* or F(X,Y).

Examples of mappings. (1.41) If b is an element of Y, X x {}
is a functional graph, called the constant mapping of X into Y, with the
value b; it is essential to distinguish it from the element b of Y.

(14.2) For Y = X, the relation y = x is functional in y; its graph is
the set of all pairs (x,x), and is called the diagonal of X x X, or the identity
mapping of X into itself.
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If, for every x € X, we have constructed an object T(x) which is an
element of Y, the relation y = T(x) is functional in y; the corresponding
mapping is written x — T(x). This is of course the usual definition of a
mapping; it coincides essentially with the one given above, for if F is a
functional graph, it is the mapping ¥ — F(x). Examples (1.4.1) and (1.4.2)
are written respectively x — b and ¥ — x. Other examples:

(1.4.3) The mapping Z - X — Z of P(X) into itself.

(1.4.4) The mappingsz —»pr;zof X X Yinto X,andz - pryzof X X Y
into Y, which are called respectively the first and second projectionin X x Y.

From the definition of equality of sets (1.1) it follows that the relation
F = G between two mappings of X into Y is equivalent to the relation
“F(x) = G(x) for every xe X.”

If A is a subset of X, F a mapping of X into Y, the set FN (A x Y)
is a functional graph in A X Y, which, as a mapping, is called the restriction
of F to A; when F and G have the same restriction to A (i.e. when
F(x) = G(x) for every x-€ A) they are said to cotncide in A. A mapping F
of X into Y having a given restriction F’ to A is called an extension of F’
to X; there are in general many different extensions of F’.

We will consider as an axiom (the ‘“axiom of choice”) the following
proposition:

(1.4.5) Given a mapping F of X into P(Y), such that F(x) #~ O for every
x € X, there exists a mapping f of X into Y such that f(x) € F(x) for every
x e X.

It can sometimes be shown that a theorem proved with the help of the
axiom of choice can actually be proved without using that axiom. We
shall never go into such questions, which properly belong to a course
in logic.

5. Direct and inverse images

Let F be a mapping of X into Y. For any subset A of X, the subset
of Y defined by the property ‘‘there exists x € A such that y = F(x)”
is called the #mage (or direct image) of A by F and written F(A).

We have:

(1.5.1) F(A) = pr, (FN (A X Y)).
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(1.5.2) The relation A £ @ is equivalent to F(A) 3 @.

(1.5.3) F({x}) = {F(%)} for every xeX.
(1.5.4) The relation A c B implies F(A) € F(B).
(1.5.5) F(A N B)cF(A) N F(B).

(1.5.6) F(AU B) = F(A) U F(B).

For F(A)c F(A u B) and F(B) c F (AU B) by (1.5.4). On the other hand,
if ye F(AUB), there is x € AUBsuch that y = F(x); as x€ A or x€B,
we have y € F(A) or y € F(B).

Examples in which F(AnB) # F(A) N F(B) are immediate (take for
instance for F the first projection pr; of a product).

For any subset A’ of Y, the subset of X defined by the property F(x) € A’
is called the inverse image of A’ by F and written F~}(A’). We have:

(1.5.7) F1A') =pr; (FN(X X A").

(1.5.8) F-Y{A’) = F-YA’nF(X)), for F(x) € F(X) is true for every x € X,
(1.5.9) F}©) = @ (but here one may have F~}(A’) = @ for non-empty
‘subsets A’, namely those for which A’nF(X) = ).

(1.5.10) The relation A’cB’ implies F-1(A’) c F~1B’).

(1.5.11) F-YA’'nB) =FYA)nF(B).
(1.5.12) F-{A’UB’) = F-1(A") UF-Y(B").
(1.5.13) F-1(A’ — B') = F-Y{A’) — F-}(B') if A’D>B".

Notice the difference between (1.5.11) and (1.5.5). If BcAcX,
one has by (1.5.6) F(A) = F(B) U F(A — B), hence F(A —B) D F(A) — F(B);
but there is no relation between F(X — A) and Y — F(A).

The set F~1({y}) is also written F~1(y); F(x) = y is thus equivalent
to x e F~1(y).

We have:

(1.5.14) F(F-1(A)) = A’ F(X) for A'CY.
(1.5.15) F-1(F(A)) DA for AcX.
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Finally, we note the special relations in a product:

(1.516) pry'(A)=A xY for any AcX; pr;'(A) =X xA’ for
any A'CY.

(1.5.17) Zcpr, (Z) X pry(Z) for every ZcX x Y.

PROBLEMS

1) Give an example of two subsets AD B in X and of a mapping F such that
F(A — B) # F(A) — F(B).

2) Give examples of mappings F : X — Y and subsets A € X such that:

a) F(X—-A)cY — F(A); b) F(X — A)DY — F(A); c) neither of the sets
F(X — A), Y — F(A) is contained in the other (one can take for X and Y finite sets,
for instance).

3) For any subset G of a product X X Y, any subset A C X, any subset A’'CY,
write G(A) = pr, (GN (A X Y)) and G7YA’) =pr, (GN (X X A)). For »€X,
yEY, write G(x) (resp. G~Y(y)) instead of G({#}) and G~!({y}). Prove that the
following four properties aré equivalent:

a) G is the graph of a mapping of a subset of X into Y.

b) For any subset A’ of Y, G(G™1(A’)) c A".

c) For any pair of subsets A", B’ of Y, G™}(A’n B’) = GYA’) n G~1(B).

d) For any pair of subsets A’,B’ of Y such that A’n B’ =0, we have
G HA)YNGTYB) = 0.

[Hint: show that when a) is not satisfied, b), ¢) and d) are violated.]

6. Surjective, injective and bijective mappings

Let F be a mapping of X into Y. F is called surjective (or onto) or a
surjection if F(X) = Y, i.e., if for every y € Y, there is (at least) one x € X
such that y = F(x). F is called injective (or ome-to-one) or an injection if
the relation F(x) = F(x’) implies x = x’. F is called bijective (or a bijection)
if it is both injective and surjective. Any restriction of an injective mapping
is injective.

Any mapping F of X into Y can also be considered as a mapping of X
into F(X); it is then surjective, and if it was injective (as a mapping of
X into Y), it is bijective as a mapping of X into F(X).

Examples. (1.6.1) If A is a subset of X, the restriction to A of the
identity mapping x — x is an injective mapping j,, called the natural
injection of A into X; for any subset B of X, 7 }(B) = BnA.
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(1.6.2) If F is any mapping of X into Y, the mapping x — (x,F(x)) is an
injection of X into X X Y.

(1.6.3) The projections pr, and pr, are surjective mappings‘ of X xY
into X and Y respectively.

(1.6.4) The identity mapping of any set is bijective.
(1.6.5) The mapping Z — X — Z of P(X) into itself is bijective.

(1.6.6) If Y = {b} is a one element set, the mapping x — (x,b) of X into
X x {b} is bijective.

(1.6.7) The mapping (x,y) — (¥,%) of X X Y into Y X X is bijective.

If F is injective, then F~1(F(A)) = A for any A cX; if F is surjective,
then F(F-1(A’)) = A’ for any A’'CY.

If F is bijective, the relation y = F(x) is by definition a functional relation
in x; the corresponding mapping of Y into X is called the inverse mapping

-1

of F, and written F or F~! (this mapping is not defined if F is not
bijective!). The relations y = F(x) and x = F~1(y) are thus equivalent;
F~1 is bijective and (F-1)~1 = F. For each subset A’ of Y, the direct
image of A’ by F~1 coincides with the inverse image of A’ by F, hence the
notations are consistent.

PROBLEM

Let F be a mapping X — Y. Show that the following properties are equivalent:
a) F is injective; b) for any subset A of X, F~1(F(A)) = A; c) for any pair of subsets
A,Bof X, F(AnB) = F(A) n F(B); d) for any pair of subsets A,B of X such that
ANB =0, F(A)nF(B) = @; e) for any pair of subsets A,B of X such that BC A,
F(A — B) = F(A) — F(B).

7. Composition of mappings

Let X,Y,Z be three sets, F a mapping of X into Y, G a mapping of
Y into Z. Then x — G(F(x)) is a mapping of X into Z, which is said to be
composed of G and F (in that order) and written H = GoF. One has

(1.7.1) H(A) = G(F(A)) for any AcX.

(1.7.2) H-Y(A") = F-1(G~Y(A")) for any A" C Z.
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If both F and G are injective (resp. surjective, bijective), then H = GoF
is injective (resp. surjective, bijective); if F and G are bijections, then
H-1= F-1G-1 If F is a bijection, then F~1oF is the identity mapping
of X, and FoF~! the identity mapping of Y.

Let T be a set, F; a mapping of X into Y, F, a mapping of Y
into Z, F, a mapping of Z into T. Then Fyo(FyoF)) = (F,0F,)oF,; by defini-
tion; it is a mapping of X into T, also written FyoF,0F,. Composition
of any finite number of mappings is defined in the same way.

PROBLEMS

1) Let A,B,C,D be sets, f a mapping of A into B, g a mapping of B into C, & a
mapping of C into D. Show that if gof and hog are bijective, f,g,k are all bijective.

2) Let A,B,C be sets, f a mapping of A into B, g a mapping of Binto C, » a mapping
of C into A. Show that if, among the mappings hogof, gofoh, fohog, two are surjective
and the third injective, or two are injective and the third surjective, then all three
mappings /,g,h are bijective.

3) Let F be a subset of X X Y, G a subset of Y x X. With the notations of
Problem 3 of section 1.5, suppose that for any x€ X, G(F(»)) = {#} and for any
y€Y, F(G(y)) = {y}. Show that F is the graph of a bijection of X onto Y and G
the graph of the inverse of F.

4) Let X,Y be two sets, f an injection of X into Y, g an injection of Y into X.
Show that .there exist two subsets A,B of X such that B = X — A, two subsets
A’B’ of Y such that B’ =Y — A’, and that A’ = f(A) and B = g(B’). [Let
R = X — g(Y), and & = gof; take for A the intersection of all subsets M of X such
that M2 R U k(M)].

8. Families of elements. Union and intersection of families of sets.

Let L and X be two sets. A mapping of L into X is sometimes also
called a family of elements of X, having L as set of indices, and it is written
A — x,, OF (%);cy, Or simply (%;) when no confusion can arise. The most
important examples are given by sequences (finite or infinite) which cor-
respond to the cases in which L is a finite or infinite subset of the set N
of integers > 0.

Care must be taken to distinguish a family (x,;);c, of elements of X
from the subset of X whose elements are the elements of the family, which
is the image of L by the mapping 4 — x,, and can very well consist only
of one element; different families may thus have the same set of elements.

For any subset MCL, the restriction to M of A — x; is called the
subfamily of (x,);., having M as set of indices, and written (%;);cu-
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For a finite sequence (x;); <, <, the set of elements of that sequence is
written {%,,%,,...,%,}; similar notations may be used for the set of
elements of any finite or infinite sequence.

If (A;);cr is @ family of subsets of a set X, the set of elements x € X
such that there exists a A € L such that x € A, is called the union of the

family (A,;);c, and written {J A, or |J A;; the set of elements x € X
AeL A

such that x € A; for every A€ L is called the intersection of the family
(Ap,er and written ) A, or [} A;. When L = {1, 2}, the union and

AeL A
intersection are respectively A;UA, and A, NA,.
The following propositions are easily verified:

(1.8.1) C( UAJ.) = ﬂ (C Ay
leL leL

(18.2) (UA)N( U B, = U @;n B,)

AeL neM (Lu)eL xM
(1.8.3) (NA)U(NBY)= [ (AUB)

AelL ueM {(Lu)eL xM
(1.84) F(UA,)=UF(@Q, if Fis a mapping of X into Y, and (A;);cr

AeL ieL

is a family of subsets of X.

(1.8.5) Fi(UA) = UFYA)
AeL AeL

(1.8.6) FY(MNA) = FA)
A€l A€eL

if F is a mapping of X into Y, and (A}),., a family of subsets of Y.
If B is a subset of X, a covering of B is a family (A;),. of subsets of X

such that Bc | J A,.
AeL

PROBLEM

Let (X;); < i<« be a finite family of sets. For any subset H of the interval [1,2]

of N, let Py = |J X; and Qg = [ Xi. Let & be the set of all subsets of [1,%)
ieH ieH

having % elements; show that

U NPy if2k<<n+1
He g, He§,

U Qgcn Py if 22 >=n + 1.
Heg,  Hegy
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9. Denumerable sets

A set X is said to be equipotent to a set Y if there exists a bijection
of X onto Y. Itis clear that X is equipotent to X; if X is equipotent to
Y, Y is equipotent to X; if X and Y are both equipotent to Z, X is
equipotent to Y. A set is called denumerable if it is equipotent to the
set N of integers.

(1.91) Any subset of the set N of integers is finite or denumerable.

For suppose A €N is infinite. We define a mapping # — %, of N into A
by the following inductive process: x, is the smallest element of A, x,, is
the smallest element of the set A — {x,,...,%,_,}, which by assumption
is not empty. This shows first that x; # x, for 7 << n, hence n — «x,, is
injective; let us prove in addition that », < x, for { < #n. We use induction
on ¢ for fixed n: we have x,< x, by definition of x,, and if x, < x, has
been proved for § <4, then x; < x, by definition of x,, hence x;< x,
since ¥; # x,. Next, by induction on #, it follows at once from the relation
%, << x, for ¢« < n that #» < x, for every »; hence, if a € A, we have a < %,.
Let m be the greatest integer < a such that x, < 4; if there existed an
integer b€ A such that x,<b < a, we would have %, , <<b<a by
definition, which contradicts the definition of #; hence a is the smallest
element of A — {x,,...,%,}, in other words a = x,, _,, the mapping n— %,
is surjective; q.e.d.

It follows from (1.9.1) that any subset of a denumerable set is finite
or denumerable; such a set is also called at most denumerable.

(1.9.2) Let A be a denumerable set, and | a mapping of A onto a set B.
Then B is at most denumerable.

Let n —a, be a bijection of N onto A; then n — f(a,) is a mapping
of N onto B, and we can therefore suppose A = N. For each b e B, f~1(b)
is not empty by assumption; let m(d) be its smallest element. Then
f(m(b)) = b, which shows at once that  is an injective mapping of B into N;
m can be considered as a bijection of B onto m(B) €N, and by (1.9.1) m(B)
is at most denumerable, q.e.d.

We observe that if a set A is at most denumerable, there is always
a surjection of N onto A; this is obvious if A is infinite; if not, there is
a bijection f of an interval 0 <{ ¢ <{ m onto A, and one extends f to a
surjection by putting g(n) = f(m) for n > m.
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(1.9.3) The set N x N = N2 is denumerable.
We define an injection f of N X N into N by putting

fay)y=@Ex+yE+y+1)2+y

(“diagonal enumeration’; it turns out to be a bijection, but we don’t need
that result). Indeed, if x4+ y=a, then (a4 1)(a+2)/2=a+1+a(a+1)/2;
henceif x + y < &' + ¥/, asy <a, f(x,3) <a+ ala+1)2<[(+,y); and
if x4+ y=x+9 and y'<y, flxy) — Hx.y) =y — ¥, hence
(%,9) = (x',y') implies f(x,y) # f(x',y'). We then apply (1.9.1).

We say that a family (x,),., is denumerable (resp. at most denumerable)
if the set of indices L is denumerable (resp. at most denumerable).

(1.9.4) The union of a denumerable family of denumerable sets vs denumerable.

Let (A,);.. be a denumerable family of denumerable sets; there is
a bijection n— 4, of N onto L, and for each 2 €L, a bijection # — f;(n)

of N onto A,. Let A =|JA,, and consider the mapping (m,1n) — f; (m)
ZeL "

of N x N into A; this mapping is surjective, for if x € A, there is an »
such that 4 = A,, and an m such that x =/ (m) = fz”(m)- The result now

follows from (1.9.3) and (1.9.2) since A is infinite.

The result (1.9.4) is still valid if the word “‘denumerable” is every-
where replaced by “at most denumerable.”” We have only to replace
bijections by surjections in the proof, using the remark which follows
(1.9.2).

Finally, we consider the following result as an axiom:

(1.9.5) Every infinite set contains a denumerable subset.

PROBLEMS

1) Show that the set F(N) of all finite subsets of N is denumerable (write it as a
denumerable union of denumerable sets).

2) Show that the set of all finite sequences of elements of N is denumerable (use
problem 1); observe the distinction between a sequence and the set of elements of
the sequence!).

3) Prove the result of problem 4 in section 1.7 by the following method: let
u = gof, v = fog, and define by induction u, and v, as u, = %, 104, Uy =V, _10V;
then consider in X (resp. Y) the decreasing sequence of the sets u,(X) (resp. v,(Y)),
and their images in Y (resp. X) by f (resp. g).
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4) Show that in order that a set X be infinite, the following condition is necessary
and sufficient: for every mapping f of X into itself, there exists a non empty subset
A of X, such that A # X and f(A) € A. (If f did not possess that property and X
was infinite, show first that X would be denumerable, and that one could suppose
that X = N and f(») > » for n > 0; show that this leads to a contradiction).

5) Let E be an infinite set, D an at most denumerable subset of E such that E — D
is infinite. Show that E — D is equipotent to E [use (1.9.4) and (1.9.5) to define a
bijection of E onto E — DJ.



Chapter |l

Real Numbers

The material in this chapter is completely classical; the main difference
with most treatments of the real numbers is that their properties are here
derived from a certain number of statements taken as axioms, whereas
in fact these statements can be proved as consequences of the axioms of
set theory (or of the axioms of natural integers, together with some part
of set theory, allowing one to perform the classical constructions of the
“Dedekind cuts” or the “Cantor fundamental sequences”). These proofs
have great logical interest, and historically they helped a great deal in
clarifying the classical (and somewhat nebulous) concept of the ‘“‘con-
tinuum”. But they have no bearing whatsoever on Analysis, and it has
not been thought necessary to burden the student with them; the interested
reader may find them in practically any book on Analysis; for a partic-
ularly lucid and neat description, see Landau [19].

1. Axioms of the real numbers

The field of real numbers is a set R for which are defined: 1° two
mappings (x,y) — x + ¥ and (x,y} — xy from R X R into R; 29 a relation
% < y (also written y > x) between elements of R, satisfying the four
following groups of axioms:

(I) R is a field, in other words:
L) 2+ (y+2=(x+9+z
(12) x+y=y+%;

(I.3) there is an element 0 € R such that 0 + x = x for every x€R;
15
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(1.4) for each element x € R, there is an element —x € R such that
x4 (—x)=0;

(L5)  x(y2) = (x)z;
(1.6) xy=yx;
(1.7) there is an element 1 5 0 in R such that 1- x = x for every x € R;

(I1.8) for each element x £ 0 in R, there is an element x~leR (also
written 1/x) such that xx~! =1;

(1.9) x(y + 2) = xy + xz.

We assume that the elementary consequences of these axioms (“‘general
theory of fields”) are known.

(II) R s an ordered field. This means that the following axioms are
satisfied:

(I.1) <<y and y <z imply ¥ < z;
(I1.2) “x<<y and y<<«” is equivalent to x = y;
(I1.3) for any two elements x,y of R, either x < y or ¥y < «;

(I1.4) x <y implies x + 2y + z;
(I1.5) 0<<x and 0 <y imply 0<< xy.

The relation “x < y and x # y” is written ¥ < y, or y > x. For any
pair of elements a,b of R such that a < b, the set of real numbers x such
that @ < x < b is called the open interval of origin a and extremity b, and
written ]a,b[; the set of real numbers x such that a < x < b is called the
closed interval of origin a and extremity b, and written [a,b] (for a = b, the
notation [4,4] means the one-point set {a}); the set of real numbers x
such that a < x < b (resp. a < x < b) is called a semi-open interval of
origin a and extremity b, open at a (resp. b), closed at b (resp. a) and written
Ja,b] (resp. [a,b[). The origin and extremity of an interval are also called
“the extremities’” of the interval.

(III) R 4s an archimedean ordered field, which means that it satisfies the
axiom of Archimedes: for any pair x,y of real numbers such that 0 < x,
0 < v, there is an integer # such that y << n- x.



2. ORDER PROPERTIES OF THE REAL NUMBERS 17

(IV) R satisfies the axiom of nested intervals: Given a sequence ([a,,b,])
of closed intervals such that a,<a, , and b, ,<<b, for every #, the
intersection of that sequence is not empty.

2. Order properties of the real numbers

The relation x < ¥ is equivalent to “x <<y or x = y.”

(2.2.1) For any pair of real numbers x,y, one and only one of the three relations
x<y, x=19, x>y holds.

This follows from (I1.3) and (I1.2), for if x =% y, it is impossible that
x <y and x > y hold simultaneously by (II.2).

(22.2) The relations “x <y and y <z’ and “x <y and y < 2’ both
tmply x < z.

For by (II.1) they imply x» < z, and if we had x = z, then we would
have both x <Ly and ¥ < » (or both x < y and y < x) which is absurd.

(2.2.3) Any finite subset A of R has a greatest element b and a smallest
element a (i.e., a << x<b for every x€A).

We use induction on the number # of elements of A, the property being
obvious for # = 1. Let ¢ be an element of A, B=A — {c}; Bhas# — 1
elements, hence a smallest element a’ and a greatest element &'. If
a’ < c b, a is the smallest and b’ the greatest element of A; if ' e,
¢ is the greatest and a’ the smallest element of A; if ¢ < @/, ¢ is the smallest
and &' the greatest element of A.

(2.2.4) 1If A is a finite subset of R having n elements, there is a unique bijec-
tion f of the set 1, of integers ¢ such that 1 < i < n, onto A, such that f(z) < ()
for © < § (f is called the natural ordering of A).

Use induction on #, the result being obvious for n = 1. Let b be the
greatest element of A (2.2.3), and B = A — {b}; let g be the natural
ordering of B. Any mapping f of I, onto A having the properties stated
above must be such that f(n) = b, and therefore f(I,_,) = B; hence f
must coincide on I,_,; with the natural ordering g of B, which shows f
is unique; conversely, defining f as equal to gin I, _; and such that f(n) =&,
we see at once that f has the required properties.
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(2.2.5) If (x;) and (y;) are two finite sequences of n real numbers (1 < 7 < n)
such that x, < v, for each i, then

R R R e AU S VS PR ol

If in addition x;<< y; for one index i at least, then

Xt 2+ X, <V F VoY,

For #n = 2 the assumptions imply successively by (II1.4)

B F XY+ %< Y+ Y

hence the first conclusion in that case ; moreover, the relation x, +x,=v, 4 ¥,
implies x; + %, = %, + Y3 ="9; + ¥,, hence %=1y, and x, =y,, from which
our second statement follows. The proof is concluded by induction on #,
applying the result just obtained for » = 2.

(2.2.6) The relation x < y is equivalent to x + 2z <y + z; same result
when < is replaced by <.

We already know by (II.4) that x < y implies x 4- 2z <Ly + z; con-
versely ¥ +2<y+z impliess x +z24+(—2)<y+ 2+ (—2), ie.
% < y. On the other hand, x 4+ z = y 4- 2z is equivalent to x = y.

(22.7) The relations x <y, 0<y—=% x—y<KL0, —y{ —x are
equivalent; same result with << replacing <.

This follows from (2.2.6) by taking in succession z = — %, 2= — ¥
and z= —x — y.

Real numbers such that x > 0 (resp. x > 0) are called positive (resp.
strictly positive); those which are such that x < 0 (resp. # < 0) are called
negative (resp. strictly negative). The set of positive (resp. strictly positive)
numbers is written R, (resp. RI).

(2.2.8) If «x,,...,x, are positive, so 1s % + %y +...+ %,; moreover
X+ % +...+ %,>0 unless %, = %= ... = %, = 0.

This is a special case of (2.2.5).

In particular, x > 0 (resp. x > 0) is equivalent to »n-x >0 (resp.
n-x > 0) for any integer n > 0.

For an interval of origin @ and extremity b, the positive number b — a
is called the length of the interval.
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(2.2.9) Let Jy,....], be n open intervals, no two of which have common

points, and let 1 be an interval containing \J J,; then, if I, is the length of J:
k=1

A<k<n), Lthelength of I, I, + 1, +...+1, <L

LetI =1]ab[, J, =]c,d,[. Foreachk 5 1, we have either ¢, < d, < o
or d; < ¢, < d,, otherwise J; N J, would not be empty. For # =1, the
property is immediate as a <<¢;<d; <b, hence —¢, < —a, and
dy — ¢; < b — a. Use induction on #; let Jipeor) i be the intervals contain-
ed in Jac [, and J;,....J;

in_1—p the intervals contained in ]d,,b[; then

? n—1-p
2L <¢g—a X L, <b—dy by induction, and §, + 1l +...+ 1, =

h=1 k=1

h+20, +2L <dy—cy+c,—a+b—dj=b—a.
3 k

For any real number x, we define \x’ asequal to x if x>0, to — «
if ¥ <0, hence |— x| = |x|; |x| is called the absolute value of x; |x| =0
is equivalent to x = 0. We write x™ = (x + |x[)/2 (positive part of x),
x~ = (|x] — %)/2 (negative part of x) so that xt = x if x >0, x* = 0 if
x<0, »=0if *x>0, = —x if x<<0, and x = 2t — x-,
|#] = 2t + x—.

(2.210) If a >0, the relation |x| < a is equivalent to — a < x < a, the
relation |x| <a to —a < x< a.

Forif x > 0, x > — a is always satisfied and |x| < a (resp. |¥| < a) is
equivalent to x < a (resp. x < a); and if x <0, x < a is always satisfied
and |x| < a (resp. |x| < a) is equivalent to — x < a (resp. — x < a).

(2211) For any pair of real numbers x,y, |x + y| < |x| +|y| and
Hxl = Il < Jx — -

The first relation is evident by definition and from (2.2.8) when x,y
are both positive or both negative. If for instance » <0 <y, then
FHYSYSy+ =y +lal and x4y > x>0 — |y = — [ - |y].
From the first inequality follows || = |y + (* — y)| < |y| + |x — y| and
yl= 12+ (v —2)|<|2| + |y — x| whence — |x—y|<|#| - |y|<|x—y]-

By induction, it follows from (2.2.11) that

|2 + % ...+ x| < |2y| + %) ..o+ |5,
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(2212) If 2> 0, the relation x <y implies xz < yz.
For by (2.2.7), x < y implies 0 < y

from (11.5).

— x,hence 0 < 2(y — %) = 2y — 2%

(2.213)  The relations x < 0 and y > 0 imply xy < 0; the relations x < 0
and y < 0 imply xy > 0. Same results with < replaced by <. In particular,
22 > 0 for any real number, and x*> 0 unless x = 0.

The first statements follow from (IL.5) and (— %)y = — (),
(— x)(— 9) = xy; on the other hand, xy = 0 implies x =0 or y = 0.

(2.2.13) implies that |xy| = |%|- |y| for any pair of real numbers x,y.

From (2.2.13) and (1.7) it follows that 1 = 12> 0, hence by (2.2.8), the
real number # - 1 (1 added # times) is > 0 for #» > 0; this shows that the
mapping # — - 1 of the natural integers into R is injective, and preserves
order relations, addition and multiplication; hence natural integers are
identified to real numbers by means of that mapping.

(2.214) If x>0, x 1> 0. For z > 0, the relation x < y 1s equivalent to
xz < yz. The relation 0< x <y is equivalent to 0 < y~1 < x7L.

The first statement follows from the fact that xx~1 = 1> 0, hence
x~1> 0 by (2.2.13); the second follows from the first and (2.2.12), since
% = (x2)z71. The third is an obvious consequence of the second.

Real numbers of the form 4 r[s, where  and s are natural integers,
s #~ 0, are called rational numbers. Those for which s = 1 are called integers
(positive or negative) and the set of all integers is written Z.

(2.215) The set Q of rational numbers is denumerable.

As Q is the union of QN R, and QN (—R,), it is enough to prove
QN R, denumerable. But there is a surjective mapping (m,n) —m/n of
the subset of N x N consisting of the pairs such that #» 7= 0, onto QN R_,
hence the result by (1.9.2), (1.9.3) and (1.9.4).

(2.2.16)  Every open interval in R contains an infinite set of rational numbers.

It is enough to prove that ]a,b[ contains one rational number ¢, for then
Ja,c[ contains a rational number, and induction proves the final result.
Let x = b — a > 0; by (III) there is an integer #» > 1/x, hence 1/n < x
by (2.2.14). We can suppose b > 0 (otherwise we consider the interval
]J—b,—a[ with —a>0). By (III) there is an integer 2 > 0 such that
b< k|n; let h be the smallest integer such that < k/n. Then (h—1)/n <b;
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let us show that (A — 1)/n > a; if not, we would have b — ¢ = % < 1n
by (2.2.9), contradicting the definition of #.

(2.2.17)  The set of real numbers is not denumerable.

We argue by contradiction. Suppose we had a bijection # — %, from
N onto R. We define a subsequence # — p(n) of integers by induction
in the following way: $(0) = 0, p(1) is the smallest value of # such that
%, > %. Suppose that p(n) has been defined for n < 2m — 1, and that
Xpem—2 < Fpm—1); then the set Jx,o, o, 2,5, [ is infinite by (2.2.16),
and we define p(2m) to be the smallest integer 2> p(2m — 1) such that
Tpem—2) < %3 < Xpom_1); then we define p(2m + 1) as the smallest in-
teger k> p(2m) such that x,,, < x,< Xpom—1)- 1t is immediate that
the sequence (p(n)) is strictly increasing, hence p(n) >« for all . On
the other hand, from the construction it follows that the closed interval
(%p(2m)»®p2m +1)] 1S contained in the open interval 1¥pom— oy %pem—1)[- By
(IV) there is a real number y contained in all closed intervals [%p(2my Zpam +1)]
and it cannot coincide with any extremity, since the extremities of an
interval do not belong to the next one. Let ¢ be the integer such
that y = x, and let » be the largest integer such that p(n) <gq,
hence ¢ < p(n 4 1). Suppose first # = 2m; then, the relation
Zpem) < %4 < Zpem 1)< Xpem — 1) cOntradicts the definition of p(2m + 1). If on
the contrary # = 2m — 1, then the relation Yoiom—2 < Fpem < %4 < Lpom_1
contradicts the definition of p(2m). This ends the proof.

PROBLEMS

1) Let A be a denumerable subset of R having the following properties: for every
pair of elements #,y of A such that » < y, there are elements %,v,w of A such that
# < % <v<y<w. Show that there is a bijection f of A onto the set Q of rational
numbers, such that x < y implies f(») < f(y). [Let #n —>a,, = — b, be bijections
of N onto A and Q. Show by induction on # that there exist finite subsets A,CA,
B, c Q, and a bijection f, of A, onto B, such that: 19 the a; with ¢ < » belong to A,,;
29 the b; with i<C#n belong to B,; 3% x < yin A, implies f,(x) < f,(y); 4° A,C A,
and f, is the restriction of f, ;1 to A,.]

2) Show that the set I of all irrational numbers is equipotent to R (cf. section 1.9,
problem 5).

3. Least upper bound and greatest lower bound

A real number b is said to be a majorant (resp. minorant) of a subset X
of real numbers if x < & (resp. b < x) for every xeX. A set XCR is
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said to be majorized, or bounded from above (resp. minorized, or bounded
from below) if the set of majorants (resp. minorants) of X is not empty.
If X is majorized, then — X (set of — x, where x € X) is minorized, and
for every majorant b of X, — b is a minorant of — X, and vice-versa.
A set which is both majorized and minorized is said to be bounded.

(2.3.1) In order that a set X CR be bounded, a necessary and sufficient
condition is that there exist an integer n such that |x| < n for every x € X.

For it follows from (III) that if 4 is a minorant and & a majorant of X,
there exist integers p,¢ such that —p < a and b < g; take n=p + g¢.
The converse is obvious.

(2.3.2) If a non-empty subset X of R is majorized, the set M of majorants
of X has a smallest element.

Let a e X, b e M; by (III), for every integer =, there is an integer m
such that & < a + m- 2~"; on the other hand, if ¢ is a majorant of X, so
is every y >c¢, so there is a smallest integer p, such that a + p, 27" is
a majorant of X; this implies that, if I, = [a + (p, —1)27 ", a + P, 27",
1,0 X is not empty. Asp,2” "= (2p,) 2~ "', we necessarily have p, . , = 2p,
or p, ., = 2p, — 1, since (2p, —2) 27"~ !isnot a majorant; in other words,
I,,,c€l, From (IV) it follows that the intervals I, have a non-empty
intersection J; if J contained at least two distinct elements « < 8, the
interval [«,8] would be contained in each I, and therefore by (2.2.9) we
should have 27" << 8 — «, or 1 > 2"(8 — ) for every », which contradicts
(I1T) (remember that 2" > #, as is obvious by induction). Therefore J = {y}.
Let us first show that p is a majorant of X; if not, there would be an
x € X such that x > y; but there would then be an # such that 27" < x — y,
and as yel, we would have a 4 $,27" < #, contrary to the definition
of ,. On the other hand, every y e M is > y; otherwise, there would be
an z such that 2~ " <y — y, and asy€l,, wewouldhavea, + (p, —1)27" >,
and a + (p, — 1) 27" would be a majorant of X; this contradicts again
the definition of p,. The number y is thus the smallest element of M; it
is called the least upper bound or supremum of X, and written Lu.b. X,
or sup X.

(2.3.3) If a non-empty subset X of R is minorized, the set of minorants M’
of X has a greatest element.

Apply (2.3.2) to the set — X.
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The greatest element of M’ is called the greatest lower bound or infimum
of X and written g.L.b. X or inf X. For a non-empty bounded set X, both
inf X and sup X exist, and inf X < sup X.

(23.4) The lub. of a majorized set X is the real number y characterized
by the following two properties: 1° y is a majorant of X; 2° for every integer
n >0, there exists an element x € X such that y — 1jn < x < y.

Both properties of y = sup X follow from the definition, since the
second expresses that y — 1/n is not a majorant of X. Conversely, if
these properties are satisfied, we cannot have sup X = f < y, for there
would be an % such that 1/n <y — 8, hence <y — 1/n, and y — 1/n
would be a majorant of X, contrary to property 2° A similar characteriza-
tion holds for inf X, by applying (2.3.4) to — X, sinceinf X = — sup (— X).

If a set XCR has a greatest element b (resp. a smallest element a) then
b = sup X (resp. a = inf X) and we write Max X (resp. Min X) instead
of sup X (resp. inf X). This applies in particular to finite sets by (2.2.3).
But the Lu.b. and g.Lb. 6f a bounded infinite set X need not belong to X;
for instance, if X is the set of all numbers 1/n, where # runs through all
integers > 1, 0 is the g.Lb. of X.

(2.3.5) IfAcR ismajorized and BC A, B is majorized and sup B < sup A.
This follows from the definitions.

(2.3.6) Let (A;);cp e a family of non-empty majorized subsets of R; let

A = \JA, and let B be the set of elements sup A,. In order that A be major-
AeL

1zed, a necessary and sufficient condition is that B be majorized, and then
sup A = sup B.

It follows at once from the definition that any majorant of A is a
majorant of B, and vice-versa, hence the result.

Let f be a mapping of a set A into the set R of real numbers; f is said
to be majorized (resp. minorized, bounded) in A if the subset f(A) of R is

majorized (resp. minorized, bounded); we write sup f(A) = sup f(x),
z€A

inf f(A) = inf f(¥) when these numbers are defined (supremum and
z€A '

infimum of f in A). If f is majorized, then — f is minorized, and

inf (— f(x)) = — sup /(x).

x€A x€A
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(2.3.7) Let | be a mapping of A, X A, into R; if fis majorized,

sup.  f(#y,%,) = sup (sup f(%,,%,)).
(x,75) €Ay XA, €A, x,€A,

For we can write f(A; X A,) as the union of the sets f({x;} X A,), %, ranging
through A,, and apply (2.3.6).

(2.3.8) Let },g be two mappings of A into R such that f(x) < g(x) for every
x € A; then if g is majorized, so is f, and sup f(x) < sup g(x).

x€EA x€A

This follows immediately from the definitions.

(2.3.9) Let f and g be two mappings of A into R; if f and g are both major-
1zed, so is [ + g (i.e. the mapping x — f(x) + g(x)), and sup (f(x) + g(x)) <

z€A
sup f(x) + sup g(x). If in addition g is minorized then sup f(x) + inf g(x) <
x€EA x€A x€A x€A
sup (/(x) + g(x)).

Let a = sup f(x), b = supg(x); then f(x) < a and g(x) < b for every

z€A z€A

x €A, hence f(x) + g(x) < a 4+ b, and the first inequality follows. Let
c=inf g(x); then forevery x€A, f(x) + ¢ <f(x) + g(x) <d=sup(f(x) +g(x));

x€EA x€A
but this yields f(x) << d — cforevery x € A, hencea < d —c,ora + ¢ < d,
which is the second inequality.

(2.3.10) Let [ be a majorized mapping of A into R; then for every real
number ¢, sup (f(x) + ¢) = ¢ + sup f(x).

x€A r€A

Take for g the constant function equal to ¢ in (2.3.9).

(2.3.11) Let f, (resp. fo) be a majorized mapping of A, (resp. A,) into R;
then (xy,%5) — f1(%y) + fo(%,) is majorized, and

sup (1(x1) + fa(x2)) = sup fi(xy) + sup fa(%y).

(%1,25) €Ay X A, €A, X€A,

Apply (2.3.7) and (2.3.10).
We leave to the reader the formulation of the similar properties for inf
(change the signs everywhere).
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PROBLEM

Let ¥ — I(#) be a mapping of R into the set of open intervals of R, such that I(x)
be an open interval of center » and of length <C ¢ (¢ being a given number > 0). Show
that, for every closed interval {a,b] of R, there exist a finite number of points x; of
[4,6] such that: 1° the intervals I(x;) form a covering of [a,b]; 2° the sum of the
lengths of the I(#;) is <C¢ + 2(b — a). (Prove that if the theorem is true for any
interval [a,x] such that a< % < u <b, then there exists v such that u < v < b
and that the theorem is still true for any interval [a,y] such that « < y < v. Consider
then the Lu.b. of all numbers % < b such that the theorem is true for any interval
[,4] such that e <C » < u.) Show by an example that the majoration is best possible.



Chapter |l

Metric Spaces

This Chapter, together with Chapter V, constitutes the core of this book:
in them is developed the geometric language in which are now expressed
the results of Analysis, and which has made it possible to give to these
results their full generality, as well as to supply for them the simplest
and most perspicuous proofs. Most of the notions introduced in this Chapter
have very intuitive meanings, when specialized to “ordinary” three-
dimensional space; after some experience with their use, both in problems
and in the subsequent Chapters, the student should be able to reach the
conviction that, with proper safeguards, this intuition is on the whole an
extremely reliable guide, and that it would be a pity to limit it to its
classical range of application.

There are almost no genuine theorems in this chapter; most results
follow in a straightforward manner from the definitions, and those which
require a little more elaboration never lie very deep. Sections 3.1 to 3.13
are essentially concerned with laying down the terminology; it may seem
to the unprepared reader that there is a very great deal of it, especially
in sections 3.5 to 3.8, which really are only various ways of saying the
same things over again; the reason for this apparent redundancy of the
language is to be sought in the applications: to dispense with it (as one
theoretically might) would often result in very awkward and cumbersome
expressions, and it has proved worthwhile in practice to burden the memory
with a few extra terms in order to achieve greater clarity.

The most important notions developed in this Chapter are those of
completeness (3.14), compactness (3.16 to 3.18) and connectedness (3.19),
which will be repeatedly used later on, and of which the student should
try to get as thorough a grasp as possible before he moves on.

Metric spaces only constitute one special kind of “topological spaces”,
and this Chapter may therefore be visualized as introductory to the

26
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study of ‘“‘general topology,” as developed for instance in Kelley [18]
and Bourbaki [5]; the way to this generalization is made apparent
in the remarks of (3.12) when it is realized that in most questions, the
distance defining a metric space only plays an auxiliary role, and can
be replaced by “equivalent” ones without disturbing in an appreciable
way the phenomena under study.

1. Distances and metric spaces
Let E be a set. A distance on E is a mapping d of E X E into the set R
of real numbers, having the following properties:

(I)  d(x,y) = 0 for any pair of elements %,y of E.
(IT) The relation d(x,y) = 0 is equivalent to x = y.
(ITI) d(y,x) = d(x,y) for any pair of elements of E.

(IV) d(x,2) < d(x,y) + d(y,2) for any three elements x,y,2 of E
(“triangle inequality’).

From (IV) it follows by induction that
a(%,%,) < @(%y,%9) + A(xp,%5) + ... +d(%,_1,%,)
for any » > 2.
(3.1.1) If d is a distance on E, then
ld(x.2) — d(y.2)] < d(%.y)
for any three elements x,y,z of E.
For it follows from (III) and (IV) that
d(x,2) <d(y,2) +d(x,)
and d(y,2) < d(y,x) + d(x,2) = d(x,y) + d(x,2)
hence —d(x,y) <d(x,2) —d(y,z) <d(x,y).

A metric space is a set E together with a given distance on E.



28 III. METRIC SPACES
2. Examples of distances

(3.2.1) The function (x,y) — |xr — y| is a distance on the set of real
numbers, as follows at once from (2.2.11); the corresponding metric space
is called the real line. When R is considered as a metric space without
mentioning explicitly for what distance, it is always understood that the
distance is the one just defined.

(3.2.2) In usual three-dimensional space R® =R X R X R, the usual
“euclidean distance” defined by

Ax,y) = (0, — 91)2 + (2 — ¥2)2 + (25— ¥3)?

for two elements x = (x,,%,,%3) and ¥ = (¥,,%,,¥5) Verifies axioms (I), (II)
and (ITI) in a trivial way; (IV) is verified by direct computation.

(3-2.3) In the “real plane” R? =R X R, let us define

a(x,y) = |2, — 1| + [% — ¥,

for any two elements x = (%;,%,) and y = (¥,,%,); axioms (I), (II), (IIT)
are again trivially verified, whilst (IV) follows from (2.2.11).

(3.24) Let A be any set, E = #(A) the set of bounded mappings of A
into R (see 2.3). Then, for any two functions f,¢ belonging to E, f — g also
belongs to E, and the number

d(f.g) = sup |f(t) — g(8)|
teA
is defined. The mapping (f,g) — d(/,¢) is a distance on E; for (I) and (III)
are trivial, and (IV) follows at once from (2.3.9) and (2.3.8); on the other
hand, if 4(f,g) = 0, then f(f) — g(¢) = O for all ¢t € A, which means /=g
(see 1.4), hence (II).

(3.2.5) Let E be an arbitrary set, and let us define d(x,y) = 1 if x # y,
d(x,x) = 0. Then (I), (IT), (III) are verified; (IV) is immediate if two of the
three elements x,y,z are equal; if not, we have d(x,2) =1, d(x,y) + d(y,2) =2,
hence (IV) is satisfied in every case. The corresponding metric space
defined on E by that distance is called a discrefe metric space.

(3.2.6) Let p be a prime number; for any natural integer # > 0, we define
v,(n) as the exponent of p in the decomposition of # into prime numbers.
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It follows at once from that definition that
(3.2.6.1) vp(nn’) = v,(n) + v,(n)

for any pair of integers > 0. Next let x = 4 7/s be any rational number £ 0,
with 7 and s integers > 0; we define Uy(%) = v,(r) — v,(s); this does not
depend on the particular expression of x as a fraction, as follows at once
from (3.2.6.1); the same relation also shows that

(3.2.6.2) Uy (xY) = v,(x) + v,(y)

for any pair of rational numbers £ 0. We now put, for any pair of rational
numbers x,y, d(x,y) = p~»* =¥ if x £ y, and d(x,x) = 0; we will prove
this is a distance (the so-called “‘p-adic distance”) on the set Q of rational
numbers. Axioms (I), (II) and (III) follow at once from the definition;
moreover, we prove the following reinforced form of axiom (IV)

(3.2.6.3) d(x,2) < Max (d(%,9),d(9,2)).

As this is obvious if two of the elements x,y,z are equal, we can suppose
they are all distinct, and then we have to prove that for any pair of rational
numbers x,y such that x % 0, y 2 0 and ¥ — y # 0, we have

(3.2.6.4) v,(% — ¥) = Min (v,(%);2,(y))-

We can suppose v,(x) > v,(y); using (3.2.6.2), the relation to prove
reduces to

(3.2.6.5) V(2 —1) =0

for any rational z such that z 50, 2z 1 and v(2) = 0. But then, by
definition, z = 4 p"r/s, with 2 >> 0, » and s not divisible by p; as z — 1
has a denominator which is not divisible by #, (3.2.6.5) follows from the
definition of v,.

Other examples will be studied in detail in Chapters V, VI and VII.

3. Isometries

Let E, E’ be two metric spaces, d,d’ the distances on E and E’. A
bijection f of E onto E’ is called an isometry if

(3.3.1) @' ({().f(y)) = d(x,y)
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for any pair of elements of E; the inverse mapping /~1is then an isometry
of E’ onto E. Two metric spaces E, E’ are isometric if there is an isometry
of E onto E’. Any theorem proved in E and which involves only distances
between elements of E immediately yields a corresponding theorem in any
isometric space E’, relating the distances of the images by f of the elements
of E which intervene in the theorem.

Let now E be a metric space, 4 the distance on E and f a bijection of E
onto a set E’ (where no previous distance need be defined); we can then
define a distance d’ on E’ by the formula (3.3.1), and f is then an isometry
of E onto E’. The distance 4’ is said to have been transported from E to E’

by f.

(3.3.2) Example: the extended real line R. The function f defined in R by
f(*) = %/(1 + |x]) is a bijection of R on the open interval I = ]—1, 41,
the inverse mapping g being defined by g(x) = x/(1 — |x|) for |x| < 1.
Let J be the closed interval [—1, 41], and let R be the set which is the
union of R and of two new elements written 4 oo and — oo (points at
infinity); we extend f to a bijection of R onto J by putting f(+c0) = 41,
f(— o) = —1, and write again g for the inverse mapping. As J is a metric
space for the distance |x — y|, we can apply the process described above
to define R as a metric space, by putting d(x,y) = |f(x) — f(y)|. With this
distance (which, when considered for elements of R, is different from the
one defined in (3.2.1)), the metric space R is called the extended real line;
we note that for x > 0, d(+ o0,%) = 1/(1 + |x|) and for x < 0, d(— o0,%)
=1/(1 + |x|.

We can define an order relation on R by defining x < v to be equivalent
to f(x) < f(v); it is readily verified that for x,y in R this is equivalent to
the order relation already defined on R, and that in addition we have
— o0 < x << + o for every x € R; the real numbers are also called the
finite elements of R. All properties and definitions, seen in chap. II, which
relate to the order relation only (excluding everything which has to do
with algebraic operations) can immediately be “‘transported’” to R by the
mapping g. A non-empty subset A of R is always bounded for that order
relation, and therefore sup A and inf A are defined, but may be + oo

or — oo as well as real numbers. The definition of sup #(x) and inf %(x)
Z€EA z€A

(for any mapping # of a set A into ft) is given in the same manner, and
in particular, properties (2.3.5), (2.3.6), (2.3.7) and (2.3.8) hold without
change.
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4. Balls, spheres, diameter

In the theory of metric spaces, it is extremely convenient to use a
geometrical language inspired by classical geometry. Thus elements of a
metric space will usually be called points. Given a metric space E, with
distance 4, a point a € E, and a real number 7 > 0, the open ball (resp.
closed ball, sphere) of center a and radius r is the set B(a; 7) = {x€E|d(a,x) <7}
(resp. B'(a;7) = {x € E|d(a,x) <7}, S(a;7) = {x €E|d(a,x) =7}). Open
and closed balls of center @ always contain the point 4, but a sphere of
center 2 may be empty (for examples of strange properties which balls
may possess in a general metric space, see problem 4 of section 3.8).

Examples. In the real line, an open (resp. closed) ball of center a and
radius 7 is the interval Ja — 7, a + »[ (resp. [a — »,a + 7]); the sphere
of center a and radius 7 consists of two points a — 7, a -+ 7. In the extended
line R, an open ball of center oo and radius » <1 is the interval
]J(1 — #)/r, + oo]. In a discrete space E, a ball (open or closed) of center a
and radius # < 1 is reduced to a and the corresponding sphere is empty;
if on the contrary » > 1, B(a;7) = B’(a;7») =E and S(a;r) =0 if r > 1,
S(a;r)=E—{a} if r=1.

Let A,B be two non-empty subsets of E; the distance of A fo B is
defined as the positive number d(A,B) = inf d(x,y). When A is reduced

x€A,y€B
to a single point, d(A,B) is also written d(»,B); we have by (2.3.7),
d(A,B) = infd(x,B). If AnB # @, d(A,B) =0, but the converse need
z€A

not hold; more generally, if d(A,B) = a, there does not necessarily exist
a pair of points x € A, y € B such that d(x,y) = a. For instance, in the
real line R, let A be the set of all integers >> 1, and let B be the set of
numbers of the form #» — 1/n for all integers » >>2; A and B have no
common points, but d(n,n — 1/n) = 1/n is arbitrarily small, hence
d(A,B) = 0 (see section 3.17, problem 2).

(3.4.1) 1If a point x does not belong to a ball B(a;r) (resp. B'(a; 7)), then
d(x,Bla; 7)) >d(a,x) —r (resp. d(x,B'(a; 7)) = d(a,x) — 7).

Indeed, the assumption implies d(a,x) >=7; for any yeB(a;r) (resp.
y € B'(a; 7)), d(x,y) > d(a,x) — d(a,y) >> d(a,x) —r by the triangle in-
equality.
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(3.4.2) IfAdsanon-empty subset of E, x,y two pointsof E,
|d(x,A) —d(y,A)| < d(x,y).
For every z € A, d(x,2) < d(x,y) + d(y,2), hence

d(x,A) = inf d(x,2) < inf (d(x,y) + d(v,2) = d(x,y) + inf d(y,2) =

z€A z€A z€A

=d(x,y) + d(y,A)

by (2.3.8) and (2.3.10). Similarly one has d(y,A) < d(x,y) + d(x,A).
For any non-empty set A in E, the diameter of A is defined as 4(A)

= sup d(x,y); it is a positive real number or + oco; ACB implies
x€EA, yEA

6(A) << 6(B). The relation 6(A) = 0 holds if and only if A is a one
point set.

(3.4.3) For any ball, §(B'(a;r)) < 2.
For if d(a,x) < v and d(a,y) < 7, d(x,y) < 27 by the triangle inequality.

A bounded set in E is a non-empty set whose diameter is finite. The
whole space E can be bounded, as the example of the extended real line R
shows. Any non-empty subset of a bounded set is bounded.

(3.4.4) The union of two bounded sets AB is bounded.

For if ae A, beB, then if x,y are any two points in AUB, either x
and vy are in A, and then d(x,y) < 6(A), or they are in B and d(x,y) < 6(B),
or for instance x € A and y € B, and then d(x,y) << d(x,a) + d(a,b) + d(b,y)
by the triangle inequality, hence

0(AUB) < d(ab) + 6(A) + 6(B);
this being true for any a € A, b € B, we have

8(AUB) <d(A,B) + 5(A) + 8(B)
by definition of d(A,B).

It follows that if A is bounded, for any x, € E, A is contained in the
closed ball of center x, and radius d(x,,A) + 6(A).
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5. Open sets

In a metric space E, with distance d, an open set is a subset A of E
having the following property: for every x € A, there exists » > 0 such
that B(x; ) € A. The empty set is open (see 1.1); the whole space E is open.

(3.5.1) Any open ball is an open set.

For if x € B(a;r), then d(a,x) <7 by definition; hence the relation
d(x,y) < r — d(a,x) implies d(a,y) < d(a,x) + d(x,y) < r, which proves the
inclusion B(x;7 — d(a,x)) € B(a; 7).

(3.5.2) The union of any family (A)), ., of open sets is open.

Forif x € A, for some u € L, then thereis # > 0 such that B(x;7) ¢ A,cA

—UAs

AeL
For instance, in the real line R, any interval Ja, 4- oo[ is open, being
the union of the open sets Ja,x[ for all x > 4. Similarly, ]— oo, a[ is open.

(3.5.3) The intersection of a finite number of open sets is open.

It is enough to prove that the intersection of two open sets A;, A, is
open, and then to argue by induction. If x €A, NA,, there are », >0,
73> 0 such that B(x;7)CA,, B(x;7,)CA,; clearly if » = Min (r,,7,),
B(x;7) A nA,.

In general, an infinite intersection of open sets is no longer open; for
instance the intersection of the intervals ]— 1/n,1/#[ in R is the one point
set {0}, which is not open by (2.2.16). However:

(3.5.4) In a discrete space any set is open.

Due to (3.5.2), it is enough to prove that a one point set {a} is open.
But by definition, {a} = B(4;1/2), and the result follows from (3.5.1).

6. Neighborhoods

If A is a non-empty subset of E, an open neighborhood of A is an open
set containing A; a neighborhood of A is any set containing an open neigh-
borhood of A. When A = {x}, we speak of neighborhoods of the point %
(instead of the set {x}).
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(3.6.1) For any non-empty set ACE, and any r >0, the set V,(A)
= {x € E|d(x,A) < 7} is an open neighborhood of A. :

For if d(x,A) < r and d(x,y) <7 — d(x,A), it follows from (3.4.2) that
d(y,A) < d(x,A) +r — d(x,A) = r, hence V, (A) is open, and obviously
contains A.

When A = {a}, V,(A) is the open ball B(a;7).

A fundamental system of neighborhoods of A is a family (U,) of neigh-
borhoods of A such that any neighborhood of A contains one of the sets U,.
For arbitrary sets A, the V,(A) (» > 0) do notin general form a fundamental
system of neighborhoods of A (see however (3.17.10)). It follows from the
definitions that:

(3.6.2) The balls B(a;l/n) (n integer > 0) form a fundamental system of
neighborhoods of a.

(3.6.3) The intersection of a finite number of neighborhoods of A is a neigh-
borhood of A.

This follows from (3.5.3).

(3.6.4) In order that a set A be a neighborhood of every ome of its points, a
necessary and sufficient condition is that A be open.

The condition is obviously sufficient; conversely, if A is a neighborhood
of every x € A, there exists for each x € A an open set U ,C A which
contains x. From the relations x e U,c Awe deduce A = | J {x} c | JU,cA,

xeA x€A

hence A = | JU, is an open set, by (3.5.2).

Z€EA

PROBLEM

In the real line, show that the subset N of all integers >> 0 does not possess a
denumerable fundamental system of neighborhoods. (Use contradiction, and apply
the following remark: if (a,,,) is a double sequence of numbers > 0, the sequence (b,,)
where b, = a,,/2 is such that for no integer m does the inequality b, > a,,, hold
for all integers #.)

7. Interior of a set

A point x is said to be interior to a set A if A is a neighborhood of x.

The set of all points interior to A is called the inferior of A, and written A.
For instance, in the real line R, the interior of any interval of origin a
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and extremity b (4 < b) is the open interval ]a,b[; for neither a nor b
can be an interior point of the intervals [,b], [a,b[ and ]a,b], as no interval
of center a or b is contained in these three intervals.

(3.7.1) For any set A, A is the largest open set contained in A.

For if x € A, there is an open set U, € A containing x; for each ye U,

A is by definition a neighborhood of y, hence y A, and therefore U,c A,
which proves Ais open by (3.6.4). Conversely, if B € A is open, it is clear
by definition that BcA. Open sets are therefore characterized by the

relation A = A.

(37.2) If ACB, then AcB.

This follows at once from (3.7.1).

o o

——
(3.7.3) For any pair of sets AB, AnNB=AnB.

/k ° o
The inclusion An Bc AnB follows from (3.7.2); on the other hand,

ANB is open by (3.5.3) and (3.7.1) and contained in A N B, hence

o o
AnBcANBby (3.7.1).

The interior of a non-empty set can be empty; thisis the case, for
instance, for one point sets in R.

An interior point of E — A is said to be exterior to A, and the interior
of E — A is called the exterior of A.

(3.7.4) In order that a point x € E be exterior to A, a necessary and sufficient
condition is that d(x,A) > 0.

For that condition implies that B(x;d(x,A))CcE — A, hence x is
interior to E — A; conversely, if x is exterior to A, there is a ball B(x;7)
with 7 > 0 contained in E — A ; for any y € A, we have therefore d(x,y) > 7,
hence d(x,A) > 7.

8. Closed sets, cluster points, closure of a set

In a metric space E, a closed set is by definition the complement of an
open set. The empty set is closed, and so is the whole space E. In the real
line, the intervals (@, + o[ and ]— oo, a] are closed sets; so is the set Z
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of integers; the intervals [4,6[ and ]a,b] are neither open sets nor closed
sets.

(3.8.1) A closed ball is a closed set; a sphere is a closed set.

For if x¢B'(a;7), then d(x,B'(a;7)) = d(a,x) —r >0 by (3.4.1),
hence the open ball of center x and radius d(a,x) — 7 is in the complement
of B’(a;7), which proves that complement is open. The complement of the
sphere S(a;7) is the union of the ball B(a;#) and of the complement of the
ball B’(a;7), hence is open by (3.5.2).

(3.8.2) The intersection of any family of closed sets is closed.
(3.8.3) The union of a finite number of closed sets is closed.

This follows at once from (3.5.2) and (3.5.3) respectively, by considering
complements (see formulas (1.2.9) and (1.8.1)).
In particular, a one point set {x} is closed.

(3.8.4) In a discrete space every set is closed.
This follows at once from (3.5.4).

A cluster point of a subset A of E is a point x € E such that every neigh-
borhood of x has a non-empty intersection with A. The set of all cluster
points of A is called the closure of A and written A. To say that x is not
a cluster point of A means therefore that it is interior to E — A, in other
words:

(3.8.5) The closure of a set A is the complement of the exterior of A.

The closure of an open ball B(«; #) is contained in the closed ball B(a; 7),
but may be different from it. If a subset A of the real line is majorized
(resp. minorized), sup A (resp. inf A) is a cluster point of A, as follows
from (2.3.4).

Due to (3.8.5), the four following properties of cluster points and closure
are read off from those proved in 3.7 for interior points and interior, by
using the formulas of boolean algebra:

(3.8.6) For any set A, A is the smallest closed set containing A.
In particular, closed sets are characterized by the relation A = A.
(38.7) If AcB, AcB.

(3.8.8) For any pair of sets A B,AuB =AUB.
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(3.8.9) In order that a point x be a cluster point of A, a necessary and suffi-
cient condition is that d(x,A) = 0.

(3.8.10)  The closure of a set A is the intersection of the open neighborhoods
V,(A) of A.

This is only a restatement of (3.8.9).

(3.8.11)  In a metric space E, any closed set is the intersection of a decreasing
sequence of open sets; any open set is the union of an increasing sequence of
closed sets.

The first statement is proved by considering the open sets Via(A)
and the second follows from the first by considering complements.

(3.8.12) If a cluster point x of A does not belong to A, any neighborhood V
of x is such that VN A is infinite.

Suppose the contrary, and let VA A = {y,,...,y,}: by assumption,
7, = d(%,y,) > 0. Let 7 > 0 be such that B(x;7) € V and » < Min (P1e . 7);
then the intersection of A and B(x;7) would be empty, contrary to
assumption.

A point x € E is said to be a frontier point of a set A if it is a cluster
point of both A and [[A; the set Fr(A) of all frontier points of A is called
the frontier of A. Tt is clear that Fr(A) = A n {A = Fr({A); by (3.8.7),
Fr(A) is a closed set, which may be empty (see (3.19.9)). A frontier point x
of A is characterized by the property that in any neighborhood of » there
is at least one point of A and one point of [A. The whole space E is the
union of the interior of A, the exterior of A and the frontier of A, forif a
neighborhood of x is neither contained in A nor in (A, it must contain
points of both; any two of these three sets have no common points.

The frontier of any interval of origin @ and extremity b in R is the set
{a,b}; the frontier of the set Q in R is R itself.

PROBLEMS

1) a) Let A be an open set in a metric space E; show that for any subset B of E,

AnBcAnB.
b) Give examples in the real line, of open sets A,B such that the four sets An B,

BnA, AnB and A n B are all different.
¢) Give an example of two intervals A,B in the real line, such that A n B is not

contained in A N B.
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2) For every subset A of a metric space E, let a(A) = Ii and B(A) = A.
a) Show that if A is open, A € «(A), and if A is closed, A D B(A).

b) Show that for every subset A of E, a(a(A)) = a(A) and B(B(A)) = B(A) (use a)).

c) Give an example, in the real line, of a set A such that the seven sets A,A,A,
a(A),B(A),«(A),B(A) are all distinct and have no other inclusion relations than the
following ones: AcAcA; Aca(d)cp@a)ch, Aca(d)cp@)ch

3) Let E be a metric space.

a) Show that for every subset A of E, Fr(A) c Fr(A), Fr(A) C Fr(A), and give
examples (in the real line) in which these three sets are distinct.

b) Let A,B be two subsets of E. Show that Fr(A u B) € Fr(A) u Fr(B), and give
an example (in the real line) in which these sets are distinct. If AnB = @, show
that Fr(A u B) = Fr(A) U Fr(B).

c) If A and B are open, show that

(A n Fr(B)) U (B Fr(A)) € Fr(A n B) € (A n Fr(B)) U (BN Fr(A)) U (Fr(A) n Fr(B))

and give an example (in the real line) in which these three sets are distinct.

4) Let d be a distance on a set E, satisfying the ultrametric inequality
d(%,2) < Max (d(#,9).4(».2))

for x,9,2 in E (see example (3.2.6)).

a) Show that if d(x,y) 5 d(y,2), then d(#,2) = Max (d(#,7),d(y,2)).

b) Show that any open ball B(x; #) is both an open and a closed set and that for
any y € B(x;7), B(y;7) = B(x;7).

c) Show that any closed ball B’(x;#) is both an open and a closed set, and that
for any y € B'(x;7), B’(y;r) = B'(x;7).

d) If two balls in E have a common point, one of them is contained in the other.

e) The distance of two distinct open balls of radius #, contained in a closed ball
of radius 7, is equal to 7.

9. Dense subsets; separable spaces

In a metric space E, a set A is said to be dense with respect to a set B,
if any point of B is a cluster point of A, in other words if BCA (or, equiv-
alently, if for every x € B, any neighborhood of x contains points of A).

(3.9.1) If A is dense with respect to B, and B dense with respect to C, then A
ts dense with respect to C.

For the relation B cA implies BcA by (3.8.6), and as by assumption
CcB, we have CcA.

A set A dense with respect to E is called everywhere dense, or simply
dense in E; such sets are characterized by the fact that A = E, or equiv-
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alently that every non-empty open set contains a point of A. A metric
space E is said to be separable if there exists in E an at most denumerable
dense set.

(3.9.2) The real line R is separable.

Indeed, by (2.2.16) the set Q of rational numbers is dense in R, and
is denumerable by (2.2.15).

A family (G,),.; of non-empty open sets is called a basts for the open
sets of a metric space E if every non-empty open set of E is the union of
a subfamily of the family (G,).

(3.9.3) In order that a family (G,), 1. be a basis, a necessary and sufficient
condition is that for every x € E and every neighborhood V of x, there exist
an index A such that x € G,CV,

The condition is necessary, for there is by definition an open neigh-
borhood WC'V of x, and as W is a union of sets G,, there is at least an
index u such that x € G,. The condition is sufficient, for if it is satisfied,
and U is an arbitrary open set, for each x € U, there is (by (1.4.5)) an
index u(x) such that x € G, €U, hence Uc J G, ,,cU.

iz nix
z2€U

(3.9.4) In order that a metric space E be separable, a necessary and sufficient
condition is that there exist an at most denumerable basis for the open sets of E.

The condition is sufficient, for if (G,) is a basis, and «, a point of G,,
every non-empty open set is a union of some G,, hence its intersection
with the at most denumerable set of the 4, is not empty. Conversely,
suppose there exists a sequence (,) of points of E such that the set of
points of that sequence is dense; then the family of open balls B(a,;1/m),
which is at most denumerable (by (1.9.3) and (1.9.2)) is a basis for the
open sets of E. Indeed, for each x € E and each » > 0, there is an index m
such that 1/m < 7/2, and an index # such that @, € B(x;1/m). This implies
that xeB(a,; 1/m); on the other hand, if yeB(a,;1/m), then
d(x,y) < d(x,a,) + d(a,,y) < 2/m <7, so that B(a,;1/m) C B(x;7), which
ends the proof (by (3.9.3)).

PROBLEMS

1) Show that in a metric space E, the union of an open subset and of its exterior
is everywhere dense.
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2) If A is a subset of a metric space E, a point » € A is said to be isolated if there
is a neighborhood V of » in E such that VN A is reduced to the point .

a) Show that in a separable metric space E, a subset all the points of which are
isolated, is at most denumerable.

b) Show that in a separable metric space E, any family (U;);e1, of non-empty
open sets such that Uyn U, = @ if 1 # g, is at most denumerable.

3) Let A be a non empty subset of the real line, B the set of points x € A such
that there is an interval ]#,y[ with ¥ > » which has an empty intersection with A.
Show that B is at most denumerable (prove that B is equipotent with a set of open
intervals, no two of which have common points).

4) Let E be a separable metric space. A condensation point x of a subset A of E
is a point x € E such that in every neighborhood of x, there is a nondenumerable
set of points of A. Show that:

a) If A has no condensation point, it is denumerable (consider the intersections
of A with the sets of a basis for the open sets of E).

b) If B is the set of condensation points of a set A, show that every point of B
is a condensation point of B, and that A n ([B) is at most denumerable. (Observe
that B is closed, a d use a)).

5) Show that from every open covering of a separable metric space, one can
extract a denumerable open covering.

6) Let E be a separable metric space, f an arbitrary mapping of E into R. We
say that at a point %, € E, f reaches a relative maximum (resp. a strict velative maximum)
if there is a neighborhood V of #, such that f(#) <C f(x,) (resp. f(x) < f(#,)) for any
point x € V distinct from x,. Show that the set M of the points ¥ € E where f reaches
a strict relative maximum is at most denumerable. (If (U,) is a basis for the open
sets of E, consider the values of # for which there is a unique point » € U, such that
f(x) is equal to its Lu.b. in U,).

10. Subspaces of a metric space

Let F be a non-empty subset of a metric space E; the restriction to
F x F of the mapping (x,y) — d(#,y) is obviously a distance on F, which
is said to be ¢nduced on F by the distance 4 on E. The metric space defined
by that induced distance is called the subspace F of the metric space E.

(3.10.1) In order that a set BCF be open in the subspace F, a necessary
and sufficient condition is that there exist an open set A in E such that
B=AnF.

If a € F, Fn B(a;7) is the open ball of center 4 and radius 7 in the sub-
space F.If Aisopenin E and x € A N F, thereis» > 0 such that B(x;7) CA,
hence x € Fn B(x;7) € A nF, which shows F N A is open in F. Conversely,
if B is open in the subspace F, for each x € B, there is a number 7(x) > 0
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such that F n B(x;7(x)) € B. This shows that B = |} (F NB(x;7(x))) =FnA,

x€B

with A = | B(x;#(x)), and A is open in E by (3.5.1) and (3.5.2).

xeB

(3.10.2)  In order that every subset B in F, which is open in F, be open in E,
a necessary and sufficient condition is that ¥ be open in E.

The condition is seen to be necessary by taking B = F; it is sufficient,
due to (3.10.1) and (3.5.3).

(3.10.3) If x €F, in order that a subset W of F be a neighborhood of x in F,
a necessary and sufficient condition is that W = V N F, where V is a neigh-
borhood of x in E.

(3.10.4) In order that every neighborhood in F of a point x € F be a neigh-
borhood of x in E, a necessary and sufficient condition is that F be a neigh-
borhood of x in E.

These properties follow at once from (3.10.1) and the definition of a
neighborhood.

(3.10.5) In order that a set B C F be closed in the subspace F, a necessary and
sufficient condition is that there exist a closed set A in E such that B = ANnF.

To say B is closed in F means that F — B is open in F, and therefore
is equivalent by (3.10.1) to the existence of an open set C in E such that
F —B=CnF; but that relation is equivalent by (1.5.13) to B=Fn (E —C),
hence the result.

(3.10.6) In order that every subset B in F, which is closed in F, be closed
in E, a necessary and sufficient condition is that F be closed in E.

Same proof as for (3.10.2), using (3.10.5) and (3.8.2).

(3.10.7)  The closure, with respect to ¥, of a subset B of F, is equal to BN F,
where B is the closure of B in E.

Indeed, for every neighborhood Vof xe Fin E, VAB = (VnF)nB,
and the result therefore follows from (3.10.3) and from the definition of a
cluster point.

(3.10.8) Suppose F is a dense subset of E. For every point x € F and every
neighborhood W of x in F, the closure W of W in E is a neighborhood of x in E.
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By definition, there is an open neighborhood U of x in E such that
UnFcW; it is enough to prove that UcW. Butif y € U, and V is any
neighborhood of ¥ in E, U n V is a neighborhood of y in E, hence F n (U n V)

is not empty, which means (F 0 U) NV is not empty, i.e. yeFnU cw.

(3.10.9) Any subspace of a separable metric space is separable.

Indeed, if (G,) is an at most denumerable basis for the open sets of E,
the sets G, NF form a denumerable basis for the open sets of FCE, due
to (3.10.1) and (1.8.2). Hence the result by (3.9.4).

PROBLEMS

1} Let B,B’ be two non empty subsets of a metric space E, and A a subset of
B n B, which is open (resp. closed) both with respect to B and with respect to B’;
show that A is open (resp. closed) with respect to Bu B’.

2) Let (U,) be a covering of a metric space E, consisting of open subsets. In order
that a subset A of E be closed in E, it is necessary and sufficient that each set An U,
be closed with respect to U,,.

3) In a metric space E, a subset A is said to be locally closed if for every x € A,
there is a neighborhood V of x such that ANV is closed with respect to V. Show
that the locally closed subsets of E are the sets Un F, where U is open and F closed
in E. (To prove that a locally closed set has that form, use problem 2).

4) Give an example of a subspace E of the plane R2, such that there is in E an
open ball which is a closed set but not a closed ball, and a closed ball which is an
open set but not an open ball. (Take E consisting of the two points (0, 1) and (0, — 1)
and of a suitable subset of the x-axis.)

5) Give a proof of (3.10.9) without using the notion of basis (in other words, exhibit
an at most denumerable subset which is dense in the subspace).

11. Continuous mappings

Let E and E’ be two metric spaces, 4,4’ the distances on E and E’.
A mapping f of E into E’ is said to be continuous at a point %, € E if, for
every neighborhood V' of f(#,) in E’, there is a neighborhood V of x4 in E
such that (V) € V’; fis said to be continuons in E (or simply ,,continuous”)
if it is continuous at every point of E.

If we agree that the mathematical notion of neighborhood corresponds
to the intuitive idea of “‘proximity”, then we can express the preceding
definition in a more intuitive way, by saying that f(x) ¢s arbitrarily close to
f(xy) as soon as x is close enough to x,.
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(3.11.1)  In order that f be continuous at x, € E, a necessary and sufficient
condition is that for every neighborhood V' of f(x,) tn E', f~Y(V') be a neigh-
borhood of x4 in E.

(3.11.2) In order that f be continuous at x, € E, a necessary and sufficient
condition is that, for every € > 0, there exist a & > O such that the relation
d(%g,x) < 0 tmplies d’(f(x,).f(%)) < e.

These are mere restatements of the definition.
The natural injection jz: F — E of a subspace F of E into E (1.6.1)
is continuous. Any constant mapping is continuous.

(3.11.3) If x4 € E is a cluster point of a set ACE, and tf f is continuous at
the point %y, then f(x,) is a cluster point of f(A).

For if V' is a neighborhood of f(%,) in E’, f~}(V’) is a neighborhood of
%y in E, hence there is y € AN f~1(V’), and therefore f(y) € f(A)n V',

(3.11.4) Let | be a mapping of E into E'. The following properties are
equivalent:

a) [ is continuous;

b) for every open set A’ in E', 1A'} is an open set in E;
c) for every closed set A’ in E’, f~YA") is a closed set in E;
d) for every set A in E, f(A) Cf(A).

We have seen in (3.11.3) that a) = d). d) = ¢}, for if A’ is closed and
A =fYA’), then f(A)CA’=A’, hence ACf '(A") =A; as AcA,
A is closed. c) = b) from the definition of closed sets and formula (1.5.13).
Finally b) = a), for if V' is a neighborhood of f(x,), there is an open neigh-
borhood W’ € V' of f(x,); f~(W’) is an open set containing ¥, and contained
in f~}(V’), hence f is continuous at every point x, by (3.11.1).

It should be observed that the direct image of an open (resp. closed) set
by a continuous mapping is #ot in general an open (resp. closed) set; for
instance, x — x2 is continuous in R, but the image [0, 1{ of the open
set ]—1, +1[ is not open; x —1/x is continuous in the subspace
E = [1, + o[ of R, but the image of the closed set E is the interval ]0, 1]
which is not closed in R (see however (3.17.9) and (3.20.13)).

(3.11.5) Let f be a mapping of a metric space E into a metric space E’',
g a mapping of E’ into a metric space E"; if f is continuous at x,, and g
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continuous at f(xy), then h = gof is continuous at xy. If f is continuous in E
and g continuous in E’, then h is continuous in E.

The second statement obviously follows from the first. Let W’ be a
neighborhood of 4(%,) = g(f(%y)); then, by (3.11.1) and the assumptions,
g (W") is a neighborhood of f(xg) in E’, and f~1(g~1(W"’)) a neighborhood
of %, in E; but /g~ (W")) = ~~Y(W"). In particular:

(3.11.6) If fis a mapping of E into E', continuous at x,, and F a subspace
of E containing xy, then the restriction of f to F is continuous at x,.

For that restriction is the mapping fojg, j; being the natural injection
of F into E, which is continuous.

Note however that the restriction to a subspace F of a mapping f:
E — E’ may be continuous without / being continuous at any point of E;
an example is given by the mapping /: R — R which is equal to 0 in the
set Q of rational points, to 1 in its complement (“Dirichlet’s function”);
the restriction of / to Q is constant, hence continuous.

A uniformly continuous mapping of E into E’ is a mapping such that for
every ¢ > 0, there exists a ¢ > 0 such that the relation d(x,y) < 6 implies
4'(f(%),/(y)) < e From this definition and (3.11.2), it follows that

(311.7) A uniformly continwous mapping is continuous.

The converse is not true in general: for instance, the function » — x2
is not uniformly continuous in R, since for given « > 0, the difference
(* + @) — 22 = «(2x + «) can take arbitrarily large values (see however
(3.16.5)).

The examples given above (constant mapping, natural injection) are
uniformly continuous.

(3.11.8) For any non-empty subset A of E, x —d(x,A) is uniformly
continuous.

This follows from the definition and (3.4.2).

(3.11.9) I} } is a uniformly continuous mapping of E into E', g a uniformly
continuous mapping of E' into E”, then h = gof is uniformly continuous.

Indeed, given any & > 0, there is § > 0 such that d'(x’,y") < é implies
a’(g(x'),g(v")) < e; then there is 7n >0 such that d(x,y) <# implies
d'(f(%),/(y)) < 8; therefore d(x,y) < 7 implies 4" (k(x),h(y)) < e.
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PROBLEMS

1) Let f be a mapping of a metric space E into a metric space E’. Show that the
following properties are equivalent:

a) f is continuous;

b) for every subset A’ of E’, /—1(;’) c (f~YAY)°;

c) for every subset A’ of E’, f~1(A’) c f~1(A’).

Give an example of a continuous mapping f and a subset A’ € E’ such that f—1(4")
is not the closure of f~1(A’).

2) For any metric space E, any number » > 0 and any subset A of E, the set
V;(A) of points x € E such that d(x,A) <{ 7 is closed (use (3.11.8)).

3) In a metric space E, let A, B be two non empty subsets such that AnB=AnB=0.
Show that there exists an open set UD A and an openset VD Bsuchthat UnV =0
(consider the function » — d(x,A) — d(»,B)).

12. Homeomorphisms. Equivalent distances

A mapping f of a metric space E into a metric space E’ is called a
homeomorphism if: 1° it is a bijection; 2° both f and its inverse mapping /!
are continuous. Such a mapping is also said to be bicontinuous. The inverse
mapping /~ ' is then a homeomorphism of E’ onto E. If f is a homeomorphism
of E onto E’, g a homeomorphism of E’ onto E”, gof is a homeomorphism
of E onto E” by (3.11.5). A homeomorphism may fail to be uniformly
continuous (for instance, the homeomorphism x — x3 of R onto itself).
Two metric spaces E,E” are homeomorphic if there exists a homeomorphism
of E onto E’. Two spaces homeomorphic to a third one are homeomorphic.
By abuse of language, a space homeomorphic to a discrete metric space
(3.2.5) is called a discrete space, even if the distance is not defined as in
(3.2.5).

An isometry is always uniformly continuous by definition, hence a
homeomorphism. For instance, the complete real line R is by definition
homeomorphic to the subspace [—1, 1] of R.

Let d;,d, be two distances on a set E; this defines two metric spaces
on E, which have to be considered as distinct (although they have the
same “‘underlying set”); let E, E, be these spaces. If the identity mapping
x —x of E; onto E, is a homeomorphism, d,,d, are called equivalent
distances (or topologically equivalent distances) on E; from (3.11.4), we see
that this means the families of open sets are the same in E; and E,. The
family of open sets of a metric space E is often called the fopology of E;
equivalent distances are thus those giving rise to the same topology. It
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may be observed here that the definitions of neighborhoods, closed sets,
cluster point, closure, interior, exterior, dense sets, frontier, continuous func-
tion only depend on the topologies ofw,vt'he spaces under consideration;
they are topological notions; on the othé"f hand, the notions of balls, spheres,
diameter, bounded set, uniformly continuous function are not topological
notions. Topological properties of a metric space are invariant under
homeomorphisms.

With the preceding notations, it may happen that the identity mapping
x - x of E, into E, is continuous but ot bicontinuous: for instance,
take E = R, dy(¥,y) = |x — y| and for d,(x,y) the distance defined in
(3.2.5) taking only values 0 and 1. In such a case, the distance 4, (resp.
the topology of E,) is sai” io be finer than the distance d, (resp. the topology
of E,).

PROBLEMS

1) Let a be an irrational number > 0; for each rational number » > 0, let f,(x)
be the unique real number such that 0 < f,(#) < @ and that ¥ — f,(#) is an integral

multiple of a. Show that f, is an injective continuous mapping of the space Q_T_ of

rational numbers > 0 into the interval ]0,a[ of R, and that f,,(Q:) is dense in ]0,a[.
Deduce from that result and from the problem in section 2.2 that there exists a
bijective continuous mapping of @ onto itself which is not bicontinuous (compare to
(4.2.2)).

2) Let f be a continuous mapping of a metric space E into a metric space F.

a) Let (V;) be a covering of F by open subsets; show that if, for each A, the
restriction of f to f~1(V},) is a homeomorphism of the subspace f~1(V,) of E onto the
subspace V, of F, f is a homeomorphism of E onto F.

b) Give an example of a mapping f which is not injective, and of a covering (U,)
of E by open subsets, such that the restriction of f to each of the U, is a homeo-
morphism of the subspace U, of E onto the subspace f(U,) of F (one can take both
E and F discrete).

3) Let E,F,G be three metric spaces, f a continuous mapping of E into F, g a
continuous mapping of F into G. Show that if f is surjective and gof is a homeo-
morphism of E onto G, then f is a homeomorphism of E onto F and g is a homeo-
morphism of F onto G.

13. Limits

Let E be a metric space, A a subset of E, 4 a cluster point of A. Suppose
first that a does not belong to A. Then, if / is a mapping of A into a metric
space E’, we say that f(x) has a limit a’ € E' when x € A tends to a (or also
that a’ is a limit of f at the point a € A with respect to A), if the mapping g of
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AU {a} into E’ defined by taking g(x) = f(x) for x€A, gla) =a’, is

continuous at the point a; we then write ' = lim f(x). If a€A, we
x—>a,z€A

use the same language and notation to mean that f is continuous at the
point a, with a’ = f(a).

(3.13.1)  In order that a’ € E' be limit of f(x) when x € A tends to a, a necessary
and sufficient condition is that, for every neighborhood V' of a' in E', there
exist a neighborhood V of a in E such that {(VN A)c V',

(3.13.2) In order that a' € E' be limit of f(x) when x € A tends to a, a
necessary and sufficient condition is that, for every ¢ > O, there exist a6 >0
such that the relations x € A, d(x,a) << & imply d'(a’.f(x)) <e.

These criteria are mere translations of the definitions.

(3.13.3) 4 mapping can only have one limit with respect to A at a given
point a€A.

For if a',b" were two limits of / at the point a, it follows from (3.13.2)
and the triangle inequality that, for any ¢ > 0, we would have d'(a,) < 2¢,
which is absurd if a’ £ b'.

(3.13.4) Let | be a mapping of E into E'. In order that | be continuous at a
point %, € E such that xy is a cluster point of E — {xo}, a necessary and

sufficient condition is that f(xg) = lim f(x).
2€E — {3}, x> %,

Mere restatement of definitions.

(3.13.5) Suppose a’ = lim [(x). Then, for every subset B C A such that

zx€eA, x—>a

a B, a' is also the limit of | at the point a, with respect to B. This applies
in particular when B = V N A, where V is a neighborhood of a.

Obvious consequence of the definition and (3.11.6).

(3.13.6) Suppose f has a limit a’ at the point a € A with respect to A; if g is
a mapping of E' into E”, continuous at the point a’, then g(a’) = lim g(f(x))-

€A, x—a

This follows at once from (3.11.5).

(3.13.7) If a’'= lim [(x), then a’'€f(A).
x—>a,x€A
For by (3.13.1), for every neighborhood V' of &', V' n f(A) contains
f(V n A), which is not empty since a €A.
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An important case is that of limits of sequences: in the extended real
line, we consider the point + oo, which is a cluster point of the set N of
natural integers. A mapping of N into a metric space E is a sequence
n — %, of points of E; if a €E is limit of that mapping at + co, with
respect to N, we say that a is limit of the sequence (x,) (or that the sequence
(x,) converges to a) and write a = lim x,. The criteria (3.13.1) and (3.13.2)

n—»

become here:

(3.13.8) In order that a = lim x,, a necessary and sufficient condition is

n—» o
that, for every meighborhood V of a, there exist an integer ny such that the
relation n 2= ny implies x, €V (in other words, V contains all x, with the
exception of a finite number of indices).

(3.13.9) In order that a = lim x,, a necessary and sufficient condition

n—» 0
is that, for every & > 0, there exist an integer ny such that the velation n > n,
implies d(a,x,) < e.
This last criterion can also be written lim d(a,x,) = 0.
n— 0

A subsequence of a sequence (x,) is a sequence k - %,,, where &k —n,

is a strictly increasing infinite sequence of integers. It follows at once
from (3.13.5) that:

(3.13.10) If a = lim x,, then a = lim %,, for any subsequence of (x,).
#-—> 0 k—> 0

Let (x,) be a sequence of points in a metric space E; a point b € E is

said to be a cluster value of the sequence (x,) if there exists a subsequence

(x”k) such that & = klirr:o Xy

A cluster value of a subsequence of a sequence (x,) is also a cluster value
of (x,). If (x,) has a limit 4, a is the unigue cluster value of (x,), as follows
from (3.13.10); the converse does not hold in general: for instance, the
sequence (x,) of real numbers such that x,, = 1/n and #,, ., =n (n >1)
has 0 as a unique cluster value, but does not converge to 0 (see however
(3.16.4)).

(3.13.11)  In order that b e E should be a cluster value of (x,), a necessary
and sufficient condition is that, for any neighborhood V of b and any integer m,
there exist an integer n > m such that x, € V.
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The condition is obviously necessary. Conversely, suppose it is satisfied,
and define the subsequence (%) by the following condition: #, is the

smallest integer > %, _; and such that db,x,) <1/k. As d(x”k,b) < 1/h
for any %k > &, the subsequence (x,,k) converges to b.

(3.13.12) I} bis a cluster value of (x,) in E, and if the mapping g of E into E’
s continuous at b, then g(b) is a cluster value of the sequence (g(x,)).

Clear from the definition and (3.13.6).

From (3.13.7) if follows that if b is a cluster value (and a fortiori a limit)
of a sequence of points x, belonging to a subset A of E, then beA.
Conversely:

(3.13.13) For any point a € A, there is a sequence (x,) of points of A such
that a = lim x,.

For by assumption, the set A n B(a;1/#) is not empty, hence (by (1.4.5))
for each #, there is an x, e An B(a;1/n), and the sequence (x,) converges
to a by (3.13.9).

(3.13.14) Let f be a mapping of ACE into a metric space E' and a €A.
In order that f have a limit a' € E' with respect to A at the point a, a necessary
and sufficient condition is that, for every sequence (x,) of poinis of A such
that a = lim x,, then a' = lim f(x,).

The necessity/ follows from the definitions and (3.13.6). Suppose
conversely that the condition is satisfied and that a’ is no¢ the limit of f
with respect to A at the point 2. Then, by (3.13.2), there exists «a > 0
such that, for each integer », there exists x, € A satisfying the two condi-
tions d(a,x,) < 1/n and d(a’,f(x,)) = «. The sequence (x,) converges then
to a, but (f(x,)) does not converge to 4’, which is a contradiction.

PROBLEMS

1) Let (u,) be a sequence of real numbers >> 0 such that lim u, = 0. Show
n—»0

that there are infinitely many indices # such that «, > «,, for every m > .

2) a) Let (#,) be a sequence in a metric space E. Show that if the three sub-
sequences (%2,), (¥, 1) and (x3,) are convergent, (x,) is convergent.

b) Give an example of a sequence (#,) of real numbers which is not convergent,
but is such that for each # == 2, the subsequence (#3,) is convergent (consider the sub-
sequence (xl’k)' where (p;) is the strictly increasing sequence of prime numbers).
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3) Let E be a separable metric space, f an arbitrary mapping of E into R. Show

that the set of points a€ E such that lim f(#) exists and is distinct from f(a),
X~—>a, x#a

is at most denumerable. (For every pair of rational numbers p,q such that p < g,
consider the set of points a € E such that

fasp<g< lim  f()
x—>a, x#a
and show that it is at most denumerable, using problem 2 a) of section 3.9. Consider
similarly the set of points a € E such that

lim  f(») <p < q¢<fa))

x—>a, ¥#a

14. Cauchy sequences, complete spaces

In a metric space E, a Cauchy sequence is a sequence (x,) such that,
for any ¢ > 0, there exists an integer #, such that the relations p > n,
and ¢ > n, imply d(x,,%,) <e.

(3.14.1)  Any convergent sequence is a Cauchy sequence.

For if a = lim x,, for any & > 0 there exists #, such that =

=
implies d(a,x,) < &/2; by the triangle inequality, the relations p > n,,
q 2 ng imply d(x,,x,) < €.

o

(3.14.2) If (x,) 4s a Cauchy sequence, any cluster value of (x,) is a limit

of (%,)-

Indeed, if 4 is a cluster value of (x,), given ¢ > 0, there is #, such that
p = ny and g > ng imply d(x,,%,) < £/2; on the other hand, by (3.13.11)
there is a py > n, such that d(b,x,) < ¢/2; by the triangle inequality, it
follows that d(b,x,) < ¢ for any n > n,.

A metric space E is called complete if any Cauchy sequence in E is
convergent (to a point of E, of course).

(3.14.3) The real line R is a complete metric space.

Let (x,) be a Cauchy sequence of real numbers. Define the sequence
(m) of integers by induction in the following way: #, , is the smallest
integer > n, such that, for p >n,  and ¢ = n, 4, |1, — x| < 1/2%+2,
the possibility of the definition follows from the fact that (x,) is a Cauchy
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sequence. Let I, be the closed interval (%, — 2_",x”k + 27*]; we have

I, €I, for |x, |<27%71; on the other hand, for m > n,,

— x,
13 e 41
%, € [, by definition. Now from axiom (2.1.(IV)) it follows that the nested
intervals I, have a non-empty intersection; let a be in I, for all 2. Then
it is clear that |a — x,| < 27**! for all m > n,, hence a = lim x,.

#?t—> O

(3.14.4) If a subspace F of a metric space E is complete, F is closed in E.

Indeed, any point a € F is the limit of a sequence (x,) of points of F
by (3.13.13). The sequence (x,) is a Cauchy sequence by (3.14.1), hence
by assumption converges to a point b i F; but by (3.13.3) 4 = a, hence
a€F; this shows F = F, q.e.d.

(3.14.5) In a complete metric space E, any closed subset F is a complete
subspace.

For a Cauchy sequence (x,) of points of F converges by assumption to
a point a € E, and as the x, belong to F, a e ¥ = F by (3.13.7).

Theorems (3.14.4) and (3.14.5) immediately enable one to give examples
both of complete and of non-complete spaces, starting from the fact that
the real line is complete.

The fundamental importance of complete spaces lies in the fact that
to prove a sequence is convergent in such a space, one needs only prove
it is a Cauchy sequence (one also says that such a sequence satisfies the
Cauchy criterion); the main difference between application of that test
and of the definition of a convergent sequence is that in the Cauchy
criterion one does not need to know in advance the value of the limit.

We have aiready mentioned that on a same set E, two distances 4,,d,
may be topologically equivalent, but the identity mapping of E, into E,
(E{,E, being the corresponding metric spaces) may fail to be uniformly
continuous. This is the case, for instance, if we take E=R, dy(x,y) = [x — ¥,
d,(»,y) being the distance in the extended real line, restricted to R; E, is
then complete and not E, since E, is not closed in R. When two distances
d,,d, are such that the identity mapping of E, into E, is uniformly contin-
uous as well as the inverse mapping, 4, and d, are said to be uniformly
equivalent. Cauchy sequences are then the same for both distances. For
instance, if there exist two real numbers « > 0, 8 > 0 such that, for any
pair of points x,y in E, ad,(x,y) < dy(x,y) < Bd,(*,v) then 4, and d, are
uniformly equivalent distances.



52 III. METRIC SPACES

Let E, E’ be two metric spaces, A a subset of E, f a mapping of Ainto E’;
the oscillation of f in A is by definition the diameter 6(f(A)) (which may
be + o0). Let a be a cluster point of A; the oscillation of f at the point a
with respect to A is 2(a; f) = inf 6(f(V N A)), where V runs over the set of

v

neighborhoods of a (or merely a fundamental system of neighborhoods).

(3.14.6) Suppose E’ is a complete metric space; in order that lim f(x)

x—>a,x€A
exist, a necessary and sufficient condition is that the oscillation of f at the
point a, with respect to A, be 0.

The condition is necessary by (3.13.2). Suppose conversely that it is
satisfied, and let (x,) be a sequence of points of A converging to 4; then
it follows from the assumption that the sequence (f(x,)) is a Cauchy sequence
in E’, for, given any & > 0, there is a neighborhood V of a such that
d'(f(x),/(y)) < € for any two points x,y in VN A, and we have x,e VN A
except for a finite number of indices. Hence the sequence (f(x,)) has a
limit a’. Moreover, for any other sequence (y,) of points of A, converging
to a, the limits of (f(x,)) and of (f(y,)) are the same since a@'(f(x,),/(y,)) <&

as soon as x, and v, are both in VN A. Hence lim f(x) =4’ from the
x—>a,x€A

definition of the limit and from (3.13.14).

PROBLEMS

1) a) Let E be an ultrametric space (section 3.8, problem 4). In order that a
sequence (#,) in E be a Cauchy sequence, show that it is necessary and sufficient
that lim d(x,,#%,4+1) = 0.

Hn—» 0

b) Let X be an arbitrary set, E the set of all infinite sequences » = (#,) of
elements of X. For any two distinct elements x = (%,), ¥ = (¥,) of E, let k(x,y)
be the smallest integer » such that x, % y,; letd(»,y) = 1/k(x,y) if ¥ & y, d(x,x) = 0.
Prove that d is an ultrametric distance on E, and that the metric space E defined
by d is complete.

2) Let ¢ be an increasing real valued function defined in the interval 0 <C # < 4+ oo,
and such that @(0) = 0, @(x) > 0if » > 0, and @(u + v) << p(u) + @(v). Let d(x,y)
be a distance on a set E; then d,(#,y) = @{(d(#,y)) is another distance on E.

a) Show that if ¢ is continuous at the point » = 0, the distances ¢ and 4, are
uniformly equivalent. Conversely, if, for the distance d, there is a point x, € E which
is not isolated in E (section 3.9, problem 2), and if 4 and 4, are topologically equivalent,
then @ is continuous at the point # = 0.
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b) Prove that the functions
w0<r<1), log(l+w), w/(l+w, Inf(Lw

satisfy the preceding conditions. Using the last two, it is thus seen that for any
distance on E, there is a uniformly equivalent distance which is bounded.

3) On the real line, let d(#,y) = |# — y| be the usual distance, d’(z,y) = |#3 — y3|;
show that these two distances are topologically equivalent and that the Cauchy
sequences are the same for both, but that they are not uniformly equivalent.

4) Let E be a complete metric space, d the distance on E, A the intersection of
a sequence (U,) of open subsets of E; let F, = E — U, and for every pair of points
2,y of A, write

1 1
d(%F,)  d(y,Fy)

fn(%,y) =

An(%,y) = fu(%.9) /(1 + f4(#,9)), and d’'(x,y) = d(x,9) + X d,(»,)/2". Show that

n=0

on the subspace A of E, d’ is a distance which is topologically equivalent to d, and
that for the distance @', A is a complete metric space. (Note that a Cauchy sequence
for @’ is also a Cauchy sequence for d, but that its limit in E may not belong to any
of the F,.) Apply to the subspace I of R consisting of all irrational numbers.

15. Elementary extension theorems

(3-15.1) Let f and g be two continuous mappings of a metric space E into
a metric space E'. The set A of the points x € E such that f(x) = g(x) is
closed in E.

It is equivalent to prove the set E — A open. Let ac E — A, then
f(a) 5 g(a); let d'(f(a),g(a)) = « > 0. By continuity of f,¢ at a and from
(3.6.3) it follows that there is a neighborhood V of @ in E such that for
x€V,d'(f(a),f(x)) < «/2 and d’(g(a),g(x)) < /2. Then for x €V, f(x) # g(x),
otherwise we would have d'(f(a),g(2)) < « by the triangle inequality.

(3.15.2) (“Principle of extension of identities”). Let f,g be two continuous
mappings of a metric space E into a metric space E'; if f(x) = g(x) for all
points x of a dense subset A in E, then f = g.

For the set of points x where f(x) = g(x) is closed by (3.15.1) and
contains A,
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(3.15.3) Let f,g be two continuous mappings of a metric space E into the
extended real line R. The set P of the points x € E such that f(x) < g(x) s
closed in E.

We prove again E — P is open. Suppose f(a) > g(a), and let BeR
be such that f(a) > 8 > g(a) (cf. (2.2.16) and the definition of R in 3.3).
The inverse image V by f of the open interval ] 8, 4 oc] is a neighborhood
of a by (3.11.1); so is the inverse image W by g of the open interval
[— o, 8. Hence VN W is a neighborhood of a by (3.6.3), and for
xeVAW, f(x) > f > g(x), qed.

(3.15.4) (“Principle of extension of inequalities”). Let /g be two contin-
uous mappings of a metric space E into the extended real line R; iff(x) < g(¥)
for all points x of a dense subset A of E, then f(x) < g(x) for all x € E.

The proof follows from (3.15.3) as (3.15.2) from (3.15.1).

(3.15.5) Let A be a dense subset of a metric space E, and f a mapping of A

into a metric space E'. In order that there exist a continuous mapping /- of
E into E’, coinciding with f in A, a necessary and sufficient condition is

that, for any x € E, the limit  lim  f(y) existin E'; the continuous mapping
y—>%YEA

f_ s then unique.

As any x € E belongs to A, we must have f(x) = lim f-(y) by (3.13.5),

y—>x, YyEA

hence f(x) = lim f(y); this shows the necessity of the condition and the
y—% 2€A

fact that if the continuous mapping f- exists, it is unique (this follows

also from (3.15.2)). Conversely, suppose the condition satisfied, and let

us prove that the mapping f defined by f(x) = lim f(y) is a solution
y—>x, €A

of the extension problem. First of all, if x € A, the existence of the limit
implies by definition f(x) = f(x), hence f- extends f, and it remains to see that
f is continuous. Let x € E, V' a neighborhood of f-(x) in E’; there is a closed

ball B’ of center ;(x) contained in V’. By assumption, there is an open
neighborhood V of x in E such that f/(Vn A) € B’ (by (3.13.1)). For any

y €V, f(y) is the limit of f at the point y with respect to A, hence also
with respect to VN A, by (3.13.5); hence, it follows from (3.13.7) that

f—(y) ef(VN A), and therefore f-(y) € B’ since B’ is closed; q.e.d.
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(3.15.6) Let A be a dense subset of a metric space E, and { a uniformly
continuous mapping of A into a complete metric space E'. Then there exists

a continuous mapping f- of E into E’ coinciding with [ in A; moreover, f- is
uniformly continuous.

To prove the existence of /-, it follows from (3.15.5) and (3.14.6) that
we have to show the oscillation of / at any point x € E, with respect
to A, is 0. Now for any ¢ > 0, there is 6 > 0 such that d(y,z) < implies
d'({(y),/(z)) < €/3 (y,z in A). Hence, the diameter of f(A N B(x;8/2)) is at
most ¢£/3, which proves our assertion. Consider now any two points s,t in E
such that d(s,f) < 6/2. There is an y € A such that d(s,y) < 6/4 and

d’(f-(s),f(y)) < ¢/3, and a z € A such that d(¢,2) < 8/4 and d’(/-(t),f(z)) < g3.-
From the triangle inequality it follows that d(y,z) < 6, and as v,z are in A,

a'(f().f(2)) < ¢/3; hence, by the triangle inequality, d’(f-(s),/-(t)) << g; this

proves that /- is uniformly continuous.

PROBLEM

Let » — 7, be a bijection of N onto the set A of all rational numbers # such that
0<<x<C1 (2.2.15). We define a function in E = [0,1] by putting f(») = X 1/2%,
1, <z
the infinite sum being extended only to those » such that #, < #. Show that the
restriction of f to the set B of all irrational numbers » € [0,1] is continuous, but
cannot be extended to a function continuous in E.

16. Compact spaces

A metric space E is called compact if it satisfies the following condition
(“Borel-Lebesgue axiom”): for every covering (U,),cr. of E by open sets
(“open covering”) there exists a finite subfamily (U,),.y (HC L and finite)
which is a covering of E.

A metric space E is called precompact if it satisfies the following condi-
tion: for any € > 0, there is a finite covering of E by sets of diameter < e.
This is immediately equivalent to the following property: for any ¢ > 0,
there is a fimite subset ¥ of E such that d(x,F) < & for every x € E.

In the theory of metric spaces, these notions are a substitute for the
notion of “finiteness”’ in pure set theory; they express that the metric
space is, so to speak, “‘approximately finite”. Note that, from the defini-
tion, it follows that compactness is a topological notion, but precompactness
is not (see remark after (3.17.6)).
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(3.16.1) For a metric space E, the following three conditions are equivalent:
a) E is compact;
b) any infinite sequence in E has at least a cluster value,

c) E is precompact and complete.

a) = b): Let (x,) be a sequence in the compact space E, and let F,, be
the closure of the set {x,,%, ,...,%, p.-.}. We prove there is a point
belonging to all F,. Otherwise, the open sets U, = E — F,, would form a

covering of E, hence there would exist a finite number of them, U, ,. . .,U,,k

forming a covering of E; this would mean that F, nF, n...nF, =0;

but this is absurd, since if # is greater than Max (n,,...,n,), F, (which is
not empty by definition) is contained in all the F, 1< 1 << k). Hence the

o«
intersection [} F, contains at least a point a. By (3.13.11) and the defini-

n=1

tion of a cluster point, 4 is a cluster value of (x,).

b) = ¢): First any Cauchy sequence in E has a cluster value, hence
is convergent by (3.14.2), and therefore E is complete. Suppose E were
not precompact, i.e. there exists a number « > 0 such that E has no finite
covering by balls of radius «. Then we can define by induction a sequence
(%,) in the following way : supposing that d(x;,%;) > afori # 7, 1<i<n—1,
1 <7< n— 1, the union of the balls of center x; (1 <7<# — 1) and
radius « is not the whole space, hence there is x, such that d(x;,%,) = «
for i <mn. The sequence (x,) cannot have a cluster value, for if a were
such a value, there would be a subsequence (x"k) converging to a, hence we

would have d(a,xnk) < /2 for k= k, and therefore d(xnh,xnk) < a for
h = kg, k2= ky, kb #Ek, contrary to the definition of (x,).

c) = a): Suppose we have an open covering (U,);.,. of E such that
no finite subfamily is a covering of E. We define by induction a sequence
(B,) of balls in the following way: suppose B, _, has radius 1/2* !, and
there is no finite subfamily of (V,),., which is a covering of B, _,. Then
we consider a finite covering (V,}; <z <., of E by balls of radius 1/2"; among
the balls V, which have a non-empty intersection with B, _,, there is
one at least B, for which no finite subfamily of (U,) is a covering; otherwise,
as these V, form a covering of B, _;, there would be a finite subfamily
of (U;) which would be a covering of B,_,. Let x, be the center of B,;




16. COMPACT SPACES 57

as B,_, and B, have a common point, the triangle inequality shows that
A%, _1,%,) < 1/2"71 4 1/2" < 1/2" 72 Hence, if n < p < ¢, we have

1 1 1
2p—1+ +2q—2<2n—2'

A(xp,%0) < A(%p,%p 1) + oo + d(xy-1,%,) <

This proves that (x,) is a Cauchy sequence in E, hence converges to a point a.
Let 4y be an index such that a€U,; there is an « >0 such that
B(a;a) €U, . From the definition of a, it follows there exists an integer »
such that d(a,x,) < «/2, and 1/2"< «/2. The triangle inequality then
shows that B, € B(a;a) €U, . But this is a contradiction since no finite
subfamily of (U,) is supposed to be a covering of B,.

(3.16.2) Any precompact meiric space is separable.

If E is precompact, for any # there is, by definition, a finite subset A,
of E such that for every x € E, d(x,A,) <1/n. Let A= |JA,; Ais at

most denumerable, and for each x € E, d(x,A) < d(x,A,) < 1/n for any #,
hence d(x,A) =0, E =A.

(3.16.3) Let E be a metric space. Any two of the following properties imply
the third:

a) E is compact:
b) E is discrete (more precisely, homeomorphic to a discrete space);
c) E is finite.

a) and b) imply c), for each one-point set {x} is open, hence the family
of sets {x} is an open covering of E, and a finite subfamily can only be a
covering of E if E is finite. On the other hand, c) implies both a) and b),
for each one point set being closed, every subset of E is closed as finite
union of closed sets, hence every subset of E is open, and therefore E is
homeomorphic to a discrete space. Finally, as there is only a finite number
of open sets, E is_compact.

(3.16.4) In a compact metric space E, any sequence (x,) which has only
one cluster value a converges to a.

Suppose a is not the limit of (x,); then there would exist a number
@ > 0 such that there would be an infinite subsequence (xnk) of (x,) whose

points belong to E — B(a;a«). By assumption, this subsequence has a
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cluster value b, and as E — B(a;a) is closed, b belongs to E — B(a;«)
by (3.13.7). The sequence (x,) would thus have two distinct cluster values,
contrary to assumption.

(3.16.5)  Any continuous mapping f of a compact metric space E into a metric
space E' is uniformly continuous.

Suppose the contrary; there would then be a number « > 0 and two
sequences (x,) and (y,) of points of E such that d(x,y, <1/z and
a'(f(,),f(¥,)) = «. We can find a subsequence (x,,k) converging to a point a,

and as d(x ) < 1/n,, it follows from the triangle inequality that the

nk’ynk
sequence (¥, ) also converges to 4. But f is continuous at the point 4, hence

there is a 8 > 0 such that d'(f(a),f(x)) < «/2 for d(a,x) < 6. Take k such
that d(a,x, ) <9, d(a,y,,) < d; then d'(/(x, ).f(¥,,)) < « contrary to the

definition of the sequences (x,) and (y,).

PROBLEMS

1) a) Let E be a compact metric space, (Uj)jerL an open covering of E. Show
that there is a number o > 0 such that any open ball of radius « is contained in
one at least of the U, (‘‘Lebesgue’s property”). (For each xeE, let B(x;7,) be
such that the ball B(x;2#,) is contained in one of the U;; cover E by a finite number
of the balls B(x;7,) and show that the smallest of the corresponding radii », has the
required property.)

b) Give an example of a precompact space in which the result of a) fails to be true.

2) For a metric space E, show that the following properties are equivalent:

a) E is compact;

b) every denumerable open covering of E contains a finite subcovering;

c) every decreasing sequence (F,) of non-empty closed sets of E has a non-empty
intersection;

d) for any infinite open covering (Uj;);eL of E, there is a subset H C L, distinct
from L and such that (Uj;);ey is still a covering of E;

e) every pointwise finite open covering (U;) of E (i.e. such that for any point
x€ E, x€ U, only for a finite subset of indices) contains a finite subcovering;

f) every infinite subspace of E which is discrete is not closed. (Using (3.16.1),
show that f) implies a), and that d) and e) imply f).)

3) Let E be a metric space, d the distance on E, §(E) € B(E) the set of all closed
non empty subsets of E. We may suppose that the distance on E is bounded (section

3.14, problem 2). For any two elements A,B of F(E), let p(A,B) = sup d(#,B),
x€A
h(A,B) = sup (p(A,B),p(B,A)).
a) Show that, on F(E), b is a distance (the “Hausdorff distance”).
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b} Show that if E is complete, F(E) is complete. (Let (X,) be a Cauchy sequence
in §(E); for each %, let Y,, be the closure of the union of the sets X, ., such that
p > 0; consider the intersection of the decreasing sequence (Y,) in E.)

c) Show that if E is precompact, F(E) is precompact (use the problem in sec-
tion 1.1). Therefore, if E is compact, §(E) is compact.

17. Compact sets

A compact (resp. precompact) set in a metric space E is a subset A such
that the subspace A of E be compact (resp. precompact).

(3.17.1) Any precompact set is bounded.

This follows from the fact that a finite union of bounded sets is bounded
(3.4.4).
The converse of (3.17.1) does not hold in general, for any distance is

equivalent to a bounded distance (section 3.14, problem 2) (but see
(3.17.6)).

(3.17.2) Any compact set in a metric space is closed.

Indeed, such a subspace is complete by (3.16.1), and we need only
apply (3.14.4).

(3.17.3) In a compact space E, every closed subset vs compact.

For such a set is obviously precompact, and it is a complete subspace
by (3.14.5).

A relatively compact set in a metric space E is a subset A such that the
closure A is compact.

(3.17.4)  Any subset of a relatively compact (resp. precompact) set is relatively
compact (resp. precompact).

This follows at once from the definitions and (3.17.3).

(3.17.5) A relatively compact set is precompact. In a complete space, a
precompact set is relatively compact.

The first assertion is immediate by (3.17.4). Suppose next E is complete
and A € E precompact. For any ¢ > 0, there is a covering of A by a finite
number of sets C, of A diameter < ¢/2; each C, is contained in a closed
ball D, (in E) of radius ¢/2. We have therefore A c | JD,, the set U D,

k k
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being closed, and each D, has a diameter < e. On the other hand, A is a
complete subspace by (3.14.5), whence the result.

A precompact space E which is not complete gives an example of a
precompact set which is not relatively compact in E.

(3.17.6) (Borel-Lebesgue theorem). In order that a subset of the real line
be relatively compact, a necessary and sufficient condition is that it be bounded.

In view of (3.17.1), (3.17.4) and (3.17.5), all we have to do is to
prove any closed interval [a,b] is precompact. For each integer #, let
%y =a-+ k(b —a)/n, (0L k< n); then the open intervals of center x,
and length 2/n form a covering of [a,b], q.e.d.

Remark. — 1If, on the real line, we consider the two distances d,,d,
defined in section 3.14, it follows from (3.17.1) that E, is not precompact,
whereas E,; is precompact, since the extended real line R, being
homeomorphic to the closed interval [—1,+1] of R (3.12) is compact
by (3.17.6),

(3147.7) A necessary and sufficient condition that a subset A of a metric
space E be relatively compact is that every sequence of points of A have a
cluster value in E.

The condition is obviously necessary, by (3.16.1). Conversely, let us
suppose it is satisfied, and let us prove that every sequence (x,) of points
of A has a cluster value in E (which will therefore be in A by (3.13.7)), and
hence that A is compact by (3.16.1). For each #, it follows from the defini-
tion of closure that there exists y, € A such that d(x,,y,) < 1/n. By assump-
tion, there is a subsequence (¥n,) Which converges to a point a; from the

triangle inequality if follows that (xnk) converges also to a, q.e.d.

(3.17.8) The union of two relatively compact sets is relatively compact.

From (3.8.8) it follows that we need only prove that the union of two
compact sets A,B is compact. Let (U,),.;. be an open covering of the
subspace A U B; each U, can be written (AU B) nV,, where V, is open
in E, by (3.10.1). By assumption, there is a finite subset H (resp. K) of L
such that the subfamily (A U V,),.y4 (resp. (BN V,), ) is a covering of A
(resp. B). It is then clear that the family (AU B) N V,), .y UK 1S a covering
of AUB.
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(3.17.9) Let f be a continuous mapping of a metric space E into a metric
space E'. For every compact (resp. relatively compact) subset A of E, f(A)
is compact, hence closed in E’ (resp. relatively compact in E’).

It is enough to prove that f(A) is compact when A is compact. Let
(U,);e. be an open covering of the subspace f(A) of E’; then the sets
AN {YU,) form an open covering of the subspace A by (3.11.4); by
assumption, there is a finite subset H of L such that the sets An f~1(U,)
for A€ H still form a covering of A; then the sets U, = f(An f~YU)))
for 2 € H will form a covering of f(A), q.e.d.

(3.17.10) Let E be a compact metric space, f a continuous mapping of E
into R; then [(E) vs bounded, and there exist two points a,b in E such that

f(a) = inf f(x), f(b) = sup f(x).
x€E 2€E
The first assertion follows from (3.17.9) and (3.17.1). On the other
hand, /(E) is closed in R by (3.17.2), hence sup f(E) and inf f(E), which
are cluster points of f(E), belong to f(E).

(3.17.11) Let A be a compact subset in a metric space E. Then the sets V,(A)
(see 3.6) form a fundamental system of neighborhoods of A.

Let U be a neighborhood of A; the real function x - d(x,E — U)is > 0
and continuous in A by (3.11.8), hence there is a point x, € A such that
d(%9,E — U) = inf d(x,E — U) by (3.17.10). But d(%p,E — U) =7 > 0;

€A

hence V,(A)cU.

(3.17.12) If E is a compact metric space, | a continuous injective mapping
of E into a metric space E', then f is a homeomorphism of E onto f(E).

All we need to prove is that for every closed set ACE, f(A) is closed
in f(E) (by (3.11.4)); but this follows from (3.17.3) and (3.17.9).

PROBLEMS

1) Let f be a uniformly continuous mapping of a metric space E into a metric
space E’. Show that for any precompact subset A of E, f(A) is precompact.

2) In a metric space E, let A be a compact subset, B a closed subset such that
An B = @. Show that d(A,B) > 0.

3) Let E be a compact ultrametric space (section 3.8, problem 4) d the distance
on E. Show that for every x,€ E, the image of E by the mapping ¥ — d(#,,%) is an
at most denumerable subset of the interval [0, + oo in which every point (with the
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possible exception of 0) is isolated (section 3.9, problem 2). (For any » = d(#,,%) > 0,
consider the L.u.b. of d(x,,y) on the set of points y such that d(x,,y) < 7, and the g.l.b.
of d(x,2) on the set of points z such that d(x,2) > »; use section 3.8, problem 4).

4) Let E be a compact metric space, 4 the distance on E, f a mapping of E into E
such that, for any pair (#,y) of points of E, d(f(»),/(y)) = d(»,y). Show that f is an
isometry of E onto E. (Let a,b be any two points of E; put f, = f, _1°f, ap = fu(a),
by = fu(b); show that for any &> O there exists an index % such that d(a,as) < ¢
and d(b,by) << ¢, and conclude that f(E) is dense in E and that d(f(a),f(b)) = d(a,b).)

5) Let E,E’ be two metric spaces, f{ a mapping of E into E’. Show that if the
restriction of f to any compact subspace of E is continuous, then f is continuous in E
(use (3.13.14)).

18. Locally compact spaces

A metric space E is said to be locally compact if for every point x € E,
there exists a compact neighborhood of x in E. Any discrete space is
locally compact, but not compact unless it is finite (3.16.3).

(3.18.1)  The real line R s locally compact but not compact.

This follows immediately from the Borel-Lebesgue theorem (3.17.6).

(3.18.2) Let A be a compact set in a locally compact metric space E. Then
there exists an v > O such that V,(A) (see 3.6) is relatively compact in E.

For each x € A, there is a compact neighborhood V_ of x; the SO’X form
an open covering of A, hence there is a finite subset {x;,. . .,%,} in A such that

the \?xi (1 <¢< n) form an open covering of A. The set U= |J in

i=1
is compact by (3.17.8) and is a neighborhood of A; hence the result, by
applying (3.17.11).

(3.18.3) Let E be a locally compact metric space. The following properties
are equivalent:

a) there exists an increasing sequence (U,) of open relatively compact
sets in E such that U, c U, | for every n, and E = |J U,;
n

b) E is a denumerable union of compact subsets;
c) E is separable.

It is clear that a) implies b), since U, is compact. If E is the union of a
sequence (K,) of compact sets, each subspace K, is separable (by (3.16.2));
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if D,isan at most denumerable set in K,, dense with respect to K,, then
D= U D, is at most denumerable, and dense in E, since
n

E=JK,cUUD,cD; hence b) implies c). Let us suppose finally that

E is separable, and let (V,) be an at most denumerable basis for the
open sets of E (see (3.9.4)). For every x€E, there is a compact
neighborhood W, of x, hence, by (3.9.3), an index #(x) such that
x€V,,cW, It follows that those of the V, which are relatively
compact already constitute a basis for the open sets of E. We can
therefore suppose that all the V,, are relatively compact. We then define
U, by induction in the following way: U; = V,, U, is the union of
V,,: and of V,(0,), where >0 has been taken such that V,(U,) is
relatively compact (which is possible by (3.18.2)); it is then clear
that the sequence (U,) verifies property a).

(3.18.4) In a locally compact metric space E, every open subspace and every
closed subspace is locally compact. '

Suppose A is open in E; for every x € E, there is a closed ball B(a;7)
which is compact (from the definition of a locally compact space and
(3.17.3)). On the other hand, there is # <7 such that the ball B'(a;7’)
is contained in A; as it is compact by (3.17.3), A is locally compact.

Suppose A is closed in E, and let a € A; then if V is a compact neigh-
borhood of @ in E, VN A is a neighborhood of a in A by (3.10.4), and is
compact by (3.17.3); this proves A is locally compact.

PROBLEMS

1) If A is a locally compact subspace of a metric space E, show that A is locally
closed (section 3.10, problem 3) in E. The converse is true if E is locally compact
(use (3.18.4)).

2) a) Show that in a locally compact metric space, the intersection of two locally
compact subspaces is locally compact (cf. problem 1).

b) In the real line, give an example of two locally compact subspaces whose union
is not locally compact, and an example of a locally compact subspace whose com-
plement is not locally compact.

3) a) Give an example of a locally compact metric space which is not complete.

b) Let E be a metric space such that there exists a number » > 0 having the
property that each closed ball B’(x;7) (x € E) is compact. Show that E is complete
and that for any relatively compact subset A of E, the set V;/B(A) of the points ¥ € E
such that d(x,A) <C »/2 is compact.
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19. Connected spaces and connected sets

A metric space E is said to be connected if the only subsets of E which
are both open and closed are the empty set @ and the set E itself. An
equivalent formulation is that there does not exist a pair of open non-
empty subsets A,B of E suchthat AUB = E, AN B = 0. A space reduced
to a single point is connected. A subset F of a metric space E is connected
if the subspace F of E is connected. A metric space E is said to be locally
connected if, for every x € E, there is a fundamental system of connected
neighborhoods of x.

(3.19.1)  In order that a subset A of the veal line R be connected, a necessary
and sufficient condition is that A be an interval (bounded or not). The real
line is a connected and locally connected space.

The second assertion obviously follows from the first. Suppose A is
connected; if A is reduced to a single point, A is an interval. Suppose A
contains two distinct poin'ts a < b. We prove every x such thata < x < b
belongs to A. Otherwise, A would be the union of the non-empty sets
B=ANJ]—o, ¥ and C = AN Jx, + o[, both of which are open in A
and such that BN C = O. From this property, we deduce that A is nec-
essarily an interval. Indeed, let ¢ € A, and let p,g be the g.l.b. and lL.u.b.
of A in R; if p = — oo, then for every x < ¢, there is y < x belonging
to A; hence x € A, so ]— oo, ¢] is contained in A; if $ is finite and p <,
for every x such that p < x < ¢ there is y € A such that p <y < x,
hence again x € A, so that A contains the interval ]p,c]. Similarly, one
shows that A contains [¢,q[ if ¢ > ¢; it follows that in any case A contains
the interval }p,¢[, and therefore must be one of the four intervals in R of
extremities p,g (of course, if p = — oo (resp. ¢ = + o0) p (resp. ¢g) does
not belong to A).

Conversely, suppose A is an interval of origin @ and extremity 4 in R
(the possibilities 4 = — o0, a ¢ A, b = + o0, b ¢ A being included). Suppose
A = B U, with B,C non-empty open sets in A and Bn C = ©&; suppose
for instance x € B, y € C and ¥ < y. Let z be the Lu.b. of the bounded
set BN [x,y]; if 2 € B, then z < y and there is by assumption an interval
[z,2+ A[ contained in [x,y] and in B, which contradicts the definition
of z; if on the other hand 2z € C, then x < z, and there is similarly an
interval ]z — A,z] € C N [x,y], which again contradicts the definition of z
(see (2.3.4)); hence z cannot belong to B nor to C, which is absurd since
the closed set [x,y] is contained in A. Hence A is connected.
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(3.19.2) If A is a connected set in a metric space E, then any set B such
that ACBCA is connected.

For suppose X,Y are two non-empty open setsin B such that XU Y = B,
XNY=¢; as Ais dense in B, XN A and YN A are not empty, open
in A, and we would have (XN A)U(YNA)=A, (XNA)N(YNA)=0,
a contradiction.

(3.19.3) In a metric space E, let (A;),.1 be a family of connected sets having
a non-empty intersection; then A = |J A; is connected.
AeL

Let a be a point of [} A;, and suppose A = B U C, where B,C are non-
AeL

empty open sets in A such that BN C = . Suppose for instance a4 € B;
by assumption there is at least one A such that CNA; # &; then
as BNA,#0, BNA; and CNA, are open in A; and such that
BNA)U(CNA) =4, (BnA)nN(CNA,) =0, a contradiction.

(3.19.4) Let (A)); <; <, bea sequence of connected sets such that A;NA;  , #©

n
for 1<i<n—1; then \J A; is connected.

i=1

This follows at once from (3.19.3) by induction on #.

From (3.19.3) it follows that the union C(x) of all connected subsets
of E containing a point x € E is connected, hence the largest connected
set containing x; it is called the connected component of x in E. It is clear
that for any yeC(x), we have C(y) = C(x), and if y¢ C(x), then
C(x) n C(y) = O; moreover, it follows from (3.19.2) that C(x) is closed
in E. For any subset A of E, the connected components of the points of
the subspace A are called the connected components of A; if every connected
component of A is reduced to a single point, A is said to be fotally dis-
connected.

A discrete space is totally disconnected; the set of rational numbers and
the set of irrational numbers are totally disconnected, by (2.2.16) and
(3.19.1).

(3.19.5) In order that a metric space E be locally connected, a necessary
and sufficient condition is that the connmected components of the open sets
in E be open.
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The condition is sufficient, for if V is any open neighborhood of a point
x € E, the connected component of x in the subspace V is a connected
neighborhood of x contained in V, hence E is locally connected. The
condition is necessary, for if E is locally connected and A is an open set
in E, B a connected component of A, then for any x € B, there is by assump-
tion a connected neighborhood V of x contained in A, hence VC B by
definition of B, and therefore B is a neighborhood of every one of its points,
hence an open set.

(3.19.6) Any non-empty open set A in the real line R is the union of an
at most denumerable family of open intervals, no two of which have common
points.

From (3.19.1) and (3.19.5) it follows that the connected components
of A are intervals and open sets, hence open intervals. The intersection
AN Q of A with the set Q of rational numbers is denumerable, and each
component of A contains points of A N Q by (2.2.16); the mapping » — C(r)
of AN Q into the set € of the connected components of A is thus surjective,
and therefore, by (1.9.2), € is at most denumerable.

(3.19.7) Let | be a continuous mapping of E into E'; for any connected
subset A of E, f(A) is conmected.

Suppose f(A) = MU N, where M and N are non-empty subsets of f(A),
open in f(A) and such that MAN = ; then, by (3.11.4), A nf}M)
and AN /fYN) would be non-empty sets, open in A and such that
A= (AnfYM)U(AnfIN) and (AN M) n(AnfYN)) =3, con-
trary to assumption.

(3.19.8) (Bolzano’s theorem). Let E be a connected space, f a continuous
mapping of E into the real line R. Suppose a,b are two points of [(E) such
that a << b. Then, for any ¢ such that a < ¢ << b there exists y € E such that

Hx) = c.
For f(E) is connected in R by (3.19.7), hence an interval by (3.19.1).

(3.19.9) Let A be a subset of a metric space E. If B is a connected subset
of E such that both AN B and (E — A) N B are not empty, then (Fr(A)) N B
is not empty. In particular, if E is connected, any subset A of E distinct
from E and O has at least one frontier point.
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Suppose (Fr(A)) NB =@; let A’=E — A; as E is the union of A,
A’ and Fr(A), B would be the union of U=A nB and V = A’n B, both
of which are open in B and not empty by assumption (for a point of AN B
must belong to AnB since Fr(A) n B = ¢, and similarly for A’ n B);
as U NV = O, this would be contrary to the assumption that B is connected.

Remark. — If we agree to call “curve’” the image of an interval of R
by a continuous mapping (see section 4.2, problem 5), (3.19.7) shows
that a “curve” is connected, and (3.19.9) that a “curve” linking a point
of A and a point of E — A meets Fr(A), which corresponds to the intuitive
idea of “‘connectedness” (see problem 3 and section 5.1, problem 4).

PROBLEMS

1) Let E be a connected metric space, in which the distance is not bounded. Show
that in E every sphere is non empty.

2) a) Let E be a compact metric space such that in E, the closure of any open
ball B(a; 7) is the closed ball B’(a:7). Show that in E any open ball B(a; 7) is connected.
(Suppose B(a; ) is the union € U D of two non empty sets which are open in B(a;7)
and such that Cn D = @; if a € C, consider a point ¥ € D such that the distance
d(a,x) is minimum (3.17.10).)

b) Give an example of a totally disconnected metric space in which the closure
of any open ball B(a; ) is the closed ball B'(a; 7).

¢) In the plane R2 with the distance d(#,y) = Max (|x; — y|.|%; — ¥s|), let E
be the compact subspace consisting of the points (x,,%,) such that # = 0 and
0<{#<<lor0< »,<<1and #, = 0. Show that in E every ball is connected, but
the closure of an open ball B(a;7) is not necessarily B’(a;7).

3) In the plane R?, let E be the subspace consisting of the points (,y) such that
either x is irrational and 0 < y <{ 1, or x is rational and —1 <y < 0.

a) Show that E is connected and not locally connected (use (3.19.1) and (3.19.6)
to study the structure of a subset of E which is both open and closed).

b) Let ¢ — (f(#).g(t)) be a continuous mapping of the interval [0,1] into E (f and g
being continuous). Show that f is constant. (If there exist points ¢, € {0,1] such that
g(ty) < 0, consider the open subset U c [0,1] consisting of all ¢ such that g(f) < O,
and use (3.19.6).)

4) In a metric space E, let A and B be two connected sets such that An B # @;
show that A U B is connected.

5) Let A and B be two non empty subsets of a metric space E. Show that if A
and B are closed, AU B and A n B connected, then A and B are connected. Show
by an example in the real line that the assumption that both A and B are closed
cannot be deleted.

6) Let E be a connected metric space having at least two points.

a) Let A be a connected subset of E, B a subset of §A, which is open and closed
with respect to [A; show that A U B is connected (apply problem 1 of section 3.10
to the two sets A U B and (A).
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b) Let A be a connected subset of E, B a connected component of CA; show that
(B is connected (apply a), using an indirect proof).

c) Show that there are in E two non empty connected subsets M,N such that
MuN=E, MNnN =@ (use b)).

7) In a denumerable metric space E, show that each point has a fundamental
system of neighborhoods which are both open and closed.

8) a) In a metric space E, the connected component of a point » is contained in
every open and closed set containing ».

b) In the plane R2, let A, be the set of pairs (1/#,y) such that — 1Ty <1,
B the set of pairs (0,y) such that 0 < y <C 1, C the set of pairs (0,y) such that
— 1<{ ¥ < 0; let E be the subspace of R?, union of B,C and the A, for n > 1. Show
that E is a locally compact subspace of E, which is not locally connected; the
connected components of E are B,C and the A, (z > 1), but the intersection of all
open and closed sets containing a point of B is BU C.

9) Let E be a locally compact metric space.

a) Let C be a connected component of E which is compact. Show that C is the
intersection of all open and closed neighborhoods of C. (Reduce the problem to the
case in which E is compact, using (3.18.2). Suppose the intersection B of all open and
closed neighborhoods of C is different from C; B is the union of two closed sets M2 C
and N without common points. Consider in E two open sets U2 M and V 3 N without
common points (section 3.11, problem 3), and take the intersections of E — (M U N)
with the complements of the open and closed neighborhoods of C.)

b) Suppose E is connected, and let A be a relatively compact open subset of E.
Show that every connected component of A has at least a cluster point in (A (if not,
apply a) to such a component, and get a contradiction).

c) Deduce from b) that for every compact subset K of E, the intersection of a

connected component of K with E — K is not empty.

20. Product of two metric spaces

Let E,,E, be two metric spaces, 4,,d, the distances on E; and E,. For
any pair of points x = (x1,%4,), ¥ = (¥1,¥) in E = E; X E,, let

d(x,y) = Max (dy(x,91),95(%2,52))-

It is immediately verified that this function satisfies the axioms (I) to (IV)
in 3.1, in other words, it is a distance on E; the metric space obtained by
taking 4 as a distance on E is called the product of the two metric spaces
ELE,. The mapping (#3,%,) — (%5,%,) of E; X E, onto E, X E; is an
isometry.

We observe that the two functions d’,d"" defined by

a’(x,y) = dy(%1,y1) + do(%5,75)

@"(x,y) = V(@ (x1,1))® + (da(5,95))?
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are also distances on E, as is easily verified, and are uniformly equivalent
to d (see 3.14), for we have

d(x,y) < d"(x,y) < d'(xy) < 24(x,y).

For all questions dealing with topological properties (or Cauchy se-
quences and uniformly continuous functions) it is therefore equivalent
to take on E any one of the distances 4,d’,d"”. When nothing is said to the
contrary, we will consider on E the distance d. Open (resp. closed) balls
for the distances d,d,,d, will be respectively written B,B,,B, (resp. B’,B;,B))
instead of the uniform notation B (resp. B’) used up to now.

(3.20.1) For any point a = (a,,a,) € E and any r > 0, we have B(a;7) =
B,(a,;7) X By(ay;7) and B'(a;7) = By(ay;7) X By(ay; 7).

This follows at once from the definition of 4.
(3.20.2) If A, is an open set in E;, A, an open set in Ey, then A; X Ay
is open in E; X E,.

For if a = (a;,a,) € A; X A,, there exists 7;,>0 and 7,>0 such
that B,(a,; 7;) € A,, Ba(as;75) CA,; taker = Min (r,7,); then by (3 20.1),
B(a;7) CA; X A,

(3.20.3) For any pair of sets A,CE;, A,CE,, A; x Ay =A; x Ay; in
particular, in order that A, X A, be closed in E, a necessary and sufficient
condition is that A, be closed in E, and A, closed in E,.

Ifa = (a,a,) €A, x A,, forany e > 0 thereis, by assumption, an x; € A
and an x, € A, such that d;(a,,x)) < &, dy(ay,%,) < ¢&; hence if x = (xl,xz)
d(a,x) < e. On the other hand, if (al,az) ¢ A, x A, then either a, ¢A, or
as¢A,; in the first case, the set (E; — A;) x E, is open in E by (3.20.2),
contains & and has an empty intersection with A; X A,, hence a ¢ A; X Ay;
the other case is treated similarly.

(3.20.4) Let z — f(2) = (/1(2).15(2)) be a mapping of a metric space F into
E = E, X E,; in order that | be continuous at a point z,, it is necessary
and sufficient that both f, and f, be continuous at z,.

Let xy = (f,(2g), f2(2p)); then we have
171 (B(%57)) = A7 (Ba(fi(z0); 1) 0 fo 7 (Balfalze) : 7))
by (3.20.1), and the result follows from (3.11.1) and (3.6.3).
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(3.20.5) Let f= (f,.fs) be a mapping of a subspace A of a metric space F
into E\ X Ey, and let a€A; in order that f have a limit at the point
a with respect to A, a necessary and sufficient condition is that both limits

by = lim fi(2), by= Nm [y(2) exist, and then the limit of f is
7—>a,z€A z—>a,z€A
b = (b1.b,).

This follows at once from (3.20.4) and the definition of a limit.
In particular:

(3.20.6) In order that a sequence of points z, = (x,,y,) in E =E, x E,
be convergent, a mecessary and sufficient condition is that both limits
a= lim x,, b= lim vy, exist and then lim z, = (a,b).

7 ~—» 00 n— 0 n—» O

Note that for cluster values of sequences, if (a,b) is a cluster value of
((%,,9,)), @ is a cluster value of (x,) and b a cluster value of (y,), as follows
from (3.20.6) and the definition of cluster values; but it may happen that
{(x,,y,)) has no cluster value, although both (x,) and (y,) have one: for
instance, in the plane R2, take %y, = 1/%, Y5, = #, %y, 1 = %, Yo, .1 = 1/n.
However, if (x,) has a limit 4, and b is a cluster value of (y,) then (a,b) is
a cluster value of ((x,,y,)), as follows from (3.20.6).

(3.20.7) In order that a sequence of points z, = (x,,y,) tn E, X E, be a
Cauchy sequence, a necessary and sufficient condition is that each of the
sequences (x,),(y,) be a Cauchy sequence.

This follows at once from the definition of the distance in E; X E,
and the definition of a Cauchy sequence.

(3.20.8) Let z — f(2) = (f,(2)./2(2)) be a mapping of a metric space F into
E, X E,; in order that f be uniformly continuous, it is necessary and sufficient
that both f, and f, be uniformly continuous.

This follows immediately from the definitions.

(3.20.9) If E is a metric space, d the distance on E, the mapping d of E X E
into R ts uniformly continuous.

For |d(x,y) — d(x',y")| < d(x,x') 4 d(y,y’) by the triangle inequality.
(3.20.10)  The projections pr, and pr, are uniformly continuous in E=E, X E,.

Apply (3.20.8) to the identity mapping of E.
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(3.20.11) For any a,€E, (resp. a,€E,)), the mapping x, — (x,,a5)
(resp. x, — (ay,%,)) ts an isometry of E, (resp. Ey) on the closed subspace
E, X {ag} (resp. {a,} X E,) of E; X E,.

This is an obvious consequence of the definition of the distance in
E, X E,, and of (3.20.3).

(3.20.12)  For any open (resp. closed) set Ain E, X E,, and any point a, € E,,
the set A(a,) = pry(A N ({a} X E,)) is open (resp. closed) in E,.

By (3.20.11) it is enough to prove that the set A N ({a;} X E,) is open
(resp. closed) in {a;} X E,, which follows from (3.10.1) and (3.10.5).

(3.20.13) For any open set A in E; X E,, pr A (resp. pryA) is open in E,
(resp. E,).

Indeed, we can write pr,A = |J A(x,), and the result follows from
x ek,
(3.20.12) and (3.5.2).

Note that if A is closed in E, X E,, p7,A needs not be closed in E,.
For instance, in the plane R? the hyperbola of equation xy =1 is a
closed set, but its projections are both equal to the complement of {0} in R,
which is not closed.

(3.20.14) Let f be a mapping of E = E,; X E, into a metric space F. If f
is continuous at a point (a,,a,) (resp. uniformly continuous), then the mapping
%, — [(%1,45) ts continuous at a, (resp. uniformly continuous).

That mapping can be written x; — (x,,4,) — f(%;,4,), hence the result
follows from (3.20.11), (3.11.5) and (3.11.9).

The converse to (3.20.14) does not hold in general. A classical coun-
terexample is the function f defined in R2 by f(x,y) = xy/(x% + ¥?) if
(%,59) # (0,0) and £(0,0) = 0; f is not continuous at (0,0), for f(x,x) = 1/2
for x £ 0.

(3.20.15) Let E,,E, F,F, be four metric spaces, f, (resp. f,) a mapping of E,
into Fy (resp. of E, tnto F,). In order that the mapping f: (%1,%5) — (f1(%1),fo(%3))
of E; X E, tnto F; X F, be continuous at a point (a,,a,) (resp. uniformly
continuous), it is necessary and sufficient that f, be continuous at a, and f,
at a, (resp. that both f, and f, be uniformly continuous).

The mapping (x,,%,) — f,(%,) can be written fopr,, hence the sufficiency
of the conditions follow from (3.20.4), (3.20.8) and (3.20.10). On the other
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hand, the mapping f, can be written x; — p7,(f(%;,45)) and the necessity
of the conditions follows from (3.20.14) and (3.20.10).

(3.20.16)  Let EE, be two non empty metric spaces. In order that E=E, X Ey
be a space of one of the following types:

(1) discrete;

(i1}  bounded;

(iii)  separable;

(iv)  complete,

(v)  compact;

(vi)  precompact;

(vil) locally compact;
(vill) connected;

(ix)  locally connected;

— it is necessary and sufficient that both E{ and E, be of the same type.

The necessity part of the proofs follows a general pattern for properties
(i) to (vii): from (3.20.11) it follows that E, and E, are isometric to closed
subspaces of E; X E,; and then we remark that properties (i) to (vii) are
“inherited”” by closed subspaces (obvious for (i) and (ii), and proved for
properties (iii) to (vii) in (3.10.9), (3.14.5), (3.17.3), (3.17.4), (3.18.4)). For
property (viii), the necessity follows from (3.19.7) applied to the projections
pr, and pr,; similarly, if E is locally connected, for any (a,,4;) € E and
any neighborhood V, of 4, in E;, V; X E, is a neighborhood of (4,,4,),
hence contains a connected neighborhood W of (a,,4,); but then pr,W is
a connected neighborhood of 4, contained in V,, by (3.19.7) and (3.20.13).

The sufficiency of the condition for (i) and (ii) is an obvious consequence
of the definition of the distance in E; x E,. For (iii), if D;,D, are at most
denumerable and dense in E, E, respectively, then D; X D, is at most
denumerable by (1.9.3), and is dense in E by (3.20.3). For (iv), if (z,) is
a Cauchy sequence in E, then (p7,2,) and (pr,2,) are Cauchy sequences
in E; and E, respectively by (3.20.7), hence they converge to a,,4, respec-
tively, and therefore (z,) converges to (a,,a,) by (3.20.6). For (vi), if (A))
(resp. (B;)) is a finite covering of E, (resp. E,;) by sets of diameter <e,
then (A; X B)) is a finite covering of E; X E, by sets of diameter <¢;
and by (3.16.1), the sufficiency of the condition for (iv) and (vi) proves
it also for (v). The proof for (v} yields a proof for (vii) if one remembers
the definition of neighborhoods in E; x E,. For (viii), let (a,,45), (b1,0;)
be any two points of E; by (3.20.11) and the assumption, the sets {a,} X E,
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and E; X {b,} are connected and have a common point (a,,0,). Hence
their union is connected by (3.19.3), and it contains both (2;,a,) and (4,,5,);
therefore, the connected component of (4,,4,) in E is E itself. The same
argument proves the sufficiency of the condition for (ix), remembering
the definition of the neighborhoods in E.

(3.20.17) In order that a subset A of E; X E, be relatively compact, a
necessary and sufficient condition is that priA and pr,A be relatively compact
in E, and E, respectively.

The necessity follows from (3.17.9) applied to pr, and p7,; the sufficiency
follows from (3.20.16), (3.20.3) and (3.17.4).
All definitions and theorems discussed in this section are extended at
once to a finite product of metric spaces.

PROBLEMS

1) Let E,F be two metric spaces, A a subset of E, B a subset of F; show that
Fr(A X B) = (Fr(A) x B)u (A x Fr(B)).

2) Let E,F be two connected metric spaces, A 7% E a subset of E, B # F a subset
of F; show that in E x F the complement of A X B is connected.

3) a) Let E,F be two metric spaces, A (resp. B) a compact subset of E (resp. F).
If Wis any neighborhood of A X Bin E X F, show that there exists a neighborhood U
of A in E and a neighborhood V of B in F such that U X Vc W (consider first the
case in which B is reduced to one point).

b) Let E be a compact metric space, F a metric space, A a closed subset of E x F.
Show that the projection of A into F is a closed set (use a) to prove the complement
of pr,A is open).

¢) Conversely, let E be a metric space such that for every metric space F and
every closed subset A of E X F, the projection of A into F is closed in F. Show that
E is compact. (If not, there would exist in E a sequence (x,) without a cluster value.
Take for F the subspace of R consisting of 0 and of the points 1/# (n integer > 1)
and consider in E X F the set of the points (x,,1/n)).

4) Let E be a compact metric space, F a metric space, A a closed subset of
E X F, B the (closed) projection of A into F. Let y,e€ B and let C be the section
A~Y(yy) = {x € E|(x,,) € A}. Show that for any neighborhood V of C in E, there is
a neighborhood W of y, in F such that the relation ye W implies A~Y(y)cV
(‘“‘continuity of the ‘‘roots’ of an equation depending on a parameter”). (Use prob-
lem 3 a).)

5) a) Let f be a mapping of a metric space E into a metric space F, and let G be
the graph of / in E X F. Show that if f is continuous, G is closed in E X F, and the
restriction of p7, to G is a homeomorphism of G onto E.

b) Conversely, if F is compact and G is closed in E X F, then f is continuous
(use problem 3 b)).
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¢) Let F be a metric space such that for any metric space E, any mapping of E
into F whose graph is closed in E X F is continuous. Show that F is compact (use the
construction of problem 3 c)).

6) Let E,F,G be three metric spaces, A a subset of E X F, Basubset of F X G,
C=BoA = {(#,2) €E X G|@yeF such that (v,y)€A and (3,2 € B}. Suppose
both A and B are closed and the projection of A into F is relatively compact; show
that C is closed in E X G (use problem 3 b)).

7) Let (E,) (»>=1) be an infinite sequence of non empty metric spaces, and
suppose that for each #, the distance d,, on E,, is such that the diameter of E, is << 1
(see section 3.14, problem 2 b)). Let E be the set of all sequences x = (#,) with #,€ E,

[ee]
for each # (“infinite product’” of the sequence (E,); one writes E = TII E,).
n=1
0

a) Show that on E the function d((#,),(yn)) = & dp(%n,yn) 2" is a distance.
n=1
b) For any x = (,) € E, any integer m >> 1 and any number » > 0, let V(#;7)
be the set of all ¥ = (y,,) € E such that dg(#s,y:) < r for £ < m. Show that the sets
Vu(#;7) (for all m and #) form a fundamental system of neighborhoods of # in E.
c) Let (#™)) be a sequence of points #™ = (x f,m) )u=1 of E; in order that (#(™)

converge to @ = (a,) in E (resp. be a Cauchy sequence in E), it is necessary and
sufficient that for each » the sequence (xf,m))m>1 converge to a, in E, (resp. be a
Cauchy sequence in E,). In order that E be a complete space, it is necessary and

sufficient that each E, be complete.
o

d) For each #, let A, be a subset of E,; show that the closure in Eof A = TI A,
© n=1
is equal to IT A,.
n=1

) In order that E be precompact (resp. compact), it is necessary and sufficient
that each E, be precompact (resp. compact).

f) In order that E be locally compact, it is necessary and sufficient that ea.ch E,
be locally compact, and that all E,, with the exception of a finite number at most,
be compact.

g) In order that E be connected, it is necessary and sufficient that each E, be
connected.

h) In order that E be locally connected, it is necessary and sufficient that each
E, be connected and that all E,, with the exception of a finite number at most, be
connected.




Chapter IV

Additional Properties of the Real Line

Many of the properties of the real line have been mentioned in
Chapter III, in connection with the various topological notions developed
in that Chapter. The properties gathered under Chapter IV, most of which
are elementary and classical, have no such direct connection, and are really
those which give to the real line its unique status among more general
spaces. The introduction of the logarithm and exponential functions has
been made in a slightly unorthodox way, starting with the logarithm
instead of the exponential; this has the technical advantage of making it
unnecessary to define first @™ (m,n integers > 0) as a separate stepping
stone toward the definition of &* for any x.

The Tietze-Urysohn theorem (4.5) now occupies a very central position
both in Functional Analysis and in Algebraic Topology. It can be con-
sidered as the first step in the study of the general problem of extending
a continuous mapping of a closed subset A of a space E into a space F,
to a continuous mapping of the whole space E into F; the reader may
see in the forthcoming book of N. Steenrod [22] how this general problem
naturally leads to the most important and most actively studied problems
of modern Algebraic Topology.

1. Continuity of algebraic operations
(4.1.1) The mapping (x,y) >x+y of R X R into R is uniformly
continuous.
This follows at once from the inequality
[(# + ) — (+ 9| < |2 — 2 + [y — ]
and the definitions.

75
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(41.2)  The mapping (x,y) — xy of R X R into R is continuous; for any
a € R, the mapping x — ax of R into R is uniformly continuous.

Continuity of xy at a point (xy,y,) follows from the identity

Xy — Xo¥o = Xp{¥ — ¥o) + (% — %9)¥p + (% — %) (¥ — ¥,)-

Given any & > 0, take & such that 0 < 8 < 1 and &(|x,| + |yo| + 1) < ¢;
then the relations |x — xo| < 4, |y — ¥,| < d imply |xy — xoy,| < &. Uniform
continuity of x — ax is immediate, since |ax’ — ax| = |a|- |+ — x].

(4.1.3) Any continuous mapping f of R into itself such that f(x + y) =
(%) + f(y) is of type x — cx, with c € R.

Indeed, for each integer # > 0, we have, by induction on =,
f(nx) = nf(x); on the other hand f(0 + x) = (0) + f(x), hence f(0) = 0,
and  f(x + (— %)) = f(x) + f(— %) = f(0) = 0, hence f(— x) = — f(x).
From that it follows that for any integer # > 0, f(x/n) = f(x)/n, hence for
any pair of integers p,q such that ¢ > 0, f(px/q) = pf(x)/g; in other words,
f(rx) = rf(x) for any rational number . But any real number ¢ is limit
of a sequence (,) of rational numbers (by (2.2.16) and (3.13.13)), hence, from
the assumption on / and (4.1.2), f(tx) = f(lim 7,x) = lim flr,x) =

n~—» 0 7~ O

lim 7,f(x) = (%) - lim 7, = #f(x). Let thenc = f(1), and we obtain flx) =cx

#H—» 0 H—» 0

for every x e R.
(41.4)  The mapping x — 1/x is continuous at every point %y 7 0 in R.

For given any &> 0, take 6 >0 such that &< Min (|x,/2,e|x,/2/2);
then the relation |x — x,| < 4 first implies |%| > |x5] — 8 > |%,|/2, and then
1z — Vx| = |y — /|y < 2[5 — x|/ [%[2 <.

(4.1.5)  Any rational function (xy,. . .,%,) - P(x,,.. %) Q(%y,. - . ,x,) where
P and Q are polynomials with real coefficients, is continuous at each point
(a1,--.,a,) of R" where Q(a,,...,a,) #O0.

The continuity of a monomial in R” is proved from (4.1.2) by induction
on its degree, then the continuity of P and Q is proved from (4.1.1) by
induction on their numbers of terms; the final result follows from (4.1.4).

(4.1.6)  The mappings (x,y) — sup (x,y) and (x,y) — inf (x,9) are uniformly
continuous in R x R.
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As sup(x,y) = (¥ + ¥+ |x—y|)/2 and inf(x,y) =(x+ ¥y — |x—¥])/2, the
result follows from (4.1.1) and (3.20.9).

(41.7) Al open intervals in R are homeomorphic to R.

From (4.1.1) and (4.1.2) it follows that any linear function » — ax + b,
with a = 0, is a homeomorphism of R onto itself, for the inverse mapping
x —a-lx — a1 has the same form. Any two bounded open intervals
Ja,B[, ]y,0[ are images of one another by a mapping ¥ — ax -+ b, hence
are homeomorphic. Consider now the mapping x — x/(1 + |#|) of R onto
]— 1, 4 1]; the inverse mapping is x — %/(1 — |x|) and both are contin-
wous, since x — |#| is. This proves R is homeomorphic to any bounded
open interval; finally, under the preceding homeomorphism of R onto
]— 1, 4+ 1[, any unbounded open interval ]e, + oo or ]— o0, a[ of R
is mapped onto a bounded open interval contained in ]— 1, 4+ 1[, hence
these intervals are also homeomorphic to R.

(4.1.8) With respect to R X R, the function (x,y) — % +y has a limit at
every point (a,b) of R X R, except at the points (— oo, + o0) and (4 o0, — o) ;
that limit is equal to + oo (resp. — oo) if one at least of the coordinates a,b
is + oo (resp. — oo).

Let us prove for instance that if a % — oo, x + y has a limit equal
to + oo at the point (a, 4+ o0). Given ¢ € R, the relations x > byy>c—5b
imply x + ¥ >¢, and the intervals ]b, + 0] and J¢ — b, + o] are
respectively neighborhoods of a and + oo if b is taken finite and < a;
hence our assertion. The other cases are treated similarly.

(4.1.9) With respect to R X R, the function (x,y) — xy has a limit at every
point (a,b) of R X R, except at the points (0, +0), (0, —o0), (+o00, 0),
(— oo, 0); that limit is equal to + oo (resp. — oo) if one at least of the
coordinates a,b is infinite, and if they have the same sign (resp. opposite signs).

Let us show for instance that if a > 0, xy has the limit +-oco at the
point (a, +o0). Given c€R, the relations x > b, y > ¢/b, for >0,
imply xy > ¢, and the intervals b, + oo] and J¢/b, + oo] are neighborhoods
of @ and + oo, if b is taken finite and < 4. Similar proofs for the other
cases.

We omit the proofs of the following two properties:

(41.10) lim 1/x=0, lim 1/x= 400, lim 1/x= —co.

xr—>+ © z—0,2>0 z—»0,2<0
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(4.1.11)  The mappings (x,y) — sup (x,y) and (x,y) — inf (x,y) are contin-
uous in R x R.

2. Monotone functions

Let E be a non-empty subset of the extended real line R. A mapping
{ of E into R is called increasing (vesp. strictly increasing, decreasing, strictly
decreasing) if the relation x < y (in E) implies f(x) < f(y) (resp. f(x) < /(y),
H(x) = f(¥), f(x) > f(¥)); a function which is either increasing or decreasing
(resp. either strictly increasing or strictly decreasing) is called monotone
(resp. strictly monotone); a strictly monotone mapping is injective. If f
is increasing (resp. strictly increasing), — f is decreasing (resp. strictly
decreasing). If f,g are increasing, and f + g is defined, f 4 g is increasing;
if in addition f and g are both finite and one of them is strictly increasing,
then f 4 g is strictly increasing.

(4.2.1) Let E be a non-empty subset of R, and a = sup E; for any monotone
mapping f of E into R, lim f(x) exists and is equal to sup f(x) if fis

xr—a,x€E x€E

increasing, to inf f(x) if f is decreasing.
2€E

Suppose for instance f is increasing, and let ¢ = sup f(x). If ¢ = — oo,
z€E

/ is constant (equal to —o0) in E and the result is trivial; if ¢ > — oo, for
any b <<c, there is x € E such that & < f(x) <{¢; hence, for y € E and
* < y<a, we have by assumption & < f(x) < f(y) <<c¢, whence our
conclusion.

(4.2.2) Let 1 be an interval in R; any continuous injective mapping | of 1
into R is strictly monotone, any continuous strictly monotone mapping f of 1
into R is a homeomorphism of 1 onto an interval f(I).

a) Suppose f continuous and injective; let a,b be two points of I such
that a < b, and suppose for instance f(a) < f(b). Then, for a < c¢ < b,
we must have f(a) < f(c) < f(b); for our assumptions imply f(c) 7% f(b)
and f(¢) # f(a), and if we had for instance f(c) > f(b), there would then be
an x such that a < x < ¢ and f(x) = f(b) by Bolzano’s theorem (3.19.8),
contrary to our assumption. Similarly one sees that f(c) < f(a) is impossible.
If now & < ¢, we must have f(b) < f(c), for the preceding argument shows
/(b) must be in the interval of extremities f() and f(c). Similarly if ¢ < a,
f(c) < f(a). Finally, if x,y are any two points of I such that » < y, we
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have f(x) < f(y), by repeating the preceding argument on a,x,y instead
of a,b,c.

b) If fis continuous and strictly monotone, it is a bijection of I onto
f(I), and £(I), being connected, must be an interval ((3.19.1) and (3.19.7)).
For any x €I, the image by / of any interval containing ¥ and contained
in I is then an interval containing f(x) and contained in f(I); this proves
the image by f of any neighborhood of x in I is a neighborhood of f(x)
in f(I), hence f is a homeomorphism (see (3.11.1)).

PROBLEMS

1) Let f be a mapping of R into R such that f(x + y) = f(#) + ().

Show that if, in an interval Ja,b[, f is majorized, then f is also minorized in ]a,b[
(if ¢ is a fixed point in the interval }a,b{, consider pairs of points #,y in that interval
such that # < ¢ < y and (y — ¢)/(c — #) is rational). Under the same assumption,
f is bounded in any compact interval, and continuous in R, hence of the form f(x) = cx
(same method).

(It can be proved, using the axiom of choice, that there exist solutions of
f(x + ¥) = f(¥) + f(y) which are unbounded in every interval.)

2) Let b be an integer > 1.

a) Show that for any infinite sequence (c,) of integers such that 0 <C ¢, <<b — 1,
@
the series X ¢,[b” converges to a number » € [0,1]. Conversely, for any x» € [0,1]
n=20 .

oo
there exists a sequence (c,) such that 0 < ¢, << b — 1 for every » and » = X ¢,/b";
n=20

that sequence is unique if » has not the form %/b™ (£ and m natural integers); otherwise,
there are exactly two sequences (c,) having the required properties. (Use the fact
that for any integer m > 0, and any x € [0,1], there is a unique integer % such that
RIB™ << x < (R + 1)/b™).

b) Using the case b = 2 of a), and problem 5 of section 1.9, show that [0,1]
(hence R itself, see (4.1.7)) is equipotent to the set PB(N).

o]
¢) Let K be the subset of [0,1] consisting of all numbers of the form X' ¢,/3",
n=20
with ¢, = Qor¢, = 2 (“triadic Cantor set’”’). Show that K is compact; its complement
in [0,1] is a denumerable union of open non overlapping intervals (3.19.6); describe
these intervals, and show that the (infinite) sum of their lengths is 1.

@ o]
d) For each x € K, with » = X ¢,/3", let f(#) be the real number X b,/2", where
n=0 n=20
@
b, = cy/2 (when x can be written in two different ways as X' c,/3% show that the
n=0

@
two corresponding numbers X b,/2" are equal). Prove that f is a bijective continuous
7n=0
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mapping of K onto the interval [0,1] of R, and therefore that K and R are equipotent.
Furthermore it is possible to extend / to a continuous mapping of I = [0,1] onto
itself, which is constant in each of the connected components (3.19.6) of I — K.

3) a) Let E be a metric space satisfying the following condition: for each finite
sequence s = (¢;)1 < ;< » Whose terms are equal to Oor 1, there is a non empty subset A,
such that:

(i) E is the union of the two subsets A ), A(1), and for each finite sequence s of #
terms, if s”,s’" are the two sequences of # + 1 terms whose first # terms are those of s,
A; = Ay U A,

(ii) for each infinite sequence (e,),~; whose terms are equal to 0 or 1, if
Sn= (&)1<i<n, the diameter of Asn tends to 0 when » tends to + oo, and the

intersection of the A‘n is not empty.

Under these conditions, show that there exists a continuous mapping of the triadic
Cantor set K (problem 2) onto E, and in particular E is compact.

b) Conversely, let E be an arbitrary compact metric space. Show that there
exists a continuous mapping of K onto E. (Apply the method of a), and the defini-
tion of precompact spaces (3.16); observe that properties (i) and (i) do not imply
that the two sets A,/ and Ay~ need be different from A, for all sequences s.)

c) If in addition E is totally disconnected, and has no isolated points (section 3.9,
problem 2), then E is homeomorphic to K. (First prove that for every ¢ > 0 there is
a covering of E by a finite number of sets A; which are both open and closed and
have a diameter <C ¢; to that purpose use problem 9 a) of section 3.19. Then apply
the method of a).)

4) a) Let E (resp. F) be the set of even (resp. odd) natural integers; if, to each
subset X of N, one associates the pair (X n E,X n F), show that one defines a bijection
of P(N) onto P(E) x P(F).

b) Deduce from a) and from problem 2 b) that R” and R are equipotent for all
n > 1 (but see section 5.1, problem 6).

5) Let I be the interval [0,1] in R. Show that there exists a continuous mapping
f of I onto the “‘square’”’ I X I (a “Peano curve”). (First show that there is a contin-
uous mapping of the Cantor set KontoI X I (problem 3), and then extend the mapping
by linearity to the connected components of the complement of K in I.)

6) Let g be a mapping of the interval ]0,1] into the interval [— 1,1], and suppose

that lim  g(x) = 0. Show that there exist a continuous decreasing -mapping g,
x—0,x>0

and a continuous increasing mapping g, of [0,1] into [—1,1], such that
£(0) = g5(0) = 0, and g;(») << g(») << go(#) for 0 < x<C 1. (For each integer #,
consider the g.l.b. #, of the set of points x such that g(x) > 1/n.)

3. Logarithms and exponentials

(4.3.1) For any number a > 1, there is a unique increasing mapping f of
R = 10, + oo[ into R such that f(xy) = f(x) + f(y) and f(a) = 1; moreover,
/ is a homeomorphism of R} onto R.

We first prove a lemma:
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(4.3.1.1) For any x > 0, there is an integer m (positive or negative) such
that a” < x < a"" .

Suppose first x > 1. The sequence (a") is strictly increasing. If we had
@" < x for all integers n > 0, then b = lim 4" = sup 2" would be finite,

N —» O n
> 1and < »; but we can write b = lim a"*' =a- lim 4" by (4.1.2),
n-——» 0 n—» 0

hence b = ab, which contradicts the assumption 4 > 1. Therefore there is
an integer # such that x < a”; take m + 1 as the smallest of these integers.
If on the contrary 0 < x < 1 then x~1> 1, and if " < "1 << a™"", we
have a~ "V L x<<a” (”‘“)“

Suppose there exists a function f having the propertles listed in (4.3.1);
then f is a homomorphism of the multiplicative group RY into the additive
group R, and therefore we must have /(1) = 0, f(x") = n - f(x) forany x >0
and any integer n (positive or negative), and in particular f(@"} = n.
Moreover, if a” < 8" < a™*', we must have f(a”) < f(x ”) < fa™*h), in
other words m < n - f(x) < m + 1, hence m/n < f(x) and [f(x) — m/n| < 1/n.
This shows that if we denote by A, the set of ratlonal numbers m/n (m pos-
itive or negative, # > 1) such that 4™ < #", (note that a" < x" and
a™ < x™, where ¢ is an integer > 0, are equivalent relations), we must
have f(x) = sup A,, which shows f is unique.

To prove the existence of f, it remains to prove that the mapping f:
x —sup A, verifies all our conditions. Let x and y be any two elements
of R*; for any integer # >1, let mm’ be such that a" < x" <a""!
and 4" < y* < a™*!'; from these relations it follows that

dm+m’ < (xy)n < am+m' +2; hence we have .:lﬁ < f(x) < ﬁil_ ,
? ’ 1 1 ’ 2

"oy <L, Py < 2R and also

n n n n

m——:ﬁ— < flw) + fly) < i—l—_:t_-i-_% . We conclude that

[H(xy) — H(x) — (V)] < 2/,
and as # is arbitrary, f(xy) = f(x) + f(¥).

From (4.3.1.1) it follows that for any z>> 1, there is an integer
n>1 such that a < 2", hence f(z) > 1/n > 0; from which it follows
that f is strictly increasing, since if x < y, then y = 2x with z>1 and
f(y) = f(x) + f(z) > f(x). On the other hand, we have the following lemma:
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(4.3.1.2) For any integer n =1, there is a z > 1 such that 2* < a.

Remark that there is an x such that 1 < ¥ < 4, hence a = xy with

y > 1; if z; = Min (x,y), we have 25 < ¥y = a and z, > 1. By induction

define z,> 1 such that 22 < z,_,, hence 22" < a, and a fortiori 2" < a.

The lemma shows that 0 < f(z) < 1/#. For any x € RY, take  such that

x4+ 0 x— 0
x %

1
< zand > then |f(y) — f(x)] < f(2) < 1/n for |y — x| < 0

which proves f is continuous. By (4.2.2), f is thus a homeomorphism of R¥
onto an interval I of R; but that interval is necessarily R itself, since
f(a@") = n is an arbitrary integer.

(4.3.2) For any number a >0 and 1, there exists one and only one
continuous mapping f of RY into R such that f(xy) = f(x) + f(v) and f(a) =

Let > 1; from (4.3.1) we have a homeomorphism £, of R} onto R
such that fo(xy) = fo(x) + fo(y) and fy(B) =1; let g, be the inverse
homeomorphism, such that go(x + ¥) = go(*)ge(y) and go(1) =b. If f
verifies the conditions of (4.3.2), then & = fog, is a continuous mapping of R
into itself, such that A(x + y) = h(x) + A(y); by (4.1.3), we have h(x) =cx,
and therefore f(x) = cfy(x), and there is only one value of ¢ for which
f(a) = 1, namely ¢ = 1/fy(a) (as a 7%= 1, we have fy(a) 7 0 = fo(1)).

The mapping characterized in (4.3.2) is called the logarithm of base a,
and f(x) is written log,¥. From the proof of (4.3.2) it follows at once that
if a,b are >0 and #1, log,x and log,x are proportional, and making
x = a yields

(4.3.3) log,x = log,a - log, x.

From (4.3.1) and (4.2.1) it follows that if 2 >1, lim log,x = — oo,
z—0

lim log,x = + oo; ifa <1, lim log,x =+ oo, lim log,x = — oo.
X—>+ oo x—0 xX—>+ ©

For any @ > 0 and 3 1, the inverse mapping of x — log,x is called the
exponential of base a and written x —a* (which is a coherent notation,
since log,(a") = n, and therefore for integral values of x, the new notation
has the same meaning as the algebraic one). In addition, we define 1* to
be 1 for all real numbers x. Then, for a > 0, x,y arbitrary real numbers,
we have by definition @**? = a*a”, a=* = 1/a*, a® = 1. Replacing x by b*
in (4.3.3) yields
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(4.3.49) log,(b*) = xlog,b (6 >0, x real)
and replacing b by 4” in that formula gives

(4.3.5) (a*)Y = a™ (x,y real, a >0).

For a > 1, x —a* is strictly increasing and such that lim a*=0,
T—>— 0

lim a* = 4 oo; for a <1, x — a* is strictly decreasing, and such that
x=>+ 0

lim &=+ oo, lim a*=0.
X—»— ® r—>+ o

(4.3.6) The mapping (x,y) — x” is continuous in R} X R, and tends to a
limit at each point of R X R in the closure of R x R and distinct from
(O’O)’ (+ oo, O): (l: + w)) (11_ OO).

From (4.3.4), we have 2’ = a”""%* (a fixed number > 1), hence the
result by (4.1.2) and (4.1.9).

(4.3.7)  Any continuous mapping g of R into itself such that g(xy) = g(x)g(y)
has the form x — x*, with a real.

Indeed, if & > 1, f(x) = log,g(d*) is such that f(x + y) = f(x) + /),
for real x,y, and is continuous, hence f(x) =c-x by (4.1.3), therefore
g(d*) = b* = (b*), which proves the result.

As log,(x*) = a - logyx, we see that if 2 > 0, x — x” is strictly increas-
ing, and strictly decreasing if a < 0; moreover if a >0, lim 2*=0,

z—0
lim 2*=+ o0; if a< 0, lim ¥* = 4 oo, lim x*=0. For a0,
x>+ o x—0 x—>+ @
x — x* is therefore a homeomorphism of R} onto itself, by (4.2.2); the
inverse homeomorphism is x — x'/%,

PROBLEM

Let f be a mapping of R into itself such that f(x# + y) = f(¥) + f(¥) and
H{#y) = f(#){(y). Show that either f(x) = O for every x€ R, or f(x) = x for every
x€R. (If f(1) # 0, then f(1) = 1; in the second case, show that f(x¥) = x for rational
#, and using the fact that every real number z > 0 is a square, show that f is strictly
increasing.)
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4. Complex numbers
We define two mappings of the set R? x R? into R2 by
((23),(x",y) = (x + 2"y + ¥)

((%,2),(2",y") = (xx" — yy',xy" + yx').

They are called respectively addition and multiplication, and written
(2,2} >z + 2’ and (2,2') - zz’. For these two mappings, axioms (2.1,(I)) of a

field are satisfied, by taking 0= (0,0),1 = (1,0),and z=1 = <x2 i 2 x21yy2)
if z = (x,y) # 0 (which, by (2.2.8) and (2.2.13), implies ¥ + y2 3£ 0). The
field thus defined is written C and called the field of complex numbers,
its elements being called complex numbers. The mapping x — (x,0) of R
into € is injective and preserves addition and multiplication, hence we
identify R with the subfield of C consisting of the elements (x,0). The
element ¢ = (0,1) is such that 2= (— 1,0) = — 1, and we can write
(%,9) = x + iy for any (x,y) € C; if z = x 4 1y, x,y being real, x is written
Az and called the real part of z, y is written Sz and called the imaginary
part of z.

(4.4.1) Any rational function (z,...,2,) > Plz,....2,)/ Q. . ..2,) where
P and Q are polynomials with complex coefficients, is continuous at each point
(@y,...,a,) of C" such that Q(ay,....a,) # 0.

This is proved as (4.1.5) by using the analogues of (4.1.1), (4.1.2) and

(4.1.4), which follow at once from the formulas given above for sum, product
and inverse of complex numbers, and from (3.20.4) and (4.1.5).

For any complex number z = x + ¢y, the number Z = x — 7y is called

the conjugate of z. We have 2 =2z 2+2 =%+ 7 22 =%-%, in other
words z — Z is an awutomorphism of the field C, which is bicontinuous by
(3.20.4) and (4.1.2); real numbers are characterized by Z = z, numbers
of the form ¢x (x real, also called purely imaginary numbers) by z = — z.
We have 22 =224 y2>0 if 2= x + iy; the positive real number
|z| = (22)"/2 is called the absolute value of z, and coincides with the absolute
value defined in (2.2) when z is real. The relation |z| = 0 is equivalent

to z = 0. We have |22'|2 = a2z = 25 = |2|2

2|2, hence |22'| = |2|- |2’

>
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from which it follows that if z £ 0, |1/z] = 1/|z|. Finally, by direct computa-
tion, we check the triangle inequality

e+ 2| <l + I

which shows that |z — 2’| = d(z,?') is a distance defined on C = R X R,
which is uniformly equivalent to the distance considered in (3.20). The
balls for that distance are called discs. Any complex number z 7 0 can
be written in one and only one way as a product 7{, with» > 0 and |{| =1,
namely by taking » = |z| and { = z/|z|.

PROBLEM

Let f be a continuous mapping of € into itself such that f(z + 2’) = f(2) + f(z")
and f(22') = f(2)f(2’). Show that either f(z) = 0 for every z€ C, or f is one of the
mappings z — z, z — Z (use (4.1.3)).

5. The Tietze-Urysohn extension theorem

(4.5.1) (Tietze-Urysohn extension theorem). Let E be a metric space,
A a closed subset of E, f a continuous bounded mapping of A into R. Then
there exists a continuous mapping g of E into R which coincides with f in A
and is such that sup g(x) = sup f(y), inf g(x) = inf f(y).

x€E yeEA x€E yeA
We can suppose that inf f(y) =1, sup f(y) = 2 by replacing even-
yEA yeA

tually / by a mapping y — af(y) 4+ B, « 7% O (the case in which f is constant
is trivial). Define g(x) as equal to f(x) for x € A, and given by the formula
g(x) = (inf (f(v)d(x,7)))/d(x,A)
yeA
for x€e E — A. From the inequalities 1 <{ f(y) < 2 for v € A and the defini-
tion of d(x,A), it follows that 1 < g(x) <2 for xe E — A. We need
therefore only prove the continuity of g at every point xe E. If x €A,
the continuity follows from the assumption on f. In the open set E — A,
we can write g(x) = A(x)/d(x,A) with A(x) = inf (f(y)d(x,y)), and as d(x,A)
yeA
is continuous and # 0 (by (3.8.9) and (3.11.8)), all we have to prove then
(by (4.1.2) and (4.1.4)) is that 4 is continuous at every x € E — A. Let
r =d(x,A); for d(x,x') <e<r, we have d(x,y) <d(x',y) + ¢, hence
h(x) < h(x’) + 2¢ (since f(y) < 2), and similarly A(x’) < A(x) + 2¢, which
proves the continuity of 2. Finally, let us suppose x is a frontier point of A ;
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given £ > 0, let 7 > 0 be such that for y € An B(x;7), |[f(y) — f(x)] <
Let C=AnB(x;7), D=A—C; if ¥ €eE — A and d(x,x") <7/4, we
have, for each y € D, d(x',y) = d(x,y) — d(x,x’) == 3r/4, hence

inf (f(y)d(x',y)) = 3r/4;

yeD

on the other hand, f(x)d(x',x) < 2d(x',x) <<7/2, and therefore
ini (f(y)d(x',y)) = iné (f(y)d(x",y)). But, as f(x) — & < [{y) < f(x) + ¢ for
ye ye

yeC, and inf d(x',y) = d(x’,A), we have
yeC

(H(x) — e)d(x",A) < inf (f(y)d(x",y)) < (f(x) + e)d(x".A)
yeA
which proves that |g(x) — f(x)| < & for " € E — A and d(x,2") < 7/4; on
the other hand, if »’ € A and d(x,%") < 7/4, [g(x') — f(x)| = |[{(¥') — f(x)| <&
and this ends the proof.

(4.5.2) Let A,B be two non-empty closed sets in a metric space E, such that
ANB = 0. Then there is a continuous function | defined in E, with values
in [0,1], such that f(x) =1 in A and f(x) =0 in B.

Apply (4.5.1) to the mapping of AUB in R, equal to 0 in B and to 1
in A, which is continuous in A U B.

PROBLEMS

1) In-a metric space E, let (F,) be a sequence of closed sets, A the union of the F;
if # ¢ A, show that there exists a bounded continuous function f > 0 defined in E,
such that f(x) = 0 and f(y) > O for each y € A (use (4.5.2) and (7.2.1)}.

2) a) Let E be a metric space such that every bounded set in E is relatively compact;
show that E is locally compact and separable (use (3.16.2)).

b) Conversely, let E be a locally compact, non compact separable metric space,
d the distance on E; let (U,) be a sequence of relatively compact open subsets of E
such that U, c U, ; and E is the union of the sequence (Uy,) (3.18.3). Show that
there exists a continuous real-valued function f in E such that f(#) << » for € U,
and f(x) = nfor vy € E — U, (use (4.5.2)); the distance d’(x,y) = d(x,y) + |[f(») — f(¥)]
is then topologically equivalent to d, and for d’, any bounded set is relatively compact.




Chapter V
Normed Spaces

The language described in Chapter III corresponded to that part of
our geometric intuition covering the notions which intuitively remain
unaltered by “deformations”; here we get much closer to classical geometry,
as lines, planes, etc. are studied from the topological point of view (we
recall that the purely algebraic aspects of these notions constitute Linear
Algebra, with which we assume the reader is familiar). It is in this context
that the notion of series gets its natural definition; we have particularly
emphasized the fact that for the most important type of convergent
series (5.3), the usual rules of commutativity and associativity of finite
sums are still valid, which naturally leads to the conclusion that in that
case, the ordering of the terms is completely irrelevant. This, for instance,
enables one to formulate in a reasonable way the theorem on the product
of two such series of real numbers (see (5.5.3)), in contrast to the
nonsensical so-called ‘“‘Cauchy multiplication” still taught in some
textbooks, and which has no meaning for series other than power series
of one variable.

The fundamental results of this Chapter are the continuity criterion
(5.5.1), and F. Riesz’s theorem characterizing finite dimensional spaces
(5.9.4), which is the key to the elementary spectral theory developed in
Chapter XI.

Of course, this Chapter-is only an introduction to the general theory
of Banach spaces and linear topological spaces, which is developed for
instance in Taylor [23] and Bourbaki [6]; the main questions which we
have not touched upon are the theorems linked to the notion of “Baire
category”, and the theory of duality, both of which are fundamental for
the proof of the deeper results in Functional Analysis.

87
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1. Normed spaces and Banach spaces

In this and the following chapters, when we speak of a vector space,
we always mean a vector space (of finite or infinite dimension) over the
field of real numbers o7 over the field of complex numbers (such a space
being respectively called real and complex vector space); when the field
of scalars is not specified, it is understood that the definitions and results
are valid in both cases.* When several vector spaces intervene in the same
statement, it is understood (unless the contrary is specified) that they
have the same field of scalars. A complex vector space E can also be con-
sidered as a real vector space by restricting the scalars to R; when it is
necessary to make the distinction, we say that this real vector space E, is
underlying the complex vector space E; if E has finite dimension # over
C, E, has dimension 2n over R.

A norm in a vector space E is a mapping (usually written x — ||x||, with
eventual indices to the ||..||) of E into the set R of real numbers, having
the following properties:

(I)  ||x|| =0 for every x€E.
(II)  The relation ||x|| = 0 is equivalent to x = 0.
(III) ||A%|| = || - |||| for any x € E and any scalar A.

(IV) |lx + y|| < ||«]| + ||y|| for any pair of elements of E (“triangle
inequality”’).

(31.1) If x — ||x|| is @ norm om the vector space E, then d(x,y) = ||x — y||
is a distance on E such that d(x + 2,y + 2) = d(x,y) and d(Ax,Ay) = |A|d(x,y)
for any scalar A.

The verification of the axioms of (3.1) is trivial.

A normed space is a vector space E with a given norm on E; such a
space is always considered as a metric space for the distance [|x — y||.
A Banach space is a normed space which is complete.

If E is a complex normed vector space, x — [|x|| is also a norm on the
underlying real vector space E,, and the metric spaces E and E, are
identical; hence if E is a Banach space, so is E,,.

* The product of a scalar 4 and a vector x is indifferently written Ax or #4; 0 is
the neutral element of the additive group of the vector space.
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Examples of norms. (5.1.2) The examples given in (3.2.1), (3.2.2),
(3.2.3) and (3.2.4) are real vector spaces, and the distances introduced in
those examples are deduced from norms by the process of (5.1.1). The
normed spaces thus defined in examples (3.2.1) to (3.2.3) are complete by
(3.20.16) and (3.14.3), hence Banach spaces. Example (3.2.4) will be the
object of a special study in Chapter VII, and we shall see it is also a Banach
space.

(5.1.3) Examples corresponding to the preceding ones are obtained by
replacing everywhere real numbers by complex numbers (and in example
(3.2.2), squares (x; — y;)2 by |x;, — y;|?).

(5.1.4) Let I = [a,b] be a closed bounded interval in R, and E = €g(I)
the set of all real-valued continuous functions in I; E is a vector space
(f + g and Af being respectively the mappings ¢ — f(f) 4 g(f) and ¢ — Af(?)).
If we write

Ml = j 01t

[|f|ly is @ norm on E. The only axiom which is not trivially verified is (II),
which follows from the mean value theorem (see Chapter VIII). It can be
proved that E is nof complete (see Problem 1).

For other important examples of norms, see (5.7) and Chapter VI.

(5.1.5) IfE s areal (resp. complex) normed space, the mapping (x,y) ~x—+y
is untformly continuous in E X E; the mapping (A,x) — Ax is continuous
in R X E (resp. C X E); the mapping x — Ax is uniformly continuous
n E.

The proofs follow the same pattern as those of (4.1.1) and (4.1.2); to
prove for instance the continuity of (4,x) — Ax at a point (44,%,), we use the
formula [[Ax — Zg%,|| = [[Ao(x — %) + (A — Ag)%g + (A — Ap) (x — xp)|| <
ol * [l — ol| + |4 — Ao| - [[%ol| + |2 — 4| - ||¥ — %o]l.

As a corollary of (5.1.5), it follows that any translation x —a + x and
any homothetic mapping x — Ax (4 £ 0) is a homeomorphism of E onto
itself, for the inverse mapping is again a translation (resp. a homothetic

mapping).
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PROBLEMS

1) Let I = [0,1], and let E be the normed space defined in (5.1.4).
a) For any » > 3, let f, be the continuous function defined in I, such that f,(f) = 1

1 1 1
for 0 <<t < 5 fu(t) = 0 for ?—{- —<C?¢<{ 1, and that f,(¢) has the form o, + 8,
n

1 1 1
in the interval l:? ry + —] (with constants «, and B, to be determined). Show
n

thatin E, (f,) is a Cauchy sequence which does not converge (if there existed a limit g
of (f,) in E, show that one would necessarily have g(f) = 1 for 0<C¢<C $andg() =0
for § < t<C 1, which would violate the continuity of g).

b) Show that the distance on E defined in (5.1.4) is not topologically equivalent
to the distance defined in (3.2.4). (Give an example of a sequence in E which tends
to 0 for ||f — g||;, but has no limit for the distance defined in (3.2.4)).

2) If A,B are two subsets of a normed space E, we denote by A + B the set of all
sums a + b, where ac A, be B.

a) Show that if one of the sets A,B is open, A + B is open.

b) Show that if both A and B are compact, A + B is compact (use (3.17.9) and
(3.20.1¢)).

c) Show that if A is compact and B is closed, then A 4 B is closed.

d) Give an example of two closed subsets A,B of R such that A 4+ B is not closed
(cf. the example given before (3.4.1)).

3) Let E be a normed space.

a) Show that in E the closure of an open ball is the closed ball of same center
and same radius, the interior of a closed ball is the open ball of same center and same
radius, and the frontier of an open ball (or of a closed ball) is the sphere of same center
and same radius (compare to section 3.8, problem 4).

b) Show that the open ball B(0;7) is homeomorphic to E (consider the mapping
x —rx[(1 4 ||#]]).

4) In a normed space E, a segmen! is the image of the interval [0,1] of R by the
continuous mapping ¢ —ta + (1 — #)b, where ac E and b€ E; a and b are called
the extremities of the segment. A segment is compact and connected. A broken line
in E is a subset L of E such that there exists a finite sequence (x;)o<;<n» Of points
of E having the property that, if S; is the segment of extremities »; and #; ., for
0<{i<#n — 1, Lis the union of the S;; the sequence (x;) is said to define the broken
line L (a given broken line may be defined in general by infinitely many finite
sequences). If A is a subset of E, a,b two points of A, one says that a and b are linked
by a broken line in A, if there is a sequence (¥;)9<;<yn Such that a = %, b = x, and
that the broken line L defined by that sequence is contained in A.

If any two points of A can be linked by a broken line in A, A is connected.
Conversely, if A c E is a connected open set, show that any two points of A can be
linked by a broken line in A (prove that the set of points ¥ € A which can be linked to
a given point @ € A by a broken line in A is both open and closed in A).

5) In a real vector space E, a linear variety V is a set of the form a + M, where M
is a linear subspace of E; the dimension (resp. codimension) of V is by definition the
dimension (resp. codimension) of M. If b¢ V and if V has finite dimension p (resp.
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finite codimension ¢), the smallest linear variety W containing both b and V has
finite dimension p + 1 (resp. finite codimension ¢ — 1).

Let A be an open connected subset of a real normed space E, and let (V,) be a
denumerable sequence of linear varieties in E, each of which has codimension == 2;
show that if B is the union of the V,,, An (E — B) is connected. (Hint: use problem 4;
if L is a broken line linking two points a,b of An (E — B) in A, prove that there exists
another broken line L’ ““close” to L, contained in An (E — B). To do that, observe
that if x € E — B, the set of points y € E such that the segment of extremities »,y
does not meet any V,,, is dense in E, using (2.2.17).)

In particular, if the dimension of E is > 2, and if D is a denumerable subset of E,
An (E — D) is connected.

6) If E is a real normed space of dimension > 2, show that an open non-empty
subset of E cannot be homeomorphic to any subset of R (use problem 5).

7) a) Show that in a normed space E, a ball cannot contain a linear variety
(problem 5) of dimension > 0.

b) Let (E,) be an infinite sequence of normed spaces having dimension > 0;

a

show that in the metric space E = IT E,, there is no norm such that the distance
n=0

||# — ¥|| is topologically equivalent to the distance defined in Problem 7 of section 3.20
(where 4, is taken as a bounded distance on E, equivalent to the distance defined on
E, by the norm on that space). (Use a).)

2. Series in a normed space

Let E be a normed space. A pair of sequences (%,),,> ¢, (S,)n>¢ is called
a series if the elements x,,,s, are linked by the relations s, = x4+ 2, + ... + %,
for any =, or, what is equivalent, by xy = s¢, %, = s, —5,_; for n > 1;
%, is called the n-th term and s, the n-th partial sum of the series; the series
will often be called the series of general term x,, or simply the series (x,)

@
(and even sometimes, by abuse of language, the series X' x,). The series

n=>0
is said to converge to s if lim s, =s; sis then called the sum of the series
7 —» 0 ©
and written s =x,4+ ... + %, + ... or s= 2 x,; 7,=s—35, is called

n=0
the n-th remainder of the series; it is the sum of the series having as k-th
term x,,,; by definition lim 7,=0.
7n— 0
(5.2.1) (Cauchy’s criterion). If the series of general term x, is convergent,
then for any € > O there is an integer ny such that, for n = ny and p >0,
Usuip — Sall = ||%ns1 + o + x|l <& Conversely, if that condition
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ts satisfied and if the space E is complete, then the series of general term x,
is convergent.

This is merely the application of Cauchy’s criterion to the sequence (s,,)
(see 3.14).

As an obvious consequence of (5.2.1) it follows that if the series (x,) is
convergent, lim x,= 1lim (s,—s,_;)=0; but that necessary

#n—» n—» ©

condition is by no means sufficient.

(5.2.2) If the series (x,) and (x,) are convergent and have sums s, s', then
the series (x,+ x,) converges to the sum s + s’ and the series (Ax,) to the
sum s for any scalar A.

Follows at once from the definition and from (5.1.5).

(5:2.3) If (x,) and (x,) are two series such that x, = x, except for a finite
number of indices, they are both convergent or both non-convergent.

For the series (x, — x,) is convergent, since all its terms are 0 except
for a finite number of indices.

(5:2.4) Let (k,) be a strictly increasing sequence of integers == 0 with ky = 0;

k”+1—1
if the series (x,) converges to s, and if y,= X =x,, then the series (y,)
p="k,
converges also to s.
n kpg1—1
This follows at once from the relation X'y, = X x and from
i=0 ji=0

(3.13.10).

PROBLEMS

1) Let (a,) be an arbitrary sequence in a normed space E; show that there exists

a sequence (x,) of points of E such that lim x, = 0, and a strictly increasing sequence
n—r O

(ky) of integers such that a,, = #y + %, + ... + xp,, for every n.
2) Let o be a bijection of N onto itself, and for each %, let @(n) be the smallest
number of intervals [4,b] in N, such that the union of these intervals is o([0,%]).
a) Suppose @ is bounded in N. Let (x,) be a convergent series in a normed space E;
o) el

show that the series (#4(y)) is convergent in E and that X x, = X Ho(n)-
n=0 n=0
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b) Suppose ¢ is unbounded in N. Define a series (#,) of real numbers which is
convergent, but such that the series (¥4(4)) is not convergent in R. (Define by induction
on k a strictly increasing sequence (myg) of integers having the following properties:
1° if #n; is the largest element of ¢([0,m;]), then [0,n;] is contained in o([0,mp_1]);
2° g@(my) = k + 1. Define then x, for m, < m < my 41 such that x, = 0 except for
2k conveniently chosen values of #, at each of which x, is alternately equal to 1/&
or to — 1/k.)

3) Let (x,) be a convergent series in a normed space E; let o be a bijection of N
onto itself, and let

r(n) = |o(n) = n|* sup ||%ml|-
mz=n

Show that if lim #(n) = 0, the series (y(y) is convergent in E and that

n—» 0
n

e} o] n
X xp = X %g(m). (Evaluate the difference X wgp — & #x for large n.)
n=20 n=20 k=0 k=0

4) Let (%pn) (m == 0, n == 0) be a double sequence of points of a normed space E.
Suppose that: 1° for each m > 0, the series 0 + #m1 + --- + Xy + ... 1S
convergent in E; let y,, be its sum, and let 7, = Zmn + ¥mn4+1 + - -3 2° for each
n > 0, the series 7oy + #15 + ... + #mu + ... is convergent in E; let ¢, be its sum.

a) Show that for each n' > 0, the series g, + %14 + .- + Zmn + ... is con-
vergent; let z, be its sum.

@ [=e]
b) In order that X y,, = X z,, it is necessary and sufficient that lim ¢, = 0.
m=0 n=20 n— ©

5) a) Show that the series Y ——— is convergent and has a sum equal
n=lLnEm m?2 — n?

to — 3/4m? (decompose the rational fraction 1/(m? — x2)).

b) Let uy, = if m # n, and u,, = 0; show that
m2 — n?
Lo} [} Lo} 0
Z(E“mn)=—2(2“mn)7é0-
m=0 n=0 n=0 m=0

6) If f is a function defined in N X N, with values in a metric space, we denote by

lim flm,n) the limit of f (when it exists) at the point (+ oo, + ) of R X R,

m—> 0, n—> 0

with respect to the subspace N X N (3.13). Let (#,,) be a double sequence of real

numbers, and let s,, = x Xpk-
h<mk<n
a) If lim Sman €Xists, then lim %n = 0. Give an example in which
M > O, #—> O M —» 00, N—> O
Tum = Fmns Fmon = — Fm2n +1 = Fm 120 fOr m = 2n + 1, ¥g42, = 0, such that
lim smmn = 0, and none of the series Xy + *p1 + --- + Xw + ...,

Mm—00,n—> 0

Xgm + ¥1n + - -+ + Zmn + ... is convergent.
b) Give an example in which #,,, = O exceptif m =z + L, m =norn =m + 1
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0 e} o @«
(hence all series X x,,, X x,, are convergent), X x,, = X x,, = 0 for all
n=20 m=0 n=20 m=0
indices m,n, but lim Smn does not exist.

M—> 0, N —>» D0
3. Absolutely convergent series

(5.3.1) In order that a series (x,) of positive numbers be convergent it is
necessary and sufficient that for a strictly increasing sequence (k,) of tniegers

oo}
= 0, the sequence (s, ) of partial sums be majorized, and then the sum s — % x,
" n=20
is equal to sup S,

The assumption x, > 0 is equivalent to s, _; <s,, and then the result
follows at once from (4.2.1).

In a Banach space E, an absolutely convergent series (x,) is a series such
that the series of general term ||x,|| is convergent.

(53.2) In a Banach space E, an absolutely convergent series (%,) s con-

[ @
vergent, and || X x,|| < 2 |[x,]].
n=20 n=20

By assumption, for any ¢ > 0, there is an integer #, such that for # > n,
and any $ >0, ||%,,4]| + ... + ||%,4,|| <é&; hence

1+ - Hul] <

which proves the convergence of (x,) by (5.2.1). Moreover, for any #,

(1% + .. 4 %]l <||%l| + ... + ||%]]; theinequality || £ x,|| < Z [|%|
n=20 n=20
then follows from the principle of extension of inequalities (3.15.4).

(5.3.3) If (x,) is an absolutely convergent series and o a bijection of N onto
iself, then (y,), with vy, = %,,, is an absolutely convergent series, and
2 x,= 2 y, (“commutativity” of absolutely convergent series).

n=0 n=0
n

Lets, = X %, s,= Xy, foreach n, let m be the largest integer in
k=0 E=0

the set ¢([0,n]); then by definition X |ly||< X [|%]|, and (5.3.1)
k=0 i=0

shows that (y,) is absolutely convergent. Moreover, for any & > 0, let #,
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be such that ||x, ||+ ... + ||#,,,|| <& for n>ny and $ >0; thenif
my is the largest integer in =1([0,1,]), we have ||y, (1| 4 -+« + [P0 4l <&
for n > my, p >0; furthermore the difference s, —s, is the sum of
terms x; with j > n,, hence [|s,, — s, || <e; therefore, for n >, and

’
n

o @
n > my, ||s, — s,|| < 3¢, which proves that X' x, = 2 y,.
n=0

n=20
Let A be any denumerable set. We say that a family (x,),., of elements
of a Banach space E is absolutely summable if, for a bijection ¢ of N onto A,
the series (%) is absolutely convergent; it follows from (5.3.3) that this
property is independent of the particular bijection @, and that we can

define the sum of the family (x,) ., as 2 x,
n=0

»(ny Which we also write 2 x,.

x €A

As any denumerable set SC E can be considered as a family (with S as
the set of indices) we can also speak of an absolutely summable (denumerable)
subset of E and of its sum.

(5.3.4) In order that a denumerable family (x,),ca of elements of a Banach

space E be absolutely summable, a necessary and sufficient condition 1s

that the finite sums X ||x,|| (JC A and finite) be bounded. Then, for any
a€e]

£ > 0, there exists a finite subset H of A such that, for any finite subset K
of A for which HNK =@, X |[x,|| <e, and for any finite subset LD H
aeK

of A,

| 2 %, — 2 x| <2

a€A ael
The first two assertions follow at once from the definition and from
(5.3.1). Then, for any finite subset L > H, we can write L = HU K with
HNK =0, hence || 2 x, — X #,|| <e; from the definition of the sum
acH

ael

X x, it follows (after ordering A by an arbitrary bijection of N onto A)

aEA

that || 2 x, — 2 x| <e¢ hence || 2 x, — X x| < 2.
a€A aeH a€A ael

(5.3.5) Let (x,),c 5 be an absolutely summable family of elements of a Banach
space E. Then, for every subset B of A, the family (x,)y.p 1S absolutely
summable, and X ||x,|| < 2 ||x,][-

«€B a€A

If B is finite, the result immediately follows from the definition. If B
is infinite, then X [|x,|| << X2 ||#,|| for each finite subset J of B, and
ax€] a€A

the result follows from (5.3.4).
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(5.3.6)  Let (%,)4ecn be an absolutely summable family of elements of a Banach
space E. Let (B,) be an infinite sequence of non-empty subsets of A, such that
A= UBn,andB NB, =0 for p5#4q; then, if z2,= X =x,, the series

x€B,,

(2,) is absolutely convergent, and Z z, = 2 x, (“associativity” of ab-
n=20 acA
solutely convergent series).

Given any ¢ > 0 and any integer #, there exists, by (5.3.2), for each
k < n, a finite subset J, of B, such that ||z,|| < X' [|x,|| +¢&/(n + 1); if
o€ Jg

J= U J. we have therefore X [lz:]] < ).',' [|1%,]] + & < 2 [1%]] + &;
k=0 k=0

(5.3.1) then proves that the series (z,) is absolutely convergent. Moreover,

let H be a finite subset of A such that, for any finite subset K of A such

that HNK =0, X ||v,|| <& whence, for any finite subset L of A
acK

containing H, || X' x, — X x,|| < 2¢ (see (5.3.4)). Let n, be the largest

acA ael
integer such that HN B, # @, and let » be an arbitrary integer >> #,. For
each £ < #, let J, be a finite subset of B, containing H N B,, and such that

for any finite subset L, of B, containing J,, we have ||z, — X x|| <e¢/(n+1)
xely

(5.3.4). Then,if L= |J L, wehave || X z — 2 «x,/|<e andasLDH,
k=0 k=0

ael
it follows from the definition of H that || 2' 2z, — X' #,|| << 3¢, which ends
k=0 a€e€A

the proof.

There is a similar (and easier) result when A is decomposed in a finite
number of subsets B, (1 <{ & <{#); moreover, in that case, there is a
converse to (5.3.6), namely, if each of the families (%,),.p, is absolutely

summable, so is (x,),..; the proof follows, by induction on #, from the
criterion (5.3.4).

PROBLEMS
1) Let (d,) be a sequence of real numbers d,, > 0, such that the series (d,) is not

n
convergent (i.e., lim X d, = + o). What can be said of the convergence of the
#n~—>0 k=0
following series:
dy 4y dy dy

1+4d,’ 1+ nd,’ 1+ n%, 1+
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2) Let (u,) be a convergent series of real numbers, which is not absolutely
convergent, and let s = Zo,'o #,. For each number s' > s, show that there exists a
n=20
bijection & of N onto itself such that ¢(»n) = # for all » such that u, > 0, and that
; Ugm) = §'. (Show by induction that for each » there is a bijection g, of N onto
=0
?tself such that o,(k) = & for all k such that »; > 0 and that, if u};") = U, (k) there

is an index p, having the property that, for 2= ¢,

k
= 2 u&")] < 1/n;
i=0

furthermore, 0,41 is such that g, 41(k) = 0,(k) for all & such that on(k) < p, and
all & such that up << — 1/n.)

3) Show that for every finite family (#;);e1 of points of the product space R"
(with the norm ||#|| = sup |&| for # = (§)1 <k <n), Onehas T'||x;|| < 2n - sup || 2 x|
iel JC1 ieJ
(consider first the case n = 1).
4) In a normed space E, a series (,,) is said to be commutatively convergent if, for
every bijection ¢ of N onto itself, the series (#4(,)) is convergent.

a) In order that a convergent series (#,) be commutatively convergent, it is
necessary and sufficient that for every ¢ > 0, there exist a finite subset J of N such
that, for any subset H of N for which JnH =@, || 2 #,|| <X e. When that condi-

neH

©

tion is satisfied, the sum X #,, is independent of 0. (To prove the last assertion,
n=

and the sufficiency of the condition, proceed as in (5.3.3). To show that the condition

is necessary, use contradiction: there would exist an o > 0 and an infinity of finite

subsets H, (# = 1,2,...) of N, no two of which have common points, and such that
|| £ #u||>=a for each k; starting from the existence of these subsets, define ¢
neHy

for which the series (#4(,)) is not convergent.)

b) Suppose the series (x,) is such that, for any strictly increasing sequence ()
of integers, the series (x"k) is convergent. Show that the series (x,) is commutatively

convergent (use the same argument as in a)). Prove the converse when E is complete
(use the criterion proved in a)).

¢) If E = R"* show that any commutatively convergent series in E is absolutely
convergent (use problem 3 and the criterion of a)).

d) Extend the associativity property (5.3.6) to commutatively convergent series.

5) Let E be the real vector space consisting of all infinite sequences ¥ = (§,),> 0
of real numbers, such that lim &, = 0. For any x € E, let ||#|| = sup [&,).
n—» 0 n
a) Show that ||#|| is a norm on E, and that E, with that norm, is a Banach space
(the ‘“‘space (cy)”’ of Banach).
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b) Let ¢, be the sequence (Smp)nz 0, With Spp = 0 if m % 1, 8,y = 1. Show that
)
for every point # = (&,) € E, the series X £,¢, is commutatively convergent in E,

n=20

and that its sum is #; give examples in which the series is not absolutely convergent.

4. Subspaces and finite products of normed spaces

Let E be a normed space, F a vector subspace of E (i.e. a subset such
that x€ F and y € F imply ax + By € F for any pair of scalars a,8);
the restriction to F of the norm of E is clearly a norm on F, which defines
on F the distance and topology induced by those of E. When talking of a
““subspace” of E, we will in general mean a vecfor subspace with the induced
norm. If E is a Banach space, any closed subspace F of E is a Banach
space by (3.14.5); conversely, if a subspace F of a normed space E is a
Banach space, F is closed in E by (3.14.4).

(5.4.1) If F is a vector subspace of a normed space E, its closure F in E is a
vector subspace.

By assumption, the mapping (x,y) - x 4+ y of E x E into E maps

F x Finto F, hence maps F x F into I, by (3.11.4); asF x F=F x F
by (3.20.3), the relations x € F, y € F imply x 4+ y € F. Using the continuity
of (,x) — Ax, we similarly show that x € F implies Ax € F for any scalar 4.

We say that a subset A of a normed space E is toal if the (finite) linear
combinations of vectors of A form a dense subspace of E; we say that a
family (x,) is fotal if the set of its elements is total.

Let E,,E, be two normed spaces, and consider the product vector
space. E =E; X E, (with (x,%) + (y,9) = (%, + ¥, % + y2) and
A(xy,%,) = (A%y,Ax5)). It is immediately verified that the mapping
(%1,%5) — sup (||4]],||#s]]) is @ norm on E, which defines on E the distance
corresponding to the distances on E;E,, and therefore the topology of
the product space E; x E, as defined in (3.20). The “natural” injections
%, = (%,,0), %, — (0,%,) are linear isometries of E, and E, respectively onto
the closed subspaces E; = E, x {0}, E; = {0} x E, of E (3.20.11), and
E is the direct sum of its subspaces E;,E;, which are often identified to
E,,E, respectively.

Conversely, suppose a normed space E is a direct sum of two vector
subspaces F,,F,; each x € E can be written in a unique way x = p,(x) + py(%),
with p,(x) € Fy, py(x) € F,, and p,,p, are linear mappings of E into F,,F,
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respectively (the “projections” of E onto F,,F,). The “natural” mapping
(Y1.¥2) — Y1 + ¥ is a linear bijection of the product space F; X F, onto E,
which is continuous (by (5.1.5)), but not necessarily bicontinuous (see
section 6.5, problem 2).

(5.4.2) In order that the mapping (v,,¥s) — Y1 + Yo be a homeomorphism
of F, x F, onto E, a necessary and sufficient condition is that one of the
linear mappings p,,p, be continuous.

Observe that as x = p,(x) + p,(¥), if one of the mappings p;,p, is
continuous, so is the other. The mapping x — (p,(),ps(x)) of E onto
F, x F, being the inverse mapping to (y;,%;) — ¥, + ¥, the conclusion
follows from (3.20.4).

When the condition of (5.4.2) is satisfied, E is called the fopological
divect sum of F,F,; a subspace F of E such that there exists another
subspace G for which E is the topological direct sum of F and G is called a
topological direct summand of E, and any subspace G having the preceding
property is called a topological supplement to F. Any topological direct
summand is necessarily closed (by (3.20.11)), but there may exist closed
subspaces which are not topological direct summands (although any
subspace always has an algebraic supplement in E); for examples of such
spaces, see Bourbaki [6], chap. IV, p. 119, exerc. 5¢) and p. 122, exerc.
17 b).

The definitions and results relative to the product of two normed spaces
are immediately extended to the product of a finite number # of normed
spaces (by induction on #).

5. Condition of continuity of a multilinear mapping

(5.5.1) Let E,,...E, be n normed spaces, F a normed space, u a multilinear
mapping of E; X ... X E, into F. In order that u be continuous, a nec-
essary and sufficient condition is the existence of a number a > O such that,
forany (%,,...,x,) €E; X E; X ... X E,,

[EICE TR Al E T A AR EA B E AR
We write the proof for n = 2.

1) Sufficiency. To prove u is continuous at any point (c;,c,), we write
u(%y,%5) — (Cy,C0) = (% — €3,%5) + w(Cy, %y — C5), hence |[u(xy,%5) — u(cy,¢9)||
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< a(llzy — |- %] + |leg]] - |22 — caf))- For any d such that 0 < 6 < 1,
suppose [|x; — ¢)]| <6, [|#, — ¢,|| < 6, hence ||x,]| < ||¢y|| + 1. We there-
fore have

|loe(x1,%5) — wlerey) || < allley|| + lleal| + 1)9,
which is arbitrarily small with 6.

2) Necessity. If u is continuous at the point (0,0), there exists a ball B:
sup (||#%]],||#s][) <7 in E; x E, such that the relation (%1,%,) € B implies
[[#(21,%)|| < 1. Let now (x,,x,) be arbitrary; suppose first % 70, x, £ 0;
then if 2, = 7x/||x]|, 2, = 7xy/||xy|, we have ||z|| = |jz|| =7, and
therefore ||u(z),2,)|| < 1. But #(z;,2,) = 7%u(%,,%,)/||2y]| - || %,]|, and therefore
(1, %) || < @ ||2,]] - ||%,]| witha = 1/r2 If 2, = Oor x, = 0, (%, %,) =0,
hence the preceding inequality still holds.

(5.5.2) Let u be a continuous linear mapping of a Banach space into a Banach
space F. If (x,) is a convergent (resp. absolutely convergent) series in E,
(#(x,)) 1is a convergent (tesp. absolutely comvergent) series in F, and

Zu(x,) = u(Zx,).

The convergence of the series (#(x,)) and the relation Xu(x,) = u(Xx,)

follow at once from the definition of a continuous linear mapping (see
(3.13.14)). From (5.5.1) it follows that there is a constant « > 0 such that
[[#(x,)|| < a-||x,|, hence the series (u(x,)) is absolutely convergent by
(5.3.1) if the series (x,) is absolutely convergent.

(5.5.3) Let E,F,G be three Banach spaces, u a continuous bilinear mapping
of E x F into G. If (x,) is an absolutely convergent series in E, (y,) an
absolutely convergent series in F, then the family (u(x,,y,)) s absolutely
summable, and

2 u(x,,y,) = u(2%,,2y,).

Using the criterion (5.3.4), we have to prove that for any p, the sums
2 ||lu(x,,y,)|| are bounded. But from (5.5.1), there is an a > 0
p

m< pn<<

such that [[u(x,,3,)]| < al|z|| 9], hence

? ?
2 |yl <a X Pflxm?l'HynH=a(”follxn1|)(nfoi|yn|l)

mMELP,n<p m<p,n<
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which is bounded, due to the assumptions on (x,) and (y,). Moreover from
(5.3.6) and (5.5.2) it follows that, if s = X%,, s' =2y,
” ”

Sulapy) = Z (2 wltny,) =

m,n m=0n=0

ﬁl"}s

w(x,,,s") = u(s,s').
0

(5.5.4) Let E be a normed space, F a Banach space, G a dense subspace
of E, | a continuous linear mapping of G into F. Then there is a unique

continuous lnear mapping ]7 of E into F which is an extension of f.

From (5.5.1) it follows that f is wniformly continuous in G, since
[If(x) — f)| = |Jf(x — || < a- |[x — y||; hence by (3.15.6) there is a

unique continuous extension f- of f to E. The fact that f- is linear follows
from (5.1.5) and the principle of extension of identities (3.15.2).

PROBLEMS

1) Let u be a mapping of a normed space E into a normed space F such that
u(x + y) = u(x) + u(y) for any pair of points #,y of E and that « is bounded in the
ball B(0;1) in E; show that u is linear and continuous. (Consider the mapping
# — ||u(#)|| of E in R and observe that |[u(x + y)|| < [l()]] + ||#(»)}| and u(rz) =ru(z)
for rational 7; to prove that #(ix) = Au(x) for every real A, use the same kind of
argument as in section 4.2, problem 1.)

2) Let E,F be two normed spaces, # a linear mapping of E into F. Show that

if for every sequence (#,) in E such that lim x, = 0, the sequence (#(x,)) is bounded
#—> 0

in F, then # is continuous. (Give an indirect proof.)

3) a) Let a,b be two points of a normed space E. Let B, be the set of all ¥ € E
such that || — af| = ||¥ — b}| = ||l@ — b}|/2; for » > 1, let B, be the setof ¥ € B, _1
such that || — y|| << 8(B, _1)/2 for all y € B, _1 (6(A) being the diameter of a set A).
Show that &(B,) << 6(B,,_1)/2, and that the intersection of all the B, is reduced to
(@ + b)/2.

b) Deduce from a) that if f is an isometry of a real normed space E onto a real
normed space F, then f(x) = #(x) + ¢, where u is a linear isometry, and ce F.

4) Let us call rectangle in N X N a product of two intervals of N; for any finite
subset H of N X N, let i4(H) be the smallest number of rectangles whose union is H.
Let (H,) be an increasing sequence of finite subsets of N X N, whose union is N X N
and such that the sequence ()(H,)) is bounded. Let E,F,G.be three normed spaces,
(#,) (resp. (¥,)) a convergent series in E (resp. F), f a continuous bilinear mapping
of E X F into G. Show that

*) lim Z fyn) =10 X 2w Xy

n—o (hk) €eH, n
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5) Let (H,) be an increasing sequence of finite subsets of N X N, whose union
is N X N; for each j € N and each # € N, let @(f,%) be the smallest number of intervals

of N whose union is the set H,, 1(i) of all integers 4 such that (4,7) € H,. Suppose ¢(j,%)
is bounded in N X N. Let (x,) be a convergent series in a normed space E, (y,) an
absolutely convergent series in a normed space F, # a continuous bilinear mapping
of E X F into a normed space G. Show that formula (*) of problem 4 still holds

(use (5.5.1), and remark that the sums 2 x; are bounded in E for all f,z).
(i,4) € H,,

6. Equivalent norms

Let E be a vector space (over the real or the complex field), ||x||, and
||| two norms on E; we say that ||%|] is finer than ||%||, if the topology
defined by ||x||, is finer than the topology defined by ||x||, (see (3.12));
if we note E, (resp. E,) the normed space determined by ||x||, (resp. ||x||,),
this means that the identity mapping ¥ — x of E, into E, is continuous,
hence, by (5.5.1), that condition is equivalent to the existence of a number
a > 0 such that ||x||, < a-||x|;. We say that the two norms [|x[|,,]|||,
are equivalent if they define the same topology on E. The preceding remark
yields at once:

(5.6.1)  In order that two norms ||x||,,||%||; on a vector space E be equivalent,
a necessary and sufficient condition is that there exist two constants a > 0,
b >0, such that

al|xll < [l#lle < Bfl2]L
for any x € E.

The corresponding distances are then wniformly equivalent (3.14).

For instance, on the product E; X E, of two normed spaces, the norms
sup (||2)].|%l]), [1%l] + V%], V“"1H2+ ||%2]|? are equivalent. On the
space E = €g(I), the norm ||f||, defined in (5.1.4) is not equivalent to the
norm ||f||, = sup |f()| (see section 5.1, problem 1).

tel

7. Spaces of continuous multilinear mappings

Let E, F be two normed spaces; the set #(E;F) of all continuous
linear mappings of E into F is a vector space, as follows from (5.1.5),
(3.20.4) and (3.11.5).




7. SPACES OF CONTINUOUS MULTILINEAR MAPPINGS 103

For each # € Z(E; F), let ||u|| be the g.1b. of all constants a > 0 which
satisfy the relation |ju(x)|| < a- ||x|| (see (5.5.1)) for all x. We can also
write
(5.7.1) o= sup [t
For by definition, for each a > |||, and ||*]| <1, [l«(%)|| < &, hence

sup ||u(x)|| < ||#||; this already proves (5.7.1) for [ju|| = 0. If |[u|| >0,
EAIRS
for any b such that 0 < & < ||u|, there is an x € E such that |ju(x)|| > b||#||;
this implies x 7 0, hence if z = /|||, we still have |ju(2)|| > b- ||z|| = b,
and as ||z|| =1, this proves that b<{ sup ||u(x)||, hence ||u||< sup [|u(x)

Il#ll <1 I <1

>

and (5.7.1) is proved. The same argument also shows that

(5.7.2) ]| = U, [[u(2)]]-

We now show that ||«|| is a norm on the vector space Z(E; F). Forif u =0,
then ||u|| =0 by (5.7.1), and conversely if ||u|| = 0, then u(x) =0 for
||| < 1, hence, for any x # 0 in E, u(x) = ||x||u(x/||%]|) = 0. It also
follows from (5.7.1) that ||Au|| = |4| - ||#||; finally, if w = u + v, we have
()| < ()| + o0, hence [ < [l + o] from (5.7.1).

(5.7.3) If F is complete, so is the normed space L(E;F).

For let (»,) be a Cauchy sequence in Z(E; F); for any ¢ > 0, there is
therefore an n, such that ||u,, — «,|| <& for m > ny, n > n,. By (5.7.1),
for any x such that ||x|| < 1, we therefore have [|u, (%) — u,(¥)|| < e for
m == ny, n = ny; this shows that the sequence (u,(x)) is a Cauchy sequence
in F, hence converges to an element v(x) € F. This is also true for any
x € E, since we can write x = Az with ||z|| < 1, hence %,(x) = Au,(2) tends
to a limit v(x) = Av(z). From the relation u,(¥ + y) = «,(x) + «,(y) and
from (5.1.5) it follows that v(x + y) = v(x) + v(y), and one shows
similarly that »(Ax) = Av(x), in other words v in linear. Finally, from
[|t(%) — 0,(x)]] < & for m = ny, n > ny, we deduce ||v(x) — u,(x)|| < ¢ for
[|2|| <1 hence |jv(x)|| < ||u,|| + &, which proves (by (5.5.1)) that v is
continuous, hence in Z(E; F); furthermore |[v — u,|| < & for # > n, (by
(5.7.1)), which proves the sequence (%,) converges to v.

From the definition it follows that, for every x € E and every u € Z(E; F),

(5.7.4) ()| < [1]] - 1)
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which proves that the bilinear mapping (x,4) —u(x) of E x Z(E; F) into F
is continuous (by (5.5.1)).

The definition of the norm in #(E; F) depends on the norms in E and
in F; but it is readily seen that, when the norms in E and F are replaced
by equivalent norms, the new norm in £ (E; F) is equivalent to the old one.

(5.7.5) Let u be a continuous linear mapping of a normed space E into a
normed space F, and v a continuous linear mapping of F into a normed
space G. Then ||vou|| < ||v]| - ||u]].

For if ||x|| <1, then by (5.7.4) |[o(u(x))|| < |[v]| - |[w(x)|| < |jv]| - |||,
and the result follows from (5.7.1).

(5.7.6) If F is a real (resp. complex) normed space, the mapping which to
each a ¢ ¥ associates the element 0,: & —&a of L(R; F) (resp. Z(C; F)) is
a linear isometry of F onto L (R; F) (resp. Z(C; F)).

The mapping @ — 0, is obviously linear; it is surjective, for every linear
mapping f of R (resp. C) into F is such that f(&) = f(&-1) = &/(1) = &a
with a = f(1). Finally ||6,|| = sup ||£a|| = ||4|| by axiom (III) of (5.1).

lf <1

Let now E,, .. .,Es,F be # + 1 normed spaces, and define L(E,,...,E,;F)
as the vector space of all continuous multilinear mappingsof E; x ... X E,
into F. Then for w € Z(E,,. .. E,;F), the same argument as above shows
that the g.l.b. ||u|| of all constants a > 0 such that

[[w(xy, .. ox,) || < allx]. . ||,
is also given by
(5.7.7) ||| = sup Hw(xy, . .. x,)]|-
lall<1,..., [EMIESt
We also see that ||| is a norm on Z(E,,.. . ,E,;F); but in fact these vector

spaces can be reduced to spaces Z(X;Y):

(5.7.8) For each u € L(E,F;G) and each x € E, let u,, be the linear mapping
y —>u(x,y). Thendi: x — u,is a linear continuous mapping of E into £(F; G),
and the mapping u — i is a linear isometry of £(E,F;G) onto L(E; L(F; G)).

We have |lu,(y)|| = |lu(x,9)|] < ||#|| - [|#]] - ||¥]], hence =, is continuous
by (5.5.1); moreover ||u,|| = sup ||u(x,y)||, hence (2.3.7)
[yl <1
sup [lu,||= sup  |[lu(xy)|| = ||u||

[+l <1 el <Lyl <1
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which proves that x — u_ (which is obviously linear) is continuous, and
u — i is an isometry of #(E,F;G) into L(E; Z(F; G)). Finally » —4 is
surjective, for if ve Z(E; Z(F; G)), then u: (x,y) — (v(%))(y) is obviously
bilinear, and as |[(e() )| < o] lyl| < [[e]]- [12]]- ¥} by (57.4),
% is continuous, and v(x) = #,, which ends the proof.

By induction on #, it follows that Z(E,E,, ...,E,;F) can be
naturally identified (with conservation of the norm) to

LE,; LE,; ... LE,;F)...).

.

PROBLEMS

1) Let E be the space (¢,) of Banach, defined in section 5.3, problem 5; we keep
the notations of that problem. Let # be a continuous linear mapping of E into R;
if u(e,) = 1, show that the series X, is absolutely convergent, and that, in the

Banach space E’ = #(E; R),

@
||| = & |na| (apply (5.5.1) for suitable values of
0

n=

x € E). Conversely, for any absolutely convergent series (#,) of real numbers, there

is one and only one continuous linear mapping # of E into R such that u(e,) = 7,
[+

e}
for every »; and if ¥ = X &,e, € E, then u(x) = X n,&, (the space E’, with the

n=20 n=0
norm defined above, is the “space /1’ of Banach).

b) As a vector space (without a norm) E’ can be considered as a subspace of E;
show that the norm on E’ is strictly finer (5.6) than the restriction to E’ of the
norm of E.

c) Show that the space E” = #(E’; R) of the continuous linear mappings of E’
into R can be identified with the space of all bounded sequences x = ({,) of real
numbers, with norm ||x|| = sup |{,| (“space I®” of Banach; use the same method

#

as in a)). E can be considered as a closed subspace of E”.

d) In the space E’, let P be the subset of all absolutely convergent series u = (1,,)
with terms 7, = 0; any element of E’ can be written # — v, where both «» and v are
in P; yet show that the interior of the set P is empty.

2) a) Let E be the space (¢,) of Banach, and let U be a continuous linear mapping

(22}
of E into itself. With the notations of problem 1, let U(e,) = X ayupe,,; show that:
m=0
o o
1° lim a,, = 0; 2° the series X |o,,| is convergent for every m; 3° sup X |oyy|
m—» 0 n=0 m n=0

is finite. (Same method as in problem 1 a).) Prove the converse, and show that the
Banach space Z(E; E) can be identified with the space of double sequences U = (o)

oo
satisfying the preceding conditions, with the norm ||U|| = sup X [opy|.
m n=20
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b) Let E’ be the space /! of Banach (problem 1). Show similarly that the Banach
space . (E’; E’) can be identified with the space of double sequences U = (a,,,) such

@ @
that: 1° the series X |uypy| is convergent for every m; 2° sup X |a,,| is finite;
m=0 n m=0

o«
the norm is then equal to ||U|| = sup X |opp-
n m=0

3) Let E be a normed space; show that there cannot exist two continuous linear
mappings %, of E into itself such that #ov — veu = 1 (the identity mapping). (Prove
that this would imply wuev®+1 — ¢"+loy = (n + 1)v*, and therefore the inequality
(n 4 1){[v"|| < 2||u||* |[v|]| - ||[v"||, which leads to v = 0 as soon as = is large enough,
hence v = 0, which is a contradiction.)

8. Closed hyperplanes and continuous linear forms

We recall that a linear form on a real (resp. complex) vector space E
is a linear mapping f of E into R (resp. C); its kernel H = f~1(0) is then
a vector subspace such that for any a ¢ H, E is the algebraic direct sum
of H and Ra (resp. Ca). A subspace having this last property is called a
hyperplane; if H is a hyperplane, a ¢ H, and if for any x € E we write
x = f(x)a + y with f(x) a scalar and y € H, then f is a linear form and
H = f~10). The relation f(x) = 0 is called an eguation of H; if f, is another
linear form such that H = /,71(0), then f;, = af (« scalar). We also recall
that a hyperplane is maximal: any vector subspace of E containing a
hyperplane H is either H or E itself.

(5.8.1) In a real (resp. complex) normed space E, let H be a hyperplane
of equation f(x) = 0. In order that H be closed in E, a necessary and suffi-
cient condition is that f be continuous. For any b ¢ H, E is then the topological
direct sum (see (5.4)) of H and of the one-dimensional subspace D = Rb
(resp. D = Cb).

It is clear that if f is continuous, H = f~1(0) is closed (see (3.15.1)).
To prove the converse, let a ¢ H be such that f(¢) = 1. As H is closed,
so is a + H (by (5.1.5)), and as O0¢ a 4 H, there is a ball V: |[x|| <~
which does not meet @ + H; therefore x € V implies f(x) # 1. We prove
x €V implies |f(x)| < 1. Suppose the contrary, and let « = f(x), with
la| > 1; then ||x/«|| = (1/|«|) ||#|| <7, and f(x/a) =1, which contradicts
the definition of V. By homogeneity and (5.5.1) it follows that f is contin-
uous. If b¢ H, we have x = g(x)b 4+ y with y € H for each x € E, and
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g(x) = 0 is another equation of H; hence g is continuous, and the mapping
x — g(%)b of E into D = Rb (resp. Cb) is therefore continuous, which proves
the last part of (5.8.1) by (5.4.2).

(5.8.2) In a normed space E, a hyperplane H is either closed or dense.
For H is a vector subspace (by (5.4.1)) which can only be E or H.

PROBLEMS

1) Let E be the (non complete) subspace of the space (co) of Banach, consisting
of the sequences ¥ = (£,) of real numbers, having only a finite number of terms

]
different from 0. For any sequence (a,) of real numbers, the mapping * — u(x) = X' a,&,
n=0
is a linear form on E, and all linear forms on E are obtained in that way; which of
them are continuous (see (5.5.4) and problem 1 of section 5.7)?

2) a) In a normed space E, let H be the closed hyperplane of equation u(x) = 0,
where % is a continuous linear form. Show that for any point a € E, the distance
d(a,H) = |u(a)|/||«||-

b) In the space (c,) of Banach, let H be the closed hyperplane of equation

o0
u(x) = X 27", = 0; if a¢ H, show that there is no point be H such that
n=0

d(a,H) = d(a,b).

3) In a real vector space E, the linear varieties of codimension 1 (section 5.1,
problem 5) are again called hyperplanes; they are the sets defined by an equation
of the type #(%) = a, where % is a linear form, « any real number; the hyperplanes
considered in the text are those which contain 0, and are also called homogeneous
hyperplanes; any hyperplane defined by an equation #(¥) = « is said to be parallel
to the homogeneous hyperplane defined by #(¥) = 0. If A is a non empty subset
of E, a hyperplane of support of A is a hyperplane H defined by an equation u(#) = a,
such that u(¥) — « =0 for all x€ A, or u(*) —a<C 0 for all x€ A, and u(x)) =
for at least one point x, € A.

a) In a real normed space E, a hyperplane of support of a set containing an
interior point is closed (see (5.8.2)).

b) Let A be a compact subset of a real normed space E; show that for any
homogeneous closed hyperplane H, defined by the equation #(x) = 0, there are two
hyperplanes of support of A which are defined by equations of the form u(x) = a,
and may eventually coincide; their distance is at most equal to the diameter
of A.

c) In the space (¢;) of Banach, consider the continuous linear form x — u(x)

0
= X 27%f,; show that the closed ball B’(0;1) has no hyperplane of support

n=20

having an equation of the form #%(x) = o (cf. problem 2 b)).
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9. Finite dimensional normed spaces

(5.9.1) Let E be an n-dimensional real (vesp. complex) normed vector space;
if (ay,....a,) is a basis of E, the mapping

(Epee k) > &+ ... + £,

of R” (resp. C") onto E is bicontinuous.

We use induction on #, and prove first the result for » = 1. We know
by (5.1.5) that & — &a, is continuous; as a; % 0 and ||£a,]| = ||a,]| - |¢],
we have [&| < (1/]|ay|]) - ||€ay||, which proves the continuity of &a; — &,
by (5.5.1).

Suppose the theorem is proved for » — 1, and let H be the hyperplane
in E generated by a,,...,a,_,; the inductive assumption implies that the

norm on H (induced by that of E) is equivalent to the norm  sup  |§
I<is<n-—1

hence H is complete (for both norms) and therefore closed in E (by (3.14.4)).
It follows from (5.8.1) that the mapping (&4, + ... + &,4,) — £, is contin-
uous, and this, together with the inductive assumption, ends the proof
(by (3.20.4) and (5.4.2)).

>

(5.9.2) Inanormed space E,let V be a closed subspace, W a finite dimensional
subspace,; then V + W is closed in E. In particular, any finite dimensional
subspace is closed in E.

We can use induction on the dimension # of W, and therefore reduce
the proof to the case # =1. Let W= Ra (resp. W=Ca); if aeV,
V + W =V and there is nothing to prove. If not, we can write any
x€V + W in the form x = f(x)a + y with y eV, and as V is a closed
hyperplane in V 4+ W, f is continuous in V + W, by (5.8.1). Let (x,) be
a sequence of points of V + W tending to a cluster point & of V 4+ W
(see (3.13.13)); write x, = f(x,)a + y,. By (5.5.1), the sequence (f(%,))
is a Cauchy sequence in R (resp. C), hence tends to a limit 4; therefore
Y = %, —f(x,)a tends to b — Aa; but as V is closed, the limit of (y,) is
in V, hence be V + W, q.e.d. (see section 6.5, problem 2).

(5.9.3) In anormed space E, let V be a closed subspace of finite codimension
(i.e. having a finite dimensional algebraic supplement); then any algebraic
supplement of V is also a topological supplement.

Let W be an algebraic supplement of V in E; we use induction on the
dimension » of W, the result having been proved for » =1 in (5.8.1).
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We can write W = D 4+ U where D is one-dimensional and U is (n — 1)-
dimensional (direct sum); by (5.9.2), V + D is closed in E, hence U is a
topological supplement to V 4+ D by the inductive assumption. In other
words, E is naturally homeomorphic to (V 4 D) x U; by (5.8.1), V4+ D
is naturally homeomorphic to V X D, hence E is naturally homeomorphic
to V x D x U. Finally, as D x U is naturally homeomorphic to W, Eis
naturally homeomorphic to V x W, q.e.d.

(5.9.4) (F. Riesz’s theorem). A locally compact normed space E is finite
dimensional.

Replacing the norm by an equivalent one, we can suppose the ball B:
||x|| < 1 is compact. Therefore (3.16.1) there exists a finite sequence of
points a; (1 <7 < n) such that B is contained in the union of the balls
of center a; and radius 1/2. Let V be the finite dimensional subspace
generated by the a,, We prove by contradiction that V =E. Suppose
indeed there is an x € E which is not in V. As V is closed (by (5.9.2))
d(x,V) = a > 0; by definition of d(x,V), there is in V a point y such that
« < ||x — y|| < §a Letz= (x — y)/|[x — y|[; we have ||z]| = 1, hence
there is an index ¢ such that ||z — a;|| < 1/2. Let us write

=yt = yle=y + e — sl + llr— =)

and note that y + ||x — yl|a; € V. By definition of d(x,V), we have therefore
[[x — 9|| ||z — a;]| = «, hence ||x — y|| > 2a, which contradicts the
choice of vy, since a 7# 0.

PROBLEMS

1) Show that if E is a finite dimensional normed space, every linear mapping of E
into a normed space F is continuous (use (5.9.1) and (5.1.5)).

2) We recall that a vector basis of a vector space E is a family (@) 7¢L. such that
any element of E can be written in a unique way as a linear combination of a finite
number of a;; this implies in particular that the a; are linearly independent.

a) Let (a,) be a sequence of linearly independent elements in a Banach space E.
Define inductively a sequence (u,) of real numbers > 0 in the following way: if 4,
is the distance of the point u,a, to the subspace V,, _ 1 generated by a,,. . .,a, _ 1 (note
that d,, > 0 by (5.9.2)), take u, 41 such that |p, 1| ||@n11|| < d4/3. Show that the

0

series X una, is absolutely convergent, and that its sum » does not belong to any
n=1

of the subspaces V,,.
b) Deduce from a) that a Banach space of infinite dimension cannot have a
denumerable vector basis.
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3) Show that a normed space in which there is a sphere which is compact is finite
dimensional. (Observe that the set of points in a normed space E such that a < || < B
(with a > 0) is homeomorphic to the product space of the interval [a,b] and of the
sphere S: ||#|| = 1; use then Riesz’s theorem (5.9.4).)

10. Separable normed spaces

(5.10.1) If in a normed space E there exists a total (5.4) sequence, E is
separable. Conversely, in a separable normed space E, there exists a total
sequence consisting of linearly independent vectors.

Suppose (a,) is a total sequence, and let D be the set of all (finite) linear
combinations 7,4, + ... + 7,4, with rational coefficients (when E is a
complex vector space, by a “rational” scalar we mean a complex number
« + 18, with both & and g rational). D is a denumerable set by (1.9.3)
and (1.9.4). As by definition the set L of all linear combinations of the a,
is dense in E, all we have to prove is that D is dense in L, and as

”(Alal + ...t }‘nam) - (71a1+ et +rnan)” < lev - ri[ ’ Halll

i=1

this follows from (2.2.16).

Suppose conversely E is separable; we can of course suppose E is
infinite dimensional (otherwise any basis of E is already a finite total
subset). Let (a,) be an infinite dense sequence of vectors of E. We define
by induction a subsequence (a,,") having the property that it consists of

linearly independent vectors and that for any m < &, a,, is a linear combina-
tion of a,,...,4, . To do this, we merely take for %, the first index for
1 n

which a, 5 0, and for %, ,; the smallest index m > &, such that a,, is not
in the subspace V, generated by @, - -4 ; such an index exists, otherwise,
as V,, is closed by (5.9.2), V, would contain the closure E of the set of all
the a,, contrary to assumption. It is then clear that (akn) has the required
properties, and is obviously by construction a total sequence.

PROBLEM

Show that the spaces (¢,) and ! of Banach (section 5.3, problem 5 and section 5.7,
problem 1) are separable, but that the space /® (section 5.7, problem 1) is not separable.
(Show that in /™ there exists a nondenumerable family (#;) of points such that
|l#2 — #,4|| = 1 for 1 3 u, using problem 2 b) of section 4.2 and (2.2.17).)




Chapter VI

Hilbert Spaces

Hilbert spaces constitute at present the most important examples of
Banach spaces, not only because they are the most natural and closest
generalization, in the realm of “infinite dimensions”, of our classical
Euclidean geometry, but chiefly for the fact that they have been, up to
now, the most useful spaces in the applications to Functional Analysis.
With the exception of (6.3.1), all the results easily follow from the defini-
tions and from the fundamental Cauchy-Schwarz inequality (6.2.4).

1. Hermitian forms

For any real or complex number 4, we write 1 for its complex conjugate
(equal to A if A is real). A hermitian form on a real (resp. complex) vector
space E is a mapping f of E X E into R (resp. C) which has the following
properties:

@ f(x + x",y) = f(xy) + [(*'.9),
(L) f(xy +y') = (%) + {(%Y),
(I1I) 1(Ax,y) = 2f(x,y),

(Iv) HxAy) = Af(%,9),

V) Hy,x) = f(x.y).

(Observe that (II) and (IV) follow from the other identities; (V) implies
that f(x,x) is real.) When E is a real vector space, conditions (I) to (IV)
express that f is bilinear and (V) boils down to f(y,x) = f(x,y), which

111
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expresses that f is symmetric. For any finite systems (x,),(y,),(«,),(8;) of
scalars, we have

6.1.1) f(:«ixp Zﬂiy,-) = Z “iﬁj/(xiryj)
i 7 %1

by induction on the number of elements of these systems.

From (6.1.1) it follows that if E is finite dimensional and (a,) is a basis
of E, / is entirely determined by its values a;; = f(4;,4;), which are such
that (by (V))

(6.1.2) ;=

Tt

Indeed we have then, for x =2 &4, v =29, 4;
i i

(6.1.3) H(xy) = 2 &y
%7

Conversely, for any system («;;) of real (resp. complex) numbers satisfying
(6.1.2), the right hand side of (6.1.3) defines on the real (resp. complex)
finite dimensional vector space E a hermitian form.

(6.1.4) Example: Let D be a relatively compact open set in R?, and let E
be the real (resp. complex) vector space of all real-valued (resp. complex-
valued) bounded continuous functions in D, which have bounded contin-
uous first derivatives in D. Then the mapping

(1.8) > ¢ll.8) = H (a(x,y)/(x,y)g(x,y) +b(xy) —% 3—5; + o(x.) z—fy Z—i) dxdy

D

(where a,b,c are continuous, bounded and real-valued in D) is a hermitian
form on E.

A pair of vectors x,y of a vector space E is orthogonal with respect to
a hermitian form f on E if f(x,y) = 0 (it follows from (V) that the relation
is symmetric in x,y); a vector x which is orthogonal to itself (i.e. f(x,x) = 0)
is isotropic with respect to /. For any subset M of E, the set of vectors y
which are orthogonal to all vectors x € M is a vector subspace of E, which
is said to be orthogonal to M (with respect to f). It may happen that there
exists a vector a = 0 which is orthogonal to the whole space E, in which
case we say the form f is degenerate. On a finite dimensional space E,
nondegenerate hermitian forms f defined by (6.1.3) are those for which

the matrix («;) is invertible.
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PROBLEM

a) Let f be a hermitian form on a vector space E. Show that if E is a real vector
space, then

iy =Fx+y2+9) —Hxr —9x—9)
and if E is a complex vector space
4(xy) =f(x + y,2 + 9) — {(x — y.2 — ¥) + if(% + iy.x + iy) — if(x — iy,x — iy).

b) Deduce from a) that if f(x,2) = 0 for every vector in a subspace M of E, then
f(x,y) = 0 for any pair of vectors x,y of M.

c) Give a proof of b) without using the identities proved in a). (Write that
f(* + Ay,x + Ay) = 0 for any 4.

2. Positive hermitian forms

We say a hermitian form f on a vector space E is positive if f(x,x) = 0
for any x € E. For instance, the form ¢ defined in example (6.1.4) is
positive if a,b,c are > 0 in D.

(6.2.1) (Cauchy-Schwarz inequality). If fis a positive hermitian form, then

|#(x,9)[2 < (%, 2)(y,5)
for any pair of vectors x,y in E.

Write a = f(x,x), b = f(x,y), ¢ = f(y,¥) and recall a and ¢ are real
and > 0. Suppose first ¢ 7= 0 and write that f(x 4+ Ay,x + Ay) > 0 for
any scalar 4, which gives a + b4 + 84 + cAd > 0; substituting 1 = — b/c
yields the inequality. A similar argument applies when ¢ =0, a # 0;
finally if 2 = ¢ = 0, the substitution 4 = — b yields — 266 > 0, i.e. 8 = 0.

(6.2.2) In order that a positive hermitian form f on E be nondegenerate,
a necessary and sufficient condition is that there exist no isotropic vector for f
other than 0, i.e. that f(x,x) > 0 for any x # 0 in E.

Indeed, f(x,x) = 0 implies, by Cauchy-Schwarz, that f(x,y) = 0 for
all ye E.

(6.2.3) (Minkowski’s inequality). If f is a positive hermitian form, then

Vie + v.x + ) < Viwn) + Vi)

for any pair of vectors x,y in E.
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As f(x + y.x +y) = f(x2) + {(xy) + (%) + {(3.9), the inequality
is equivalent to

21 (x,y) = f(x,y) + f(x,3) < 2/ H(x,%){(v.y)

which follows from Cauchy-Schwarz.

The function x —»Vf(x,x) therefore satisfies the conditions (I), (III)
and (IV) of (5.1); by (6.2.2), condition (II) of (5.1) is equivalent to the
fact that the form f is nondegenerate. Therefore, when f is a nondegenerate
positive hermitian form (also called a positive definite form), Vm is a
norm on E. A prehilbert space is a vector space E with a given non-
degenerate positive hermitian form on E; when no confusion arises, that
form is written (x|y) and its value is called the scalar product of x and y;
we always consider a prehilbert space E as a normed space, with the norm

l|%]| = V(x]x) ; and of course, such a space is always considered as a metric
space for the corresponding distance ||x — y||. With these notations, the
Cauchy-Schwarz inequality is written

(6.2.4) (= < %[~ 21|

and this proves, by (5.5.1), that for a real prehilbert space E, (x,y) — (x]y)
is a continuous bilinear form on E x E (the argument of (5.5.1) can also be
applied when E is a complex prehilbert space and proves again the con-
tinuity of (x,y) — (x|y), although this is not a bilinear form any more).
We also have, as a particular case of (6.1.1):

(6.2.5) (Pythagoras’s theorem). In a prehilbert space E, if x,y are orthogonal
vectors,

% + 911 = [[#]1* + [ly]]>

An isomorphism of a prehilbert space E onto a prehilbert space E’ is
a linear bijection of E onto E’ such that (f(x)|f(y)) = (x|y) for any pair
of vectors x,y of E. It is clear that an isomorphism is a linear isometry
of E onto E’.

Let E be a prehilbert space; then, on any vector subspace F of E,
the restriction of the scalar product is a positive nondegenerate hermitian
form; unless the contrary is stated, it is always that restriction which is
meant when F is considered as a prehilbert space.
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A Hilbert space is a prehilbert space which is complete. Any finite
dimensional prehilbert space is a Hilbert space by (5.9.1); other examples
of Hilbert spaces will be constructed in (6.4).

If in example (6.1.4) we take a > 0, 6 >> 0, ¢ > 0, it can be shown that
the prehilbert space thus defined is not complete.

PROBLEMS

1) Prove the last statement in the case a = 1, b = ¢ = 0 (see section 5.1, prob-
lem 1).

2) Let E Be a real fiormed space such that, for any two points x,y of E,
[l + 9113 + 1= = 3112 = 2(]|1* + [[¥]]2)- Show that f(x,9) = [|x + ¥|* — [l#l[% — |Iy|[®
is a positive nondegenerate hermitian form on E.

3) Let f be a positive nondegenerate hermitian form. In order that both sides of
(6.2.1) be equal, it is necessary and sufficient that » and y be linearly dependent.
In order that both sides of (6.2.3) be equal, it is necessary and sufficient that » and y
be linearly dependent, and, if both are = 0, that y = Ax, with 1 real and > 0.

4) Let a,b,c;d be four points in a prehilbert space E. Show that

lla = ell- {1 — al| < |la — ]| - [|e — || + [|b —c[| - ||a — 4]|.

(Reduce the problem to the case a = 0, and consider in E the transformation
x — #/||#||% défined for » 5= 0.) Whehn are both sides of the inequality equal?

3. Orthogonal projection on a complete subspace

(6:3.1) Let E be a prehilbert space, F a complete vector subspace of E (i.e. a
Hilbert space). For any x € E, there is one and only one point y = Pp(x) € F
such that ||x — y|| = d(x,F). The point y = Pg(x) is also the only point
2€F such that x — z s orthogonal to ¥. The mapping x — Pg(x) of E
onto F is linear, continuous, and of norm 1 if F # {0} ; its kernel F' = Pz }(0)
is the subspace orthogonal fo ¥, and E is the topological direct sum (see (5.4))
of ¥ and ¥'. Finally, F is the subspace orthogonal to F'.

Let a« = d(x,F); by definition, there exists a sequence (y,) of points

of F such that lim ||x — y,|| = «; we prove (y,) is a Cauchy sequence.
n—» 0

Indeed, for any two points #,v of E, it follows from (6.1.1) that
(63.1) i+ 012+ o — olf2 = 202 + [fo]

hence [y, — 9,[|* = 2(|x — 5,[[* + llx — 5,[1) — 4{lx — 3 + 9%
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But §(y,, + v,) €F, hence ||x — 4(y,, + ,)||2 = «2; therefore, if #, is
such that for #n >n,, ||x — 9,||2 < a® + ¢, we have, for m > n, and
n 2= g, ||¥m — Val|? < 4, which proves our contention. As F is complete,
the sequence (y,) tends to a limit y € F, for which |[x — y|| = d(x,F).
Suppose ¥’ € F is also such that ||x — y’|| = d(x,F); using again (6.3.1.1),
we obtain ||y — y'||2 = 4a® — 4]|x — ¥y + ¥')||%, and as }(y + y') €F,
this implies ||y — 3'||2 < 0, i.e. ¥’ = y. Let now z 3 0 be any point of F,
and write that ||x — (y + 42)||2> «? for any real scalar 154 0; this, by
(6.1.1), gives

2090(x — yl2) + 22l 0

and this would yield a contradiction if we had #(x — y|z) 7 0, by a suitable
choice of A. Hence #(x — y|z) = 0, and replacing z by sz (if E is a complex
prehilbert space) shows that #(x — yjz) =0, hence (x — y[z) =0 in
every case; in other words x — y is orthogonal to F. Let 3’ € F be such
that x — 9’ is orthogonal to F; then, for any 2% 0 in F, we have
[l* — (¥ + 2)||2 = ||» — ¥||2 + ||2||* by Pythagoras’s theorem, and this
proves that ¥’ = y by the previous characterization of ¥.

This last characterization of y = Py(x) proves that Py is linear, for
if x —y and x’ — y’ are orthogonal to F, then Ax — Ay is orthogonal
toFandsois (x + x) — (v +9y)=(x— )+ (x —y); asy+ y' €F
and Ay €eF, this shows that y + y' = Pg(x + x') and Ay = Pg(Ax).
By Pythagoras’s theorem, we have

(6.3.1.2) l[#[[* = [|Px(2)][* + [|x — Pe(x)][?

and this proves that ||Pg(x)|| < ||#||, hence (5.5.1) Py is continuous and
has norm <C1; but as Pg(x) = x for x € F, we have ||Pg||=1 if F is
not reduced to 0. The definition of Py implies that F’ = Pg 1(0) consists
of the vectors x orthogonal to F; as x = Pg(x) + (¥ — Pg(x)) and
x — Pg(x) e F’ for any x€E, we have E = F 4 F’; moreover, if
x € FNF’, xis isotropic, hence x = 0, and this shows that the sum F + F’
is direct. Furthermore, the mapping ¥ — Py(x) being continuous, E is
the topological direct sum of F and F’ (5.4.2). Finally, if x € E is orthogonal
to F', we have in particular (x|x — Pg(x)) = 0; but we also have
(Pp(x)|x — Pg(x)) = 0, hence ||x — Pg(#)||2=0, ie. x= Pg(x)€F.
Q.E.D.

The linear mapping Py is called the orthogonal projection of E onto F,
and its kernel F’ the orthogonal supplement of F in E. Theorem (6.3.1)
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can be applied to any closed subspace F of a Hilbert space E (by (3.14.5)),
or to any finite dimensional subspace F of a prehilbert space, by (5.9.1).

(6.3.2) Let E be a prehilbert space; then, for any a€E, x — (x|a) is a
continuous linear form of norm ||a||. Conversely, if E is a Hilbert space,
for any continuous linear form w on E, there is a unique vector a € E such
that u(x) = (x|a) for any x € E.

By Cauchy-Schwarz, |(x|a)| < ||4||-||#||, which shows (by (5.5.1))
% — (x|a) is continuous and has a norm < ||a||; on the other hand, if a # 0,
then for x, = a/||a||, we have (%,|a) = ||a||; as [|%|| = 1, this shows the
norm of x — (x|a) is at least |[a||. Suppose now E is a Hilbert space;
the existence of the vector a (= 0) being obvious if # = 0, we can suppose
% 0. Then H = %~1(0) is a closed hyperplane in E; the orthogonal
supplement H' of H is a one-dimensional subspace; let & # 0 be a point
of H'. Then by (6.3.1) H is orthogonal to , in other words we have (x[b) = 0
for any x € H. But any two equations of a hyperplane are proportional,
hence there is a scalar A such that w(x) = A(x[b) = (x|a) with a = b,
for all x € E. The uniqueness of a follows from the fact that the form (x|y)
is nondegenerate.

PROBLEMS

1) Let B be the closed ball of center 0 and radius 1 in a prehilbert space E. Show
that for each point x of the sphere of center 0 and radius 1, there exists a unique
hyperplane of support of B (section 5.8, problem 3) containing ».

2) Let E be a prehilbert space, A a compact subset of E, § its diameter. Show
that there exist two points a,b of A such that |la — b|| = 6 and that there are two
parallel hyperplanes of support of A (section 5.8, problem 3) containing & and b
respectively, and such that their distance is equal to §. (Consider the ball of center 4
and radius é and apply the result of problem 1.)

3) Let E be a Hilbert space, F a dense linear subspace of E, distinct from E. Show
that there exists in the prehilbert space F a closed hyperplane H such that there is
no vector # 0 in F which is orthogonal to H.

4. Hilbert sum of Hilbert spaces

Let (E,) be a sequence of Hilbert spaces; on each of the E,, we
write the scalar product as (x,|y,). Let E be the set of all seguences
%= (%, %, - -, %,...) such that %, €E, for each #, and the series (||%,|?)
is convergent. We first define on E a structure of vector space: it is clear
that if x = (x,) € E, then the sequence (Ax,,...,4%,,...) also belongs to E.
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On the other hand, if y = (,) is a second sequence belonging to E, we
observe that ||x, + y,|[2 < 2(||%,]|2 + [|y.]|?) by (6-3.1.1), hence the
series (||x, + ¥,||?) is convergent by (5.3.1), and therefore the sequence
(%1 + Y1, % + V.- ..) belongs to E. We define x + y = (x, + Y)»

Ax = (Ax,), and the verification of the axioms of vector spaces is trivial.
On the other hand, from the Cauchy-Schwarz inequality, we have

|Zal )| 1%l 174l < 312,112 4 [lyal2)-

Therefore, if x = (x,) and ¥ = (y,) are in E, the series (of real or complex
numbers) ((x,|y,)) is absolutely convergent. We define, for x = (x,) and

0

y = (y,) in E, the number (x|y) = Z (x,|y,); it is immediately verified

n=1

that the mapping (x,y) — (x|y) is a Hermitian form on E. Moreover we

2]
have (x|x) = X' ||x,[|2, hence (x|y) is a positive nondegenerate hermitian
n=1

form and defines on E a structure of prehilbert space. We finally prove E
is in fact a Hilbert space, in other words it is complete. Indeed, let
(™) = () be a Cauchy sequence in E: this means that for any & > 0
there is an m, such that for p > m, and ¢ > m,, we have

@
(6.4.1) 2|6 — 292 Le.
n=1

For each fixed #, this implies first ||x%) — x{®||2 < ¢, hence the sequence
(x,(,’")),,,:l,am is a Cauchy sequence in E,, and therefore converges to a
limit y,. From (6.4.1) we deduce that for any given N

N
5l — e <e
n=1

as soon as p and g are > m,, hence, from the continuity of the norm, we

N
deduce that X ||x#) — y,]|2 e for p > m, and as this is true for all
n=1

integers N, we have X |[x) — y,]|2<e. This proves first that the

n=1
sequence (x?) — y,) belongs to E, hence y = (,) also belongs to E, and
we have ||z — y||2 < e for p > m,y, which ends the proof by showing
that the sequence (x™) converges to y in E.
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We say that the Hilbert space E thus defined is the Hilbert sum of the
sequence of Hilbert spaces (E,). We observe that we can map each of the
E, into E by associating to each x, € E, the sequence j,(x,) € E equal to
0,...,0,x,,0,...) (all terms O except the nth equal to x,); it is readily
verified that g, is an ¢somorphism of E, onto a (necessarily closed) subspace
E, of E; j, is called the natural injection of E, into E. From the definition
of the scalar product in E, it follows that for m # %, any vector in E,'n
is orthogonal to any vector in E,; furthermore, from the definition of the
norm in E, it follows that forany x = (x,) € E, the series (7,(x,)) is convergent

in E, and x= 2'j,(x,) (observe that the series (7,(x,)) is not absolutely
n=1

convergent in general). This proves that the (algebraic) sum of the sub-
spaces E, of E (which is obviously direct) is dense in E, in other words
that the smallest closed vector subspace containing all the E, is E itself.
Conversely:

(6.42) Let F be a Hilbert space, (F,) a sequence of closed subspaces such
that: 1° for m £ n, any vector of F,, is orthogonal to any vector of F,; 2° the
algebraic sum H of the subspaces F, is dense in F. Then, if E s the Hilbert
sum of the F,, there is a unique isomorphism of ¥ onto E which on each F,
coincides with the natural injection §, of F, into E.

Let F, =1,(F,), and let &, be the mapping of F, onto F,, inverse to 7,,.
Let G be the algebraic sum of the F, in E; that sum being direct, we can
define a linear mapping 4 of G into F by the condition that it coincides
with &, on each F,,. I claim that 4 is an isomorphism of G onto the prehilbert
space H (which, incidentally, will prove that the (algebraic) sum of the F,
is direct in F); from the definition of the scalar product in E, we have to
check that

(£ 5] Z 3 = Z (js(m)lia(0)

for %, € F,, y, € F,; but by assumption (x,|y,) = 0 if A 7 &, and the result
follows from the fact that each 7, is an isomorphism. There is now a unique
continuous extension % of 4 which is a linear mapping of G = E intoH = F,
by (5.5.4); the principle of extension of identities (3.15.2) and the con-
tinuity of the scalar product show that % is an isomorphism of E onto a
subspace of F, which, being complete and dense, must be F itself; the
inverse of % satisfies the conditions of (6.4.2). Its uniqueness follows from
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the fact that it is completely determined in H and continuous in F (3.15.2).
Under the conditions of (6.4.2), the Hilbert space F is often identified
with the Hilbert sum of its subspaces F,,.

(6-4.3) Remark. We can also prove (6.4.2) by establishing first that the

sum of the F, is direct; indeed, if X x; =0 with x,eF; (1 <7< n) we

i=1

also have (x| X' ;) = 0 for any j < #, and as (x;|%;) = O for 1 % {, this
i=1

boils down to ||x;]|2 = 0, hence x; = 0 for 1 {j < #. Then we define the
inverse mapping g of 4 by the condition that it coincides with j, on each F,:
we at once verify, as above, that g is an isomorphism of H onto G, and
then (5.5.4) is applied in the same way. We observe that this argument
still applies when F is a prehilbert space and the F, are complete subspaces
of F; it proves the existence of an isomorphism of F onto a dense subspace
of the Hilbert sum E of the F,, which coincides with j, on each F,.

5. Orthonormal systems

If (with the notations of (6.4)) we take for each E, a one-dimensional
space (identified to the field of scalars with the scalar product (¢[n) = &7),
the Hilbert sum yields an example of an infinite dimensional Hilbert
space E, which is usually written /2 (with index R or C to indicate if necessary
what the scalars are); the space /% (resp. /) is therefore the space of all

sequences x = (§,) of real (resp. complex) numbers, such that X |£,|? is

n=1
convergent, with the scalar product (x|y) = X &,7,.
n=1
In 2, let ¢, be the sequence having all its terms equal to 0 except the
n-th term equal to 1; we then have (¢,le,) = 0 for m 3£ #, and |le,|| = 1

for each 7, and we have seen in (6.4) that for every ¥ = (£,) in /2, we can

[+o]
write x = X ¢

nn’

the series being convergent in 12. We observe that this
n=1
shows the sequence (e,) is fofal in /2, hence (5.10.1) I2 is separable.
Let us now consider an arbitrary prehilbert space F; we say that a
(finite or infinite) sequence (a,) in F is an orthogonal system if (a,|a,) = O
for m #% n and a, 7% 0 for every n; we say that (a,) is an orthonormal
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system if in addition ||a,|| = 1 for each #. From any orthogonal system (a,)
we deduce at once an orthonormal system by ‘‘normalizing” (a,),1.e. consider-
ing the sequence of the b, = a,/||a,||]. We have just seen an example of
an orthonormal system in /2; another fundamental example is the following:

(6.5.1) Let I be the interval [—1,1] of R, and let F =%(I) be the
vector space of all continuous complex-valued functions defined on I.
We define on F a scalar product by

1

(fle) = jf(t@dt

-1

(the fact that this is a nondegenerate positive hermitian form is readily
verified). For each positive or negative integer =, let

Pat) = .

It is readily verified that (¢”/V2) is an orthonormal system in F, called
the trigonometric system.

Let now (a,) be an arbitrary orthonormal system in a Hilbert space F;
for each x € F, we say that the number c,(x) = (#|a,) is the n-th coefficient
{or n-th coordinate) of x with respect to the system (a,) (‘“n-th Fourier
coefficient” of x for the system (6.5.1)).

(6.5.2) In a Hilbert space F, let (a,) be an orthonormal system, V the closed
subspace of F generated by the a,. Then, for any x € F:

[
1° the series X |(x|a,)|? is comvergent, and we have

n=1
)?[(x,a")]z = ||Py(x)||2 < ||x]|2 (Bessel's inequality)
n=1
and Z (x48,) 5len) = (Py() Py

2° the series of gemeral term (x|a,)a, is convergent in F and we have

Z (xlay)a, = Py(x).

n=1
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Conversely, let (2,) be a sequence of scalars such that X |,|% is convergent.

Then, there exists a unique vector vy eV such that (¥|a,) = 4, for every n;
any other vector % € F such that (x|a,) = A, for every n is such that x = y + z,
with z orthogonal to V, and conversely.

For any x € F, we can write x = Py(x) 4 z, with z orthogonal to V
(6.3.1) and we have therefore (x|a,) = (Py(x)|a,). To prove the theorem,
we can therefore assume V = F; but then, the one-dimensional subspaces
F, generated by the vectors a, satisfy the assumptions of (6.4.2), and the
results are mere restatements of (6.4.2) for that particular case (taking into
account the definition of a Hilbert sum).

The most interesting case is that in which V = F, i.e., the orthogonal
system (a,) is fotal. It is then called an orthonormal basis for F; (e,) is
such a basis for /2. It will be proved in (7.4.3) that the trigonometric
system (6.5.1) is total. For a Hilbert space F and a total orthonormal
system (a,), we can replace everywhere Py by the identity in (6.5.2); the
relations

2 |(slay) |2 = ||]?

n=1

2 (la,) (v]a,) = (x]y)
n=1
are then called Parseval’s identities. 1f follows at once from (6.5.2) that
these identities represent not only necessary but sufficient conditions for
(a,) to be a total system in a Hilbert space.

(6.5.3) In a Hilbert space ¥, a necessary and sufficient condition for an
orthogonal system (a,) to be total is that the relations (x|a,) = O for every n
mply x = 0.

Indeed, by (6.5.2) this means that the relation Py(x) = 0 implies x = 0,
and this is equivalent to the relation V = F, since Py(x — Py(x)) = 0.

(6.5.4) Remark. Suppose E is a prehilbert space and the orthonormal
system (a,) in E is total. Then the results 1° and 2° of (6.5.2) are still valid,
with Py(x) replaced by x; this follows by the same argument as in (6.5.2),
using the remark (6.4.3).
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PROBLEMS
1) Let E be a Hilbert space with an orthonormal basis (¢,),>1. Let A be the

7 1
subset of E consisting of the linear combinations » = X 4 (1 — ;-) e with 4, > 0
k=1

and Z' A = 1 (n arbitrary).
k=1

* 1
a) Show that the closure A is the set of all the sums of the series 2 Ay (1 - —) e,
n

n=1
2]
where 1,>> 0, the series X 1, is convergent and has a sum equal to 1.
n=1

b) Prove that the diameter of A is equal to 2 but that there is no pair of points
a,b of A such that ||a — b|| = 2 (compare section 6.3, problem 2).

2) Let E be a Hilbert space with an orthonormal basis (¢,), 0. Let a, = ez,

and b, = es, +

) lez,,_,_l for every n > 0; let A (resp. B) be the closed vector

subspace of E generated by the a,, (resp. b,). Show that:
a) An B = {0}, hence thé¢ sum A + B is direct (algebraically).
b) The direct sum A + B is not a topological direct sum (consider in that subspace
the sequence of points b, — a, and apply (5.4.2)).
c) The subspace A + B of E is dense but not closed in E (show that the point
o
2 (b, — a,) does not belong to A + B).
n=20
3) Show that the Banach space Z(I!; i2) can be identified with the space of double

a0
sequences U = (x,,,) such that: 1° the series X |a,4|? is convergent for every u:

m=0
2° sup Z |otsmn|? is finite. The norm is then equal to ||U]| = Sup 2 |otyen|2) Y2 (same
n m=0 =0
method as in section 5.7, problem 2 b)).
o
4) a) Let « be a continuous linear mapping of /2 into itself, and let u(e,) = Z' dtmnm;
m=0

@ 0
show that the series X |otyy|2 and 2 |oyy,|® are convergent for all values of » and =,
n=20 m=0
and that their sums are <C ||u||%. (Observe that x — (u(%)|em) is a continuous linear
form on E and use (6.3.2).)

b) Give an example of a double sequence (a,) such that 2 letmn|2 << 1 and
ﬂ_

Z |etyn|? << 1 for all values of m and %, but such that there is #o continuous linear
m=0
mapping # of /2 into itself satisfying the relations (u(e,)|e,) = oy for all pairs (m,n).
(If V is a subspace of /% generated by the vectors ¢, with # € H, where H is a set of p
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integers, show that there is a linear mapping %, of V into itself such that
(up(en)lem) = 1]}/ for all indices m,» of the set H, but llupll = )/72)

6. Orthonormalization

(6.6.1) Let E be a separable prehilbert space, (b,) @ total sequence of linearly
independent vectors in E (see (5.10.1)), and let V, be the n-dimensional subspace
of E generated by b,,....b,. Then if we define ¢, = b, — Py . (B,), (c,) s
a total orthogonal system, such that c,,....c, generate V,, for each n.

We use induction on #, assuming that c,,.. -s6y—1 is an orthogonal
system generating V, _ ; then, by definition of Py (6.3.1), ¢, is orthogonal
to V, _,, which proves that (ci[cj) =0 for 1 i< j<#n; moreover, as
b,¢V,_; by assumption, c, # 0, hence c,,.. <s6n—_1,¢, is an orthogonal
system; moreover, b, —c,eV,_,, hence c,,...,c, generate the same
subspace as the union of V,_, and {b,}, i.e. V,. This completes the proof.

If we normalize the system (c,), by putting a, =,/ [lca|], the system (a,)
is said to be deduced from (b,) by the orthonormalization process. For
instance, in the space F =%(I) considered in (6.5.1), the sequence (¢*)
is total (as will be proved in (7.4.1)) and obviously consists of linearly
independent vectors. If we denote by (Q,) the orthonormal system deduced
from () by orthonormalization, it is clear that Q,(f) =af* + ..., pol-
ynomial of degree »n (with a,  0) with real coefficients; the Q, are (up to
a constant factor) the Legendre polynomials (see section 8.14, problem 1).

(6.6.2) Any separable prehilbert space (resp. Hilbert space) is isomorphic
to a dense subspace of 12 (resp. to 12).

As there exists in a separable prehilbert space a total orthonormal
system by (6.6.1), the result follows at once from (6.5.2).

PROBLEMS

1) Let E be a separable non complete prehilbert space. Show that there exists
in E an orthonormal system which is not total, but which is not properly contained
in any orthonormal system (imbed E as a dense subspace of a Hilbert space, and
use problem 3 of section 6.3).

2) Let E be an infinite dimensional separable Hilbert space, V a closed vector
subspace of E. Show that if V is infinite dimensional, there exists an isometry of E
onto V (write E as the direct sum of V and its orthogonal supplement V’, and take
orthonormal bases in V and V’).
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3) Let ()1 <i<n be a finite sequence of pointsina prehilbert space E. The Gram
determinant of that sequence is the determinant G(#,,%,,...,%,) = det ((#;|%;)).

a) Show that G(x,,...,%,) = 0 and that G(#,...,%s) = O if and only if the »;
are linearly dependent. (Consider an orthonormal basis of the subspace generated
by the #; and express the #; as linear combinations of that basis). o

b) Suppose the #; are linearly independent, and let V be the n-dimensional
subspace which they generate. Show that the distance of a point » to V is equal to

VG(x,xl,. < s%p)|G(%,,...,%,) (find the projection of » on V, writing it as a linear
combination of the x;).



Chapter VIl

Spaces of Continuous Functions

Spaces of continuous functions are second only to Hilbert spaces as
to their importance in Functional Analysis. Their definition makes it
possible to give a much more intuitive meaning to the classical notion of
uniform convergence. The most important results of the Chapter are;
1° the Stone-Weierstrass approximation theorem (7.3.1), which is a very
powerful tool for the proof of general results on continuous functions, by
the device which consists in proving these results first for functions of a
special type, and then extending them to all continuous functions by a
density argument; 2° the Ascoli theorem (7.5.7), which lies at the root
of most proofs of compactness in function spaces, and, together with
(7.5.6), gives the motivation for the introduction of the concept of
equicontinuity; the latter plays an even more vital part in the general
theory of duality mentioned in Chapter V.

The last section of Chapter VII introduces, as a useful technical tool
in the development of Calculus, a category of functions which are classically
described as ““functions with discontinuities of the first kind”’ ; in an effort
towards a more concise expression, and to avoid one more use of the
overworked term ‘regular”, the author has tentatively introduced the
neologism “regulated functions” (corresponding to the French “‘fonctions
réglées”’), which he hopes will not sound too barbaric to English-speaking
readers.

1. Spaces of bounded functions

Let A be any set, F a real (resp. complex) normed space; a mapping

{ of Ainto F is bounded if f(A) is bounded in F, or equivalently if sup [7®)]]
teA

is finite. The set %(A) of all bounded mappings of A into F is a real
126
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(resp. complex) vector space, since ||f(£) + g(#)|| < |If(#)|| + |lg(®)]]. Moreo-
ver, on this space,

7.1.1) [/l = sup [If@)]

teA
is a morm, as can be trivially verified. If F has finite dimension, and
(@)1 < < is @ basis for F such that ||;|| = 1, any mapping of A into F can
be written in one and only one way
(7.1.2.1) t—f(t) = fLd)a, + ... + f.(O)a,

and f is bounded if and only if the scalar mappings f; (1 <7< #n) are
bounded. Moreover the norm of the mapping ¢ — f;(t)a; is ||fi|| - ||a|| = |||
(the norm of £, being taken in %g(A), resp. #¢(A)). From (5.9.1), (5.4.2)
and (5.5.1) it follows that there is a constant ¢ such that for each ¢ € A,
I£.0)| <c-||f(#)||, hence [|fj|| <c-||f|. Let L; be the subspace of Br(A)
consisting of all bounded mappings of the form ¢ — f(¢)a; (f scalar). Then,
using again (5.4.2) and (5.5.1), the preceding remarks prove that

(7.1.2) If F has finite dimension, then B(A) is the topological direct sum
of the L,, each of which is isometric to By(A) (resp. Bg(A)).

In particular, if we consider the real normed vector space underlying
Bo(A), we see that it is the topological direct sum #g(A) + i#g(A).

(7A.3) If F is a Banach space, Br(A) is a Banach space.

Let (f,) be a Cauchy sequence in #(A); this means that for any ¢ > 0
there is #y such that ||f, — f,|| <& for m > n,, n > ny. From (7.1.1) it
follows that for any ¢ € A we have ||f,,(f) — f,(8)|| < & for m = ng, n>ny,
hence, as F is complete, the sequence (f,{¢)) converges to an element g(#) € F.
Furthermore we have, by the principle of extension of inequalities,
[lfn() — g(®)|| < € for any ¢ € A and all m > ny. From this we first deduce
that ||g(#)|] < ||ful| + & for all € A, hence g is bounded. Moreover we
have ||f,, — g|| < efor allm > n,, and this means the sequence (f,) converges
to g in the space %i(A).

In general, if (f,) is a sequence of mappings of A into a metric space F,
we say that the sequence (f,) converges simply in A to a mapping g of A
into F if, for each ¢ € A, the sequence (f,(f)) converges in F to g(¢); we
say that (f,) converges uniformly in A to g if the sequence of numbers

(sup @(/,(#),g(#))) tends to 0. It is clear that uniform convergence implies
teA
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simple convergence; the converse is not true. If F is a normed space, con-
vergence of a sequence of elements of %(A) therefore means, by
definition, wuniform convergence of the sequence in A. Similarly, we
say that a series (u,) which converges in Bg(A) to a sum s is
uniformly convergent in A to the sum s. If F is a Banach space, it follows
from (7.1.3) that in order that a series (%,) in #(A) be uniformly convergent,
a necessary and sufficient condition is that, for any & > 0, there exist
an integer n, such that, for n = n,, p > 0 and any t € A, we have

”un(t) + un-}-l(t) + e + un+p(t)“ <8.

From (7.1.3) and (5.3.2) it follows that if F is a Banach space and if a series
(u,) of bounded functions is such that the series (||«,||) convergesin R, then
the series (u,) is uniformly convergent; moreover, for each ¢€ A, since
[|u,(t)|| < u,, the series (u,(f)) is absolutely convergent in F. However,
these two properties do not imply that the series (||u,||) is convergent; to
avoid misunderstandings, we therefore say that the series («,) is normally
convergent in AB(A) if the series (||u,||) converges. We define similarly a
normally summable family (u;);., in #z(A) (L denumerable, cf. (5.3)).

PROBLEMS

1) In the space HRr(R), let u, be the function equal to 1/n for n <<t < n + 1,
to O for other values of . Show that the series (#,) is uniformly and commutatively
convergent (section 5.3, problem 4) and that for every ¢e€ R, the series (u,(f)) is
absolutely convergent, but that (u,) is not normally convergent.

2) Let A be any set; show that the mapping « — sup u(#) of ZR(A) into R is

teA

continuous.

3) Let E be a metric space, F a normed space; show that the set of all mappings
f € #B¥(E) whose oscillation (3.14) at every point of E is at most equal to a given
number « > 0, is closed in the space Zr(E).

2. Spaces of bounded continuous functions

Let now E be a metric space; we denote by €r(E) the vector space of
all continuous mappings of E into the normed space F, by € (E) the set
of all bounded continuous mappings of E into F. We note that if E is compact,
%€y (E) =%5(E) by (3.17.10). In general we have ¥F (E) = €(E) n #:(E).
We will consider € (E) as a normed subspace of #(E), unless the contrary
is explicitly stated. If F is finite dimensional, in the decomposition (7.1.2.1)
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f is continuous if and only if each of the ; is continuous (see (3.20.4) and
(5.4.2)). The remarks preceding (7.1.2) then show that in such a case,
¥ (E) is a topological direct sum of a finite number of subspaces, each of
which is isometric to g (E) (resp. €¢ (E)). In particular, the real normed
space underlying €g(E) is the topological direct sum %g(E) + g (E).

(7.21) The subspace 65 (E) is closed in Bx(E); in other words, a uniform
limit of bounded continuous fumctions is conbinuous.

Indeed, let (f,) be a sequence of bounded continuous mappings of E
into F, which converges to g in #5(E); for any & > 0, there is therefore an
integer 7, such that ||f, — g|| < ¢/3 for n > n,. For any {,€ E, let V be a
neighborhood of #, such that ||f, (¢) — ,.(t)|| < &/3 for any V. Then, as
|If,.(8) — g(t)|] < &/3 for any t€E, we have |[g(t) — glt)|| <& for any
¢t € V, which proves the continuity of g.

Well-known examples (e.g. the functions x — %" in [0,1]) show that a
limit of a simply convergent sequence of continuous functions needs not
be continuous. On the other hand, examples are easily given of sequences
of continuous functions which converge non-uniformly to a continuous
function (see problem 2). However (see also (7.5.6)):

(7.2.2) (Dini’s theorem). Let E be a compact metric space. If an increasing
(resp. decreasing) sequence (f,) of real-valued comtinuous functions converges
simply to a continuous function g, it converges uniformly fto g.

Suppose the sequence is increasing. For each ¢ > 0 and each /€ E,
there is an index #(¢) such that for m > n(z), g(t) — /,.(¢) < ¢/3. As g and
fu@y are continuous, there is a neighborhood V(¢) of ¢ such that the relation
£ eV(t) implies [gt) — g(¢')] < e&/8 and |f,4(f) — fuy(¥)| < &/3; hence,
for any # € V() we have g(t') — f,,(#) <e. Take now a finite number
of points ¢ in E such that the V(¢) cover E, and let #, be the largest of
the integers #(#). Then for any ¢ € E, ¢ belongs to one of the V(¢;), hence,

for n > ny, g(t) — £,(t) < glt) — £,,(8) < () — fuey®) <&, qed.

PROBLEMS

1) Let E be a metric space, F a normed space, (#,) a sequence of bounded contin-
uous mappings of E into F which converges simply in E to a bounded function v.

a) In order that v be continuous at a point #, € E, it is necessary and sufficient
that for any € > 0 and any integer m, there exist a neighborhood V of x, and an index
% > m such that ||v(x) — uu(¥)|| < & for every x€ V.
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b) Suppose in addition E is compact. Then, in order that v be continuous in E,
it is necessary and sufficient that for any ¢ > 0 and any integer m, there exist a finite
number of indices #; > m such that, for every x € E, there is at least one index i
for which ||v(x) — u,,i(x)H <{ & (use a) and the Borel-Lebesgue axiom).

2) For any integer #n > 0, let g, be the continuous function defined in R by the
conditions that g,(f) = 0 for £<C 0 and == 2/n, g,(1/#) = 1, and g,(#) has the form
of + B (with suitable constants «,8) in each of the intervals [0,1/#] and [1/n,2[n].
The sequence (g,) converges simply to 0 in R, but the convergence is not uniform
in any interval containing ¢ = 0.

Let m — 7, be a bijection of N onto the set @ of rational numbers, and let

@

falt) = 2 27™g,(t — 7,). The functions f, are continuous (7.2.1), and the sequence
m=0

(fn) converges simply to 0 in R, but the convergence is not uniform in any interval of R.
3) Let I be a compact interval of R, and (f,) a sequence of monotone real func-

tions defined in I, which converge simply in I to a continuous function f. Show that f
is monotone, and that the sequence (f,) converges uniformly to { in I.

4) Let E be a metric space, F a Banach space, A a dense subset of E. Let (f,)
be a sequence of bounded continuous mappings of E into F such that the restrictions
of the functions f, to A form a uniformly convergent sequence; show that (f,) is
uniformly convergent in E.

5) Let E be a metric space, F a normed space. Show that the mapping (,4) — (%)
of E x ?;P (E) into F is continuous.

6) Let E,E’ be two metric spaces, F a normed space. For each mapping f of
E X E’ into F and each y € E’, let f, be the mapping » — f(x,y) of E into F.

a) Show that if f is bounded, if each £, is continuous in E and if the mapping

y —f, of E’ into %;0 (E) is continuous, then f is continuous. Prove the converse if
in addition E is compact (use problem 3 a) in section 3.20).

b) Take E = E’ = F = R, and let f(#,y) = sin »y, which is continuous and
bounded in E X E’; show that the mapping y — f, of E’ into Cr (E) is not contin-
uous at any point of E’.

c) Suppose both E and E’ are compact, and for any f € €r(E x E’), let f be the
mapping y — f, of E’ into €F(E); show that the mapping f — f is a linear isometry
of €r(E x E’) onto %%F(E)(E ).

7) Let E be a metric space, F a normed space. For each bounded continuous
mapping f of E into F, let G(f) be the graph of f in the space E X F.

a) Show that f — G(f) is a uniformly continuous injective mapping of the normed

space %;P (E) into the space F(E X F) of closed sets in E X F, which is made into
a metric space by the Hausdorff distance (see section 3.16, problem 3). Let I" be the

image of €f (E) by the mapping f — G(f).

b) Show that if E is compact, the inverse mapping G™1 of I" onto %y (E) is
continuous (give an indirect proof).

¢) Show that if E = [0,1] and F = R, G~! is not uniformly continuous.
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8) Let E be a metric space with a bounded distance d. For each x € E let d, be
the bounded continuous mapping y — d(#,y) of E into R. Show that x —d, is an

isometry of E onto a subspace of the Banach space %ﬁo (E).
3. The Stone-Weierstrass approximation theorem

For any metric space E, the vector space %: (E) (resp. %:; (E)) is an
algebra over the real (resp. complex) field ; from (7.1.1) it follows that we
have in that algebra ||fg|| < ||f||* ||g]|. hence, by (5.5.1), the bilinear
mapping (f,g) — fg is continuous. From that remark, it easily follows
that for any subalgebra A of %;:(E) (resp. %EO (E)), the closure A of A in
% (E) (resp. (Kg) (E)) is again a subalgebra (see the proof of (5.4.1)).

We say that a subset A of Bg(E) (resp. Bo(E)) separates points of Eif
for any pair of distinct points x,y in E, there is a function f € A such that

Hx) # 1)

(7.3.1) (Stone-Weierstrass theorem). Let E be a compact metric space.
If a subalgebra A of €g(E) contains the comstant functions and separates
points of E, A is dense in the Banach space €g(E).

In other words, if S is a subset of #x(E) which separates points, for any
continuous real-valued function f on E, there is a sequence (g,) of functions
converging uniformly to f, such that each g, can be expressed as a polynomial
in the functions of S, with real coefficients.

The proof is divided in several steps.

(7.3.1.1) There exists a sequence of veal polynomials (u,) which in the

interval [0,1] is increasing and converges uniformiy fo Vt.
Define u, by induction, taking »; = 0, and putting

(7312 ol =l -5 (= w2))  for w1

We prove by induction that «, ; >u, and #,(f) < V? in [0,1]. From
(7.3.1.2), we see the first result follows from the second. On the other hand

YT = thoaalt) = VT walt) — 5 (6 —a2(0)

=/t~ w®) (1 — 50 un(t)))
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and from u,() < V¢ we deduce 3(J/t + u,(t)) < V¢ < 1. For each e [0,1],
the sequence (u,(t)) is thus increasing and bounded, hence converges to
a limit v(¢) (4.2.1); but (7.3.1.2) yields ¢ — v%¢) = 0 and as v(f) >0,

v(t) = Vt. As v is continuous and the sequence (u,) is increasing, Dini’s
theorem (7.2.2) proves that (u,) converges uniformly to v.

(7.3.1.3) For any function f€ A, |f| belongs to the closure A of A in€g(E).

Let a = ||f||. By (7.3.1.1), the sequence of functions #,(f%/a2), which
belong to A (by definition of an algebra), converges uniformly to

VPjaz = |flja in E.

(7.3.1.4) For any pair of functions f,g in A, inf (,g) and sup (f,g) belong
to A.

For we can write sup(fg)=4(+¢g+ |f—¢g|) and inf({,g) =
Hf+¢g—|f —¢g|); the result therefore follows from (7.3.1.3) applied to
the algebra A.

(7.3.1.5) For any pair of distinct points x,y in E and any pair of real
numbers o, there is a function f € A such that f(x) = a, f(y) = B.

By assumption, there is a function g € A such that g(x) % g(y). As A
contains the constant functions, take /= a + (8 — «)(g — »)/(6 — ¥),
where y = g(#), 6 = g(y).

(7.3.1.6) For any function fe€g(E), any point xcE, and any >0,
there is a function g € A such that g(x) = f(x) and g(y) < f(y) + ¢ for any
yeE.

For any point z € E, let %, be a function of A such that %,(x) = f(x) and
h(z) << f(2) + €/2; the existence of such a function is obvious for z = x and
follows from (7.3.1.5) for z # x. There exists a neighborhood V(z) of z
such that for y € V(2), 4,(y) < f(y) + &, due to the continuity of / and 4,.
Cover E with a finite number of neighborhoods V(z;). Then, by (7.3.1.4),
the function g = inf (h;,)) belongs to A and satisfies the required conditions,

since every y € E belongs to some V(z,).
(7.31.7) A =%R(E).

Let / be any function of ¥g(E); for any &> 0 and for each x €E, let
g. €A be such that g,(x) = f(x) and g (y) <f(y) +¢e for all yeE
(7.3.1.6). Then, there is a neighborhood U(x) of x such that, for y € U(x),




4, APPLICATIONS 133

g.(y) = f(y) — &, due to the continuity of f and g,. Cover E with a finite
number of neighborhoods U(x;). Then, by (7.3.1.4), the function ¢ = sup (g, )

belongs to A and is such that, for any y € E, f(y) — e < @(y) < f(y) + ¢
(since every y € E belongs to some U(x;)); in other words ||f — || <,
and this shows that f belongs to the closure of A, ie. to A itself.

The corresponding theorem for €¢(E) is false (see chapter IX); there is
only the weaker result:

(7.3.2) Let E be a compact metric space. If a subalgebra A of €¢(E) contains
the constant functions, separates points of E and is such that for each f € A,

the conjugate function f also belongs to A, then A is dense in €¢(E).

We remark that for any fe A, #f = 3(f + f) and 2f = (f — f_)/2i also
belong to A; hence, if A, is the (real) subalgebra of A consisting of real-
valued functions, it follows at once from the definition that A, separates
points of E and contains the (real) constant functions. Therefore A, is
dense in ¥R(E), and the density of A in €¢(E) = €g(E) + i€r(E) follows
at once, since A = A, + 1A,

4. Applications

In the Stone-Weierstrass theorem, take for E any compact subset
of R”, and for A the algebra of the restrictions to E of the polynomials in
the n coordinates. The separation condition is satisfied, since for two
distinct points of E, at least one of the coordinates has distinct values.
Hence we have the original Weierstrass approximation theorem:

(7.4.1)  Any real-valued continuous function on a compact subset E of R”
is the limit of a sequence of polynomials which converges uniformly in E.

Take now for E the unit circle x2 4 y2 = 1 in R2, parametrized by the
angle nt, so that continuous functions on E can be identified with contin-
uous functions on R having the period 2 (see chapter IX). Take for A the
(complex) algebra generated by the constants and the functions € and

e~ ™, it is immediate that the elements of A are the trigonometric polynomials
N
2 c,e™" As the function ¢™ separates the points of E, all the condi-
n=—N

tions of (7.3.2) are satisfied, hence:
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(7.42) Any continuous complex-valued function on R, which is periodic
of period 2, is the limit of a sequence of trigonometric polynomials, which
converges uniformly in R.

This last result enables us to give a proof of the following fact, which
was announced in (6.5):

(7.4.3)  The trigonometric system is total in the prehilbert space F = €o(I)
(as defined in (6.5.1); note that here we do not put on %¢(I) the norm
(7.1.1)).

Indeed, for any function /e %(I) and any integer # > 0, let g be the
function equal to f for — 1 + 1/n << ¢ < 1, equal to f(1) for ¢ = — 1, and
linear between — 1 and — 1 + 1/n; then f(f) — g(f) = 0if ¢ > — 1 + 1/n,
and [f(f) — g(#)] << 4/f||., for the other values of ¢ (we write ||. .||, for the
norm defined by (7.1.1) and ||..||, for the prehilbert norm). Therefore,
we have

1
I — gl = jv(t) — g(0]2dt < 16|12

-1

in other words, ||f — g|, is arbitrarily small. As g is continuous and can
be extended by periodicity since g(1) = g(— 1), there is by (7.4.2), a trig-

onometrie polynomial 4 such that |jg — &||, < VEHg — k||, is arbitrarily
small, and this ends the proof.

(7.4.4) If E is a compact metric space, the spaces €x(E) and €o(E) are
separable.

As % ¢(E) is the topological direct sum of €»(E) and i€g(E), we need
only give the proof for ¥x(E). Let (U,) be a denumerable basis for the
topology of E (3.16.2), and let g,(t) = d(t,E — U,). The monomials g¥. . .g%
in the g, also form a denumerable set (k,) (by (1.9.3) and (1.9.4)), and the
vector space A generated by the %, is the subalgebra of ¥x(E) generated
by the g,. If we prove that A is dense in €g(E), our proof will be complete
(5.10.1); but we only have to apply the Stone-Weierstrass theorem, and
therefore check that the family (g,) separates points of E. But if x 5 y,
there is a U, such that xeU,, y¢ U,, hence by definition g, (x) 7 0,
g&(y) =0, qed.
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PROBLEMS

1) Let E,F be two compact metric spaces, f a continuous mapping of E X F
into R. Show that for any & > 0 there exists a finite system (u;); < < » of continuous
mappings of E into R and a finite system (v;); < i < » of continuous mappings of F into R

”
such that, for any (%,)€E X F, |[f(xy) — % u;(7)v;(y)| << e. (Apply the Stone-
i=1

i=
Weierstrass theorem to the algebra generated by the continuous mappings (#,y) — ()
and (x,5) — v(y), where u € €r(E) and v € Er(F))-

2) Let #n — 7, be a bijection of N onto the set of rational numbers in the interval
[0,1] = I. Define by induction a sequence (I,) of closed intervals contained in I,
such that: 1° the center of I, is Yy where %, is the smallest index p such that 7, is not

in the union of the intervals I with & < »; 2° the length of I, is << 1/4”, and I,
does not meet any of the Ij, with & < n. In the product space I X R, define a bounded
real continuous function # having the following properties: 1° for each integer » > 0,
» — u(x,m) takes the value 1 for ¥ = Th, is equal to 0 for x ¢ I,,, and 0 <CT u(x,n) < 1
for all x € I; 2° for each x € I, the function y — #(x,y) has the form ay + g in each
of the intervals ]— 0,0] and [#,# 4 1] (# € N). Show that there is no finite system

n
of functions v; € €r(l), w; € €r (R) (1 << i << n) such that |u(x,y) — X vi(#)w;(y)|<1/4
i=1

in T X R. (Suppose the contrary; consider the functions ,: x — #(¥,2) in Er(1),
and observe that ||u,|| = 1, ||lu, — %,)|] = 1 for m % n. If there existed a finite
dimensional subspace E of €Rr(I) such that d(u,,E) <{ 1/4 for each n, there would
exist in E an infinite sequence (h,) such that ||h,|| = 2 and ||, — k|| = 1/2 for
m # m, contradicting (5.10.1).)
3) Let E be the interval [0,1] in R.
a) Show that if a (1 << & <C =) are # distinct points of E, the functions ¥ — |7z — ay]
are linearly independent in €Rr(E).
b) Deduce from a) that the function (#,9) — [# — y| in E X E cannot be written
”
as a finite sum X v;(¥)w;(y), where v; and w; are continuous in E.
=1
4) Show that the Banach space %R (R) is not separable. (Use a similar method
as the one applied in the problem of section 5.10.)

5. Equicontinuous sets

Let H be a subset of the space #x(E) (E metric space, F normed space);
we say that H is equicontinuous at a point xy € E if, for any ¢ > 0, there is a
0 > 0 such that the relation d(x,x) << 4 implies ||/(x) — f(%0)|| < & for
every f € H (the important thing here being that ¢ is independent of f).
We say that H is equicontinwous if it is equicontinuous at every point
of E.
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Examples. (7.5.1) Suppose there exist two constants c,a > 0 such that
[|f/(%) — f(¥)]] < ¢ (d(x,y))* for any f € H, and any pair of points x,y of E;
then H is equicontinuous.

(7.5.2) Any finite set of functions which are continuous at a point x,
(resp. in E) is equicontinuous at x, (resp. equicontinuous). More generally
any finite union of sets of functions which are equicontinuous at x, (resp.
equicontinuous) is equicontinuous at x, (resp. equicontinuous).

(7.5.3) Let (f,) be a sequence of functions in B(E) which converges simply
to a function g and is equicontinuous at x, (resp. equicontinuous). Then g
is continuous at x, (resp. continuous).

Indeed, suppose ||f,(%) — f,(#)|| <& for any x such that d(x,%,) < é
and any #; then, by the principle of extension of inequalities, we have
|lg(x) — g(xo)|| < & for any x such that d(x,%,) < 9, q.e.d.

(7.5.4) In the space €7 (E), the closure of any equicomtinuous subset s
EqULCONBLNUOUS.

This follows at once from (3.13.13) and from the proof of (7.5.3).

(7.5.5) Suppose F is a Banach space, (f,) an equicontinuous sequence in
€r (E), and that for any point x of a dense subset D of E, the sequence (f,(x))
ts convergent in F. Then the sequence (f,) converges simply to a (continuous)
limit g.

As F is complete, we have to prove that for each x€E, (f,(x)) is a
Cauchy sequence in F. Now for any ¢ > 0, there is a § > 0 such that the
relation d(x,y) < ¢ implies ||f,(x) — /,(v)|| < &/3 for every n. On the other
hand, there exists y € D such that d(x,y) << 4, and by assumption, there
is an g such that ||f,(y) — f,(¥)|| < ¢&/3 for m > ny, n > mny. It follows
that for m > ny, n > ny, ||fu(2) — f,(0)|| <e&, qed.

(7.5.6) Suppose E is a compact metric space, (f,) an equicontinuous sequence
in €p(E). If (f,) converges simply to g in E, 1t converges uniformly to g in E.

Given € > 0, for each x € E there is a neighborhood V(x) such that the
relation y € V(x) implies ||f,(x) — f,(¥)|| < ¢&/3 for every n. Cover E by
a finite number of neighborhoods V(x;); there exists an #n, such that for
n > ny, we have ||g(x;) — f,(x;)|| < &/3 for all the indices 7. But for any
x € E, £ belongs to one of the V(x;), hence we have ||f,(x) — f,(x)|| < ¢/3
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for all #, and letting » tend to + oo, this yields ||g(x) — g(x,)|| < ¢/3.
Hence we have ||g(x) — f,(x)|| < & for any # > n, and every x € E, q.e.d.

(7.5.7) (Ascoli’s theorem). Suppose F is a Banach space and E a compact
metric space. In order that a subset H of the Banach space €(E) be relatively
compact, necessary and sufficient conditions are that H be equicontinuous
and that, for each x € E, the set H(x) of all {(x) such that f € H be relatively
compact in F.

a) Necessity. If H is relatively compact for every ¢ > 0, there exists
a finite number of functions f; € H such that for every f € H, there is an
index ¢ such that ||[f — f;|| <¢/3 (3.17.5). From this it follows first that
for every x € E we have [|f(x) — f,(x)|| < ¢/3, and as F is complete, this
shows by (3.17.5) that H(x) is relatively compact. On the other hand, let V
be a neighborhood of x such that y € V implies ||f,(y) — f;(x)|| < &/3 for
every index ¢; then, for any f € H, y € V implies ||/(y) — f(x)|| < e, which
proves H is equicontinuous.

b) Sufficiency. As €g(E) is complete by (7.1.3) and (7.2.1), we need
only prove H is precompact (3.17.5). Given any ¢ > 0, for each x € E, let
V(x) be a neighborhood of » such that y € V(x) implies ||/(y) — f(x)|| < e/4
for every fe H. Cover E with a finite number of neighborhoods V(x;)
(1 <7 << m). On the other hand each of the sets H(x,) is relatively compact
in F by assumption; so is therefore their union K; let (¢;);<;j<, be a
finite subset of K such that every point of K is in a ball of center one of
the ¢; and radius /4. Let now @ be the (finite) set of all mappings ¢ — ¢(7)
of [1,m] into [1,#] (intervals in N); for each ¢ € ®D, denote by L, the set
of all functions fe H such that, for every index ¢ in [1,m], we have
[[/(#;) — €4)|| < €/4. Some of the L, may be empty, but from the defini-
tion of the ¢; it follows that H is covered by the union of the L,. To end
the proof we need only show that the diameter of each L, is {e. Now
if f,¢ are both in L, for each y € E there is an ¢ such that y € V(x;), hence
|If(y) — Hx)|| < e/4 and ||g(y) — g(x)]| < e/4; as ||f(x) — g(x)|] < /2 by
definition, we have ||f(y) — g(y)|| <& for every y€E, ie. ||f —¢g|| <e
q.e.d.

PROBLEMS

1) Let E be a metric space, F a normed space, H a bounded subset of ?;-o (E).
For each v € E, let ¥ be the mapping ¥ — #(x) of H into F, which is continuous and
bounded. Show that in order that H be equicontinuous at x,, it is necessary and

sufficient that the mapping # — # of E into @;o (H) be continuous at z,.
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2) Let E be a metric space, F a normed space, (f,) an equicontinuous sequence

in %Eo (E). Show that the set of points x € E, such that (f,(#)) is a Cauchy sequence
in F, is closed in E.
3) Let E be the interval [0, + o[ in R, and for any =, let

falt) = sin |/ + 4n?a?
in E. Show that the sequence (f,) is equicontinuous in E and converges simply to 0
in E, but that it is not relatively compact in the space %f{ (E) (show that if it were,
it would converge uniformly to 0).
4) Let E be a metric space, F a normed space, (f,) a sequence of functions in

(K? (E), which is equicontinuous at a point 2 € E. Show that if the sequence (f,(a))

is convergent to b € F, then for any sequence (x,) in E such that lim x, = a, the
n—» 0

sequence (f,(%,)) converges to b in F.

5) Let E be a metric space, F a normed space. We say that a subset H of €r (E)
is uniformly equicontinuous if for any e > 0, there is a § > 0 such that the relation
d(x,y) << 6 implies ||f(x) — f(y)|| < ¢ for every f € H. Any function f € H is uniformly
continuous; conversely a finite set of uniformly continuous functions is uniformly

equicontinuous. Show that for a bounded subset H of (6’? (E), the following properties
are equivalent:
o) H is uniformly equicontinuous.

B) The mapping » — 7 of E into %r (H) (problem 1) is uniformly continuous.
») The mapping (%,x) — u(x) of H X E into F (H being considered as a subspace

of €7 (E)) is uniformly continuous.
6) Let E be a metric space, F a normed space, H a uniformly equicontinuous

subset of €p (E) (problem 5); show that the closure of H in @ (E) is uniformly
equicontinuous.

7) Let E be a compact metric space, F a normed space. Show that any equi-
continuous subset of €f(E) is uniformly equicontinuous.

8) Let E be a compact metric space, F a Banach space. Show that if a subset H
of €r(E) is relatively compact, the union of all the sets H(x), where x € E, is relatively
compact in F (use problem 5 of section 7.2).

9) Show that the conclusion of Ascoli’s theorem (7.5.7) is still valid if instead
of supposing H(x) relatively compact in F for every x € E, one only supposes H(x)
relatively compact for all ¥ € D, where D is a dense subset of E.

10) Let E be a metric space, H an equicontinuous subset of € i‘{ (E). Show that
the set A of points » € E such that H(#) is bounded in R is both open and closed in E.
If E is eompact and connected and if for one point %, € E, H(x,) is bounded in R,
then H is relatively compact in ¥'Rr(E).

11) Let E be a metric space, H an equicontinuous subset of (gﬁo(E). For each
% €E, let v(x) = sup f(»), w(x) = inf f(x); show that if v (resp. w) is finite at

jeH feH

one point x,, it is finite and continuous in a neighborhood of %,; if v(x,) = + o
(resp. w(xy) = — o) then v(x) = + oo (resp. w(x) = — o) in a neighborhood of x,.
Conclude that the set of points x € E for which v(#) (resp. w(x)) is finite is both open
and closed in E.
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6. Regulated functions

Let I be an interval in R, of origin @ and extremity b (a or b or both
may be infinite), F a Banach space. We say that a mapping f of I into F
is a step-function if there is an increasing finite sequence (%)o<i<n Of
points of I(closure of I in R) such that %y = a, %, = b, and that / is constant
in each of the open intervals ]x,x, ;[ (0 <i<<n —1).

For any mapping / of I into F and any point x e I distinct from b, we

say that f has a limit on the right if  lim f(x) exists; we then write

vel,Ly>=x
y—>rx

the limit f(x+). Similarly we define for each point x €I distinct from a,
the limit on the left of f at x, which we write f(x—); we also say these
limits are one-sided limits of f. A mapping f of I into F is called a regulated
function if it has one-sided limits at every point of I. It is clear that any
step-function is regulated.

(7.6.1) In order that a mapping f of a compact interval 1 = [a,b] into F be
regulated, a mecessary and sufficient condition is that | be the limit of a
uniformly comvergent sequence of step-functions.

a) Necessity. For every integer n, and every % €I, there is an open
interval V(x) = ]y(x),2(x)[ containing #, such that [|f(s) — 10 < 1/n if
either both s, are in ]y(x),x[ N I or both in Jx,2(x)[N L. Cover I with a
finite number of intervals V(x;), and let (¢;)g<;<wm D€ the strictly increasing
sequence consisting of the points a,b,%;,y(x;) and z(%;). Aseachc; is in some
V(x;), ¢4, is either in the same V(x;) or we have ¢; ., = z(x,;), for
j <m—1; in other words if s,¢ are both in the same interval ]¢;¢; [,
then ||f(s) — f(#)|| < 1/n. Now define g, as the step-function equal to f at
the points ¢;, and at the midpoint of each interval Jc;,c; .;[, and constant
in each of these intervals, It is clear that ||f — g,|| < 1/n.

b) Sufficiency. Suppose f is the uniform limit of a sequence (f,) of
step-functions. For each &> 0 there is an # such that [If — 1| < ef3;
now for each x €I, there is an interval ]c,d[ containing % and such that
|I£,(s) — F.(®)]| < /3 if both s and ¢ are in J¢,x[ or both in ]x,4[; hence
under the same assumption we have ||f(s) — f(f)|| < &, and this proves the
existence of one-sided limits of f at x, since F is complete (3.14.6).

Another way of formulating (7.6.1) is to say that the set of regulated
functions is closed in #g(E), and that the set of step-functions is dense in
the set of regulated functions.
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(7.6.2) Any continuous mapping of an interval IC R into a Banach space
is regulated,; so is any monotone mapping of 1 into R.

This follows from the definition, taking into account (3.16.5) and (4.2.1).

PROBLEMS

1) Let f be a regulated mapping of an interval I € R into a Banach space F. Show
that for each compact subset H of I, f(H) is relatively compactin F; give an example
showing that f(H) need not be closed in F.

2) The function f(x) = #sin (1/#) (f(0) = 0) is continuous, hence regulated
in I = [0,1], and the function g(x) = sgnx (g(¥) = 1if ¥ >0, g(0) = 0, g(x) = — 1
if ¥ < 0) is regulated in R, but the composed function gof is not regulated in I.

3) Let I = [4,b] be a compact interval in R. A function of bounded variation
in I is a mapping f of I into a Banach space F, having the following property: there
is a number V== 0 such that, for any strictly increasing finite sequence (%)o<i<n

n—1

of points of I, the inequality X ||f(t;4+1) — /{#)]] <<V holds.

i=

a) Show that f(I) is relatively compact in F (prove that f(I) is precompact, by
an indirect proof).

b) Show that f is a regulated function in I (use a) and (3.16.4)).

¢) The function g defined in [0,1] as equal to x2 sin (1/#?) for » 3£ 0 and to 0 for
% = 0, is not of bounded variation, although it has a derivative at each point of I.




Chapter VI

Differential Calculus

The subject matter of this Chapter is nothing else but the elementary
theorems of Calculus, which however are presented in a way which will
probably be new to most students. That presentation, which throughout
adheres strictly to our general “geometric” outlook on Analysis, aims at
keeping as close as possible to the fundamental idea of Calculus, namely the
“local” approximation of functions by linear functions. In the classical
teaching of Calculus, this idea is immediately obscured by the accidental
fact that, on a one-dimensional vector space, there is a one-to-one cor-
respondence between linear forms and numbers, and therefore the deriv-
ative at a point is defined as a number instead of a linear form. This slavish
subservience to the shibboleth of numerical interpretation at any cost
becomes much worse when dealing with functions of several variables:
one thus arrives, for instance, at the classical formula (8.9.2) giving the
partial derivatives of a composite function, which has lost any trace of
intuitive meaning, whereas the natural statement of the theorem is of
course that the (total) derivative of a composite function is-the composite
of their derivatives (8.2.1), a very sensible formulation when one thinks in
terms of linear approximations.

This ““intrinsic”’ formulation of Calculus, due to its greater ‘‘abstrac-
tion”, and in particular to the fact that again and again, one has to leave
the initial spaces and to climb higher and higher to new “function spaces’’
(especially when dealing with the theory of higher derivatives), certainly
requires some mental effort, contrasting with the comfortable routine of
the classical formulas. But we believe that the result is well worth the
labor, as it will prepare the student to the still more general idea of
Calculus on a differentiable manifold; the reader who wants to have a
glimpse of that theory and of the questions to which it leads can look into
the books of Chevalley [9] and de Rham [12]. Of course, he will observe
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that in these applications, all the vector spaces which intervene have
finite dimension; if that gives him an additional feeling of security, he
may of course add that assumption to all the theorems of this chapter.
But he will inevitably realize that this does not make the proofs shorter
or simpler by a single line; in other words, the hypothesis of finite dimen-
sion is entirely irrelevant to the material developed below; we have
therefore thought it best to dispense with it altogether, although the
applications of Calculus which deal with the finite dimensional case still
by far exceed the others in number and in importance.

After the formal rules of Calculus have been derived (sections 8.1 to 8.4),
the other sections of the Chapter are various applications of what is probably
the most useful theorem in Analysis, the mean value theorem, proved
in section 8.5. The reader will observe that the formulation of that theorem,
which is of course given for vector valued functions, differs in appearance
from the classical mean value theorem (for real valued functions), which
one usually writes as an equality f(b) — f(2) = f'(c)(b — a). The trouble
with that classical formulation is that: 1° there is nothing similar to it
as soon as f has vector values; 2° it completely conceals the fact that
nothing is known on the number ¢, except that it lies between a and b,
and for most purposes, all one needs to know is that f'(¢) is a number which
lies between the g.l.b. and L.u.b. of /' in the interval [4,b] (and #ot the fact
that it actually is a value of /). In other words, the real nature of the mean
value theorem is exhibited by writing it as an ¢nequality, and not as an
equality.

Finally, the reader will probably observe the conspicuous absence of
a time-honored topic in Calculus courses, the ‘“Riemann integral”. It
may well be suspected that, had it not been for its prestigious name, this
would have been dropped long ago, for (with due reverence to Riemann’s
genius) it is certainly quite clear to any working mathematician that
nowadays such a “‘theory” has at best the importance of a mildly in-
teresting exercise in the general theory of measure and integration. Only
the stubborn conservatism of academic tradition could freeze it into a
regular part of the curriculum, long after it had outlived its historical
importance. Of course, it is perfectly feasible to limit the integration
process to a category of functions which is large enough for all purposes
of elementary Analysis (at the level of this course), but close enough to
the continuous functions to dispense with any consideration drawn from
measure theory; this is what we have done by defining only the integral
of regulated functions (sometimes called the “Cauchy integral”). When
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one needs a more powerful tool, there is no point in stopping halfway, and
the general theory of (“‘Lebesgue”) integration is the only sensible answer.

1. Derivative of a continuous mapping

Let E, F be Banach spaces (both real or both complex) and A an open
subset of E. Let f, g be two mappings of A into F; we say that f and g are
tangent at a point xy€ A if lim  ||f(x) — g(x)||/||x — %o|| = 0; this

X-> X, XA X,

implies of course that f(x,) = g(x%,). We note that this definition only
depends on the topologies of E and F; for if f, g are tangent for the given
norms on E and F, they are still tangent for equivalent norms (5.6). If f,g
are tangent at x,, and g,k tangent at x;, then f h are tangent at %, as follows
from the inequality ||f(x) — A(x)|| < ||/(*) — g(#)|| + |lg(x) — A(x)]].

Among all functions tangent at x, to a function f, there is at most one
mapping of the form x — f(%,) + #(x — x;) where # is linear. For if two
such functions x — (%) + #%,(x — %), £ —f(x,) + ua(x — x,) are tangent at x,,

this means, for the linear mapping v=u; —u,, that lim ||v(y)||/||y|| =0.
y—0,y#0

But this implies » = 0, for if, given & > 0, there is 7 > 0 such that ||y|| <7

; as ¢ is arbitrary, we see that v(x) = 0 for
any x.

We say that a continuous mapping f of A into F is differentiable
at the point %, € A if there is a linear mapping # of E into F such that
x — f(%) + u(x — x;) is tangent to f at x,, We have just seen that this
mapping is then unique; it is called the derivative (or fotal derivative) of f
at the point x), and written f'(x,) or Df(x,).

(8.1.1)  If the continuous mapping f of A into F is differentiable at the point
%y, the derivative f'(xy) ts a continuous linear mapping of E into F.

Let w = f'(x,). Given & > 0, there is » such that 0 <7 < 1 and that
|[¢]| <7 implies [[f(%g+¢) — f(x0) || < /2 and ||f(xo+ ) — f(xo) — u(2) || <elft]|/2;
hence ||t|| < 7 implies ||u(f)|| < &, which proves « is continuous by (5.5.1).

The derivative (when it exists) of a continuous mapping f of A into F,
at a point xj € A, is thus an element of the Banach space L(E;F) (see (5.7))
and #not of F. In what follows, for v € #(E;F) and ¢t E, we will write
u-t instead of u(f); we recall (5.7) that ||u-¢|| < ||#||-||¢|| and that
lall = sup [l .
it <1
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When E has finite dimension » and F has finite dimension m, f(xo)
can thus be identified to a matrix with m rows and # columns ; this matrix
will be determined in (8.10).

Examples. (8.1.2) A constant function is differentiable at every point
of A, and its derivative is the element 0 of Z(E; F).

(8.1.3)  The derivative of a continuous linear mapping u of E into F exists
at every point x € E and Du(x) = u.

For by definition #(x) + #(¥ — xy) = u(x).

(8.1.4) Let EF,G be three Banach spaces, (x,y) — [x-y] a continuous
bilinear mapping of E X F into G. Then that mapping is differentiable
at every pownt (x,y) €E X F and the derivative is the linear mapping
(s8) = [x-8]+ [s- 5]

For we have

[ +8)- v+ 9] =[xyl — [#-¢] — [s-y] = [s-1]

and by assumption, there is a constant ¢ >0 such that ||[s -£]||<c - |[s]] - ||¢]|
(3.5.1). For any & > 0, the relation sup (||s||,|[¢]|) = ||(s.¢)|| < ¢fc implies
therefore

l(x+s)- (v +9]—[x-y]1— [x- 1= [s-y]l/ll(s.H)]| <

which proves our assertion.
That result is easily generalized to a continuous multilinear mapping.

(8.1.5) Suppose F = F,; X Fy X ... x F,, is a product of Banach spaces,
and f = (fy,....f,) a continuous mapping of an open subset A of E into F.
In order that f be differentiable at x,, a necessary and sufficient condition is that
each [; be differentiable at x,, and then f(x,) = (F1(%0)s -« - (%)) (when
Z(E; F) is identified with the product of the spaces Z(E;F))).

Indeed, any linear mapping # of E into F can be written in a unique
way # = (uy,...,u,), where u, is a linear mapping of E into F,, and we
have by definition ||u(x)|| = sup (||uy(#)]],....||#,(%)||), whence it follows
(by (5.7.1) and (2.3.7)) that ||u|| = sup (||u]|,...,||#]|]), which allows the

identification of #(E; F) with the product I7 £(E; F;). From the defini-

t=1
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tion, it follows at once that u is the derivative of f at x, if and only if 4,
is the derivative of f; at x, for 1 <7 .

Remark. Let EF be complex Banach spaces, and E,F, the underlying
real Banach spaces. Then if a mapping f of an open subset A of E into F
is differentiable at a point x,, it is also differentiable with the same deriv-
ative, when considered as a mapping of A o F, (a linear mapping of E
into F being also linear as a mapping of E, into Fy). But the converse is
not true, as the example of the mapping z — % (complex conjugate) of C
into itself shows at once; as a mapping of R? into itself, #: z — Z (which
can be written (x,y) — (¥,—¥)) is differentiable and has at each point a
derivative equal to %, by (8.1.3); but « is not a complex linear mapping,
hence the result. We return to that question in chapter IX (9.10.1).

When the mapping f of A into F is differentiable at every point of A,
we say that f is differentiable in A; the mapping x — f'(x) = Df(x) of A
into £(E; F) will be written /' or Df and called the dersvative of f in A.

2. Formal rules of derivation

(8.2.1) Let E,F,G be three Banach spaces, A an open neighborhood of xg € E,
/ a continuous mapping of A into F, y, = f(x,), B an open neighborhood of
yo in F, g a continuous mapping of B into G. Then if f is differentiable at
%y and g differentiable at y,, thé mapping h = gof (which is defined and
continuous in a neighborhood of x,) is differentiable at x,, and we have

K (%g) = g'(¥o) o f'(%)-

By assumption, given & such that 0 < & < 1, there is an 7 > 0 such that,
for ||s|| < 7 and |Jt|]| < 7, we can write

f(%o + 8) = f(xg) + £ (%) = s + 04(5)
g(yo +2) = 8(yo) + &'(¥o) - ¢ + 05(t)

with |Joy(s)]| < el|s|| and |joo(®)|| < ¢|lt||. On the other hand, by (8.1.1)
and (5.5.1), there are constants &,b such that, for any s and ¢,

7' (%) - sl| < alls||  and  |[|g"(yo) - 2l < OII4]|

hence (17 (%) * 5 + 04(s) || < (@ + )] Is]]
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for ||s|| < 7. Therefore, for ||s|| < 7/(a + 1), we have

[loa(F'(%o) = 5 + 01(9))|| < (@ + V)e]|s]|
and llg’(¥o) * 01(s) “<b3HSH

hence we can write

h(xg + 5) = g(¥p + ['(%g) * s + 04(s)) = &(¥g) + &'(Wo) - (' (%) * 5) + 05(s)
with [loa(s)]| << (@ + b + )e]ls|l,
which proves the theorem.

(8.2,1) has of course innumerable applications, of which we mention
only the following one:

(8.2.2) Let /g be two continuous mappings of the open subset A of E into F.
If f and g are differentiable at %y, 50 are f + g and of (« scalar), and we have

{/ + )" (%) = /(%) + &'(%0) and (af)’(xo) = af'(%y)-

The mapping f + g is composed of (#,v) —u + v, mapping of F X F
into F, and of » — (f(%),g(x)), mapping of A into F X F; both are dif-
ferentiable by (8.1.3) and (8.1.5), and the result follows (for f + g) from
(8.2.1). For «f the argument is still simpler, using the fact that the mapping
# — au of F into itself is differentiable by (8.1.3). Of course, (8.2.2) could
also be proved very simply by direct arguments.

Let E,F be two Banach spaces, A an open subset of E, B an open subset
of F. If A and B are homeomorphic, and there exists a differentiable
homeomovphism f of A onto B, it does nof follow that, for each xy € A, /(%)
is a linear homeomorphism of E onto F (consider e.g, the mapping § — &3
of R onte itself).

(8.2.3) Let f be a homeomorphism of dan open subset A of a Banach space E
onto an open subset B of a Banach space F, g thé inverse homeomorphism.
Supposeé f is differentiable at the point x,, and f'(x,) ts a linear homeomorphism
of E oito F; then g is differentiable at yy = f(x)) and g'(y,) is the inverse
mapping to f'(xy) (cf: (10.2.5)).

By assumption, the mapping s — f(%, + s) — f(%,) is a homeomorphism
of a neighborhood V of 0 in E onto a neighborhood W of 0 in F, and the
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inverse homeomorphism if ¢ —g(y, + £} — g(y,)- By assumption, the
linear mapping f'(%,) of E onto F has an inverse # which is continuous,
hence (5.5.1) there is ¢ > 0 such that [|u(t)|| < cl|¢|| for any t € F. Given
any ¢ such that 0 < & < 1/2¢, there is an » > 0 such that, if we write
Hxo+5) — F(%o) =7 (%,) s+ 0,(s), the relation ||s|| <7 implies ||o,(s)|| <ells]|.
Let now 7’ be a number such that the ball |[¢|| <7’ is contained in W and
that its image by the mapping ¢ — g(y, + t) — g(y,) is contained in the
ball ||s||<<7. Let z=g(yo+ %) — g(¥); by definition, for [|¢]| <7,
this equation implies ¢ = f(xy + 2) — f(x,) and as ||z|| <7, we can write
t = f'(xg) - z + 0,(2), with ||o,(2)|| < ¢|[z]]. From that relation we deduce

u-t=u-(f(x) 2 +u-0,2) =2+ u-0,(2)

by definition of %, and moreover ||u - 0,(2)|| < ¢|lo,(2)]] < cell2|| < 3][2]],
hence [~ ][ > (]| — 4lle| = 4{jl]; therefore |jz]| < 2{lu- ]| < 2¢l]|
and finally ||u - 0,(2)|| < ce||z|| < 2¢%][¢]|. We have therefore proved that
the relation |[¢|]| <7’ implies [|g(yy + ) — g(vy) — % #]| < 2¢%]}¢||, and
as ¢ is arbitrary, this completes the proof.

The result (8.2.3) can also be written (under the same assumptions)

(8.2.3.1) () (H#)) = (' (%)) 72

PROBLEMS

1) Let E be a real prehilbert space. Show that in E the mapping » — ||»|| of E
into R is differentiable at every point # % 0 and that its derivative at such a point
is the linear mapping s — (s|#)/||#||.

2) a) In the space (¢,) of Banach (section 5.3, problem 5) show that the norm
# — ||#]| is differentiable at a point ¥ = (&,) if and only if there is an index n, such
that |£,,| > |&4| for every n # n,. Compute the derivative.

b) In the space /* of Banach (section 5.7, problem 1), show that the norm » — ||#||
is not differentiable at any point (use (8.1.1) and problem 1 c) of section 5.7).

3) If I = [0,1], show that in the space ¥Rr(I), the norm » — ||#| is not differen-
tiable at any point.

4) Let f be a differentiable real valued function defined in an open subset A of
a Banach space E.

a) Show that if at a point #,€ A, f reaches a relative maximum (section 3.9,
problem 6), then Df(x,) = 0.

b) Suppose E is finite dimensional, A is relatively compact, f is defined and
continuous on A, and equal to 0 on the boundary of A. Show that there exists a
point %, € A where Df(%,) = 0 (‘“Rolle’s theorem’”; use a) and (3.17.10)).



148 VIII. DIFFERENTIAL CALCULUS
3. Derivatives in spaces of continuous linear functions

(8.3.1) Let EF,G be three Banach spaces. Then the mapping (u,v) — vou
(also written vu) of L(E; F) x Z(F; G) into L(E; G) is differentiable, and
the derivative at the point (uy,v,) 1S the mapping (s,t) — vgos - fou,.

If we observe that, by (5.7.5), the mapping (#,v) — vou is bilinear and
continuous, the result is a special case of (8.1.4).

(8.3.2) Let EF be two Banach spaces, such that there exists at least a linear
homeomorphism of E onto F. Then the set H of these linear homeomorphisms
is open in L(E; F); the mapping u —u=" of H onto the set A~ of linear
homeomorphisms of F onto E is continuous and differentiable, and the derivative
of u —u=t at the point uy is the linear mapping (of L(E; F) into L(F; E))
§ = — g losouy ™1,

a) We consider first the case F = E, and write I for the identity mapping
of E. Then:

(8:3.21) If ||| < 1 in L(E;E), the linear mapping 1 + w is a homeo-
morphism, its inverse (1 + w) =1 is equal to the sum of the absolutely convergent

series 5 (— 1)*w", and we have
n=0
(8.3.22) (2 4 2) =1 + ]| < [l */(1 — [[]))-

N
We have %'0 le|* = (1 — [[e][¥ 1)/ — |l|) < 1/(1 — |[]]), hence,

by (5.7.5), (5.3.1), (5.3.2) and (5.7.3), the series X' (— 1)"»” is absolutely
n=0

convergent in Z(E; E). Moreover, we have

1+ w)(l —w+ w4+ ...+ (— NV
=(l—w+4w+ ...+ (— D1 +w)=1—"",

and as w¥*! tends to 0 with 1/N, we have by definition and by (5.7.5),
for the element v = X (— 1)"»" of L(E;E), (1 +w)v=2v(l +») =1,

n=20
which proves the first two statements; the inequality (8.3.2.2) follows from
the relation (1 4+ @)~ — 1 + » = w1 — w + »?* + ...) and from (5.7.5)
and (5.3.2).
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b) Consider now the general case; suppose se€ Z(E;F) is such that
I|s]] - ll#g '|| < 1; then the element 1 + %, s, which belongs to Z(E; E), has
an inverse, due to (5.7.5) and (8.3.2.1); as we can write uy -+ s = #y(1 -+ %5 1s),

the same is true for #, -+ s, the inverse being (1 + #g 's)~lu; '; hence
we have

(o + )7t —ug ' = ((L+ug ") — Dug .
Applying (8.3.2.2) to w = w5 ''s, we obtain, for ||s|| < 1/||uy ||
(g + )71 — gt + g s ] < [foag P {121 — [Joag |- [Is]))-

Therefore, if we take ||s|| < 1/2||uy !

|, we have
[l(g + )72 — ug * + ug " s M| <2

with ¢ = 2||u; '|[3, and this ends the proof.

4. Derivatives of functions of one variable

When we specialize E to a one-dimensional vector space (identified to
R or C), we know that #(E; F) is naturally identified to F itself, a vector
b € F being identified to the linear mapping & — b¢ of E into F (5.7.6).
If / is a differentiable mapping of an open set A € E into F, its derivative
Df(&,) at a point &, € A is thus identified to a vector of F, and the mapping Df
to a mapping of A into F. If F itself is one-dimensional (identified to R or C),
we obtain the classical case of the derivative (at a point) as a number.
The general results obtained above boil down in that last case to the
classical formulae of calculus; for instance, (8.3.2), when E and F are
one-dimensional, is simply the formula giving the derivative of 1/& as
equal to — 1/&2 for £ % 0. We explicitly formulate the following con-
sequence of (8.2.1):

(8.4.1) Let E,F be two real (resp. complex) Banach spaces, f a differentiable
mapping of an open subset A of E into F, g a differentiable mapping of an
open subset I of R (resp. C) into A; then the derivative at & € 1 of the composed
mapping h = fog of 1 into Fis the vector of F equal to Df(g(£)) - g'(£) (remember
g'(¢) is in E, and Df(g(¢)) in Z(E; F)).
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Remarks. — Suppose F is a complex Banach space, f a differentiable
mapping of an open subset ACC into F; its derivative at z€ A is thus
identified with a vector of F. Let now g be a differentiable mapping of an
open subset I of R into € (considered as the underlying 2-dimensional real
vector space); then fog is a differentiable mapping of I into the underlying
real Banach space F, of F, and (8.4.1) shows that its derivative at a point
Eel is g'(&)(Df(g(&)) (remember here g’'(£) is a complex number).

When E = R and F is a real Banach space, the notion of derivative can
be greatly generalized: for any subset J € R and any point &, € J such
that &, is a cluster point of J — {&;}, we can define, for a mapping f of J
into F, the derivative of f at &, (with respect to J) as the limit (when it exists)

lim  (f(§) — H(&))/(& — &)
E—>& 6] — {4}

When the limit exists, we say that f is differentiable at &, with respect to J.
We shall only consider the case in which J is an ¢nferval of R; then at the
interior points of I, the derivative with respect to J coincides (when it
exists) with the usual one; at the origin « (resp. extremity £) of J, when
it belongs to J, the derivative of f with respect to J is also called the deriv-
ative on the right (resp. on the left) of f at the point o (resp. ) and written
fa(@) or D, f(a) (resp. ]‘;(ﬁ) or D_f(B)). Theorem (8.4.1) is still valid when
in the assumptions we suppose I is an interval and g has a derivative with
respect to I at &; then if / is differentiable in A, fog has a derivative at £
with respect to I given by the same formula (g'(§) being replaced by the
derivative of g with respect to I). The proof is that of (8.2.1) with the
obvious modifications. We omit the most usual consequences of that
theorem, such as the result corresponding to (8.2.2).

PROBLEMS

1) a) Let f be a continuous mapping of an interval I € R into a Banach space E.
In order that f be differentiable at an interior point x, of I, it is necessary and sufficient
that (f(xy + %) — f(% — k))/(k + k) have a limit in E when the point (k,k) tends to
(0,0) in the set of pairs such that 2> 0, 2 > 0.

b) The real function f equal to #2sin (1/x) for » 5 0, to 0 for x = 0, is differen-
tiable in R, but (f(¥) — f(¥))/(¥ — ¥) has no limit when (#,y) tends to (0,0) in the set
of pairs such that x > 0, y > 0, » 5% y.

c) In the interval I = [0,1], the sequence of continuous functions f, is defined as
follows: f,(#) = ¢; for each # > 1, f, has the form at + g in each of the 3" intervals

k
§;<’<

pre for 0 << k<< 3* — 1; moreover
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* k k 1 B 2
gzt ) =t-1lzo=x) Bla=t5)=F-ilg=+ 3 )

k 2 k 1
=+ 3=l T3
Show that the sequence (f,) converges uniformly in I towards a continuous func-
tion which has no derivative at any point of I (use a)).

2) Let f be a continuous mapping of an open interval I C R into a Banach space E,
which has at every point # € I both a derivative on the left ]‘;(t) and a derivative on
the right f;(¢).

a) Let U be a non empty open subset of E, A the set of points feI such that
fat) € U. For any o > 0, let B, be the subset of I consisting of points ¢ such that

there is at least a point s€I for which t —a<{s < ¢ and (f() — f(s))/(t — s) € U;
show that B, is open and that A n { B, is denumerable (use problem 3 of section 3.9).

Conclude from that result that the set of points £ € A such that fé(t) ¢ U is at most
denumerable.

b) Deduce from a) that the set of points ¢ € I such that /;(t) # f,/i(t) is at most
denumerable. (Observe first that f(I) is a denumerable union of compact metric
spaces, and by considering the closed vector subspace of E generated by f(I), reduce
the problem to the case in which the topology of E has a denumerable basis (U,) of
open sets; then remark that for every pair of distinct points a,b of E there is a pair
of sets Up,Uq such that a e Up, beU; and UpnU,; = a.)

3) a) Let f be defined in R? by the conditions

2
1) =2 o x— (68 £ 00, S0 =0,

1+ &2

Show that for any xeR? and any y€R?, the limit lim (f(x 4+ ty) — f(#))[t=g(%.y)
t—0,¢#0

exists but that y — g(0,y) is not linear (hence f is not differentiable at the point 0).
b) Let f be defined in R2? by the conditions

.3
= St k= ()£ 00, HO) =0,
&1+ &

Show that the limit g(x,y) exists for every x and y and y — g(»,y) is linear for
every x € R2, but that f is not differentiable at the point 0.

4) a) Let f be a continuous mapping of an open subset A of a Banach space E
into a Banach space F. We say that at x;,€ A the function f is quasi-differentiable
if there exists a linear mapping « of E into F, having the following property: for any
continuous mapping g of I = {0,1] into A such that g(0) = x, and that the derivative
g’(0) of g at 0 (with respect to I) exists, then ¢ — f(g(f)) has at the point ¢ = 0 a deriv-
ative (with respect to I) equal to u(g’(0)). The linear mapping «» is then called a
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quasi-derivative of f at x,. Show that if f is quasi-differentiable at #,, its quasi-deriv-
ative is unique. Extend property (8.2.1) to quasi-differentiable mappings.

b) Show that if f is quasi-differentiable at %y, its quasi-derivative u is a continuous
linear mapping of E into F. (Suppose, as one may, that %, = 0, Hxg) = 0. Use
contradiction: if # is not bounded in the ball B(0;1), there exists a sequence (a,)

of vectors in E such that [|a,|| = 1, and a sequence (¢,) of numbers > 0, such that
lim ¢, = 0 and that ||z, 1f(t,,a,,)l] = a, tends to 4 oo; one can suppose that the
#?—» 0

sequences (#,,) and (V;;t") are decreasing and tend to 0. Define a continuous mapping g
of [0,1] into E such that g(0) = 0, that g’(0) exists and is equal to 0, and that

g (V“ntn) = lyly).

5) a) Let E,F be two Banach spaces, f a continuous mapping of an open subset A
of E into F. Show that if is differentiable at x, € A, it is quasi-differentiable at %
and its quasi-derivative is equal to its derivative.

b) Suppose E has finite dimension. Show that if f is quasi-differentiable at Xy €A,
f is differentiable at x,. (Use contradiction: let  be the quasi-derivative of f at X,
and suppose there is « > 0 and a sequence (#,) of points of A, tending to x,, such that
[1F(#n) — F(%)— u - (%4 — %,)|| = a||#y — %||. Using the local compactness of E,
show that one may suppose that the sequence (||x, — #,||) is decreasing, and that
the sequence of the vectors z, = (#, — %g)/||#, — %,|| tends to a limit in E; then
define a continuous mapping g of [0,1] into E such that g(0) = %y, that g’(0) exists,
but that u(g’(0)) is not the derivative of ¢ — f(g()) at t = 0.)

6) Let I = [0,1], and let E be the Banach space Gr(I). In order that the mapping
# — [|#|| of E into R be quasi-differentiable at a point #,, it is necessary and sufficient
that the function £ — |#,(?)| reaches its maximum in I at a single point e I; the
quasi-derivative of # — |[|#|| at #, is then the linear mapping  such that u(z) = z(t,)
i x(tg) > 0, ulz) = — z(ty) if #y(f) < O (compare section 8.2, problem 3). (To
prove the condition is necessary, suppose |#,| reaches its maximum at two distinct
points %% at least; let y be a continuous mapping of I into itself, equal to 1 at 7,
to 0 at #; examine the behavior of (||, + Ay|| — ||#||)/4 as the real number A % 0
tends to 0. To prove the condition is sufficient, let 1 — z; be a continuous mapping
of I into E, having a derivative a € E at A = 0 and such that z, = 0; observe that
if #; is the largest number in’I (or the smallest number in I) where t—|xo(t) + 2a(t)]
reaches its maximum, then #; tends to #, when 1 tends to 0.)

7) Let f be a continuous mapping of an open subset A of a Banach space E into
a Banach space F. Suppose f is lipschitzian in A: this means (see (10.5.4)) that
there exists a constant k4 > 0 such that ||f(x,) — f(x,)|| << k||#, — #|] for any pair
of points of A. Let #,€ A, and suppose there is a linear mapping « of E into F such
that, for any vector a 3 0 in E, the limit of (f(x, + a#) — f(%,))/t when ¢ # O tends
to 0 in R, exists and is equal to u(a). Show that / is quasi-differentiable at #,.

8) a) Let a,b be two points in a Banach space E. Show that the mapping
t— ||la + || of R into itself has a derivative on the right and a derivative on the left
for every ¢ € R (prove that if 0 < ¢ < s, then (|| + bt|| — |la]])/t << (||@ + bs|| — ||a|])/s
and use (4.2.1)).
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b) Let u be a continuous mapping of an interval I € R into E. Show that if at
a point #, € I, # has a derivative on the right, then ¢ — |[u(#)|| has at #, a derivative on
the right and

D [[u(to)| < [[D- utto)]|
(apply a)).

c) Let U be a continuous mapping of I into Z(E; E). Show that if at a point
to€ I, U has a derivative on the right and U(Z,) is a linear homeomorphism of E onto
itself, then the mapping ¢ — |[(U(#)) ||, which is defined in a neighborhood of #,
has a derivative on the right at #;,, and that

Dy (U "YY< D4 Ul

5. The mean value theorem

(8.5.1) Let I = [a,8] be a compact interval in R, | a continuous mapping
of I into a Banach space ¥, @ a continuous mapping of 1 into R. We suppose
that there is a denumerable subset D such that, for each E€1 — D, f and ¢
have both a derivative at & with respect to 1, and that ||f'(§)|| < ¢’ (8). Then

118 — Ha)|] < @(B8) — ¢(a).

Let n — p, be a bijection of N onto D; for any ¢ > 0, we will prove
that ||f(8) — f(a)|] < @(B) — @(«) + (B — a + 1); the left hand side
being independent of g, this will complete the proof. Define A as
the subset of I consisting of the points & such that, for « <{{ <&,
[1/©C) — Ho)|] < @(0) — @) + &8 — &) + ¢ Z'c2‘”. It is clear that

Py <
x€A; if £€Aand a << 7 < & then 5 € A also, by definition; this shows
that if p is the lL.u.b. of A, then A must be either the interval [a,y[ or the
interval [«,y]; but in fact, from the definition of A it follows at once that
A = [a,y]. Moreover, from the continuity of f and ¢ it follows that

@51.0)  |/0) ~ (@)]| < gly) — plo) +ely —a) +& T 2"

Pp<¥

and therefore we need only prove that y = 8. Suppose y < 8; if y ¢ D,
then from the definition of the derivative, it follows that there is an interval
[v,y + 4] contained in I such that, fory <<y + 4

1#0) — 1) — P — DI <5 € — )

l\'>I

and

lp() — o) — N — V| <5 (& —7)

ro| o
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hence
110 = I <IFONE =7 +5E =N <PME—2) +5C—2)

S @l) — o) +-e(C—7)
and from (8.5.1.1) we deduce

[I#(2) — H)]| < (@ +e(l—o)+e X 277
Py <y
<o) —@la) +e(l—a) +¢ 2C2-"

contrary to the definition of y. If y €D, let y = p,,; it follows from the
continuity of f and ¢ that there is an interval [y,y + A] contained in I,
such that for y <<y + 4,

1) — il <52 1ol — o) <5 27"

hence, from (8.5.1.1) we deduce again

N/C) — Ha) || S (&) — (o) +e(y —a) +& 2 277

Py <&

<el)—@l0) +ell—a)+e 2 27"

pp<{
and we reach again a contradiction, q.e.d.

The most important case is that in which ¢(§) = M(§ — «) with M > 0:

(8.5.2) If there is a denumerable subset D of 1 such that, for each £ €1 — D,
[ has at & a derivative with respect to 1 such that ||[f'(§)|| <M, then

[1/(8) — Ho)|] < M(B — d).

For real-valued functions, the same argument as in (8.5.1) proves the
first part of:

(8.5.3) Suppose ¢ is a continuous mapping of I into R such that, at every
point E€l — D, @ has a derivative with respect to 1, and m < ¢'(€) < M.
Thenm(f — o) < @p(B) — @la) < M(B — a); and in fact

m(B — a)< ¢(B) — ple) <M(8 —«),
except when @(&) =) +m(E —a) or p(§) = @(a) + M(§ —a) for £l
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To prove the second part, observe that by the first part, the function
(&) — pla) — m(é — a) is increasing in I; if it is not identically O, then
o(B) — p(a) — m(B — «) > 0. Similar argument for the other inequality.

In a normed space E, we define the segment joining two points a,b as
the set of points @ 4 &(b — a) with 0 T & < 1.

(8.5.4) Let EF be two Banach spaces, | a continuous mapping into F of a
neighborhood of a segment S joining two points xg,xy + ¢t of E. If f 1s dif-
ferentiable at every point of S, then

(%o 4 &) — K| < |lEl] - sup [If' (%o + &O)]|-

0<$<1

Consider the mapping g of the interval I = [0,1] into F defined by
g(&) = f(xy + &t); by (8.4.1), (8.2.2) and (8.1.3), g is differentiable at every
point of I {with respect to I) and its derivative is f'(xy + &f) - ¢; hence the
result by (8.5.2) and (5.7.4).

PROBLEMS

1) a) Let I = Ja,b[ be an open interval in R, and let f be a real function defined
in I and continuous on the left at each point eI (i.e. f(! —) = f(f)). Suppose there
is a denumerable subset D of I such that for each t € I — D, f is increasing on the right
at the point ¢, which means that there is an interval [t¢ + k] (b > 0) such that
f@&) <) for ¢t ¥ <<t + h. Show that f is increasing in I (apply the same kind
of argument as in (8.5.1)).

=]
b) For each number € J = [0,1[, let X 4,/2" be the unique “‘dyadic” devel-

n=0
opment of ¢ such that each a, is either 0 or 1, and there is no index m such that a,, = 1

[ o)
for all # > m (see section 4.2, problem 2). Let f(t) = X a,/4". Show that f is
n=20
continuous on the right at every point e J (i.e. f(f+) = f(#)), is not constant in any
subinterval of ] having more than one point, and that it has at every point t€ ]
a derivative on the right, equal to 0.

2) Show that the conclusion of (8.5.1) is still true if it is only supposed that f and ¢
have both a derivative on the right at every point £ of I — D (8 being excepted),
and that ||fa(8)|| < @a(8)-

3) Let f be a real continuous function defined in a compact interval [«,8], and
having a derivative on the right at every point of Ja,8[. Let m and M be the g.l.b.
and Lu.b. of /,; in Je.,B[.

a) Show that if f is not a mapping ¢—A¢+ u, the set of all numbers (f(x) —f(¥))/(x—¥)
when x and y are arbitrary numbers in [«,8] such that » 5 y, is identical to Jm M[.
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(By suitable substraction of a function of the form ¢ — At + u, reduce the problem

to showing that if /,;(y)f,;(é) < 0 with y < §, there are two distinct points in the
interval ]y,0[, where f takes the same value.)
b) Show that if in addition f has also a derivative on the left at every point of

Ja.B[, then the g.l.b. (resp. lL.u.b.) of f,; and f; in Ja,f[ are the same.

c) Deduce from b) that if / has a derivative at every point of Ja,8[, the image
by f’ of any interval contained in Ja,B[ is connected (see (3.19.1)).

4) In the interval I = [— 1, + 1] of R, let f be the mapping of I into R? defined

1 1
as follows: f(f) = (0,0) if — 1<C¢t<CO0; f() = (12 sin7,zf2 cos 7) if 0<<< 1.

Show that f has a derivative at every point of ]— 1, + 1[, but that the image of
that interval by /' is not connected.

5) Extend (8.5.4) when f is only supposed to be quasi-differentiable (section 8.4,
problem 4) at every point of S, and f’ stands for the quasi-derivative.

6) Suppose F is a real Hilbert space. Deduce (8.5.1) from the same theorem for
real functions g, by applying it to the real valued functions & — (f(£)|a), where a € F.
(This method can in fact be applied to any Banach space, and even to more general
classes of topological vector spaces; see [6] and [23] in the Bibliography.)

6. Applications of the mean value theorem

(8.6.1) Let A be an open connected subset of a Banach space E, f a contin-
uous mapping of A into a Banach space ¥; if f has a derivative equal to 0O
at every point of A, then f is a constant.

Let x, be a point of A, and let B be the set of points x € A such that
f(x) = f(x,). B is closed with respect to A (3.15.1); on the other hand, if
x € B and if U is an open ball of center x contained in A, then U contains
the segment joining x to any of its points y, hence by (8.5.4)
f(y) = f(x) = f(xy). This shows that B is also open with respect to A,
hence equal to A by assumption (3.19).

Better results are available, using (8.5.2): for instance, if E =R
and A is an interval in R, it is only necessary to assume that the derivative
of f exists and is 0 except at the points of a denumerable set.

(8.6.2) Let EF be two Banach spaces, | a differentiable mapping into F
of an open neighborhood A of a segment S joining two points a,b. Then, for
each xye€ A, we have

[17(8) — f(@) — ['(%0) - (0 — @)|| < [[b — 4] - sup I (%) — 1 (%) |-
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Apply (8.5.4) to the mapping
% = f(#) — (%) %

whose derivative is ¢ — (f'(x) — (%)) - ¢ by (8.2.2) and (8.1.3).

(8.6.3) Let A be an open connected subset in a Banach space E, (f,) a sequence
of differentiable mappings of A into a Banach space F. Suppose that: 1° there
exists one point xy € A such that the sequence (f,(%,)) converges in F; 2° for
every point a € A, there is a ball B(a) of center a contained in A and such
that in B(a) the sequence (f,) converges uniformly. Then for each ac A, the
sequence (f,) comverges umiformly in B(a); moreover, if, for each x€A,
f(x) = lim f,(x) and g(x) = lim f,(x), then g(x) = f(x) for each x€A.

Let 7 be the radius of B(a); then by (8.5.4), for any point x € B(a),
we have

Ifs(%) = f(®) = (ful@) — Fm(@)|| < |17 — al]- op IIfnlz) = Fm@ |

’

(8.6.3.1) <7 sup |If,(2) — fu ).
2€ B(a)

As the sequence (/) is uniformly convergent in B(a), and F is complete,
this proves that if the sequence (f,(x)) is convergent at any point of B(a),
it is also convergent at every point of B(a), and in fact uniformly convergent
in B(a). This result first shows that the set U of the points x such that
(,(%)) is a convergent sequence, is both open and closed in A; as it is not
empty by assumption, and A is connected, U = A. We finally prove g is
the derivative of /: given & > 0, there is by assumption an integer %, such
that for n > ng, m > n,, ||[fu(z) — fu(2)|| <efr for every ze B(a), and
moreover ||g(a) — f.(a)|| <e; letting m tend to + oo in (8.6.3.1), we
see that, for # > n, and x € B(a), we have

(%) — H(a) — (1,(%) — ful@)|| < ellx — al|-

On the other hand, for any # > n,, thereis 7’ < 7 such that, for ||x —a|| <7/,
we have ||/f,(¥) — f,(@) — f,(@) - (x — a)|| <é||x — a||; using (5.7.4), we
finally see that for ||x — a|| <7, we have

(%) — Ha) — g(a) - (x — a)|| < Bel|x — 4|

which proves that f’(a) exists and is equal to g(a), q.e.d.



158 VIII. DIFFERENTIAL CALCULUS

Again, we can state better results when E = R and A is an interval in R:

(8.6.4) Let (g,) be a sequence of mappings of an interval 1CR into F, and
suppose that, for each n, g,(£) is the derivative of a continuous function I
except for the points & of a denumerable subset D, C1. Suppose in addition
that: 1° there exists a point & €1 such that the sequence (f,(&,)) comverges
in F; 2° for every point { €1, there is a neighborhood B(L) with respect to 1
such that in B(L) the sequence (g,) converges uniformly. Then for each ¢ € A,
the sequence (f,) converges uniformly in B(L); and if we put {(§) = lim f.(&)

#—» O

and g(&) = lim g, (&), then at every point of A not in U D, 7 =g®).

n—> 0

The proof repeats that of (8.6.3), using (8.5.2) instead of (8.5.4).

(8.6.3) yields in particular:

(8.6.5) Let A be an open connected subset in a Banach space, (u,) a sequence
of differentiable mappings of A into a Banach space F. If for every a € A,
there is a ball B(a) of center a contained in A and such that the series (u.) is
uniformly convergent in B(a), and if there exists a point xye A such that
the series (u,(xy)) is convergent, then for each a € A, the series (u,) is uniformly

[+

convergent in B(a), and its sum s(x) has a derivative equal to X u,(x) at
n=20

every x € A.

PROBLEMS

1) Let f,g be two real valued differentiable functions defined in an open interval
IcR. Itis supposed that () > 0, g(¢) > 0, f/(f) > 0 and g’(#) > 0 in I. Show that
if the function f'[g’ is strictly increasing in I, either f/g is strictly increasing in I, or
there exists ¢ € I such that f/g is strictly decreasing for < ¢ and strictly increasing
for £ = ¢c. (Prove that if f'(s)/g’(s) < f(s)/g(s), then for any ¢ < s, F'(t)/g’(t) < f(t)/e(t)).
Apply to the function

tgt tga
t a
ttgt —atga

. . .4
in the interval ]a, > [ .

2) a) Let I be an open interval in R, #, € R one of its extremities, / a continuous
mapping of I into a Banach space E. Suppose there is a denumerable subset D of I

such that at each point of I — D, f has a derivative on the right. In order that f;(2)
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have a limit when ¢ tends to %, in I — D, a necessary and sufficient condition is that
(f(t) — f(s))/(¢ — s) have a limit when the pair (s,f) tends to (x,,%,) in the set defined
by se€l, tel, s # ¢ Both limits are then the same; if ¢ is their common value,
show that f(#) has a limit in E when ¢ tends to %, in I, and that if / is extended by
continuity to I U {xy} (3.15.5), (f(¥) — f(#,))/(t — #,) tends to ¢ when ¢ tends to #;in I.
(Use the mean value theorem and Cauchy’s criterion.)

b) Show that at every point f€ I — D where f,} is continuous on the left, f has a

derivative on the left. If at el — D, f,; is continuous, f has a derivative at the
point ¢. (Use a).)

3) Let f be a differentiable mapping of an open subset A of E into F (E,F Banach
spaces).

a) In order that f’ be continuous at x, a necessary and sufficient condition is
that, for any £ > 0, there exist § > 0 such that the relations ||s|| < 4,||¢f|| << 6 imply
H(# + s) — Hxg + &) — (%) - (s — B < &lls — ¢].

b) In order that f’ be uniformly continuous in A, a necessary and sufficient condi-
tion is that, for any & > 0, there exist § > 0 such that the relations ||s|| << §, x€ A,
x+ EseA for 0K EL ] imply ||f(x + 5) — f(x) — F/(2) ]| < ¢|]s]|.

4) Let f be a continuous mapping of a compact interval IC R into R, having a
continuous derivative in-I. Let S bé the set of points ¢ € I such that f’(f) = 0. Show

0
that for any & > 0, there exist a sequence (»,) of numbers > 0 such that X 7r,<e¢
n=0

and that the set f(S) is contained in a denumerable union of intervals J,, such that
6(Jn) << 74 (For any a > 0, consider the open subset U, of I consisting of the points
¢ where |f'(f)] < «; use (3.19.6) and the mean value theorem.)

5) Let f be a continuous mapping of an interval I ¢ R into C, such that f(t) # 0
in I and that f;(t) exists in the complement of a denumerable subset D of I. In order
that |f| be an increasing function in I, show that a necessary and sufficient condition
is that Z(7,(8)/f(#) >0 in I — D.

6) Let E,F be two Banach spaces, A an open subset of E, B a closed subset of
the subspace A, whose interior is empty and such that any segment in E which is not
contained in B has an at most denumerable intersection with B. Let f be a contin-
uously differentiable mapping of A — B into F, and suppose that at each point b € B,
the limit of f/(#) with respect to A — B exists. Show that f can be extended by
continuity to a continuously differentiable mappingf of A into F (same method as
in problem 2 a)).

7. Primitives and integrals

Let f be a mapping of an interval I € R into a Banach space F. We
say that a continuous mapping g of I into F is a primitive of f in I if there
exists a denumerable set D €I such that, for any £ eI — D, g is differen-
tiable at £ and g'(&) = f(£).
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(8.7.1) If gy,8, are two primitives of f in I, then g, — g, is constant in 1.
This follows at once from the remark following (8.6.1).

Any interval I in R (not reduced to a point) is the union of an increasing
sequence of compact intervals J,; to check that a function f defined in I
has a primitive, it is only necessary to do so for the restriction of f
to each of the J,: for if &, is an interior point of J,, and if, for each n, g, is
the primitive in J, of the restriction of f to J,, such that g,(£,) = 0 (which
is uniquely determined by (8.7.1)), then the restriction of g, ., to J, is a
primitive of f in J, vanishing at &;, hence equal to g,. We can therefore
define the mapping g of I into F as equal to g, in each of the J,, and it is
obvious that g is a primitive of f in I.

(8.7.2) Let 1 be an interval of R; any regulated mapping of 1 into F (7.6)
(and in particular any continuous mapping into ¥, or — when F =R —
any monotone function) has a primitive in 1.

From the preceding remarks, it follows that we can assume I is compact.
Then, from (8.6.4) and (7.6.1) it follows that we need only prove the theorem
for step-functions. Suppose f is a step-function, (4,)y<,<, an increasing
sequence of points in I = [«,f] such that 4) = «, 4, = 8 and /(&) is equal
to a constant ¢; in JA,4, ;[ (0<<?¢<{#n—1). Then if we define
g such that in each interval [A,4,,,] (0<<i<<n — 1), we have

i—1

g(6) = ¢l — A) + 2 c(Ayr — A), it is readily verified that g is a
k=0
primitive of f.

A primitive of a step-function is also called a piecewise linear function.
For a continuous function, we have furthermore:

(8.7.3) If g is a primitive of a continuous mapping f of 1 into F, then ¢ has
at every point £ € 1 a devivative with respect to 1 equal to f(&).

For it follows from (8.5.2) that for every interval [£,& 4 A]c1
llg(& + &) —g(&) — F(&L]| < sup [|[HE +9) — f(&)]]

0<n<i
for 0K I << 4 and sup ||f(§ + n) — f(&)|| is arbitrarily small with 4,
o<s<n<4i
by assumption.

If gis any primitivé of a regulated function f, the difference g(8) — g(),
for any two points of I, is independent of the particular primitive g which
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B
is considered, owing to (8.7.1); it is written [f(£)d&, and called the integral

of f between o and B. Any formal rule of derivation can be translated into
that notation and yields a corresponding formula of “integral calculus”;
we only write explicitly the three most important ones; for convenience,
if g is a primitive of a regulated function f, we write g’ instead of f, although
¢ does not have in general a derivative everywhere, and when the deriv-
ative exists it may fail to be equal to f (at the points of a denumerable set):

(8.7.4) (“Change of variables”). Let @ be a real-valued primitive of a
regulated function defined in an interval 1; let [ be any regulated function
defined in an interval J D @(1); then, if either f is continuous or @ s monotone,
for any two points a,B of 1, we have

B @(8)
Ef(fp(f))fp'(ﬁ)%: S H()de.
M ()

The only point to check is that f(p(&))¢’(£) is a regulated function, which
follows at once from the assumptions and from the definition of a regulated
function (7.6); then, if g is a primitive of f, both sides of the formula are
equal to g(p(8)) — g(p(a)), due to (8.4.1).

(8.7.5) (“Integration by parts”). Let f,g be primitives of regulated func-
tions defined in an interval 1, and taking their values in two Banach spaces
E,F respectively; and let (x,y) — [x-y] be a continuous bilinear mapping
of E x F into a Banach space G; then, for any points a,B of 1

B B
S [/(8) - g'(§)1aé = [/(B) - g(B)] — [/() - g(x)] —S [F'(&) - g(£)14é.
Again, the only point to check is that [f-g’] and [f - g] are regulated
functions, and then the formula follows from (8.1.4) and (8.4.1).

(8.7.6) Let f be a regulated mapping of 1 into a Banach space ¥, and let u
be any continuous linear mapping of ¥ into a Banach space G. Then

B I
Su(ﬂf))df _ u(j f(&)d§>.

o

This follows from (8.4.1) and (8.1.3).
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The translation in terms of integrals of the mean value theorem reads

(8.7.7) For any regulated function f in a compact interval,

B B
“ j f(E)d5H < [ 11614 < (6 — o) sup 10

o o

Here again, to apply (8.5.1) we have only to verify that & — [1£(&)]] is
regulated.
Finally, we express for integrals results corresponding to (8.6.4) and

(8.6.5):

(8.7.8) If a sequence (g,) of regulated functions, defined in a compact interval

B
I = [a,8], converges uniformly in 1 to g, then the sequence ([g,(£)d&) converges

o

B
to [g(£)dE. (Remember g is regulated by (7.6.1).)

(8.7.9) If a series (u,) of regulated functions, defined in a compact interval

I = [,8], is normally convergent (1.1) in 1, then, if u= X u,, the series
n=0
B : B
of general term [ u,(&)d& is absolutely convergent, and Ju(é)dé =

-3

o B
[ u,(£)dE.
n=0 a
The absolute convergence follows at once from the assumption and the
mean value theorem (8.7.7).

PROBLEMS

1) Let f be a regulated function defined in a compact interval I ¢ R. Show that
for any & > 0, there is a number § > 0 such that for any increasing sequence
NS/ SR 41< - .. < 4, of points of I for which #p 41 — ;<< 4,
we have

xn n—1
”ff@ﬁ“#iﬂmuud—”ﬂu<8

(“Riemann sums’; consider first the case in which f is a step-function).
2) a) Let f be a regulated function defined in a compact interval I = [a,b]. Show
that for any ¢ > 0, there exists a continuous function g defined in I and such that

b
Sl — ewlar<e.
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b) Suppose f takes its values in E; let & be a regulated function defined in I and
taking its values in F, and let (7,y) — [¥+y] be a continuous bilinear mapping of
E X Finto G (E,F,G Banach spaces). Show that

b b ’
Em [ [f@) - b+ s)1dt = [ [F(0) - h(B)]dr.

s—0,s >0

c) Show that
b b b 9 b
lim [f(t)sinntdt = lim [f(t)cosntdt =0,  lim [to)|sinntlar = — [ f()ar.
fn-—>0 a n—>o a N—>0 a T 4

d) Let u be a primitive of /, and suppose %(I) is contained in a ball BC€ E. Show
that if g is a monotone function in I, then

b
J gt = (u(®) — )g(b) + (c — u(a))g(a)

a

where ¢ € B. In particular, if f is a real regulated function, there exists s € I such that

b s b
Jgwat = g(a) [ fr)at + @) [F(e)a

(“the second mean value theorem”).

(For all these properties, use the same method as in problem 1).

8) Let f be a regulated function defined in a compact interval I = [a,b]. For

b—a
any integer n > 0 and any integer k such that 0 <C k< w, let 4y = a + £ —— ;let
n

b — n b
r(n) =T“k Z j) — Jroa

a) Suppose f has a continuous derivative in I. Show that

b—a
lim nr(n) = o ((8) — f(a)).

7n— 0
n—1 *k+1
(Write r(n) = X I (f(#g+1) — f(»)d¢; use the mean value theorem and problem 1.)
k=0 =z,

b) Suppose f is an increasing real function in I; show that

b—a
0L r(n) << = (f(®) — H{a))-

c) Give an example of an increasing continuous function f in I such that nr(n)

b—a
does not tend to

(f(b) — f(a)) when = tends to + oo, (Take for f the limit of
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a sequence (f,) of increasing continuous piecewise linear functions, satisfying the
conditions
2”

b—a b 3
b—a) X fu (d + & _T) -2 ffn(f)d’> — (b — a)(fn(b) — fula))
k=1 2 2 4

and

b—a b—a
tsifat b= =fula+r— for  0<<AE<2%)
4) Show that, when » tends to + oo, the polynomial
x 1
ful®) = [ (1 — 27t [ (1 — 2)7at
0 0

converges uniformly to — 1 in any interval [— 1, — ¢] and converges uniformly to + 1
1 1

in any interval [g, + 1] (¢ > 0 arbitrary; use the inequality f (1 —22)%dt > f (1 —t)"dt).

0 0

x
Let gu(x) = _f fn(t)dt; show that the polynomial g, converges uniformly to the
0

function |#] in [— 1, + 1], obtaining thus a new proof of (7.3.1.3)).

5) Let f be a continuous mapping of an interval [, + oo[ into a Banach space E,
such that for each A1 >0, lim (f(x + 1) — f(»)) = O.

x—>+ ©
a) Show that f(x + A) — f(») converges uniformly to 0 when » tends to + «
and A remains in a compact interval K = [a,b] C [0, + o[ (i.e., for every ¢ > 0 there
exists A > 0 such that x > A implies ||f(¥ + 1) — f(#)|| <X & for every e K). (Use

contradiction: suppose there is a sequence (x,) such that lim x, = + oo, and
#—> 00

a sequence (4,) of points of K such that ||f(x, + 4,) — f(#,)|| > « > 0, for every =.
Observe that there is a neighborhood J, of 4, in K such that ||f(x, + 4) — f(#)|| > «
for any A€ J,. Define by induction a decreasing sequence of closed intervals I c K,
and a subsequence (#n}) of (#,) such that ||f(x,,k + u) — /(xnk)|| = af3 forevery u € Iy;
to define I, ; when I is known, observe that if d;, is the length of I;, and g an integer
such that ¢d, > b — a, then ||f(x + &) — f(#)|| <X «/3¢ as soon as x is large enough.)
r+1
b) Deduce from a) that lim ( f f(Y)dt — f(x)) = 0, and conclude that
X—>4+ o x
lim f(x)/x = 0.

X —> 0

6) a) Show that there exists a differentiable real function f (resp. g) defined in R
and such that f/(f) = sin (1/#) (resp. g’(f) = cos (1/f)) for £ 0 and f(0) = 0 (resp.
g’(0) = 0). (Consider the derivatives of the functions 2 cos (1/#) and 2 sin (1/2).)
The functions /’ and g’ are not regulated.

b) Let P(t,4,9) be a polynomial in % and v with coefficients which are continuous
real functions of / in an open interval I € R containing 0. Show that there exists a
differentiable function f defined in I, such that f/(f) = P(Z, sin (1/f), cos (1/#)) for
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1 # 0 (express monomials in sin (1/#) and cos (1/?) as linear combinations of terms
of the form sin (k/f) or cos (k/t), and use a)). What is the value of f'(0)? Show that
one may have f'(0) = P(0,0,0).

c) Show that there exists a differentiable function f defined in [—1, +1] and
such that f'() = sin (1/sin (1/#)) at every point ¢ other than 0 and the points 1/nn
(n positive or negative integer). (In the neighborhood of ¢ = 1l/nm, write

1
t = —————— and use b) to prove the existence of f'(1/nm); furthermore,
ny -+ Arcsin

show that there is a constant & > 0, independent of #, such that

2/(2n — 1)n
sin (1/sin (1/¢))dt| < a/n®
‘2/2n+1)n

for every integer » > 0; consider then the function

2
g(t) = lim [sin (1/sin (1/s))ds

e—0 ¢

for t > 0, and define f similarly for ¢ < 0.)

7) Let I = [0,1[ and let E be the vector space of regulated complex functions
defined in I, bounded and continuous on the right (i.e. f(t+) = f(¢) for t € I).

+1
a) Show that on E, (f|g) = I f()g#)dt is a nondegenerate positive hermitian
-1

form (see (8.5.3)). Prove that the prehilbert space E thus defined is not complete (use
the fact that the function equal to sin (1/f) for ¢ > 0, to 0 for ¢ = 0, is not in E).

b) Define the sequence (f,) of elements of E in the following way:
1° f, is tne constant 1;

2° for each integer # > 0, let m be the largest integer such that 2” < #, and

let n=2" 4+ k; f, is tak 1 to 2m/2 f d <t 2+ 1 t om2
et n = + k; [, is taken as equal to or PRSI <2m+1, 0 —

2k + 1 2k + 2 .
for g 11 <t< g1 and to O for all other values of ¢ in I.

Prove that in the prehilbert space E, (f,) is an orthonormal system (the ‘“Haar
orthonormal system”).

c) For each n > 0, let V,, be the subspace of E generated by the f; of indices
k< m. Show that there is a decomposition of I into # + 1 intervals of type [o,8[
without common points, such that, in each of these intervals, every function belonging
to V,, is constant; conversely, every function having that property belongs to V,,
(consider the dimension of the vector subspace of E generated by these functions).

d) Let g be an arbitrary function of E, % its orthogonal projection (section 6.3)
on V,; show that in each of the intervals [&,fi[ in which all the functions of V,, are

B

Sg(u)du.

-4

constant, Ai(t) =

p—a
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€) Show, by using d), that for any function g € E which is continuous in I, the
series of general term (g|f,)/,(?) is uniformly convergent in I and that its sum is equal
to g(#). Conclude from that result that (f,) is a total orthonormal system in E.
8) Let f be a regulated real valued function in a compact interval I = [a,b];
b
let f |f(#)|dt = c. Show that for any & > 0, there is a real valued continuous function g
a

b
in I, such that [g(f)| <C 1 in I, and that I f(V)g(t)dt = ¢ — . (Reduce the problem to
a

the case in which f is a step function.)

8. Application: the number ¢

For any number 4 > 0, the function x —a* is continuous in R (4.3),

hence the function g(x) = [a’dt is defined and differentiable in R, with
0

r+1 x z+1
g'(x) = a” everywhere. Now we have g(x + 1) = [ ddt = [d'dt + [ o'dt.
0 0 x

z+1 1 1
But by (8.7.4), [ d'dt = [a" T du= a* [a*du; as a* >inf (a,1) for0 < ¥ < 1,
x 0 0

1
¢ = [a“du is > 0 by (8.5.3), hence we can write
0

a* =cYg(x + 1) — g(»))

and therefore a* is differentiable in R, and D(a*) = g@(a) - a*, where @(a) # 0
if a5 1. Suppose a # 1, and let b be any number > 0; we can write

bF — g¥logd
and therefore, by (8.4.1)
P(b) - b* = log, b - p(a) - b,
in other words
¢(b) = p(a) log, b.

There is therefore one and only one number e > 0 such that g(¢) = 1,
namely e = a'#®; as D(e) = ¢*>> 0, ¢* is strictly increasing (by (8.5.3)),
and hence ¢ = ¢1 > ¢® = 1. The function ¢* is also written exp () or exp x.
The function log ,x is written log x and it follows from (8.2.3) and (4.2.2)
that D(log x) = 1/x for x > 0. Furthermore D(a*) = log a - 4*.
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PROBLEM

Study the variation of the functions

lx+1> lx—p P lx Px+l
(o) (e (e ge)e ()
x X X x X

for x > 0, p being a fixed arbitrary positive number; find their limits when » tends
to + oo.

9. Partial derivatives

Let f be a differentiable mapping of an open subset A of a Banach
space E into a Banach space F; Df is then a mapping of A into Z(E; F).
We say that f is continuously differentiable in A if Df is continuous in A.

Suppose now E = E; x E,. For each point (a,,a,) € A we can consider
the partial mappings x; — f(x,.4,) and x, — f(a;,x,) of open subsets of
E, and E, respectively into F. We say that at (ay,a,), f is differentiable
with respect to the first (resp. second) variable if the partial mapping
%, — f(%y,a5) (resp. x, — f(a,,%,)) is differentiable at a, (resp a,); the
derivative of that mapping, which is an element of Z(E,; F) (resp. Z(E,; F))
is called the partial derivative of f at (a,,a,) with respect to the first (resp.
second) variable, and written D,f(a,,a,) (resp. Dyf(a;,4,)).

(8.9.1) Let f be a continuous mapping of an open subset A of E; X E,
into F. In order that f be continuously differentiable in A, a necessary and
sufficient condition is that f be differentiable at each point with respect to the
first and the second variable, and that the mappings (xy,%,) — D1f(%,,%,) and
(%9,%5) — Dyf(xq,%5) (of A into L(E;; F) and L (E,; F) respectively) be contin-
uous in A. Then, at each point (x,,x,) of A, the derivative of f is given by

(8.9.1.1) Df(x1,%9) - (1.8g) = D1f (%1, %) - £y + Daf(%1,%,) - o

a) Necessity. The mapping x; — f(x,,a,) is obtained by composing f
and the mapping x;, — (x;,a,) of E; into E; X E,, the derivative of this
second mapping being ¢, — (¢,0) by (8.1.2), (8.1.3) and (8.1.5). Then by
(8.2.1), x; —f(x,,4,) has at (a,,a,) a derivative equal to ¢, —Df(a,,a,) - (4,0).
If we call #, (resp. 7,) the natural injection ¢, — (¢,,0) (resp. f, — (0,5,)),
which is a constant element of Z(E; E, X E,) (resp. Z(E;; E; X Ey)),
we therefore see that D,f(a;,a,) = Df(a,,a5)0i;, and similarly D,f(a,,4,) =
Df(a,,a,)0t, (all this is valid if f is simply supposed to be differentiable in A).
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As the mapping (v,u) —vou of L(E; X E,;F) x Z(E;E, x E,) into
Z(E,; F) is continuous ((5.7.5) and (5.5.1)), the continuity of D,f and D,f
follows from that of Df; finally, as (¢,,t,) = #,(,) + 75(fs), we have (8.9.1.1).

b) Sufficiency. Write
flay + ty,a5 + ) — f(ay,a5)
= (flay + ty,85 + 1) — f(ay + t1,89)) +- (flay + ty,a9) — f(ar,a5)).
Given ¢ > 0, there is, by assumption, an » > 0 such that, for |[t,|| <7
|[H(ay + t1,a5) — f(ay,a5) — Dif(ay,a5) - ]| < elffa]].

On the other hand, we have in a ball B of center (4;,a,) contained in A,
by (8.6.2)

[[f(ay + t.82 + b)) — Hay + 41,85) — Dyf(ay + t,a5) + 4|

< || '” IlsuIl)l ”||D2f(“1 + ty,85 + 2) — Dyf(a; + t,a,)||.
21 < [t

The continuity of the mapping D,f therefore implies that there is ' > 0
such that for ||t,]| <7’ and ||f|| < 7', we have

[[f(ay + ty.a5 4 t5) — [(ay + ty,a5) — Dof(ay + t1,a3) ]| el[ty]
and on the other hand
[|Daf(ay + £1,a5) — Dof(ay,a5)|| < &
hence, by (5.7.4)
|IDyf(ay + t1,a5) - ta — Dyf(ar,a5) - taf| < et -

Finally, for sup (|[4][,|

L)) <inf (r7) we have
”f(“l + t,85 + ty) — f(ay,a5) — Dyf(ay,a,) - 8 — Dyf(ay,a) - tz”
< 4esup ([4]],][t]])

which proves (8.9.1.1); the continuity of Df follows from the fact that
(8.9.1.1) can be written Df = D,foi;, + Dyfoi, and from (5.7.5).

Theorem (8.9.1) can be immediately generalized to a product of »
Banach spaces by induction on #; if we combine that result with (8.2.1),
we obtain
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(8.9.2) Let f be a continuously differentiable mapping of an open subset A

n
of E= IT E, into F, and, for each 1, let g; be a continuously differentiable
i=1
mapping of an open subset B of a Banach space G into E; such that
(84(2), . - -,8,(2)) € A for each z € B. Then the composed mapping fo(ge, « .8
is continuously differentiable in B, and we have

D(fo(g, - - -8)) = kf"l((Dmo(gl,. ..&))°Dgy.

PROBLEMS

1) Let E,F be two Banach spaces, f a continuous mapping of an open subset A
of E into F. Suppose that for each x € A, there is an element u(x) € #(E; F) such
that, for every vector y € E, the limit of (f(x + #y) — f(#))/¢ when ¢ 5= 0 tends to 0
in R, exists and is equal to %(#) + y. Suppose in addition that ¥ — u(#) is a continuous
mapping of A into #(E; F). Show that f is then continuously differentiable in A and
that u(#) = Df(#) for every » € A. (Apply the mean value theorem to the function
t —f(x + ty) for te [0,1].)

2) Let E be the space (c,) of Banach (section 5.3, problem 5); let F be the complex
Banach space (¢) + i(c,), consisting of all sequences z = ({,)s> ¢ of complex numbers
such that lim {, = 0, with the norm |jz|| = sup |¢s]- We denote by F, the real

7 —»
Banach space underlying F (section 5.1). Let I ¢ R be an open interval containing 0,
and for each integer n > 0, let f, be a continuous mapping of I into C such that the

condition lim ¢, = 0 implies lim f,(#,) = 0; this defines a mapping f:
n—> 0 7 —»

(€n) — (fnl€n)) of E into Fy.
a) Suppose f is continuous in a neighborhood of 0. In order that f be quasi-
differentiable at the point O (section 8.4, problem 4), it is necessary and sufficient

that for each » the derivative £,(0) exist and that sup | f,',(O)I < + oo.
n

b) In order that f be differentiable at 0, it is necessary and sufficient that for every
¢ > 0, there is a § > 0 such that the relation |t| <C d implies |f,(t) — /,(0) — 1n(0)e| < elt|
for every m.

¢) In order that the derivative f’ exist in a neighborhood of 0 in E and be contin-
uous at 0, a necessary and sufficient condition is that there exist a neighborhood
J c I of 0 such that: 1° each n exists in J; 2° sup |f,’,(0)] < + o0; 3° the sequence

n

(f,’,) is equicontinuous at the point 0 (section 7.5). (See section 8.6, problem 3.)

d) Let f,(f) = e™n for every n >> 1, fo(f) = 1. Show that f is quasi-differentiable
at every point ¥ € E; if u(x) is the quasi-derivative of f at the point #, show that
the mapping (#,y) —u(x)-y of E X E into F, is continuous, but that f is not
differentiable at any point of E. '
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3) Let f be a continuous mapping of an open set A of a Banach space
E into a Banach space F. Suppose that for any xe€A and any y€E,

im  (f(x + ty) — f(#))/t = g(x,y) exists in E. If, for y;eE, 1<i<n,
t—0,t%0

and x,€ A, each of the mappings » — g(#,y;) is continuous at %3, show that

n
g(xpy1 + ¥+ ... + ¥,) = X g(x,y) (apply the mean value theorem).
i=1
4) Let E,E, F be three Banach spaces, f a continuous mapping of an open subset A
of E; X E, into F. In order that f be differentiable at (a,,a,) € A, it is necessary and
sufficient that: 1° D,;f(a;,a,) and Dyf(a,,a,) exist; 2° for any & > 0, there exists § > 0
such that the relations ||4,]| < 6, ||ty]] << 8 imply

[[f(ay 4 ty.ag + 1) — Hay + t.a5) — flag.as + %) + flagan)l| << e||t]] + [[2l])-

Show that the second condition is satisfied if D,f(a,,a,) exists and there is a neigh-
borhood V of (a;,4;) in E, X E, such that D,f exists in V and the mapping
(#1,%) = Dyof(%,75) of V into F(E,; F) is continuous.

5) Let f be the real function defined in R2? by f(x,y) = (¥y/7) sin (1)) for

(#,y) # (0,0), with » :Vﬂ + »2, and f(0,0) = 0. Show that D,f and D,f exist at
every point (%) € R% and that the four mappings » -» D,f(#,b), y — D,f(a.y),
% — Dyf(x,8), v — Dyf(a,y) are continuous in R for any (a,b) € R%, but that f is
not differentiable at (0,0).

6) Let I be an interval in R, f a mapping of I? into a real Banach space E, such
that, for any (a,,...,ap) € 1%, each of the mappings 2= (@, - .8 1,%,85 1, - -,8p)
(1 <7< p) is continuous and differentiable in I, and furthermore, the p functions
Djf (1 < j < p) are bounded in I?. Show that f is continuous in I? (use the mean-
value theorem).

10. Jacobians

We now specialize the general result (8.9.1) to the most important
cases.

A) E = R” (resp. E = C"). If f is a differentiable mapping of an open
subset A of E into F, the partial derivative D,f(«,,. . .,x,) is identified to a
vector of F (8.4), and the derivative of f is the mapping

(815- - s, = 2 Dypf(ey, . - - 2,)C5
k=1
If Df is continuous, so is each of the D,f. Conversely, if each of the mappings
D,/ exists and is continuous in A, then f is continuously differentiable
in A.
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B) E=R" and F = R” (resp. E = €* and F = C”). Then we can
write f = (@y,. . .,@,), Where the @, are scalar functions defined in E, and
by (8.1.5) f is continuously differentiable if and only if each of the ¢; is
continuously differentiable; again, by case A), @; is continuously dif-
ferentiable if and only if each of the partial derivatives D;g; (which is now
a scalar function) exists and is continuous. Furthermore, the (total) deriv-
ative of f is the linear mapping

(Cl' b tCu) - (771' e »77».)
with

n; = . 21 (Dj¢i(a'l’ .- .,ot,,))é'-;

7

in other words, f’, which is a linear mapping of R” into R™ (resp. of C*
into €”), corresponds to the matrix (D;p,(a;,. . .,a,)), which is called the
jacobian matrix of f (or of ¢,,...,¢,) at (a,...,0,). When m = n, the
determinant of the jacobian (square) matrix of f is called the jacobian of f
(or of ¢,,...,,). Theorem (8.9.2) specializes to

(8.10.1) Let ¢; (1 < j << m) be m scalar functions, continuously differentiable
in an open subset A of R* (resp. €%); let of; (1 <i < p) be p scalar func-
tions, continuously differentiable in an open subset B of R™ (resp. C7)
containing the image of A by (@y,. . .. @) then if 0,(x) = Pi(@i(%),. . ., Pm(%))

for x€ A and 1 < 1 < p, we have the relation

(D) = (D;“/’i) (Dk%)

between the jacobian matrices; in particular, when m =n =p, we have
the relation

det (D,0;) = det(D,yp;)det(D,q;)

between the jacobians.

We mention here the usual notations f;i(él" LoE), 90&; f&y. .6,
for D;f(&,,...,£,), which unfortunately lead to hopeless confusion when
substitutions are made (what does f,(y,x) or [(¥,x) mean?); the
jacobian det(D,g;(&,,...,£,) is also written D(py,-- - @,)/D(&y. .. .E,) or
Apr- - Pa) | 0(Ep, - - 1 1E)-
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11. Derivative of an integral depending on a parameter

(811.1) Let I = [a,8] CR be a compact interval, E,F real Banach spaces,
| a continuous mapping of I X A into F (A open, subset of E). Then

glz) = ff(é'»,z)d&' s continuous tn A.
o
Given ¢ > 0 and zZyp€ A, for any £ €1, there is a neighborhood V(&)
of £in I and a number #(£) > 0 such that for € V(&) and ||z — z|| < 7(&)
If(n,2) — /(£,2)|| <e. Cover I with a finite number of neighborhoods
V(&), and let » = inf ((£,)). Then ||f(£,2) — f(£,2))|| < & for ||z — z)|| <7
and any & € I; hence, by (8.7.7)

Ile(z) — g(zo)|| < (B — o)
for ||z — z,|| <7, qed.

(8.11.2) (Leibniz’s rule). With the same assumptions as in (8.11.1), suppose
in addition that the partial derivative Dyf with respect to the second variable
exists and is continuous in 1 X A. Then g is continuously differentiable
m A, and

8
= [ Dyf(£,2)dé
(observé that both sides of that formula are in Z(E;F)).
The same argument as in (8.11.1) applied to D,f, shows that given ¢ > 0
and z, € A, there exists » >0 such that ||D,f(£,2) — Dyf(£,2))|| <& for
[[# — z|| <7 and any & €1; hence, by (8.6.2)

Hf(é',zo + t) - f(f)zo) - DZ/(é’ZO) ' t“ < 8Ht“

for any & €1 and any ¢ such that ||t|| < 7. By (8.7.7) we therefore have

‘%

llg(zo + £) — g(2,) — [ (Dof(&,2,) - Has|| < e(B — )|t

R

B
But by (8.7.6) and (5.7.4) we have f (Dof(,2) - 1)dé = ([ Dpf(E,20)dE) - ¢

for any ¢, and this ends the proof.
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PROBLEMS

1) Let J € R be an open interval, E,F two Banach spaces, A an open subset of E,
f a continuous mapping of J X A into F such that D,f exists and is continuous in
J X A, « and B two continuously differentiable mappings of A into J. Let
Blz)
ga) = [ H&2)aE.
a(z)
Show that g is continuously differentiable in A, and that g’(z) is the linear mapping
B(z)
t— (| Dyf(£,2)d€) -t + (B'(2) - O1(B(2).2) — (@'(2) - O (x(2).2)
(z)
(apply (8.9.1) and (8.11.2)).
2) Let f,g be two real valued regulated functions in a compact interval [a,b],
such that f is decreasing in [a,b] and 0 <C g(f) << 1. Show that

b b a+2
. flf(t)dt< [toewar< [ fnat

b ¥
where 4 = _[g(t)dt. When is there equality ? (Consider the integrals If(t)g(t)dt and
a a

a+h(y) Y
f(¢)dt, where h(y) = fg(t)dt, as functions of y, and similarly for the other

a a
inequality.)

3) Let the assumptions be the same as in problem 1, except that « and g8 are
merely supposed to be continuous, but not necessarily differentiable, but in addition
it is supposed that f(x(2),2) = 0 and f(8(2),z) = 0 for any z€ A. Show that g(z) is

B(z
continuously differentiable in A, and that g’(z) = })DZI(E,z)dE. (Use Bolzano’s
a(z)
theorem (3.19.8) to prove that if & belongs to the interval of extremities f(z,) and
B(2), there is 2/ € A such that ||z — z|| << ||z — 20|| and & = B(2"); if M is the Lu.b.
of ||D,f|| in a neighborhood of (B(z),%), use the mean value theorem to show that
1€ < Mllz — 2|

4) LetI = [a,b], A = [¢,d] be two compact intervals in R, f a mapping of I X A
into a Banach space E, such that: 1° for every y € A, the‘function » — f(#,y) is
regulated in I and for every x € I, the function y — f(#,y) is regulated in A; 2° fis
bounded in I X A; 3°if D is the subset of I X A consisting of the points (x,y) where f
is not continuous, then, for every x, € I (resp. every y, € A), the set of points y (resp. )
such that (x,,y) € D (resp. (#,%,) € D) is finite.

b
a) Show that the function g(y) = ‘ff(t,y)dt is continuous in A. (If ¢> 0 and
a

¥o € A are given, show that there is a neighborhood V of y, in A and a finite number
of intervals J €I (1<% <C#) such that the sum of the lengths of the Jp is e

n

and that, if W =1 — U J# 1 is continuous in W X V; to prove that result, use
k=1

the Borel-Lebesgue theorem (3.17.6).)
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b) Deduce from a) that

d b b d
[ay [1zy)ax = [ax [H(x.9)dy.

z b b z
(Consider the two functions z — Idy If(x,y)dx and z — _[dx _f/(x,y)dy for ze A))
4 a a 4

5) a) Let f be a strictly increasing continuous function in an interval [0,a], such
that /(0) = 0; let g be the inverse mapping, which is continuous and strictly increasing

a )
in the interval [0,/(a)]. Show that [f(t)dt = [(a — g(u))du (apply problem 4 to the
0 1}

functionequaltolfor 0 << » < a, 0Ly << /(2), to Ofor 0 << v << @, f(#) < y < f(a)).
b) Show that if 0<< ¥<Ca and 0 y < f(a), the following inequality holds

x y
2y < [f()at + [ g(w)du;
1] 0

the two sides are equal if and only if y = f(#).
c) Deduce from b) the inequalities

xy<x-logx + e¥—1 for x>0,yeR;
X 1 1
xy < axp + by? for x;O,y;O,p>1,q>l,;—+—=l,
q

a>0, b>0 and (pa)?(gh)? > 1.

12. Higher derivatives

Suppose f is a continuously differentiable mapping of an open subset A
of a Banach space E into a Banach space F. Then Df is a continuous
mapping of A into the Banach space #(E; F). If that mapping is differen-
tiable at a point %y € A (resp. in A), we say that f is twice differentiable at
%o (resp. in A), and the derivative of Df at x, is called the second derivative
of f at %, and written f"'(x,) or D?/(x,). This is an element of £(E; Z(E; F));
but we have seen (5.7.8) that this last space is naturally identified with the
space Z(E,E;F) (written Z,(E;F)) of continuous bilinear mappings of
E x Einto F: we recall that this is done by identifying » € #(E; Z(E; F))
to the bilinear mapping (s,f) — (#-s)-¢; this last element will also be
written u - (s,f).

(8.12.1)  Suppose [ is twice differentiable at x,; then, for any fixed t € E,
the derivative of the mapping x —Df(x) -t of A into F, at the point xy, is
s — D2f(xy) - (s.0).
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If we observe that x — Df(x)-¢ is composed of the linear mapping
u—>u-tof #(E;F)into F and of the mapping x— Df(x) of E into Z(E; F)
the result follows from (8.2.1) and (8.1.3).

(8.12.2) If f is twice differentiable at x,, then the bilinear mapping
(s,8) — D(xy) - (s,t) is symmetric, in other words

D2f(x) - (s.£) = D?f(x) - (4,5)-
Consider the function of the real variable & in the interval [0,1]:
g(&) = f(xg + &s + £) — f(xg + &)

where s,¢ are such that ||s|| < 47, |[¢]| < 4», the ball of center x, and
radius 7 being contained in A. From (8.6.2) we get

llg(1) — g(0) —g'(0)|| < sup |[lg'(§) — &'(0)]I-

0<E<
Now by (8.4.1)
g =2+ &+t —[fx+ &) s
= (('(% + & + ) — (%)) — (/'(%0 + &) — ['(%0))) - s-

By assumption, given &> 0, there is 7' {7 such that for lIs|| < %7,
||#]| < 47, we have

I (%o + & + ) — f(%0) — £ (%0) - (&5 + )| < e[ls] + [[¢]])
and
|1/ (%o + &) — f(20) — 1" (%) - (&3)]| e[|
hence
lle"(&) — (" () - 2) - || < 2elsl| - (|Is]] + [l
and therefore
|le(1) — g(0) — (" (o) - ) - s|| < 6ells||([ls]| + [{£]])-

But g(1) — g(0) = (% + s + #) — f(%o + ) — f(%o + ) + f(%o) is sym-
metric in s and ¢, hence, by exchanging s and ¢, we get

(" (%0) - ) - s — (" (%) - 5) - #]] < Be({Is]| +- [IE[])*-
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Now this inequality holds for ||s|| << 7', |[¢t|| < }#’; but if we replace
s and ¢ by 4s and A, both sides are defined and multiplied by [4/2, hence
the result is true for all s and ¢ in E, in particular for ||s|| = ||¢|| = 1, which
proves (by (5.7.7)) that

[IF"" (%) - (8,5) — f"(x0) - (s:0)]] << 24ke]s]| - [[¢]|

for all s and ¢; as ¢ is arbitrary, this ends the proof.
In particular,

(8.12.3) Let A be an open set in R* (resp. C*); if a mapping f of A into a
Banach space F is twice differentiable at %, then the partial derivatives D,f
are differentiable at x,, and

DiDjf (%0) = DiDi/ (o)

for 1<in, 1 <7< n.

We have only to use (8.12.1) for special values of £, and to observe that
for s = (§), t= (), the value of D2f(xy)- (s,t) = (D2f(x)s) -t is
2 (D;D;f(xo))ém; (see (8.10)).

i
%7

By induction on p, we now define a p times differentiable mapping f
of an open subset ACE into F as a (p — 1)-times differentiable mapping
whose (p — 1)-th derivative D?~1f is differentiable in A, and we call the
derivative D(D?~'f) the p-th derivative of f, which is written D?f or f®).
The element D?f(x,) is identified to an element of the space Z,(E;F) of the
p-linear continuous mappings of E into F, and we write it

(titgs. o ty) = DPf(xg) * (B, . 1p).
As in (8.12.1) we see that the mapping
ty = DPf(xg) - (bt - - - t,)
is the derivative, at x,, of the mapping
x > DP(x) - (ty,. . . 8y).

(8.12.2) generalizes to

(8.12.4) If f is p times differentiable in A, then the multilinear mapping
D?f(x) is symmetric for each x € A.
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This is proved by induction on p. Let f,....t, be fixed, and consider
the mapping x —g(x) = D? = 2{(x) - (¢,. . ..t,); from the preceding remark
it follows that the second derivative of g at x is

(tpts) = DPf(x) - (flals,- . . .tp)
hence by (8.12.2)
(8.12.4.1) DPf(x) - (tp by ts, - - -oty) = DPH(x) * (brlasts, - - - stp)-

On the other hand, for any permutation o of the set of indices {2,3,. . .,p},
the inductive hypothesis yields

DP 7 (%) * (byayptagsys- - - Hop) = D 7 (%) - (Fatas- - - oty)

and taking the first derivative of both sides (where the ¢, are fixed), we
obtain

(81242)  DPI(x) " (tulyys- - - ogp) = DPH®) - (bt - - 1)

Combining (8.12.4.1) and (8.12.4.2) we first see that D?/(x) - (¢, . . . 2)
does not change when the index 1 is exchanged with any other index, and
also when any two of the indices > 2 are exchanged; but these transposi-
tions generate any permutation of the indices 1,2,...,p, q.e.d.

(8.12.5) If { is m times differentiable and D™f is n times differentiadle in A,
then | is m + n times differentiable in A, and D" *"f = D*(D™f).

This is the definition when # = 1, and is proved immediately by induc-
tion on #, applying the definition.

(8.12.6) Suppose f = (f1,- - -.I,») 15 a continuous mapping of an open subset A
of E into a product F; x ... X F,, of Banach spaces. In order that f be p
times differentiable in A, it is necessary and sufficient that each f; be p times
differentiable in A, and then DPf = (D?f,,...,D?f,).

This follows from (8.1.5) by induction on 5.

(8.12.7) Let A be an open set in R™ (resp. C*); if a mapping f of A
tnto a Banach space F is p times differentiable, then, for t = (&;)
1<i<p 1 <7< n) we have

D?f(x) - (&, - -:tp) =U . 2 . )D:;Di,' : 'Di,,f(x)fl,h'f&fg‘ te 517,/,,
bvle . ..,Ip
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the sum being extended to all n® distinct sequences (11 <r<p Of integers from
[1,7].

This is immediately proved by induction on p, using (8.10). The #?
elements D, D, .. .D]-P/(x) are called the partial derivatives of order p of f

at x; any two which differ only by a permutation of the indices are equal
by (8.12.4). We say that f is p times continuwously differentiable in A if D?f
exists and is continuous in A.

(8.12.8) Let A be an open subset of R* (resp. €, f a continuous mapping
of A into a Banach space F; if the n® partial derivatives of f exist and are
continuous in A, then f is p times continuously differentiable in A.

For p = 1, this is (8.9.1) (extended to a product of # spaces); in general,
we only have to use induction on p and the formula (8.12.7).

We say that f is indefinitely differentiable in A if it is p times dif-
ferentiable in A for any p; all the derivatives D?f are then indefinitely
differentiable in A.

Example. — (8.12.9) Any continuous bilinear mapping is indefinitely
differentiable, and all its derivatives of order >3 are 0.

From (8.1.4) it follows that the derivative of a bilinear continuous
mapping at (x,y) is (s,f) — [x-¢] + [s- y]; write g(x,y) eZE X F;G)
that linear mapping; by assumption and (5.5.1), there exists ¢ > 0 such
that ||[x- y]]| <c||x||||y|]| in E X F; by definition of the norm in
Z(E X F; G) (5.7.1), we have

eI < e(ll=ll + [Iy]l) < 2¢sup (J]#]},]|v]])

hence g is a continuous linear mapping of E X F into Z(E x F;G), and
therefore (x,y) — [x- y] is twice differentiable and its second derivative
at (x,y) is (by (8.1.3) and (8.12.1))

((s1.11),(S2.89)) — [51 " 2o + [s5- ;).
This is a mapping independent of (x,y), hence the result.

(8.12.10) Let E,F,G be three Banach spaces, A an open subset of E, B an
open subset of F; if fis a p times continuously differentiable mapping of A
into B, g a p times continuously differentiable mapping of B into G, then
h = gof is a p times continuously differentiable mapping of A into G.
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For p =1, the result follows from (8.2.1) and from the fact that
(w,v) — vou is a bilinear continuous mapping of Z(E; F) x Z(F; G) into
Z(E; G) by (5.7.5). Use now induction on p; as A'(x) = g'(f(x))of'(x), and
fand g’ are p — 1 times continuously differentiable, the induction hypoth-
esis shows that g'of is p — 1 times continuously differentiable; from
(8.12.6) and (8.12.9), it then follows that 4’ is p — 1 times continuously
differentiable, hence 4 is p times continuously differentiable by (8.12.5).

Example. — (8.12.11) Suppose there is a linear homeomorphism of a
Banach space E into a Banach space F, and let # € Z(E; F) be the open
set of these homeomorphisms in Z(E; F) (8.3.2). Then the mapping # — »~!
of S onto 1 is indefinitely differentiable.

We prove by induction on p that # — «~1! is p times differentiable,
the property being true for p = 1 by (8.3.2). Givenv and w in Z(F; E) = M,
let f(v,w) be the linear mapping { — — votow of L = #(E;F) into M; it
is clear that fis bilinear (and maps M x M into £ (L; M)) and (5.7.5) proves
that ||f(v,w)|| < ||v|| - |||, hence f is continuous, and therefore indefinitely
differentiable by (8.12.9): Now the first derivative of » — u—1is, by (8.3.2),
the mapping # — f(x~L,»~1); by (8.12.6) and 8.12.10) it follows that if
u —wu~1is p times differentiable, so is # — f(w~1,4~1), and therefore, by
(8.12.5), # - u~1is p + 1 times differentiable.

Remark. — When f is a mapping of an interval J CR into a real Banach
space F, we have defined earlier (section 8.4) the notion of derivative of f
at &, € J with respect to J. By induction on p, we define the p-th derivative
of | at &,, with respect to J, as the derivative at &, (with respect to J) of the
(p — 1)-th derivative of f (which is therefore supposed to exist in a neigh-
borhood of &, in J); it is an element of F, written again D?f(&,) or f?)(&,);
if &, is interior to J, the p-th derivative, as defined for general mappings,
coincides with the multilinear mapping (Cy.....5) —?(0)l18s- - - Cp of
R? into F.

PROBLEMS
1) Let f be a p times differentiable mapping of an interval IC R into a Banach

1
space E. Show that for any # eI such that - el

1 1 1
PR 1 (7) = (— 1)"D" [x"—lf(“—;ﬂ

(use induction on #).
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2) a) Let p the function defined on R by the conditions:

1+ (1 —1)2
pi)=0 for < — 1 or t>= 1.

1 1
p(t)=exp<— ——~——) for —l<t<1

Show that the function p is indefinitely differentiable in R. (Use the relation
lim 2" ~* = 0 for any # > 0.)
x>+ ©

b) In this problem, we agree to extend any regulated function f defined in a

compact interval [4,b] of R, to the whole of R, by giving it the value 0 for # < a and
+ o

for ¢t > b; we then write _r f(¢)dt for the integral ff ()dt, which is also equal to
—

ff(t)dt for c<Laand d=b
c

For any such function f, let ¢

+ o0 +
=ne [ Hs)pln(t — s))ds = ne J 1t — 9)p(ns)ds

+1
where 1/c = f p(?)dt (“‘regularization” of f by p; we write p,(¢) = p(nt)andf, = f % Pn)-
-1

Show that £, is indefinitely differentiable and vanishes in the complement of a compact

interval (use (8.11.2)); if f is real and increasing (resp. strictly increasing) in [a,b],
1 1

then £, is increasing (resp. strictly increasing) in [a +—, b —-—} . If f (extended
n n

to R) is p times continuously differentiable, then

+
DPfy(t) = ne [ (D?f(s))p(n(t — s))ds

+
= nc _[ (D?f(t — s))p(ns)ds.
— 0

+ © + o
c) Show that for any n, [fa(f)dt = [ f(t)dt.
— — ©

d) If f (extended to R) is continuous (resp. p times continuously differentiable),
then the sequence (f,) (resp. D?f,) converges uniformly in R to f (resp. D?f).

e) To what limit does f,(%,) (¢, € R) tend when f is only supposed to be regulated
in [a,b] (first consider the case in which f is a step-function, then use (7.6.1)).

f) Show that for any regulated function f in [a,b],
b

im [ |#(#) — fa(0)]dt = o.
n—» a

3) Let f be an » times differentiable real function defined in ]— 1,1{ and such
that |/(#)| <1 in that interval.
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a) Let my(J) be the smallest value of |f<")(t)| in an interval J contained in 1—1,1[.
Show that, if J is decomposed into three consecutive intervals J,,J,,J, and if J,
has length u, then

1
mp(J) < " (mr —1(J4) + mp_1(Js))

(use the mean value theorem). Deduce from that inequality that if J has length 4,

ok (k+1)/2 gk
my(]) < —F
(use induction on &).

b) Deduce from a) that there exists a number «, depending only on %, such that

if |f,',(0)| > ay,, /™) = 0 has at least » — 1 distinct roots in ]—L1[. (Show by
induction on £ that there is a strictly increasing sequence xp; <#pg < ... <y
of points of ]—1,1[ such that f®)x,)f®)(xp; 1) <0 for 1Li<h — 1; use
Rolle’s theorem.)

4) Let E,F be two Banach spaces, A an open subset of E, f an » times differentiable

”
mapping of A into F. Let xy€ A, h;eE (1 << i< ) be such that », + X &h;€ A
i=1

for 0C & <<, 1<i<n We define by induction on # (1< k< 7n)
AYf(xg:hy) = H{#o + By) — f(o)
A (xgshy, . . hg) = A= Lgp(xgihy, . . . by 1)
with
gr(x) = H(x + hy) — f().
a) Show that

147 oy, - R [| < [l - |- - -IlhnllsugllD”NZ)ll
Z€
”
where P is the set of points #, + X £, 0<< &< 1. (Use induction on #.)
i=1

b) Deduce from a) that

[147% (%g3hys - -+ < hy) — D () * (Ryy o ) || < |y < g - - - ||hn||su1;|]D"/(z) — D% (xy)]].
z€

5) Let f be a continuously differentiable mapping of an open subset A of R? into
a Banach space E. Suppose that in a neighborhood V of (a,b) € A, the derivative
D,(D,f) exists and is continuous.

a) Let (x,y) € V; show that for every & > 0, there exists § > 0 such that the
relations |k| < 6, |#| << 8 imply

[|4% (%, :h,k) — DyD,f(x,9)hk|| < &|hk|
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(apply the mean value theorem to the function

g0) =f(x + 1,y + k) — f(» + t.y) — D,D\f(5,9)tk
and use (8.6.2)).

b) Prove that D,(D,f) exists in V and is equal to D,(D,f) (use a)).

¢} Give an example of a function f satisfying the previous assumptions and for
which D,(D;f) and Dy(D,f) do not exist anywhere (see section 8.4, problem 1).

6) Let f the real function defined in R? by the conditions #(0,0) = 0, f(x,y) =
= xy(#* — »?)/(#? + %) for (x,9) # (0,0). Show that all four derivatives D,(D,f),
D, (Dyf), Dy(Dyf), Dy(Dyf) exist everywhere in R2 but that D;(Dyf) # Dy(D,f) at the
point (0,0).

7) The notations are the same as in problem 2 of section 8.9. Let g,(¢) = #/(1 + n|¢|),
t
and f,(¢) = Ig,,(u)du for every te€ R. Show that the function f : (&,) — (f,(&,)) is
0

continuously differentiable in E, and that for each y = (5,) € E, the mapping
x — f'(x) - y is differentiable at ¥ = 0, but that f’ is not differentiable at that point
(compare (8.12.1)).

8) Let E,F be two Banach spaces, A an open subset of E, ggj)(A) the vector
space of p times continuously differentiable mappings of A into F, such that f and

all its derivatives D*f (1 <{ £ <C p) be bounded in A. For any f € 9([?)(A), let
ity = sup (N + DA + - -« + DA
xX€

()
F

show that ||f||, is 2 norm on 2% ’(A) for which that space becomes a Banach space

(use (8.6.3)). The mapping f — Df is a continuous linear mapping of @g’)(A) into
Q0~1 (A) (resp. in €@ A) for p = 1).
.?(E;F)( ) (resp f(E;F)( ) p=1
9) Let E,F,G be three Banach spaces, L,M,N the Banach spaces @;?)(E), @g’)(F),
@‘é”(}«:) respectively. For feL, geM, let &(f,g) = gof € N.
a) Let (fo.8) €L X M. Show that if DPgy is uniformly continuous in F, the
mapping P is continuous at (fy,g,) (use induction on p). If E,F,G are finite dimen-
sional, @ is continuous in L X M (use (3.16.5)).

b) Let Ny = DL PE) for 1<h<p with DV(E) = €T(E). Show that,
as a mapping of L. X M into N,, @ is continuous at every point; in order that @
(as a mapping of L X M into N,) be differentiable at (f,,g,), it is sufficient that D?g,
be uniformly continuous, and the derivative D@ is the linear mapping

(,9) — (Dgo)fo) * % + vofy.

c) Let Uj be the linear mapping g — gof of M into N; show that Uy is continuous.
We may also consider U as an element of £ (M; N,) for any & <C p. Show that the
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mapping f— U of L into £ (M; N,) is continuous, and that the mapping f— U; of
L into #(M;N,) is differentiable, the element DU, e L(L; £ (M; N,)) being the
bilinear mapping (u,v) — ((Dv)of) - u.

d) Deduce from b) and c) that as a mapping of L X M into Ni, @ is & — 1 times
differentiable.

10) Let f be a real valued twice differentiable function defined in an open subset A
of a Banach space E. Suppose that at a point #, € E there is a constant ¢ > 0 such
that Df(x) = 0 and D2 (x,)* (£8) << — ¢l[¢||2 for every te E. Show that f reaches
a strict relative maximum (section 3.9, problem 6) at the point #,. If E is finite dimen-
sional, the preceding condition can be replaced by the condition D2f(%p) - (4¢) < O
for any £ % 0 in E (use the compactness of the sphere ||f|| = 1 in E).

11) a) Let f be a real valued function defined in an open interval ICR, and
differentiable in I; let [a,b]€ I, and suppose f” exists in the open interval ]a,b[,
but f’ is not necessarily supposed to be continuous at a and b (cf. section 8.7, problem 6).
Show that there exists ¢ € ]a,b[ such that f'(b) — f'(a) = (b — a)f”’(c) (use problem 3
of section 8.5).

b) What is the corresponding property for functions defined in I and with values
in a Hilbert space (see section 8.5, problem 6) ?

13. Differential operators

Let A be an open set in R* (resp. C"), F a real (resp. complex) Banach
space; we denote by &¥)(A) the set of all p times continuously dif-
ferentiable mappings of A into F. It is clear by (8.12.10) that ED(A)
is a real (resp. complex) vector space; and, more generally, (8.12.10) shows
that &Q(A) (resp. €P(A)) is a ring, and &L(A) a module over that

n
ring. For any system («,,. . .,a,) = a of integers > 0 with |a| = Za; < p,
i=1

let M, = X%X%...X_* and define D*or Dy, as the mapping D%D%...D,*

of &P(A) into &¢~1*N(A). A linear differential operator is a linear combina-

tion D = Xa,D* where |a|<{p and the a, are continuous scalar func-
o

tions defined in A; if a, =0 for |a| >k and each a, is (p — &) times
continuously differentiable, D maps &¢)(A) linearly into &% ~%(A).

(8.13.1)  If the operator Xa,D* is identically O, then each of the functions a,

is tdentically 0 in A.
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Write Df =0 for f(x) = c-exp (4,& + ... + 4,£,), where ¢ 0 is
in F and the 4; are arbitrary constants; we obtain (by (8.8) and (8.4.1))

¢ (Za (M (Ay,...,4)) exp (4é, + ... +4,E,) =0

identically in A, which is equivalent to Xa,(x)M,(4y,...,4,) = 0; for any

o

particular x € A, this implies a,(x) = O for each a, since the 4, are arbitrary.

The coefficients a, of a linear differential operator are thus uniquely
determined; the highest value of |a| such that a, 0 is called the
order of D.

To each polynomial P = Xb M, of degree < p with constant coefficients

o

we can thus associate a linear operator Dp = 25 D* of order < p; it is

clear that Dp . p = Dp + Dj, and it follows from (8.12.3) that if PP,
has a total degree < p, then Dy, = Dp Dy . In particular, from (8.12.7)
it follows that for fixed &,;, the operator f — Df, where

Df(x) = D?f(x) - (¢,,. . itp)
can be written
4
IT 5Dy + ... + §,D,).

i=1

(8.13.2) (Leibniz’s formula). Let P(X,,. ..,X,) be a polynomial of degree < p,
and suppose P(X,+Y,,....X,+Y,)=ZyM(X,,.... XM, (Y,,...,Y,),
k

the M, and M, being monomials. Let (x,y) — [x - v] be a bilinear contin-
uous mapping of E X F into G. Then, for any mapping fe EL(A) and
any mapping g € EL(A), [f-g) belongs to EL(A) and we have

Dp[/f gl =2, [DMk'f' DMk”gJ'
k
It is enough to prove the formula when P is a monomial M; using
induction on the total degree of P, we can suppose P = X;M, hence

Dy = D,D,.. We have by assumption

Dyl/-gl= kz‘?’k [DMk’f . DMk"g:’
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hence by (8.1.4)
Dplf+¢] = Z7([DDyf Dy ) + Dagyf DDy )
which we can write
hz'?’;; [DNh’f : DNh”g]

the summation being extended over all pairs of monomials

(Nu(Xy,. .. X)), N/ (Yy,....Y,)

n.

such that either N; — X,M, and N, = M; for an index k, or N, = M,
and N, = Y,;M,’ for an index k; there is exactly one such index % for
each suitable index %, and we have 9, = 9,. The result is then obvious.

PROBLEMS

1) Let A be an open subset of R", E,F,G three Banach spaces, (x,y) — [#- ¥]
a continuous bilinear mapping of E X F into G. Show that the mapping (/.8) — [/ - g]
of .@g’)(A) X 9(1.?) (A) into Qg’)(A) (section 8.12, problem 8) is continuous.

2) Let I be any compact interval in R, J an open neighborhood of I. Show that
there exists an indefinitely differentiable mapping f of R into [0,1], which is equal
to 1in I and to 0 in the complement of J (consider the functions g*p, (section 8.12,
problem 2) where g is equal to 1 in a compact interval K such that Ic K c J, and to 0
in R — K).

If  is an indefinitely differentiable mapping of R into a Banach space E, show
that there exists an indefinitely differentiable mapping v of R into E such that
v(f) =u(f) in I, () =0 in R — ]J.

14. Taylor’s formula

(8.14.1) Let I be an open interval in R, f,g two functions of &L(1) and
ED(L) respectively, (x,y) — [x- Y] a continuous bilinear mapping of E x F
into G. Then

[/-DP¢] — (— 1)’ [D?}-¢]
=D([/- D’ 7Yl — [Df-D*~%] + ... 4+ (— 1P~ D?~'f-g)).

This is immediately verified by application of (8.1.4).
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(8.14.2) Let 1 be an open interval in R, f a function of EL(I); then, for
any pair of points «,& in I

£ =22, (& — o)
16) = o) + 1)+~ f (a)+...+—(pj°‘l)—f«’ (e
£
(¢ =g
+ E—W/‘“”(Odt.

<4

Apply (8.14.1) to the bilinear mapping (4,x) — Ax and to the function
g(l) = (£ — £’ ~Y/(p — 1)!, and integrate both sides between « and &.

(8.14.3) Let EF be two Banach spaces, A an open subset of E, f a p times
continuously differentiable mapping of A into F. Then, if the segment joining
x and x + t is in A, we have

Fo ) = 100) +  f(8) -k g ) 9 g L e o

1! »—1)!
+

where t*) stands for (t4,. .. 1) (k times). In particular, for every ¢ > 0, there
s 7 > 0 such that for ||t]| <7

— g
— !

OL__——‘H .
=
>

fo)(x + Ct)di) )

0548 = () = T/ )£ = 5 ()49 = . = o) -
<ellpr-

To obtain the first formula, apply (8.14.2) to the function g(&) = f(x + &t)
in the interval [0,1]; by (8.12.10), g is p times continuously differentiable,
and it is immediately seen by induction on % that g® (&) = f®(x + &) - ¢®,
using (8.4.1) and (8.1.3). To get the second formula, observe that by
continuity of /%), 7 can be chosen such that ||/ (x + {t) — f®)(x) || <ple
for 0 < ¢ <1 and |[¢t]| <7 Then the mean value theorem (8.7.7) yields

Hj (x+Ct)dC~—P~f”’( )| <

and the conclusion follows from (5.5.1).
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PROBLEMS

1) The n-th Legendre polynomial is defined by

Pu(t) = D*((* — 1)").

2"n !

a) Show that up to a positive factor, P, is the n-th term in the sequence obtained
by orthonormalization in the prehilbert space ‘KC(I), with I = [—1,+1], from the
sequence () (6.6). (To prove that the scalar product of P,(¢) and of the ™ withm < n
is 0, use (8.14.1)).

b) Show that P,(1) = 1, P,(—1) = (—1)* (use (8.13.2)).

c) Show that between three consecutive Legendre polynomials there is the
following recursive relation

#Py(t) — (20 — 1)tPy _1(t) + (n — 1)Py _2(t) = 0.

(Observe that if ¢, is chosen such that P,(f) — ¢,tP,_1(f) has degree <<# — 1, it
is orthogonal to the #* with # <{ » — 3, hence must be a linear combination of P, _2o
and P,_1; use also b).)

d) Show that all the roots of P, are real and simple and in ]—L1[ (if
P, changed sign at #<{# — 1 points only in ]—1,1[, there would be a polynomial
gty = (¢ — t)...(¢ — t) such that P,(f)g(t) = 0 for — 1 << t < 1; show that this
leads to a contradiction with the fact that P,(#) is orthogonal to th for b < ).

e) Show that P, satisfies the differential equation

(1 — )P, (5) — 2Py(t) + n(n + YPy() = 0

{show that D((1 — £2)P,,(#) is orthogonal to ¢* for & < #).
2) a) Let f be a twice differentiable mapping of I = [—a, +a] into a Banach
space E; let M, = sup ||f(t)|], M, = sup ||f’()||- Show that for each ¢el
tel tel

12 + a2
2a

M
lrol<—+
a

(use Taylor's formula to evaluate each of the differences f(a) — f(f), f{— a) — f(2)).

b) Let f be a twice differentiable mapping of an interval J (bounded or not) into E;

show thatif My = sup ||f(?)|| and M, = sup [|f“(f)|| are finite, sois M, = sup [IF @11
te] te] te]

and that

M, <2|/MM, if the length of J is > 2 )/ My,
*) -
M < |/2MM,  if J=TR (use a).

Prove that in these two inequalities, the numbers 2 and Vgcannot be replaced by

smaller ones. (If f is merely supposed to have a derivative on the right fi in J, the
inequalities (*) can actually become equalities, when { is piecewise linear; apply
then problem 2 d) of section 8.12.)
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¢) Deduce from b) that if f is p times differentiable in R and if My, = sup [|/(t)]|
teR
and M, = sup [|f®)(¢)|| are finite, then My = sup ||/®)(¢)]|is finite for 1 < & < p—1,
teR teR
and that
(*%) M, < 2k(P—H)/2 M(I)_ kit M’;/P

(Use induction on p; first apply the inductive hypothesis and the first inequality (*)
to show that the supremum of [|f(#)|| in a large interval cannot be too large, using
also problem 2 of section 8.12. Then use the second inequality (*) to prove (**) by
induction.)

3) Let E,F be two Banach spaces, A an open ball in E (or the whole space E).
Show that in the space Qg’)(A), the norm

sup (@I + 1DPH)])

is equivalent (5.6) to the norm ||f||, defined in problem 8 of section 8.12 (use the result
of problem 2 c)).

4) Let E be a Banach space, (c,) an arbitrary sequence of elements of E.

a) Show that there exists a strictly decreasing sequence (a,) of numbers tending
to 0, and a sequence (u,) of indefinitely differentiable mappings of R into E, having
the following properties: 1° u,(t) = 0 for [f] > a,; 2° ||uld)(1)[| < 1/2* for || < an 41
and 0<CAh<<n—1; 3 u,(,k)(t) =0 for f{<<a,i1and k>n+1; 4° uf,")(O) = ¢y,.
(Use problem 2 of section 8.12).

b) Deduce from a) that there exists an indefinitely differentiable mapping f of R

into E such that f"(0) = ¢, for every u.

¢) Prove in the same way that, given an arbitrary family (c,) of elements of E,
where a = (a;,...,ap) ranges through all systems of p integers a; >> 0, there exists
an indefinitely differentiable mapping f of R? into E such that D% (0) = ¢, for every a.

d) Deduce from b) that if g is an indefinitely differentiable mapping of a closed
interval I € R into E, and J an open interval containing I, there exists an indefinitely
differentiable mapping f of R into E which coincides with ginl and with 0in R — J.

5) Let f be a mapping of an interval I ¢ R into a Banach space E, and suppose f
is # times differentiable at a point « € I. Show that

o <f(§) )~ e S L %ﬁ‘)/ € -mn=0

o, Exa, fel 1!

(use induction on # and (8.5.1) with @(&) = (& — )®— 1),
6) Let I C R be an interval containing 0, f an # — 1 times differentiable mapping
of I into a Banach space E. Write
t m—1
1@ =HO) + £(0) — + ... +f*=10) —— + f, (1)1
1! (n — 1)!

which defines f, in I — {0}.
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a) Show that if f is # + p times differentiable at £ = 0, f, can be continuously
extended to I and becomes a function which is # 4+ p — 1 times differentiable at all
points ¢ # 0 in a neighborhood V of 0 in I, and p times differentiable at ¢ = 0;

LR for0<k<p and Lm 2 PuE =0
(n + R)! t—>0,1#0,teV
for 1 <C k<< n — 1. (Express the derivatives of f, with the help of the Taylor devel-
opments (problem 5) of the derivatives of f, and use problem 2 of section 8.6.)
b) Conversely, let g be an # + p — 1 times differentiable mapping of T — {0}

into E, such that lim gP Rtk exists for 0<Chk<Cn — 1. Show that
t—>0,t%0,¢¢l

the function g can be extended to a p — 1 times differentiable mapping of I into E,
and that the function g(#)¢* is » + p — 1 times differentiable in I; if furthermore
g®)(0) exists, then g{t)f" is n + p times differentiable at 0.

¢) Suppose I = ]—1,1[, and suppose f is ever in I, ie. f(— t} = f{f). Show,
using a) and b), that if f is 2» times differentiable in I, there exists an = times
differentiable mapping % of I into E such that f(t) = k(¢?).

7) a) Let / be an indefinitely differentiable mapping of R” into a Banach space E.
Show that

furthermore fs,k)(O) =

FF e xn) = FO,..,0) + yfy (%, -« o %n) + Fafa(¥- - DXy oo Xufa(x)

where f; is indefinitely differentiable in R"~ E+11 <R m). (Write f(#y,...,%,) =
(F(#gs- - o %) — [0, %, . . ., %)) + F(0,%,,...,%,) and apply (8.14.2) to the first summand,
considered as a function of »,; with a suitable value of p (depending on £), this will
prove that (f(xy,...,%,) — [(0,%5,...,%,)) /%, is k times differentiable at (0,...,0);
finally, use induction on »n.)

b) Deduce from a) that for any p > 0,

Ha) = X a7 . Hptfal#)
la| <?
where all the f, are indefinitely differentiable.

8) Let S be a metric space, A,B two non empty subsets of S, M a vector subspace
of the space ERr(S) of real continuous functions in S, N a vector subspace of M,
u — L(u#) a linear mapping of M into the space RA of all mappings of A into R. We
suppose that: 1° there exists a function %, € N such that L(x,) is the constant 1 on A;
2° if w e N and there is a ¢ € B such that u(f) = 0, then there is x € A such that
(L(u)){#) = 0.

Let v € M such that L(v) = 0; show that for any function # € M such thatu —v €N,
and any ?€ B, there exists § € A (depending on f) such that u(f) =uv(f) + () (L(u))(0).
(Observe that uy() # 0, and therefore there is a constant ¢ (depending on t) such that
u(t) — v(t) — cuy(t) = 0.)

b) Suppose S is compact, A is connected and dense in S, and all functions « € N
vanish on S — B. Suppose that L(u) is continuous in A for every # € M, and that if a
function % € N is such that (L(x))(f) > 0 for any ¢ € A, then u has no strict maximum
on B. Show that in such a case condition 2° of a) is also verified.

9) a) Let f be an #» times differentiable real function defined in an interval I;
let 4, < %< ...< #, be points of I, #; (1<{i<(p) integers >0 such that
#y + %y + ... + mp = n. Suppose that at each of the points zx;, 1B x;) = 0 for
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0<Ck<nm; — 1. Show that there is a point & in the interval ]x,,[ such that
f#—1)(&) =0 (apply Rolle’s theorem iteratively).

b) Let g be an » times differentiable real function defined in I, and let P be the
real polynomial of degree » — 1 such that g (x,) = P®)(x;) for 0CAE < — 1,
1<<i<<{p. Show that for any » € I, there exists & in the interior of the smallest
interval containing » and the x; (1 << ¢ <C p), such that

(% — 2™ (v — xp)™. .. (x — xp)"f’

n!

g™ (&).

g(#) = P(») +

(Use problem 8 a), or give a direct proof, using a) in both cases.)

10) Let g be a real odd function, defined and 5 times differentiable in a symmetric
neighborhood I of 0 in R. Show that, for each ¥ €1

%) — = (g'(%) + 2'(0)) — il g8 (&)
3 180

where £ is a number belonging to the open interval of extremities 0 and ».
Deduce from that result that, if f is a real function, defined and 5 times differen-
tiable in [a,b], then

b — b b — a)b
1®) — f(a) = [f (@) + ¢ b)+4f’( + )]_(_25_8_9,@)(5)

with a < &£ < b (“Simpson’s formula’’).
11) Let I = [a,b] be a compact interval, and let M, be the vector space of real
continuous functions defined in I and such that, for any £ € Ja,b[, the limit
(L@ = Hm  (fE+ h) + f(¢ — k) — 2{(¢))[h®
k—0,h0
exists in R. All real functions which are twice differentiable in I belong to M,.

a) Let M be the vector subspace of M, consisting of functions f for which L(f)
is continuous in Je,b[. Show that any function of f € M is twice differentiable in Ja,b[
and that L(f) = f”. (Use problem 8 a) and 8 b), taking S =1, A = B =]a,b[, and
for N the subspace of M consisting of functions f for which f(a) = f(b) = 0.)

b) Show that the function f(f) = ¢cos (1/¢) belongs to M,, although it is not
differentiable at ¢ ==

12) What are the properties of functions with values in a Hilbert space which
correspond to the properties of real functions discussed in problems 9 b), 10 and 11°?
(Ci. section 8.5, problem 6.)



Chapter IX

Analytic Functions

In this Chapter, we have tried to emphasize the most general facts
pertaining to the theory of analytic functions, and in particular to state
as many results as possible for analytic functions of any number of variables;
until section 9.13, the theorems which concern only functions of one
variable are inserted in a context in which they appear as technical inter-
mediates to the general statements; it is only in sections 9.14 to 9.17,
and in many problems in this Chapter and the next one, that we really
deal with properties special to the one variable case. Furthermore, we
have discussed simultaneously the case of analytic functions of real va-
riables and of analytic functions of complex variables as long as it can be
done (i.e. until section 9.5). Finally, we have kept throughout our general
principle of dealing from the start with vector valued functions; as usual,
this does not require any change in the proofs, and the reader will see in
Chapter XI how useful the consideration of such functions can be.

Of course, one can only expect to find here the most elementary
part of the very extensive theory of analytic functions. The definition is
given by the local existence of power series representing the function, and
it is by the technique of power series that the differential properties of
analytic functions are obtained (9.3.5) (the usual definition of analytic
functions by the existence of continuous derivatives only applies, of course,
to functions of complex variables, and therefore that characterization is
postponed until section 9.10). The fundamental results about power series
are Abel’s lemma (9.1.2) — from which is derived the vital possibility of
substituting power series into power series (9.2.2) — and the principle
of isolated zeros (9.1.5), whose most important consequence is the prin-
ciple of analytic continuation (9.4.2), which expresses the “‘solidarity”
between the values of an analytic function at different points of the domain
where it is defined.

191
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From that point on, we have to assume that the variables are complex;
with the exception of the principle of maximum (9.5.9), all additional
properties of analytic functions of complex variables derive from a single
new idea, that of “‘complex integration”, and from its fundamental
features, Cauchy’s theorem (9.6.3), Cauchy’s formula (9.9.1), and its gen-
eralization, the theorem of residues (9.1 6.1). The form of Cauchy’s theorem
which we give here is not the best possible, for it expresses the integral
along a circuit as an invariant of the homotopy class of that circuit, whereas
in fact it is an invariant of its Aomology class. In most applications, however,
this has no inconvenience whatsoever, and in contrast to the fact that
the proof of the weak form of Cauchy’s theorem needs almost no topological
preparation, the proof of the complete theorem would have required some
developments of Algebraic Topology, which we feel are above the level
of the present course. The interested reader will find the complete Cauchy
theorem, together with all the necessary prerequisites, in Ahlfors [1] and
Springer [21]. Instead of using more results from Algebraic Topology in
order to obtain such refinements, we have thought it might interest some
readers to see how, by the very simple device introduced by S. Eilenberg,
it is possible to obtain quite deep information on the topology of the real
plane (including the Jordan curve theorem), using merely the most
elementary facts about complex integration; this is the purpose of the
Appendix (which, by the way, is not used anywhere in the later chapters
any may therefore be bypassed without any inconvenience).

As we have announced in chapter I, the reader will find no mention
in this chapter of the so-called “multiple-valued” or ‘“‘multiform” func-
tions. It is of course a great nuisance that one cannot define in the field ¢

a genuine continuous function Vz_which would satisfy the relation (l/z_)2 =z;
but the solution to this difficulty is certainly not to be sought in a deliberate
perversion of the general concept of mapping, by which one suddenly
decrees that there is after all such a ‘“function”, with, however, the
uncommon feature that for each z # 0 it has two distinct “values”. The
penalty for this indecent and silly behavior is immediate: it is impossible
to perform even the simplest algebraic operations with any reasonable
confidence; for instance, the relation 21/2—: Vz-—i- l/z— is certainly not true,
for if we follow the ‘‘definition” of VZ we are compelled to attribute for
z # 0, two distinct values to the left-hand side, and three distinct values
to the right-hand side! Fortunately, there ¢s a solution to the difficulty,
which has nothing to do with such nonsense; it was discovered more than
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100 years ago by Riemann, and consists in restoring the uniqueness of the
value of Vz by “‘doubling”, so to speak, the domain of the variable z, so

that the two values of ]/z— correspond to fwo different points instead of a
single z: a stroke of genius if ever there was one, and which is at the origin
of the great theory of Riemann surfaces, and of their modern generaliza-
tions, the complex manifolds. The student who wishes to get acquainted
with these beautiful and active theories should read H. Weyl’s classic [25]
and the modern presentation by Springer [21] of Riemann surfaces, and
H. Cartan’s seminar [8] and the recent book of A. Weil [24] on complex
manifolds.

1. Power series

In what follows K will denote either the real field R or the complex
field €; its elements will be called scalars. In the vector space K? over K,
an open (resp. closed) polycylinder is a product of p open (resp. closed)
balls; in other words it is a set P defined by conditions of the form
|z, — a;| <7, (resp. |z, — a;| <7;), 1<<i<p,on the point z= (z,...,3,),
with 7,> 0 for every index; a = (a,,.. .,a{,) is the center or P, r,,....7,
its radii (a ball is thus a polycylinder having all its radii equal).

(9.1.1) Let P,Q be two open polycylinders in K? such that P 0 Q 7 0; for
any two points x,y in P 0 Q, the segment (8.5) joining x and y is contained
in PN Q; in particular PN Q is connected.

Indeed, if |x;, — a;| <7, |y; — a| <7, then |tx; + (1 —t)y, — a;| <
Hx, — a;| + (L — 8)|y; — a;] <7, for 0 ¢ < 1; the last statement follows

from the fact that a segment is connected (by (3.19.1) and (3.19.7)) and
from (3.19.3).

We introduce the following notation: for any element » = (#,,...,n,)
in N? (n; integers > 0) and any vector z = (z,...,2,) € K, we write

2= .z:" and || =mn; +n,+ ... +n, If Eis a Banach space
(over K), (¢,),_y» @ family of elements of E having N” as set of indices, we

say that the family (c,2”) _,, of elements of E is a power series in p variables z;
(I < v << p), with coefficients c,.

(91.2) Letd = (by,....0,) € K? be such that b; # 0 for 1 <1 < p, and that
the family (c,b") be bounded in E. Then for any system of radii (r;) such
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that 0 < 7, < |b;| for 1 < i << p, the power series (c,2*) is normally summable
(7.1) in the closed polycylmder of center O and radii v, (“Abel’s lemma”’).

For if ||c,0’|| < A for any » € N, it follows from the definition of the
norm in K? that if |z,| <7, < |b] (1 <7< p), we have ||c,’|| < A¢’, with
q=(q1,---.95), ¢ =7l|b;l <1. Tt follows from (5.5.3) that the family
(¢'), . np ©f positive numbers is absolutely summable, hence the result by

(5.3.1).

(91.3)  Under the assumptions of (9.1.2), the sum of the power series (c,2’) is
continuous in the open polycylinder of center O and radii |b,).

As every point of that polycylinder is interior to a closed polycylinder
of radii ;< |b;], the result follows from (7.2.1).

Let ¢ be any integer such that 1 <{qg <{p; for any » = (n,,.. SMy),

write 9" = (ny,...,m), v’ = (n,,,,...,m,); consider K’ as identified
to the product K? x K?~ ¢ and forz = (z,,. . -,%y) € KP, write 2 = (z,.. EAR
2" = (2,41, ..,%). With these notations:

(9.1.4) Suppose the power series (c,2”) is absolutely summable in the poly-
cylinder P of radii r; and center O in K. Then, for any v'' € NP ~7 the series
(€t 2" ) is absolutely summable in the polycylinder P, projection of P on K,
let g,(2') be its sum. Then, for any 2’ € P', the power series (g,.(')2"") is
absolutely summable in the polycylinder P, projection of P on K?~ 7, and
tts sum 1is equal to the sum of the series (c,2").

v ll‘l'

As 2 = 277", the fact that each of the serles (c(,,« A ) (v fixed)
is absolutely summable, and that Zg,,n( N = Ec 2", follows from (5.3.5)

and from the assoaatxvxty theorem (5 3.6) for absolutely summable families.
If we take z’” € P” such that z, %4 0 for ¢ + 1 <4 < p, the absolute
summability of (¢, 2") follows.

(91.5) (“Principle of isolated zeros”). Suppose (c,z") is a power stries in one

variable which converges in an open ball P of radius r, and let f(z) = X ¢, 2"
n=20

Then, unless all the c,, are 0, there is v' < r such that for 0 < |z| < 7', f(z) % 0

Suppose % is the smallest integer such that ¢, £ 0; then we can write
fz) = 2*(c, + G2+ oo F G2+ ...) and the series (¢, ,.2")
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converges in P; if g(z) =¢, + ¢, 2+ ... + Gomd” + ..., g is contin-
uous in P by (9.1.3) and as g(0) = ¢, # 0, there is 7’ > 0 such that g(z) # 0
for |z| < 7’; hence the result.

(9.1.6) Suppose two power series (a,2") and (b,2") are absolutely summable
and have the same sum in a polycylinder P; then a,= b, for every ve NP,

Use induction on p; for p = 1, the result follows at once from (9.1.5).
Taking the difference of the two power series, we can assume b, = 0 for

every »; applying (9.1.4) with ¢ = p — 1, we have 2’ g,(2')z; = 0, hence

n=20
g,(z') = 0 for every n and every 2’ in the projection P’ of P on K?~1; the
induction hypothesis applied to each g, yields then a, = 0 for every ».

PROBLEMS

1) Let (c,2*) be a power series in p variables 2; (1 <i << p); leta = (5,. . -,ap) € KP.
In order that a real number » > 0 be such that, for any ¢ € K such that |¢| < 7, the

series (c,(fa,)™. . .(tap)"f’) be absolutely summable, it is necessary and sufficient that

4

log7 + 1 (log ||es}] + & n;loglai]) < O
vl i=1

for all but a finite number of indices » = (ny,...,np) (apply (9.1.2)).

In particular, for p = 1, there is a largest number R >> 0 (the “‘convergence radius”,
which may be -+ o) such that the series (¢,2") is convergent for || < R, and that
number is given by 1/R = lim (sup (||cn4z][Y®*#)), which is also written

n—>wo k=0
lim - sup ||cy||Y/”. When in particular lim ||c,[|'/* exists, it is equal to 1/R.
n—» 0 7n-—» 0

2) Give examples of power series in one complex variable, having a radius of
convergence R = 1 (problem 1) and such that:

1° the series is normally convergent for |z| = R;

2° the series is convergent for some z such that |z| = R, but not for other points
of that circle;

3° the series is not convergent at any point of |z| = R.

3) Give an example of a power series in two variables, which is absolutely
summable at two points (a,,a,), (by,by), but not at the point (%—l-)i , ﬂ:;l) ,
(Replace z by 2,2, in a power series in one variable.)

4) Let (c,2"), (d42") be two power series in one variable with scalar coefficients;
if their radii of convergence (problem 1) are R and R’, and neither R nor R’ is 0,
then the radius of convergence R” of the power series (c,d,2") is at least RR’ (taken
equal to + o if R or R’ is + ). Give an example in which R” > RR".
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2. Substitution of power series in a power series

Let Q be a polycylinder of center 0 in K% and suppose the $ power
series in ¢ variables (bif)u") with scalar coefficients are absolutely summable

in Q (with u= (my,....m), u = (uy,....u), v =up" ...u’:"). We write
gu(u) = ZbPu*, G,(u) = Z|bP|u*. On the other hand, let (a,2") be a power
u P

series in p variables with coefficients in E, which is absolutely summable
in a polycylinder P of K?, of center 0 and radii 7, (1 < A<<{p). If, in a
monomial 2" = zJ*.. .z;”, we replace “formally” each z, by the power
series g,(u), we are led to take the formal “product” of #, + n, + ... + 7,
series, i.e. to pick a term in each of the »;, + ... + n, factors, to take
their product and then to “sum‘ all terms thus obtained. We are thus
led to consider, for each v = (ny,n,,...,m,) the set A, of all finite families
(#y;) = p where u,; € N%, k ranges from 1 to p, and for each %, j ranges
from 1 to #,; to such a p we associate the element

p "k N

- kj
t,(u) =a, Il .H binu 7.
k=1j=1

With these notations:

(9-21) Suppose s,,...,s, are q numbers >0 satisfying the conditions

Gylsy, .- o08,) <7y for Lk << p. Then, for each u in the open polycylinder

Sc K7 of center 0 and radii s; (1 < @ < q), the family (¢,(u)) (where p ranges

through the denumerable set of indices A = |J A,) is absolutely summable,
»e NP

and if f(z) = Za2", tts sum is equal to f(g,(u),gy(%),. . ..g,()).

In other words, under the conditions Gy(s;,....s,) <7, (1<k<p),
“substitution” of the series g,{u) for z, (1 < k<) in the series f yields
an absolutely summable family, even before all the terms ¢,(u) having the
same degrees in u,,.. U, have been gathered together.

To prove (9.2.1), we need only prove that the family (¢,(«)) is absolutely
summable; that its sum is f(g,(«),...,g,(#)) follows by application of the
associativity theorem (5.3.6) to the subsets A, of A, and by using (5.5.3),

which shows that X' ¢ () is equal to a,(g,(u))™. . .(g,,(u))"". To prove the

pEAv
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family (¢,(#)) (p €A) is absolutely summable, we apply (5.3.4). For any
finite subset B of A, we have, by (5.3.5) and (5.5.3)

I ()l < o]l Galne )™ - (Glsir- -5

peBNA,

and by assumption, the right-hand side of that inequality is the element
of index » of an absolutely summable family; hence the result.

? "k
Write ¢,(u) = c,u?, with A = (4,...,4), % :kZ1 21 my;; (if we have
—14=

trj = (M, . .,my;)). From (9.2.1) and (5.3.5) it follows (taking all the
to be # 0, # € S), that for each A, the family of the c,, where p ranges over
all elements of A which correspond to the same A, is absolutely summable
in E; if d, is its sum, we see, by the associativity theorem (5.3.6), that

(9.2.1.1) Her(w), . . ..g,(u)) = lZdlu"

the series on the right-hand side being absolutely summable in the
polycylinder S. By definition, that power series is the power series obtained
by substituting g,(u) to z,, for 1 < k < p, in the power series (a,2’).

(9:2.2) If the point (gy(0),. . .,g,(0)) of K? belongs to P, then there exisis in
K? an open polycylinder S such that, for u €S, the series g,(u) may be sub-
stituted to z, (1 < k < p) tn the power series (a,2").

Observe that by definition, G,(0) = |g,(0)| for 1 <k<p. As G, is
continuous at 0 by (9.1.3), the existence of numbers s;>0 (1 <7< ¢)
such that Gy(sy,. . .,s,) < 7, for 1 <k < follows at once from the assump-
tion.

3. Analytic functions

Let D be an open subset of K?. We say that a mapping / of D into a
Banach space E over K is analytic if, for every point a € D, there is an
open polycylinder P ¢ D of center &, such that in P, f(z) is equal to the sum
of an absolutely summable power series in the p variables z, — a, (1 <k <p)
(that series being necessarily unique by (9.1.6)). Suppose K = C, let b
be a point of D, and let B be the inverse image of D by the mapping
x — b+ x of R? into C?. Then it follows at once from the definitions that
x — f(b + %) is analytic in the open subset B of R”.
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(9.3.1) Let (a,2") be an absolutely summable power series in an open polycyl-
inder PCK?. Then f(z) = Xa 2" is analytic in P; more precisely, if v,

(1 <1 < ) are the radii of P, for any point b = (b,) € P, f(2) is equal to the
sum of an absolutely summable power series in the z, — b, in the open polycyl-
inder of center b and of radii v; — |b] (1 <1 < p).

This follows at once from (9.2.1) applied to the case ¢ = $, g,(#) = b, + u,;
we have then Gy(u) = [b,| + u,, and the conditions Gyfsy,...,s,) <7,
(L <k < p) boil down to s, <7, — |b,| (1 <k<p).

An entire function of p variables is a mapping f of K? into E which is
equal to the sum of a power series which is absolutely summable 7 the
whole space K? (cf. (9.9.6)). For each b € K?, f(2) is then equal to the sum
of a power series in the z, — b,, which is absolutely summable in the whole
space K?, by (9.3.1).

(9.3.2) Let A be an open subset of K?, B an open subset of K, g, (1 < k < p)
P scalar functions defined and analytic in B, and suppose the image of B by
(81:- - -18p) 15 contained in A. Then, for any analytic mapping f of A into E,
/8- - -.8p) is analytic in B.

This follows at once from the definition and from (9.2.2). In particular,
if f is analytic in A € K?, then for any system (aq T .,ai,) of p — ¢ scalars,
(21« 2)) > (21, - -,2,8, 1 1, . ,4,) is analytic in the open set Ala, y,...,a,)
in K7

(9.3.3)  In order that a mapping f = (fy,....f,) of ACK? into K be analytic
in A, 1t 1s necessary and sufficient that each of the scalar functions f; (1<i<q)
be analytic in A.

Obvious from the definition.

(9.3.4) Letz, = x, + iy, for 1 <k < p, x, and vy, being real. If fis analytic
in ACC?, then (xy,,,. . Xy Yp) = (% 1Yy, .., x, + 1Y,) is analytic in A,
considered as an open set in R,

Indeed, that function is analytic in the open subset Bc C?, inverse
image of A by the mapping (u,,v,,.. Uy Vp) > (ty + 10y, .. 0, + 90,) Of
C* into €7, by (9.3.2). Hence it is analytic in A = BAR?, when A is
considered as a subset of R*.
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(9-3.5) Let(c,,, “_"#z’l". . .z:P) be a power series which is absolutely summable

in an open polycylinder P of center 0, and let f(2) be its sum. Then the power

series (n,c M. .z ") is absolutely summable in P and its sum
kg ... "y 1 & p

1s the partial derivative D,f (= 9f]9z,).

For any z € P, we can in the series substitute z; to itself for ¢ # % and
2, + u, to z,, and we thus obtain a power series in p 4- 1 variables z,,. . .,z,,1%,,
which, by (9.2.1), is absolutely summable for |z;| <7, (i 7 k) and |z,| + |u,| <7,
(if 75,...,7, are the radii of P). By (9.1.4) we can therefore write
Hze ooy + e 02) = f(2) + wyfi(2) + ..o + w3f,(2) + ..., where each
/. is a power series absolutely summable in P, and the right-hand side, for
each z € P, is a power series in #, which is absolutely summable in some
open ball B of center 0 (depending on z). Moreover it follows from the
binomial theorem that

np—1 ”
hiz) = Zme, ,,pz'l". A %4
v

and as (f(zy,- . - 2 + U, - 7)) — [@) 1y = H(2) + ... +up "y (2) + ... 0s
an absolutely summable power series (in #,) in B (for fixed z) by (9.1.4),
we deduce from (9.1.3) that f,(z) = D,f(2) for any z € P. From that result
and from (9.1.3) we deduce the values of the ¢, in terms of the derivatives
of f, namely

(9.3.5.1) wle, = D*(0)

where D" = D7.. .D:" and »!=mn!n,!...m,!; this is immediate by
induction on |v| = n + ... 4 n,.

(9.3.6) An analytic function in an open set A CK, is indefinitely differen-
tiable and all its derivatives are analytic in A.

This is an obvious consequence of (9.3.4) and (8.12.8).

For p = 1, we have a “‘converse” to (9.3.5):

(9.3.7) Let (c,2") be a power series convergent in the ball P: |2| <7 in K, and
let f(z) = X c,2" in P. Then the power series ((1/(n 4 1)) ¢,2" +1y 4s convergent

n=0

in P and its sum is a primitive of f.
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Due to (9.3.5) we have only to check the convergence of the series

1
( 1 cnz"“) , which follows at once from the inequality
"

ann +1

< lleal| - f2f +?

1
n+1
and from (9.1.2).

PROBLEMS

1) Let (a,2"), (b,2") be two power series in one variable, the b, being real and > 0;
suppose lim a,f/b, = s.
#—> 00
a) Suppose the series (b,2") is convergent for |z] < 1, but not for z = 1 (which
k

means that if ¢z = X b,, lim ¢, = 4 «). Show that the series (a,2") is absolutely
n=20 k— 0

convergent for |z] <{ 1, and 'that, if I = [0,1],

lim ( 2’0 anz™ [( 29:0 by2™) = s.

z—>1,zel n=0 n=0

(Observe that, for any given k4, lim ( X b,s") = + o).

z—>1,2el n>=k

b) Suppose the series (b,2") is convergent for every z. Show that the series (a,2")

is absolutely convergent for every z, and that if J is the interval [0,+ oo[ in R, then

@ o
im (2 a2 by =s.
z—>+0w,2€] n=0 n=0
(Same method.)
@
c) Show that if the series (a,) is convergent and X a, = s, then the series (a,2")
n=0

a0
is absolutely convergent for |z| < 1, and that lim 2 ay,s” =s. (Apply a)
z2—1,2€l n=0

with b,, = 1 for every »; this is ““Abel’s theorem’’.)

d) The power series ((— 1)"z") has radius of convergence 1, and its sum 1/(1 + 2)
tends to a limit when z tends to 1 in I, but the series ((— 1)”) is not convergent (see
problem 2).

2) Let (a,2") be a power series in one variable having a radius of convergence
equal to 1; let f(z) be its sum, and suppose that f(1—) exists. If in addition

lim #na, = 0, show that the series (a,) is convergent and has a sum equal to f(1—).
n —» 0
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(“Tauber’s theorem”. observe that if |na,|<Ce for #» > &, then, for any N > %,
and 0<Crx <1

N
| 2 an(l — #)]| < eN(1 — )
n==~%

and “ Py a,,x"” < ¢/N(1 — x).)
n=N
3) Let (a,2") be a power series in one variable having a radius of convergence » > 0,
and let (b,) be a sequence of scalars # 0 such that ¢ = lim (b,/b, . 1) exists and
n— 0

|g] < . Show that, if
Cy = agby, + ayby, _ 1 + ... + ayby
lim (c,[b,) exists and is equal to f(g).
n—>» 0

4) Let (p,2"), (9,2") be two power series with complex coefficients, and radius of
convergence # 0, and let f(2) = X p,2" g(z) = X ¢,2" in a neighborhood U of 0
n n

where both series are absolutely convergent. Suppose g, = g(0) # 0; then there is

a power series X c,2" which is absolutely convergent in a neighborhood V€ U of 0
n

and has a sum equal to f(z)/g(z) in V (remark that the series (2") is convergent for
|z2] < 1, and use (9.2.2)). If all the g, are > 0, the sequence (g, .1/q,) is increasing,
the p, are real and such that the sequence (p,/q,) is increasing (resp. decreasing),

show that ¢, == 0 (resp. ¢, <C 0) for every » > 1. (Write the difference Pn _Pn-1
n In—1
as an expression in the g; and ¢z, and use induction on #.) Deduce from that result

that all the derivatives of x/log (1 — ) are < 0 for 0 < » < 1.
5) Let g (1 << k<< p) be p scalar entire functions defined in K?. If f is an entire
function defined in K?, then f(g1,- - -.&p) is an entire function in K7,

4. The principle of analytic continuation

(9-4.1) In KP, let P,Q be two open polycylinders of centers ab, such that
PNnQ#0. Let (cn_._.”]{’(x1 —a)". . (x, — ap)"”) be a power series in the
x; — a;, absolutely summable in P, and let f(x) be its sum. Let
@, mnp(xl — o) (%, — P)”P) be a power series in the x; — b;, absolutely
summable in Q, and let g(x) be its sum. If there is a non-empty open subset
U of PN Q such that f(x) = g(x) for any x € U, then f(x) = g(x) for any
xePnQ.

Let ueU, and let v be any point of PN Q; then the segment joining # and v
is contained in PN Q by (9.1.1). Let A(¢) = f(u -+ t(v — u)) — g(u + t(v —u))
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with £ real; by (9.3.2), this is an analytic function of ¢ in an open interval I
containing [0,1]. Let A be the closed subset of the interval [0,1] consisting
of the ¢ such that A(s) = 0 for 0 < s <{¢; by assumption there is an open
neighborhood of 0 in [0,1] which is contained in A, hence the Lu.b. p of A
is certainly > 0; we will prove that p = 1, which will establish (9.4.1).
Note first that A(f) = 0 for 0 < ¢ < p, hence by continuity A{p) = 0; as
h is analytic at the point p, there is a power series in { — p, which converges
for |t — p| < «, with « > 0 and whose sum is equal to A() for |t — p| < .
But for 0 < ¢ < p, #(¢) = 0 by assumption; from the principle of isolated
zeros (9.1.5) it follows that A(f) = O for |t — p| < «, which would contradict
the definition of p if we had p < 1.

(9.4.2) (“Principle of analytic continuation’). Let Ac K? be an open
connected set, f and g two analytic functions tn A with values in E. If there
s a non-empty open subset U of A such that f(x) = g(x) in U, then f(x) = g(x)
for every x € A.

Let B be the interior of the set of points x € A such that f(x) = g(x).
It is clear that B is open and non-empty by assumption; we prove that B
is also closed in A, hence equal to A since A is connected (see (3.19)). Let
a € A be a cluster point of B; as f,g are analytic, there is an open polycyl-
inder P of center 4, contained in A, such that in P, f(x) and g(x) are equal
to the sums of two power series in the x; — a;, absolutely summable in P.
But by definition, P n B contains an open polycylinder U in which
f(x) = g(x). By (9.4.1) applied to P = Q, we conclude that f(x) = g(x)
in P, in other words P € B, and in particular 2 € B, q.e.d.

For p = 1, we can improve (9.4.2) as follows:

(9.43) Let AcK be an.open connected subset of K, f and g two analytic
functions in A with values in E. Suppose there is a compact subset H of A
such that the set M of points x € H for which f(x) = g(x) be infinite. Then
f(x) = g(x) for every x € A.

Let (z,) be an infinite sequence of distinct points of M; as H is compact,
there is a cluster value b€ H for the sequence (z,), hence any ball P of
center b, contained in A, contains an infinity of points of M. But we can
suppose f and g are equal to convergent power seriesin z — binaball PC A
of center b; the principle of isolated zeros (9.1.5) then shows that f(x) = g(x)
in P, and we can then apply (9.4.2).
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For K = € we can also improve (9.4.2) in the following way:

(9.4.4) Let AcC? be an open connected set, f and g two analytic functions
in A with values in a complex Banach space E. Let U be an open subset
of A, b a point of U, and suppose that f(x) = g(x) in the set UN (b + R?P);
then f(x) = g(x) for every x € A.

We can suppose, by a translation, that b =0; let A =f — g, and let P
be a polycylinder sz C?, of center 0, contained in U and such that in P, A(z)
is equal to the sum of an absolutely summable power series (c,z"). Now
PNR? is a polycylinder #n R?, and k(x) =0 in PNR?; this shows by
(9.1.5) that ¢, = 0 for every », hence A(z) = 0 in P and (9.4.2) can be
applied.

In an open connected set A C K?, we say that a subset MCA is a set
of uniqueness if any two functions, defined and analytic in A, coincide in A
as soon as they coincide in M. (9.4.2), (9.4.3) and (9.4.4) show thata non-empty
open subset U of A, or the intersection U n (b + R?) (if not empty), or, for
$ = 1, a compact infinite subset of A, are sets of uniqueness. We shall
see another example in (9.9) for K = C.

The preceding result shows that if an open connected subset Acc?
is such that A n R? %= @, any analytic function f in A is completely deter-
mined by its values in A N R?. The restriction of / to ANR? is an analytic
function, but in general an analytic function ## A N R? cannot be extended
to an analytic function ¢z A; we have however the weaker result:

(9.4.5) Let E be a complex Banach space, A an open subset of R?, [ an
analytic mapping of A into E. Then there is an open set BC C? such that
BN R? = A, and an analytic mapping g of B into E which extends f.

Indeed, for each a = (a,,...,a,) €A, there is an open polycylinder
P, in R? defined by |x; — a,| <7, (1 <i<p) contained in A and such
that, in P,, f(x) is equal to the sum of an absolutely summable power series
(c,,“_.,,ib(x1 —a)". . (%, — ap)"f’). Let Q, be the open polycylinder
in CP, of center a and radii 7;; then, by (9.1.2), the power series
(Cm---»,,(zl —a)™. .. (z, — a,,)"”) is absolutely summable in Q,; let g,(z) be
its sum. If 4,b are two points of A such that Q, N Q, # O, then P, N P, =
(Q, N Q,) N R? is not empty, and we have g,(x) = g,(¥) = f(») in P,NP,.
Moreover Q,N Q, is connected by (9.1.1); it follows from (9.4.4) that
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8(2) = g(2) in Q,Nn Q,. We can now take B= |J Q,, and define g as

acA
equal to g, in each Q,; the analycity of g follows from (9.3.1).
The proof of (9.4.5) shows that when f is an entire function defined in R?,
it can be extended to an entire function defined in (?, and that function is
unique by (9.4.4).

PROBLEMS

1) a) Let P(uy,...,u, ;) be a polynomial with coefficients in K, «,,. . .,&, elements
of K such that |a;| < 1 for 1 <7< ». Suppose there exists a ball B in K of center 0
and a scalar function f analytic in B and such that f(z) = P(z,f(e;2),. . .,f(a,2)) for
every z € B. Show that f can be extended to a function g analytic in the whole set K
and satisfying the same functional equation in K (use (9.4.2)).

b) Suppose K = C, and suppose there is a real number § and a scalar func-
tion f analytic for Z(z) > B, and satisfying in that subset the equation f(z) —
P(zf(z + ay),...,f(z + a,)), where the a; are complex numbers with H(a;) > 0.
Show that f can be extended to a function g analytic in € and satisfying the same
functional equation.

c) Generalize the preceding results to functions of any number of variables.

2) Let D be a connected open set in €?, D’ the image of D by the mapping
(23- - -,2p) = (21, . .,3p). Let f be a complex function analytic in D, and suppose
D n R? is not empty, and f takes real values in D n R?. Show that f can be extended

to a function g analytic in D U D’. (Consider in D’ the function (z,,. .. 2p) = fZ,. .. p)s
and use (9.4.4).)

5. Examples of analytic functions; the exponential function; the
number 7

(9.5.1) Let P(2), Q(2) be two polynomials in K?, such that Q is not identically
0; then P(2)/Q(z) is analytic in the (open) set of the points z such that Q(z) % 0
(i.e., the set of points where the function is defined).

It is obvious that any polynomial is an entire function. By (9.3.2)
all we have to do is to show that 1/z is analytic for z 3£ 0; but if z;, # 0,
we can write

1
z 7 — 2
2l 1 + 0
12—z (2— 2)? (2 — z5)"
= — )4 ...
7 2 + 2 + +(=1) T +

where the power series is absolutely summable for |z — 2| < ||, q.e.d.
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Consider now the function ¢* of the real variable x; we prove it is an
entire function. From the Taylor formula (8.14.3) we derive, for any »
{using (8.8))

x x2 x*
8‘=1+T!~+'2—!‘+.-.+ + édt.

2 |9
n! !

O'_———ﬁR

As ¢* is increasing by (8.5.3), we have |¢!| <el*! for |t| < |x|, hence
‘ g =0 gy
0

lxln +1 g%l

(n+1)!°

< But if #, is an integer > |x|, we have

n!

an x P | x|m

TS ;; ‘”l! for n > n,, hence, for any x€R
R x x2 X"
er = +—i—!+'ﬁ+...+m+...

and by (9.1.2) the series is normally convergent in any compact interval.
Using the remark which follows (9.4.5), we can define in C an entire func-
tion ¢ (also written exp z) as equal to the sum of the power series (2"[nt).
We have

’ ’

(9.5.2) Y = &

for both sides are entire functions in €2 which coincide in R2, and we
apply (9.4.4).

For real x, ¢~ '* is the complex conjugate of €%, since (— ix)" is the
complex conjugate of (ix)"; from (9.5.2) it follows that le*| = 1. We define
cos x = A(¢'*), sin x = F(¢**) for real x; they are entire functions of the
real variable x by (9.3.3), and the relation |¢| =1 is equivalent to
cos®x + sinx = 1, and implies |cos x| <{ 1 and [sin x| < 1 for any real x.
Moreover, we have

(9.5.3) D(e) = ¢

since both sides are entire functions (by (9.3.5)) in €, which coincide in R.
In particular (see Remark following (8.4.1)), D(¢'*) = ie'* for real x, hence

(9.5.4) D(cos x) = — sin x, D(sin x) = cos x.
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The definitions of cos x and sinx for real x can also be written
cos x = }(e"* + ¢ ™), sin x = (¢ — e~ **)/2i; these formulas may be used
to define cosz and sinz for complex z, replacing x by z in the right-hand
sides. With these definitions, formulas (9.5.4) are still valid for complex
values of x.

(9.5.5) There is a number m > O such that the solutions of the equation ¢ = 1
are the numbers 2nmi (n positive or negative integer).

If z= x4 iy, we have |¢| = e”]ei”[ = ¢*, hence ¢/ =1 implies x = 0,
z=1y. We first prove:

(9.5.5.1)  The set of points x = 0 such that cos x = 0 is not empty.

Suppose the contrary. Then, as cos 0 = 1, we would have cos x > 0
for any x > 0, hence by (9.5.4) and (8.5.3), sin x would be strictly increasing,
hence > 0 for any x > 0, and by (9.5.4) and (8.5.3), cos x would be strictly
decreasing for x 2> 0. We first remark that it is impossible that we should
have cos x > 1/2 for all x > 0, for that would imply, by the mean value
theorem (8.5.3), that sin x > x/2 for all x >0, and this violates the
inequality [sin x| <1 when |x| > 2. Suppose then cosa < 1/2. Then
cos ¥ < 1/2 for x > a, and this implies sin x >> 1/2 for x > a; the mean
value theorem would then give again

cosx —cosa < — (x — a)/2

and this shows that cos x < 0 when x is large enough, q.e.d.

As cos x is continuous, the set D of the roots of cos x = 0 such that
% 2= 0 is closed (3.15.1) and does not contain 0, hence has a smallest element
which we denote by #/2. Then we have sin?z/2 = 1, and as sin x is
increasing for 0 < x < /2, sinzw/2 =1, ™2 =4. This already shows
that ¢*™ = 1, hence ¢ = 1 for every integer #, and by (9.5.2)

(9.5.6) T gt

To end the proof of (9.5.5) we have only to show that the equation ¢* = 1
has no root in the interval ]0,2z[. But from (9.5.2) we deduce
cos (¥ + m/2) = — sinx, hence cosx <O for m/2<x <<, and as
cos (¥ + 7)) = — cos », we see that cosx < 1 for 0 < x < 2x, and this
ends the proof.
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(9.5.7) The mapping x — €™ is a continuous bijection of any interval
[a,a + 2n[ on the “unit circle” U: |z| =1 in C, and a homeomorphism of
la,a + 2x[ on the complement of e in U.

The mapping is obviously continuous, and it is injective by (9.5.2) and
(9.5.5). To prove it is surjective in [4,4 + 27 [, we can obviously suppose
a=0, forif teU, te~®isalsoin U. Let {=a+ if, a®+4 f2=1; as
l¢| <1 and, in the interval [0,z], cos x is continuous and cos0 =1,

cos = = — 1, there is ¥ € [0,7] such that cos y = « by Bolzano’s theorem
(3.19.8). Then siny = £ B; if siny = B, we are through; if not we have
cos (2r —y) =cosy =a and sin(2x —y) = —siny=4 LetV be

the complement of ¢® in U, and ¢, = ¢” € V with a < b < a + 2x; if the
inverse mapping of the restriction of x — ¢* to Ja,a + 2n[ was not contin-
uous at ,, there would be in Ja,a + 27z[ a sequence (x,) whose elements
would belong to the complement of a neighborhood of b, and such that
lim ¢ = Zo; but then a subsequence (x,) would tend to a limit ¢ #b

in the compact set [a,2 + 2x] by (3.16.1), and as &° £ ¢® we arrive at a
contradiction. (For another proof, see (10.3.1)).

(9.5.8) The unit circle U is connected.

This follows from (9.5.7), (3.19.1) and (3.19.7).

(9.5.9) (“Principle of maximum”). Let (c,2") be a power series with complex
coefficients, absolutely summable in an open polycylinder PcC? of center 0
and let [(z) be its sum. Suppose that there is an open ball BC P of center O
such that |f(z)| < |f(0)] for every z€B. Then c,=0 for every index
v #(0,...,0), tn other words, f is a constant.

We first prove that the theorem is true for any p if it is true for p = L.
Indeed, for any z = (2,...,%,) € P, consider the function of one complex
variable g(f) = f(tzy,. . ..tz,) which is analytic for [{|{ <1+ with ¢ small
enough. As |g(t)] < |g(0)] for these values of ¢, we have g(¢) = g(0) by
assumption, and in particular f(z,...,2,) = g(1) = f(0). For p=1, we
can suppose ¢y 7 0, otherwise the result is obvious by (9.1.6). Suppose
there are indices # > 0 such that ¢, # 0, and let m be the smallest of
them. We can write

1(2) = co(1 + b, 2™ + 27h(z)
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where b,, # 0, % is analytic in P and 4(0) = 0. Let » > 0 be such that
|z| <7 is contained in B and |A(z)| < 3|b,,| for |z] <7 (9.1.3). Write
b,, = |b,|¢ with |¢| = 1; by (9.5.7) there is a real ¢ such that e™* = {~1;
for z = re*, we therefore have

L+ buz™ + 27h(2)| = |1 + |bw|r™ + 27h(2)| =1 + & |b|r™
which contradicts the assumption |f(z)| < |¢o| in B.

The result (9.5.9) does not hold if C? is replaced by R”, as the example
of the power series 1/(1 + 22 = X (— 1)"z** (for |z| < 1) shows.
n=>0
(9.5.10) Let [ be a complex valued analytic function defined in an open
subset A c C?, and which is not constant in any connected component of A.
For any compact subset HC A, the points z € H where |f(z)] = sup |f(x)]
xe€H

(which exist by (3.17.10)) are frontier points of H.

Follows at once from (9.5.9) and the principle of analytic continuation

(9.4.1).

PROBLEMS
1) Show that if Z(z) < 0, then, for any integer n > 0
2 22 2 ' M+l
ez—(l+l—!+—2—!—+... +m>t< m‘
(use Taylor’s formula (8.14.2) applied to ¢ — ¢%).
2) Prove that, for real x»
22 24 " x2n le2n+2
cosx“<l B TITR N (2n)!) Sent 2t
and the difference has the sign of (— 1)?+1; similarly
sinx—(x—x—s+x—5— e 42 —1 >‘< |x[2nt1
3t 5 T 2n — 11/ (2n + )

and the difference has the sign of (— 1)*x. (Use induction on #.)

3) a) Let U be a relatively compact open subset of C?, f a complex valued analytic
function in U, which is not constant in any connected component of U. Suppose
there is a number M > 0 such that for every frontier point # of U, and any ¢ > 0,
there is a neighborhood V of # such that |f(z)| <C M + ¢ for any ze UnV. Show that
|#(2)] << M for any z € U, and equality cannot be reached at any point of U (use (9.5.10)
and the compactness of the frontier of U).
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7 n
b) InC,let U be the open set defined by the conditions #(z) > 0, — 5 < S)< 5

Show that the entire function exp (exp (2)) is bounded on the frontier of U, but not in U.

4) a) Let E be the Banach space €2, with the norm [|(2,,2,)|| = sup (|2,],|22]). The
function z — f(z) = (1,0) + (0,1)z is an analytic mapping of € into €2 such that
||f(2)|] is constant for |z} < 1.

b) Extend the result of (9.5.10) to functions defined in an open set A c C?, and
taking their values in a complex Hilbert space. (If ||f(2)|| reaches a maximum at z, € A,
consider the complex-valued function z — (f(z)|f(2,)); compare with a).)

5) Let U be an open set in €?, P a closed polycylinder contained in U, of center
a=(a,...,ap) and radii 7, 1< k<<p). Letfbea complex valued analytic func-
tion in U, and suppose that on the set S = {(2;)| |z — a5] = »; for 1 <<i << p} (ie
the product of the circles |z; — a;| = 7;), |f(z)| << M. Show that for any zeP,
|#(z) < M. (Use induction on p, considering the function (z,,...,2p) — f(Br,20, - - +,2p)
for |by — a;] = 7,.)

6) Let P(#,y) be a polynomial in two complex variables, with complex coefficients,
of maximal degree m in #, » in y. Suppose that for real x,y such that — 1< ¥ < 1,
—1<y<1, |P(x)|< M. Show that for real x4y such that |z|>1, =1,

|P(x9)| < M(|#| + Vx2 — )™(|y] + Vy2 — 1)%. (Apply problem 5 to the function

1 1
P s 4+ — f + " for |s| < 1, |t| < 1.) Extend to polynomials in any number of
s

variables.

7) a) Let f(z) be a complex analytic function of one complex variable in the disc B:
|2] < 1; suppose |f(z)] < M in B and f(0) = 0. Show that |f(z)] << M|z| in B (consider
the function f(z)/z, which is analytic in B) (‘“Schwarz’s lemma’’). When is equality
possible ?

b) Consider on €7 the nmorm ||z|| = (|7|% + ... + |2|)Y2, for z = (z,....2)
(called the “‘hermitian norm’’). Let B be the ball ||z|| < 1 for that norm, and let f be
a complex valued analytic function in B, such that f(0) = 0 and |f{(z)] <M in B.
Show that |f(z)| << M||z|| in B (consider the function ¢ — f(z,. . .,2pt) of one complex
variable and use a)).

8) a) In the complex field C, let R_ (the “‘negative real half-line”) be the subset
defined by S (z) = 0, #(z) < 0; let F be the complement of R_ in C. On the other
hand, let S be the set defined by — n < $(2) < m. Show that the mapping z — ¢°
is a homeomorphism of S onto F (use (9.5.7)); the inverse mapping is written
z — log z, and called the “‘principal determination of the logarithm of z”’; one has
log z = log |z| + Am(z), where Am(z) is the unique number 6§ such that —n <0< =
and z = |z| €0 (the “‘amplitude” of z). If 7,2’ and 2z’ are all in F, show that the
difference log (2z’) — log z — log 2’ is equal to 0,27 or — 2mi.

b) Intheball B: |z| <C 1, the power series ((— 1)"z"/#), 1 is absolutely convergent;
if f(z) is its sum, show that f(z) = log (1 4 2). (Observe that if 2B, 1 + z€F;
show that f’(z) = 1/(1 4+ 2), and deduce from that result that f(z) = log (1 + 2) for
zreal and — 1 < z < 1; finally, consider the analytic function ¢/} and use (9.4.4).)
Conclude that log z is analytic in F.
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t
c) For any complex number fand any integer n> 0, let ( )=t(t— )...0—n+1)n!=
n

o t
X cpat®, where the cy, are rational numbers (we put (0) = l> . Show that the power
k=0

series (cz,2"t*) is absolutely summable in B x € (observe that for any number » > 0,

¥ v 4 1 1
(l-{-—)(l —|——>.‘.<l +—)<exp(r(l + —4+ ... +—>><a-n’
1 2 n ) 2 n

where @ is a constant). Prove that the sum of that series is exp (¢log (1 + 2)).
(Consider first the case in which z and £ are real, and apply Taylor’s formula (8.14.2)
to the function z — (1 4 2)’. Then use (9.4.4).) The function exp (tlog (1 + 2)) is
also written (1 + 2)’; show that for real values of £, [(1 + 2)f| = |L + 2|\,

d) If £ > 0, show that z — (1 + z)’ can be extended by continuity to the closed

4
”
that for s > 0,1 — s< e™5)
9) a) Let fj (1<<j<{m, 1<<k<n) be scalar analytic functions defined in an
open connected subset A of C?; let ajp be real numbers > 0. Show that the continuous

disc |z] <{ 1. (Use a majoration of similar to the one obtained in c), observing

”
function u(z) = I |fyp(2)| |far(2)|*2*. . . |Fma(2)| "™ cannot reach a relative maximum
k=1

at a point of A, unless each of the products |fy4(2) lal". . .[fmk(z)|°""" AI<<rhn) is
constant in A. (Observe that if f(z) is analytic in A and f(z,) # 0, then, for every
real number 4, there is a function g;(z) which is analytic in a neighborhood of z, and
such that |g;(2)| = |f(2)|* in that neighborhood; use problem 8 c) to that effect.)
Extend the result to the case in which the o are arbitrary real numbers, provided
none of the f;; vanishes in A.

b) Generalize to u(z) the result of problem 3 a).

10) Let f(2) be a complex function of one complex variable, analytic in the open
set A defined by R, < |z| < R, (where 0 <{ R, < R,). Foranyrsuchthat R, < 7 < R,,
let M(r) = sup |f(z}]. Show that if R, < 7, < #,< 73 < R,, then

o] =7
log 7y — log 7, log vy — log 7,
log M(ry) <X ———————log M(r;) + ——————— log M(r,)
log 73 — log 7, log rg — log 7,
(“Hadamard’s three circles theorem”.) (Apply problem 9 to |z|*- |f(z)], where the
real number a is conveniently chosen, and the function |z|*- |f(z)| is considered in the
set 7, < |z| < 7,.) When can equality occur?

11) We put on €? and (7 the hermitian norms (problem 7). Let f be an analytic
mapping of the ball B: ||z|| < 1 in €?, into (¢; we have f = (f,,.. -,fg), where the f,
are complex valued analytic functions in B. Suppose that f(0) = 0; show that if
[If(2)]] < M for z€ B, then ||f(z)|| << M- ||z|| for ze€ B (for each ze B, consider the
functions ¢ — f,(¢z)/¢ and apply problems 9 and 3). When is there equality ?

12) We put on (P the hermitian norm (problem 7). Let F,G be two analytic
mappings of B: [|z|| < 1 into €, which are homeomorphisms of B onto open sets
U = F(B) and V = G(B) respectively, and such that the inverse mappings are analytic
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in F(B) and G(B) respectively (this last condition actually follows from the others;
see section 10.3, problem 2). For any r such that 0 < » < 1, let B, be the ball ||z|| < 7,
and let U, = F(B,), V, = G(B,), which are open subsets of U and V respectively.
Show that if an analytic mapping # of U into V is such that #(F(0)) = G(0), then
u(U,) €V, for every » such that 0 < r < 1 (use problem 11).

13) Let f be a complex valued analytic function of one complex variable in the
ball B: |¢z] < R; for any » such that 0<Cr < R, let A(r) = sup Z(f(2)).

I<r
a) Show that » — A(y) is strictly increasing unless f is constant (consider exp (f(2))).
b) Show that, when A(R—) < + oo,

_rA0)+ 2r
+ 7 ( R+ 7

A<= A(R—) :

R
(Apply problem 12, with F(z) = Rz, and G(z) of the type (az + b)/(cz + d), where
the constants a,b,c,d are chosen such that G(B) is the half-plane defined by
R(z) < A(R-)). -

14) a) Let A be a relatively compact open subset of €7, E a closed subset of the
frontier of A. Suppose there exists a complex valued function g, which is analytic
in a neighborhood of A, equal to 0 in E and is not identically 0 in A. Let f be a complex
valued analytic function in A, bounded in A, and suppose there is a number M such
that, for every frontier point » ¢ E of A, and every ¢ > 0, there is a neighborhood V
of x in C? such that |f(z)] <C M + e for ze An V. Show that [f(z)| << M for every z € A.
(One can suppose that |g(z)| < 1 for z€ A. Consider the function |f(z)]- |g(2)|*, where
a > 0 is arbitrary, and apply the result of problem 9 b) to that function.)

b) Show that the result of a) does not hold if the assumption that f is bounded
in A is deleted (consider the function exp (exp ((1 — 2)/2)) and use problem 3 b)).

15) Let w(x) be a real function defined in [0, + o[, such that w(x) > 0 and

lim w(x) = + o. Show that if a complex valued function f is analytic in a
X—>»+

neighborhood of the closed half-plane A: Z(z) = 0, then there is at least one point
{ € A such that [/({)| < exp (w(|{[)). (Use contradiction: if the conclusion was not
true, prove that the function |e*|- |f(z)]~® would be <C 1 in A, for every value of
¢ > 0, by applying problem 9 a).)

16) Let A be an open relatively compact subset of €?, f a complex valued function,
analytic in A. Suppose there exists a number M > 0 and a complex-valued func-
tion g, analytic in A, such that g(z) % 0 for any z€ A, and having the following
property: for every point x of the frontier of A, and every £ > 0, there is a neigh-
borhood V of » such that |f(z)| << M |g(2)|® for ze An V. Show that |f(z)| < Min A
(“Phragmén-Lindel6f’s principle’’; use problem 9 b)).

17) Let U be the open set defined in problem 3 b), and suppose f is a complex
valued analytic function in a neighborhood A of U, having the following properties:
1° |[f(z)| << 1 on the frontier of U; 2° there exists a constant a such that 0 < a < 1
and |f(z)| << exp (exp (a(z))) for ze U. Prove that |[f(z)] << 1 in U. (Remark that

Z —r

transforms U into a relatively compact set, and use Phragmén-
z

Lindel6f’s principle (problem 16) with g(z) of the form exp (exp (b2)).)
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6. Integration along a road

A path in Cis a continuous mapping y of a compact interval I = [4,b] CR,
not reduced to a point, into C; if y(I) © A € C, we say that y is a path in A;
y(a) (resp. (b)) is called the origin (resp. the extremity) of the path, both
points are also called the extremities of y; if y(a) = p(b), y is called a loop;
if y is constant in I, we also say that the path y is reduced to a point. The
mapping »° of I into € such that y°(f) = y(a 4+ & — ¢) is a path which is
said to be opposite to y. Let I, = [b,c] be a compact interval in R whose
origin is the extremity of I, and let I, = TUI, = [ac]; if y; is a path
defined in I,, and such that y,(b) = y(b), and if we define yp, to be equal
to y in I, to y, in I;, y, is a path which we denote y v y;, and which we
call the juxtaposition of y and y;.

We will say that a path y, defined in I = [a,b]CR, is a road, if y is a
primitive of a regulated function (8.7.2); if in addition y(a) = y(b) we will
say that y is a cizcust. It is clear that the opposite of a road is a road, and
so is the juxtaposition of two roads. Let y,y; be two roads, defined in the
intervals 1,1, respectively. We say that y and y, are equivalent if there is
a bijection @ of I onto I, such that ¢ and ¢~ are primitives of regulated
functions, and that y = yjop (hence y; = yop~1); it is immediate (by
(8.4.1)) that this is indeed an equivalence relation between roads.

If the road y is defined in I = [a,b], there is a road y, equivalent to y
and defined in any other interval J = [c,d], for there is a linear bijection
t > @) = at + B of J onto I, and y; = pop has the required properties.

Let y be a road, defined in I = [4,b], and let f be a continuous mapping
of the compact set y(I) into a complex Banach space E; the function
¢t — f(y(#)) is then continuous in I, hence ¢ — f(y(?))y’(f) is a regulated func-

b
tion; the integral [f(y(¢))y'(£)d¢ is called the integral of f along the road y

and written [f(z)dz; from (8.7.4) it follows at once that if y; is a road
v

equivalent to vy, then [f(z)dz = [f(z)dz. Moreover, from the definition,
" Y

it follows immediately that

(9.6.1) !f(z)dz = — [{(z)dz

v

(9.6.2) [ Ha)dz = [{(z)dz + [{(z)dz

Y1V Vs

when the juxtaposition y, v 7, is defined.
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Let y be a circust, defined in I = [a,b]; for any c eI, consider the
mapping y, of J = [c,c + b — a] defined as follows: y,(t) = p(f) if
c<tLh () =yt —b+a)if b<t<< e+ b —a Itis immediately
verified that y, is a circuit such that y,(J) = p(I), and that [f(z)dz = [{(z)dz

" ¥
for any continuous mapping of ¥(I) into E. In other words, the integral
of f along a circuit does not depend on the origin of the circuit.

Let y,,7; be two paths defined in the same interval I, and let A be an
open set in € such that y,(I) € A and y,(I) C A. A homotopy of yyinto yyin A
is a continuous mapping ¢ of I X [«,8] (« < B in R) ¢nfo A such that
(o) = po(t) and @(£,8) = p,{#) in I; y, is said to be homotopic to y, in A
if there is a homotopy of y, into 9, in A. It is clear that for any & € [«,f],
t — @(t,£) is a path-in A. When both y, and y, are loops, we say that ¢
is a loop homotopy of y, into y, in A if t — @(¢,€) is a loop for any & € [,f];
when we say that two loops y,,y, are homotopic in A, we mean that there
is a loop homotopy (and not merely a homotopy) of y, into p, in A.

If ¢ is a homotopy of y, into y, in A, defined in I X [«,8], then the
mapping (£,£) — ¢(ta + B — &) is a homotopy of y, into y, in A; on the
other hand, if ¢ is a homotopy of y, into y, in A, defined in I X [«',8'],
then we can define a homotopy 6 of y, into y, in A in the following
way; we take § = ¢ in I X [«,8]; putting 87 =4 + 8 —«’, we take
0(t,E) = P(t,E + o — B) in I x [8,8’]; this is meaningful, for both
definitions give 6(¢,8) = y,(¢) by assumption, and it is immediate to verify
that 6 is continuous in T X [«,8’'], takes its values in A, and is such that
B(¢,a) = o(t), 0(2,8") = y,(f). This shows that the relation "y, is homotopic
to v, in A between paths in A, is an equivalence relation; it is also an
equivalence relation between loops in A, for the preceding definitions yield
loop homotopies when ¢ and ¢ are loop homotopies.

(9.6.3) (Cauchy’s theorem). Let A € C be an open set, f an analytic mapping
of A into a complex Banach space E. If I'y, I'y are two circuits in A which
are homotopic in A, then [f(2)dz = [f(z)dz.

I I,

Suppose 7,17, are defined in I = [4,b], and let @ be a homotopy of I
into Iy in A, defined in I X [«,8] (N.B. — It is not supposed that for
&+ o8, theloop t — ¢(t,£) is a circuit). As ¢ is continuous, L =¢(I X [«,8])
is a compact set contained in A; by definition and the Borel-Lebesgue
axiom, there exist a finite number of points a, (1 <A< m) in L and for
each & an open ball P, € A of center a, such that: 1° the P, form a covering
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of L; 2°in each P,, f(z) is equal to the sum of a power series in z — a,,
convergent in P,. There exists a number p > 0 such that for every x € L,
the open ball of center x and radius p is contained in at least one of the P,.
In order to prove this, use contradiction, extracting from L a convergent
sequence (#,) such that the ball B, of center x,and radius1/x is not contained
in any P,; as the limit x of (x,) is in some P,, there is a ball BC P, of center
x and radius », B, is in P, as soon as |x, — x| + 1/n < 7, contradiction.
It follows from (9.3.1) that for every x € L, f(2) is equal in the ball B(x;p)
to a convergent power series in z — x.

As @ is uniformly continuous in I X [«,8] (3.16.5), there is £ > 0 such
that |t — | <e, [§ — &| < eimply [p(8) — g(t'£)] < p/4. Let (o< iz,
be an increasing sequence in I such that fy=a,t, =05, ¢, — ¢ <e¢, for
0<i<7—1, (§)o<j<, an increasing sequence in [«,f] such that § = «,
& =0, &, —§<efor 0<7<s — 1. Define p; as follows

t— 1
+ 1 (plti+1.8) — @lt:i.6)

7il) = (&) + ——
1+1 2

fort, <t <ty 0<<i<<r—1,1<j<s—1; in addition, let yo = I7,
ys = I'y. Then y; is a circuit in A for 0 <7 <s; all we have to do is to
prove that [f(z)dz = [ f(z)dz for 0 <j<s— 1. Note now that from

¥ Yji+1

the choice of the ¢; and §;, all the points y,(¢) and y; . ,(f), where <<t <¢; 4,
belong to the open ball Q. of center ¢(,&;) and radius p. By (9.3.7) and
(9.3.1) there is a function g analytic in Q,; and such that g;(2) = f(2)
in Q;. As Q;_,;,nQ,; is not empty and is connected by (9.1.1), the
difference g, — g is comstant in Q; ,.N Q. by (8.6.1). Now, by

-— 1'7'
definition
,_1‘z+1 r—1 %41
[ H(2)dz = 2 f yitydt = X tf ;) y;i(t)dt
Yy =0k
r—1

= '=Zo (g;i(yi(t;+1)) - gii(yi(ti)))'

Therefore we are reduced to proving the relation

1
(E¢1('}’7+1( t+l)) gii(?i+1(ti)))

r—1

2 (&;(7’,( Liy1) — gii()’i(ti))) =

i=0 i

"MT
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which can also be written

(9.6.3.1)
r—1
5‘0 (8ii (it 41) — 8i(¥j1lti41) — 81','(77'('5;)) + &i(¥;+1(8)
=0.

But y,(4) and y;,,(t;) both belong to Q,_,;N Q; for 1 <7 <7, hence,
by what we have seen above

g;i(y;() — gii(7j+l(ti)) = gi—l,i(yj(ti)) - gi—l,j(yj+1(ti))
hence the left-hand side of (9.6.3.1) is reduced to

8y~ 1,;‘(7;'(‘)) — & - 1,7‘(7;' (8) — goj(?’;'(to)) + go;‘(71+1(to))-

But as y; and y, ,, are circuits, we have y;(f) = ¥;(t,) and y; ,1(tp) = ¥ 11(8);
moreover, these two points belong to Qg 1 Q, _,;, which is connected; the
difference g, _,; — go; is thus constant in that set by (8.6.1), and this ends
the proof.

(9.6.4) Let y,,; be two roads in an open set ACC, having same origin u
and same extremity v, and such that there is a homotopy @ of y, into yy in A
which leaves u and v fixed (i.e. p(a,E) = u and @(b,§) = v for every & € [a,8]
if @ is defined in [a,b] X [«,B]). Then, for every analytic function f in A,
[1(z)dz = [f(2)dz.

ke? Vs

Let y$ be the road opposite to p;, and let yy(t) = yi(t — b + a) for
b<t<2b—a; y;is a road equivalent to yj. By definition, y; v y3
and y, v p are circuits. Moreover these circuits are homotopic in A, for
if we define (t,&) as equal to @(¢,£) fora << ¢ < b, toyy(t) for b < £ << 26 — a,
4 is a loop homotopy in A. Applying (9.6.3), we get [{(z)dz + [{(z)dz =

et

[H(z)dz + [f(z)dz, q.e.d. :

Vs Vs

7. Primitive of an analytic function in a simply connected domain

A simply connected domain A € C is an open connected set such that
any loop in A is homotopic in A to a loop reduced to a point; it is clear
that any open subset of ¢ homeomorphic to A is a simply connected domain.
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(9.7.1) Example. A star-shaped domain A € C with respect to a point a € A
is an open set such that for any z € A, the segment joining a and z is contained
tn A. Such a set is clearly connected ((3.19.1) and (3.19.3)); if y is any
loop in A, write @(t,§) =a+ (1 — &)(y() —a) for 0<EL]; @ is a
loop homotopy of y into the loop reduced to a. An open ball is a star-
shaped domain with respect to any of its points.

(9.7.2) If AcC s an open connected set, for any two points u,v of A there
is a road of origin u and extremity v.

We need only prove that the subset B € A of all extremities of roads
in A having origin « is both closed and open in A (3.19). If xe ANnB,
there is a ball S of center x contained in A, and by assumption S contains
the extremity v of a road y of origin #; the segment of extremities v,x is
contained in S, and if y is defined in [4,b], the road y, equal to y in [a,b],
toy{f) =v + (¢ — b){x — v) in [b,b + 1] is in A and has origin #, extrem-
ity x; hence x € B. On the other hand, if y € B, there is a ball S of center y
contained in A; for any v € S, the segment of extremities y,v is contained
in S and we define in the same manner a road of origin #, extremity v,
which is in A, hence S B, q.e.d.

(9.7.3) If AcCis a simply connected domain, any function f analytic in A
has a primitive which is analytic in A.

Let a,z be two points of A, y,,y, two roads in A of origin a and extrem-
ity z; then [/(x)dx = JH(x)dx. Indeed, we may suppose, by replacing y,
"1 Y2

by an equivalent road, that y, is defined in [b,c] and y, in [c,d]; then

Yy = vy V ¥, is a circuit in A, which is therefore homotopic to a point in A,

hence [f(x)dx = 0 by Cauchy’s theorem, and this proves our assertion.
Yy

We can therefore define g(z) as the value of [f(x)dx for any road y in A
Y

of origin a and extremity z, and by (9.7.2), g is defined in A. Now for any
Zy € A, there is an open ball B € A of center z, in which f(z) is equal to a
convergent power series in z — z5; by (9.3.7) there is therefore a primitive A
of f in B which is analytic, and such that k(zy) = g(z,); hence we have
for ze B

1

h(z) — h(zo) =J (2o + t(z — 29)) (z — zg)dt.
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But the right-hand side is by definition [f(x)dx, where ¢ is the road

t — 2y + t(z — z,) defined in [0,1]; as that road is in BC A, we have
g(2) — glzg) = [f(x)dx by definition of g, and therefore g(z) = h(z)in B, q.e.d.

8. Index of a point with respect to a circuit

(9.8.1) Any path y defined in an interval 1 = [a,b] and such that y(I) is
contained in the unit circle U= {zeC| |z| =1}, has the form t— %",
where s is a continuous mapping of 1 into R; if y is a road, i is a primitive
of a regulated function.

As y is uniformly continuous in I, there is an increasing sequence of
points ¢, (0 < k < p) in I such that #, = a, ¢, = b, and that the oscillation
(3.14) of y in each of the intervals I, = [t,,4] (O<AE<<p — 1) be < 1.
This implies that y(I,) # U; if 6, € R is such that ¢'%¢ y(1,) (9.5.7), then
x — ¢*+% is a homeomorphism of the interval ]0,27[ on the complement
of ¢% in U (9.5.7). If g, is the inverse homeomorphism, we can therefore
write, for £ € I, p(t) = ¢“*?, where y,(t) = @x(y(t)) + 6, is continuous in I,.
By (9.5.5), we have i (t,41) = $ults 11) + 2m with », an integer
(0 < k< p — 2). Define now ¢ in I in the following way: () = y(f) for
te1,; by induction on &, we put ¢(f) = ¢(f) + b(ty) — u(ty) for t, <t <85
By induction on %, it is immediately seen that ii(t;) — (#,) is an integral
multiple of 2z for 0 < k < p — 1; therefore y(f) = ¢ for €1, and ¢
is obviously continuous in I. Moreover, if p(f) = a(¢) 4 ¢8(¢), we have
a(t) = cos (t), B(t) = sin (f), and one of the numbers cos (f), sin y(¢)
is not 0; from (9.5.4), and (8.2.3) applied to one of the functions cos x,
sin ¥ at a point where it has a derivative # 0, we deduce that if y has a
derivative at a point ¢, so has ¢, and 4§’(£) = y’(£)/y(¢), which ends our proof.

(9.8.2) For any point a€C, and any circuit y contained in C — {a},

[dz/(z — a) has the form 2nzi, where n is a positive or negative integer.
Y

By a translation, we can suppose @ = 0. Suppose y is defined in I = [b,c];

the function ¢(¢,§) =& fl—((tt))—l + (1 — &)y(?) is continuous in T x [0,1] and
Y

is a loop homotopy (in €* = € — {0}) of the circuit y into the circuit
y1(t) = p(&)/|y(t)|, which is such that y,(I) € U. As 1/z is analytic in C*,

’



218 IX. ANALYTIC FUNCTIONS

Cauchy’s theorem (9.6.3) shows that [dz/z= [dz/z. But by (9.8.1),
14 21
71(t) = ¥ where ¢ is a primitive of a regulated function, hence

Jdzjz =i [’ (t)dt = i(p(c) — $(b)) by definition; as p,(b) = y,(c) by
Y1 14
assumption, the conclusion results from (9.5.5).

Remark: A simpler proof of (9.8.2), which does not use (9.8.1), can be

t

"(s) ds
given as follows (Ahlfors): let A(f) =jl(—s)——; it has a derivative
Jyis)—a
"¢
equal to A'(f) = —();)—Q—— except at the points of an at most denumerable
(@) — a

subset of I; hence, if g(¢) = e~ "¥(y(t) — a), we see that g'(f) = 0 except
in an at most denumerable subset of I. We conclude (8.6.1) that g is con-

o _ Y —a -
stant, hence ¢" = _y—(b)——a_' But we have y(c) = y(b), and therefore
"9 = 1, which implies %(c) = 2nai for an integer n by (9.5.5).
We say that the number » is the index of a with respect to y (or the
index of y with respect to a) and we write n = j(a;y). From Cauchy’s theorem
it follows that if y,,y, are circuits in € — {4} which are homotopic in that

set, they have the same index with respect to a.

(98.3) The index j(x;y) is constant in each commected component of the
complement A of the compact set y(I).

Indeed, we remark that x — j(x;y) is continuous in the open set A, for
by definition, the index of x -+ & with respect to y (if x + & ¢ y(I)) is equal
to that of x with respect to the circuit y,: ¢ — p(f) — h. But if B is a ball
of center x and radius 7, contained in A, o(t,§) = y(t) — &k (defined in
I x [0,1]) is a loop homotopy, in € — {x}, of y into y,, as long as |k| < 7,
and therefore j(x + 4;y) = 7(x;y) by Cauchy’s theorem. As the set Z of
integers is a discrete space, the conclusion follows from (3.19.7).

(9.8.4) Example. Let ¢, be the circuit ¢ — " defined in I = [0,27],
n being a positive or negative integer; we have ,(I) = U; ¢, is called
“‘the unit circle taken » times.” We observe that the open set ¢ — U has
two connected components, namely the ball B: |z| < 1 and the exterior
E of B defined by |z| > 1. Indeed, B is connected as a star-shaped domain
(9.7.1); and by (4.4) and (9.5.7) E is the image of ]1,+ co[ x [0,2n] by
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the continuous mapping (x,f) — x¢*, hence the result by (3.19.1), (3.20.16)
and (3.19.7) (a similar argument also proves the connectedness of B and of
B — {0}); finally in C — U, B and E are open and closed since B is open
in Cand B = (C — U)nB, and we have BN E = &J. From the definition
and (9.5.3) it follows that §(0;e,) = n, hence j(z;¢,) =n for any point z of B.
Let us show that §(z;¢,) = 0 for any point of E; more generally:

(9.8.5) If a circuit y is contained in a closed ball D: |z — a| <7, then
j(z;y) = O for any point z exterior to D.

Indeed, suppose y is defined in an interval I = [b,c], and that [y’ <M

c

. . N . dx y'(¢) at
in that interval. By definition, 2nij(z;y) = = for
X — 2z J Y@ — 2
|z — a| > 7. But as |p(t) — a| <7, we have |y(t) — 2| > |z — a| — 7 for
M(c — b)

any ¢ € I, and therefore, by the mean value theorem, 27{j(z;y)| < ]— | ;
z—al—7r

when |z — a] is large enough the right-hand side is < 2=, and as j(z;y) is
an integer, this implies j(z;y) = 0. But the exterior of D is connected, as
seen above, hence the conclusion by (9.8.3).

(9.8.6) For any circuit y in C, defined in 1, the set of points x € C — y(I)
such that j(x;y) # O is relatively compact in C.

For by (9.8.5), that set is contained in any closed ball containing y(I).

(9.8.7) Let AcC be a simply connected domain, y a circuit in A. For any
point x of C — A, j(x;y) = 0.

By assumption, there is in A a loop homotopy ¢, defined in I x J, of
y into a circuit reduced to a point. As x¢ @(I X J), Cauchy’s theorem

shows that [dz/(z — x) = 0.
¥

9. The Cauchy formula

(9.9.1) Let AcC be a simply connected domain (9.7), f an analytic mapping
of A into a complex Banach space E. For any circuit y in A, defined in 1

and any x € A — y(I), we have (Cauchy’s formula)

() = Sﬁ%

omi |z — x
¥
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Consider the function g(z) defined in A, equal to (f(2) — f(x))/(z — x) for z £ x,
to f'(x) at the point x; g is analyticin A, for it is obviously analytic in A —{x}
by (9.3.2) and (9.5.1) ; on the other hand, there is a ball B € A of center x such
that for z€ B, f(2) = f(x) + (z — #)f'(¥) + ... + (z — )" (x)/n! + ...
the series being convergent in B; this proves that for any z € B, g(z) is
equal to the sum of the convergent series

F(x) + Mz — 0" (®) + ... + (2 — 2" YD)l + ...,

hence analytic at . From Cauchy’s theorem (9.6.3) we have [g(z)dz =0,

) ’

1
and writing g(z) = — f(x) - —— yields (9.9.1) by definition of the
z2—x z2—x

index.
Conversely:

(9.9.2) Let y be a voad in C, defined in an interval 1 = [b,c] and let g be a
g(x)dx

continuous mapping of y(I) into a complex Banach space E. Then f(z) = j
x—2z

Y
ts defined and analytic in the complement of y(I); more precisely, for any

g(x) dx

)k-f—l’

(— the power series (c,(z — a)")
x—a

point a € C — p(I), if we write ¢, = j

¥

is convergent in any open ball B of center a contained in C — y(1), and its
sum is equal to f(z) in B.

Indeed, suppose |z — a|<¢ -d(a,y(I)) with 0<<g< 1; then, for any xey(I),

0

1 1 — .
we have ~— 7 T Z (T(Z_ a)i)“ ,  with
(x — a) (l—x—a> n=0
(Z‘—a)n 1 o e . ’
w—api| S5 ¢ i =dayD). It [g(x)[| < Miny(D) and [y'()] < m

Mm

Y0ely@)e —a) )  Mm . prce the
= K] 4

(y(t) —a)"+!
Y ()gly®))(z — a)
(y(t) — oyt
follows from (8.7.9) that the series (c,(z — @)") is convergent in the

ball |z — a| < ¢- 46 and has sum f(2) in that ball.

in I, we have, for any ¢¢e1,

series of general term is normally convergent in I. It
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(9.9.3) Under the assumptions of (9.9.1), we have, for every x € A — p(I),
and every integer k > 0,
. k! 2)dz
T P

2 ) (z — x)k+1
v

This follows at once from Cauchy’s formula, the uniqueness of the coeffi-
cients of a power series with given sum (9.1.6), the relations (9.3.5) between
these coefficients and derivatives, and finally (9.9.2).

(9.9.4) Let AcC? be an open set, | a continuous mapping of A into a complex
Banach space E, such that for 1 <k < p, and an arbitrary point (a) € €7,
the mapping z, — f(@y,. ... 4, _ 12,84 1, . -,8,) 1S analytic in the open set
Alay,. .., _ 1,8, ,;,...,a,) CC if that setisnotempty (notation of (3.20.12)).
Then f is analytic in A. More precisely, let a = (a,) be a point of A, P a clo-
sed polycylinder of center a and radii 7, (1 < k < p) contained in A; for
each k, let v, be the circuit t — a, + 76" in C (0 <t < 2n), and let

Coiny. . my = —1— dx, | dx,. . (%, o %p) A%y -
4 (27!1) ("1 _ al)n,+1 (xp _ ap)
71 Ya yp

Then the power series (c,(z — a)’) is absolutely summable in P and its sum
is equal to f(z).

Using Cauchy’s formula, and the fact that j(0;¢,) = 1 (see (9.8.4)), we
have, by induction on » — k and the assumption,

(9.9.4.1) Fxg e o X2k 41, - - 1%p)
_ 1 f(xl,. . ,xp)dxp
= iy gd""“ Sd""““'§<xk+1—zk+1)...(xp—z»)
Yh+1 Yk+2 Yp

for |x; —a;| =7 (1 <j<k) and | —a;| <7; (k+1<j<p). Onthe
other hand, for |z, — a,| < 7, (1 <k <), we can write, for |x, —a;| =7,

1 _2 (7 —a)™. .. (zp — ap)"

(% — 27) .« - (%p — 2p) O — ap)np+1
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the power series on the right hand side being normally summable in the
set F defined by |x, — a,| =7, (1 < k< p), by (5.5.3). By induction on
p — k, if we write

Eny, +1-- -”p(xlt e ,xk)

= S — dxk 11 Hxy, . . %p) d%p
(2mr)p —* (%h 21 — @n 1) 17 (2, — ap)"? t]

Yh+1 "

we have by the mean value theorem

M

nk+1 np
7k+1 ...Vp

(9.9.4.2) I‘gnk+1...np(x1,' . "xk)” <

if [[f(x5,....%)]|<M on F. It follows that the power series
(g,,Hl_”,,p(xl,. co X)) By — @)L (2, — a,)"p) in the z; — a; is ab-
solutely summable in P; using induction on p — £, and applying (5.3.5) and
(8.7.9), we see that the sum of that series is f(%,...,%,,% 1,...,2,). The
conclusion follows by taking £ = 0. Moreover (9.9.4.2), for & = 0, proves

that, with the same assumptions and notations as in (9.9.4)

(9.9.5) nin.ng) | S M7

if |[f(x)]| <M on the product of the circles |x, — a,| =7, (1 <k <p)
(Cauchy’s inequalities).

If in (9.9.4) we take A = C?, we see that

(9.9.6) An analytic mapping of C? into a complex Banach space is an entirve
function.

Observe that this last result is not true for analytic functions of real
variables (1/(1 4+ x2) is a counterexample). Also, a continuous function
f(x,y) of two real variables may be analytic in each of the variables without
being analytic in R%; an example is given by f(x,y) = xy?/(x% + y2) for
(x,3) # (0,0),/(0,0) = 0.

Remark. It follows from (9.9.4) that the set F, product of the circles
|, — ay] =7, (1 < k<< p) is a set of uniqueness in A (when A is connected);
for the power series (c,(z — a)*) is entirely determined by the values of f
on F, hence if two analytic functions in A coincide in F, they coincide in P,
and the result follows from (9.4.2).



9. THE CAUCHY FORMULA 223

PROBLEMS

1) Let A be a relatively compact open connected set in C. Let ¢ be a continuous
mapping of [a,b] X [0,1] into A such that ¢ — @(£,£) = ye(?) is a circuit contained
in A for 0 < £<C 1, and ¢ — y,(f) = @(2,0) is a circuit contained in A (which may
contain frontier points of A). Suppose in addition that for every £ > 0, there exists
& > 0 such that the relation |1 — u| <C 6 implies |p'(t) — p,/(¢)| < e for t € [a,b] — D,
where D is a denumerable subset.

Let now f be a continuous mapping of A into a complex Banach space E, such
that its restriction to A is analytic. Show that Cauchy’s theorem I f(z)dz = ff(z)dz
still holds (use (8.7.8)). " "

2) Let A be an open subset of C, / a continuous mapping of A into a complex
Banach space E, such that f is analytic in An D, and An D_, where D (resp. D_)
is defined by #(z) > 0 (resp. £ (z) < 0). Show that f is analytic in A. (Suppose the
disc |z| < 7 is contained in A. Let y, (resp. y_) be the circuit defined in [—1, +1]
by y4 () = (2t + Vrfor — 1 <1< O, pi(t) = re™ for 0L < 1 (resp. y—_ () = re™#
for — 1<<t<< 0, y_(t) = (1 — 2)rfor 0<C t<C 1.) Show thatif |z| < rand F(z) > 0,
then ’

i) = 1_ f(x)dx ’ 0 1 f(x)dx

~2n1l,,+ x—z 2, X —z
using problem 1; hence if p is the circuit ¢ — re™ in [—1, 4+1],

o) = o [ LA

2my x—2z

Then use (9.9.2).)

3) Show that the conclusion of (9.9.4) still holds when f is merely assumed to be
bounded in each bounded polycylinder contained in A, but not necessarily continuous.
(Use problem 6 of section 8.9; actually, a deep theorem of Hartogs shows that even
this weakened assumption is not necessary; in other words, a function which is
analytic separately with respect to each of the p complex variables z; is analytic in A.)

0

4) Let f(z) = X a,z™ be an analytic complex-valued function in the circle
n=0

|| < R. Show that, for 0<C7 < R

27 ©
Mi(rif) = L j [Hret)j2dt = X |a,|2r®
27 p n=0

Deduce from that result another proof of Cauchy’s inequalities.

[}
5) Let f(z2) = X a,z" be an analytic function in |z| < R, and let
n=20

M) = 2 [laal
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Let also M(r;f) = sup ||f(2)]|-
|

=7

a) Show that for 0<<r <7+ < R
v+ 6
M@r;f) < My(r;f) < TM('+5:f)

(use Cauchy’s inequalities).
b) If in addition, f is complex valued, show that (with the notations of problem 4)

Voer+9)
¥+ 0

(Use the Cauchy-Schwarz inequality (6.2.1).)
¢) Under the same assumption, show that

M, (7:f) << My(r + 8;) <M(r + 6;f).

Hm (M, (r;f")" = lim  (My(r;f")H" = M(r:f)

n-— 0 n—
(use the inequalities proved in a) and b), the fact that M(»;f") = (M(r;f))”, and the
continuity of » — M(r;f)).

6) Suppose the power series in one complex variable (¢,2"), with complex coeffi-
cients, is convergent for |z{ < R, and let f(z) = 2¢,z". For any r such that 0 < » < R,
”

let A(r) = sup Z(f(z)). Show that, for every n > 0

|z| =7#
[enlr™ 4 228(£(0)) < sup (4A(r),0).

(Prove that

N

1 .
[enlr™ = — I (F(re'®)))e— "0 4g
i

(=

for » > 0.)

7) a) Let A be an open subset of K?, and f an indefinitely differentiable mapping
of A into a Banach space E. In order that f be analytic in A, it is necessary and
sufficient that for every compact subset L of A, there exist an integer » > 0 and a
number @ > 0 such that, for any index & = (ay,. . .,0), sup [|ID*f(x)|| < a(|a| + #)

(To prove that the condition is necessary when K = C, apply Cauchy’s inequalities
to balls of fixed radius contained in A and having their centers in L; when K = R,
use (9.4.5); to prove that the condition is sufficient, use Taylor’s formula (8.14.3)
and prove that the last term of that formula tends to- 0 uniformly in any closed ball
contained in A and of center ».)

b) Give an example of an indefinitely differentiable function in R which is not
analytic (cf. section 8.12, problem 2).

c) Suppose f is real valued and indefinitely differentiable in an open interval
IcR; in addition, suppose that there is an integer p > 0 such that f® does not
vanish at more than p points of I, for any #» > 0. Show that f is analytic in I. (Use a),
and problem 3 b) of section 8.12.)
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10. Characterization of analytic functions of complex variables

(9.10.1) A continuously differentiable mapping [ of an open subset A of C?
into a complex Banach space is analytic.

Applying (9.9.4), we are immediately reduced to the case p=1.
To prove f is analytic at a point a € A, we may, by translation and
homothetic mapping, suppose that & = 0 and that A contains the unit
ball B: |z| < 1. For any z eB, and any A such that 0 < 2 < 1, note that
(1 — )z + A¢*| <1 — 24 4 =1, and consider the integral

2n
it )} —
(9.10.1.1) g(A) = g 1z + ’1(;‘ - Z)) 1) gy,
0
By (8.11.1) and Leibniz’s rule (8.11.2), ¢ is continuous in [0,1] and has at
each point of ]0,1[ a derivative equal to

2n
gA) = [ 1z + A" — 2)e"ds
)
(see Remark after (8.4.1)). But Af(z + A(¢* — z))e is the derivative of
t > f(z + A" — 2)), hence, for 10, g'(4) = 0, and therefore (remark
following (8.6.1)), g is constant in [0,1]. But as g(0) =0, g(4) =0 for 0<< A<
1 S f(x)dx

2 ) x— 2

£

(by (9.8.4)), and the conclusion follows from (9.9.2).

In particular, it follows, for 2 = 1, that f(z) = for any zeB

(9.10.2) Let f be a continuously differentiable mapping of an open set AcR*

into a complex Banach space. In order that the function g defined in A (consid-

ered as a subset of C?), by f(%y,%p,. . -, X5, Y1,- - -»Vp) = (% + 1¥1- - 1%, + iY,)

be analytic in A, necessary and sufficient conditions are that% +1 _;3{_ =0
k k

in A for 1 < k < p (Cauchy’s conditions).

We are again at once reduced to the case p = 1 by (8.9.1). Let (x,y)

be a point of A, and put a = Z—i (x,9), b= % (x,y); expressing that the
limits lim (g(x + iy + &) — g(x+1y))/h and lim (g(x 4 iy 4-1h) — g(x +1y))[th
h—0 h—0

(h real and # 0) are the same, we obtain 4 + b = 0. Conversely, if that
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condition is satisfied, for any & > 0, there is » > 0 such that if th + k2L,

lle(x + iy + b + k) — g(x + 1y) — a(h + ik)|| <e a2 + &2 by (8.9.1.1)
and this proves that z — g(z) has a derivative equal to a at the point
= 2 41y. The result then follows from (9.10.1).

PROBLEMS

1) Show that a differentiable mapping f of an open subset A of C? into a complex
Banach space is analytic in A (“Goursat’s theorem”; /' is not supposed to be contin-
uous). (Given any A in ]0,1[, prove (with the notations of (9.10.1)) that g’(4) exists
and is equal to 0. First show that, given ¢ > 0, there are points {, = 0<?, < ... <#,=2xn,
anumber p > 0, and in each interval [t,%; ;1] a point 04 such that, if {; =2+ Z(ew" —2z),
Cp+ v =24+ (A+ k)" —2), then |f(lr+ ) — F(Cr) — F'(Cw)#| < ¢|¥| whenever
|4] << p and 4, << £ << 11 (prove this by contradiction, using a compactness argument
and the existence of f at each point). Compare then each integral

ettt

R fa + (A4 B) (€ — 2) = flz + A — 2)
t'[ et — 2z
k

to the expression

h i i
= (e + AR — ) — fz + A" — 2))

for |h <p.)
2) Let A be an open simply connected subset of C; if f is a continuous mapping
of A into a complex Banach space E such that f f(z)dz = 0 for any circuit p in A,
Y

show that f is analytic in A. ('‘Morera’s theorem’’; show that f has a primitive in A.)

3) Let A be an open subset of (P, y a road defined in I = [a,b], } a continuous
mapping of (I) X A into a complex Banach space E. Suppose that for each » € »(1),
the fuiaction (z,. . a2p) > f(H,2y,. . .,%p) is analytic in A, and that each of the functions
0
a—f(x,zl,. ..,%p) is continuous in p(I) X A (1 << A< p). Show that under these

2k

conditions, the function g(z,, .. .,z5) = If(x,zl, .. .,2p)dx is analytic in A. (Use (9.10.2).
¥

As p’()) is merely a regulated function and may fail to be continuous, Leibniz’s rule
(8.11.2) is not directly applicable, but the proof of (8.11.2) subsists with minor modifica-
tions.)

4) Let A be an open connected subset of R? (p == 2), f an analytic mapping of A
into a complex Banach space E. Suppose that there is an open polycylinder P c A,
of cenzer b = (b); <k <p and radii 7, (1<<k<{p) such that for every point (c;) of P,
there is a number p < inf (r),7,) such that the function x; 4 iz, — f(¥,, %63, . - -16p) i
analytic in the open subset |z, 4 ix;, — (¢; + icy)| < p of C (identified to R2). Show
that the same property holds for every point (c;) € A (use (9.10.2) and (9.4.2)).
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5) Let S be the ‘‘shell” in R? (p = 3) defined by

R—g<ri+x3+...+15<(R+8? (0<e<R).

Suppose f is an analytic mapping of S into a complex Banach space E, and suppose
that for any % = (#,...,%p), the mapping », + i¥; — f(#,,%,,%) is analytic in a neigh-
borhood (in C) of every point of S(u) (if S(x) is not empty).

a) For any u = (#;,...,%p) such that J|u||z = xg + ...+ x; < R?, let y(u) be
the road in C defined by ¢ — (R? — ||u||2)¥/2%* for — a<{t<{m. Let

f(y.u)dy
gaw) =o— ) ————
T y{u) y—2z

where y = x; + ix,, and f(y,u) = f(#,,%5,u); g is defined for |z|® + ||u||? < R2, and
z—g(2,u) is analytic for |z| < (R? — ||||?)!/%. On the other hand, for any v = (xy’, . . .,%p)
such that ||| < R, let

h(es) = _L Hy.w)dy

iy ¥ = F

Show that h,(z,4) = g(z,u) for |jv|| < ||| <|lv|] + & and [z < (R%— |[v]|)1/2
(apply Cauchy’s theorem (9.6.3)). On the other hand, show that g{s,u) = f(z,4) for
R — & < ||#|] < R and |z| < (R? — ||||?)1/2. Conclude that f can be extended to a
function f which is analytic in the whole ball B: xf + ...+ x; < (R + ¢€)2 (apply
(9.4.2) and problem 3). Is the theorem still true for p = 2?

b) When E = C, show that f(B) € /(S). (Apply the result of a) to the function

1/(f — ¢), where ¢ ¢ f(S).) In particular, if f is bounded in S, f~ is bounded in B. Extend
that last property to the case in which E is a complex Hilbert space (method of
problem 6 of section 8.5).

11. Liouville’s theorem

(9.11.1) (Liouville’s theorem). Let f be an entire function in CP, with values
in a complex Banach space E. Suppose there exist p integers m, (1 < k < p)
and a number a > 0 such that ||f(2)]| < a- |z|™(2,|™. . .|z, for any z€CP.

Then, [(2) s a finite sum of ‘“‘monomials” c, ‘_.”pz'l“. .2,

) P with Cupsmy € E
and n, <my, for 1 < k<< p.

Let f(z) = X¢c,2” in C?, the power series being everywhere absolutely

summable. Cauchy’s inequalities (9.9.5) applied to a polycylinder of
center 0 and radii 7, (1 << & < p) give, for any » = (n,...,n,)

e PR
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As the 7, are arbitrary, this shows that Cr...my = 0 unless n, < m, for

1< k< p.

(9.11.2) (The “fundamental theorem of algebra”). Any polynomial
f(2) = ags” + a2 "1+ ... +a, (aygF£ 0, n>1) with complex coefficients
has at least one root in C.

Otherwise, 1/f would be analytic in C (9 3.2), hence an entire function
(9..6). Let 7 be a real number such that #* > (n + 1)|a,/a,| for 1 < & < n;
then, for |z| >~

An

12)] = fag"] -

1+32 4y
ag?

= |agz"| <1 - j_ 1) = |agr|(n + 1).

In other words, 1/f is bounded for lz| = 7. On the other hand, 1/ being
continuous in the compact set |z| < 7, is also bounded in that set (3.17.10),
hence 1/f is bounded in €. Liouville’s theorem then implies 1/f is a constant,
hence also f, contrary to assumption since |f(z)| > |a,| |2|"/(n + 1) for
oz

PROBLEMS

1) If p = 2, show that a function which is analytic in the complement of a compact
subset of (? is an entire function; hence if in addition it is bounded in the complement
of a compact subset of C?, it is a constant (use (9.11.1) and problems 4 and 5 of sec-
tion 9.10). Is the result true for p = 1?

¢) Let f be a complex valued entire function in €. Show that the conclusion of
(9.1°1.1) is still valid if it is supposed that

R < a-|am™ ... |op["
for any z e € (use problem 6 of section 9.9).

¢) Letf(2) = 2 a,2" be an entire function. For any » > 0, let u(r) = sup llanl|r™
n=0

M(r) = sup [If(2)][, so that u(r) << M(r); by Liouville’s theorem, lim u(r ) = - o0,
lol =

7—»
Supoose there are two constants a > 0, & > 0 such that u(r) <C a- exp (»¥); show
that there are positive constants b,c such that M(r) <C br*u(r) + ¢. (Observe that
llan| << (ex/m)™.)
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12. Convergent sequences of analytic functions

(912.1) Let (f,) be a sequence of analytic mappings of an open set Acc?
into a complex Banach space E. Suppose that for each z € A, the sequence
(f,(2)) tends to a limit g(z), and that the convergence is uniform in every compact
subset of A. Then g is analytic in A, and for each v = (n,,...n,) €N?,
the sequence (D*f,(2)) comverges to D*g(z) for each z € A, the convergence being
uniform in every compact subset of A.

As g is continuous in A (7.2.1), to prove g is analytic in A, we
need only prove that each mapping z, —g(a,- . .,%,. . -,4,) is analytic in
Aay,....4,_ 1,8, 1,---,%), DY (9.9.4); in other words we are reduced
to the case p = 1. For each a€ AcCC, let B be a closed ball of center
a and radius » contained in A, and let ¥ be the circuit ¢ —a + re*
0 <t < 2n); then for each z € B and each #, we have by Cauchy’s formula

(9.9.1) f,(2) = S fnl) dx But by assumption the sequence (f,(x))

2
Y

converges uniformly to g(x) for |x — a| =7, and as |z — %[ > 7 — |¢], the
sequence (f,(x)/(¥ — 2)) (z fixed) also converges uniformly to g(x)/(x — 2z) for
g(x)dx
X—2z

1 . .
|x* — a| =r; hence, by (8.7.8) g(2) :%S , which proves g is

14

.. p 1 | fa(x)dx
analytic in B by (9.9.2). Moreover, as f,(z) 2—”;5 =2 by (9.9.3),
Y
the same argument (and (9.9.3) applied to g) shows that f,(z) tends to g'(z)

for every z € B; furthermore, we have by the mean-value theorem

0121.0)  [lg@ — @l < swp [t —

|x—a|=7

Returning to the general case (p arbitrary), let us now show that the
sequence (D,f,(z)) converges uniformly to D,g(z) in any compact set MCA.
There is a number # > 0 and a compact neighborhood V of M contained in A,
and containing all points of A having a distance <7 to M (3.18.2). For
any ¢ > 0, let n, be such that |jg(z) — /,(2)]| <& for every n > ny and
every zeV. Then, applying (9.12.1.1) to the sequence of functions

2y = [ (@0 - By 1, %@k 1, - -8,), We obtain, for every point zeM,
|[Dyg(2) — Duf,(2)|| < efr as soon as n>mny. This ends the proof of the
theorem when #, + ... 4+ n,=1; the general case is then proved by

induction on n; 4 ... + 7,
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Observe again here that the theorem does not hold for analytic func-
tioris of real variables, since a sequence of polynomials can have as a limit
an arbitrary (e.g. non-differentiable) continuous function in a compact set,
by the Weierstrass approximation theorem (7.4.1).

PROBLEMS

1) a) Let (a);< k<p be a finite sequence of complex numbers, such that

4
X ap) = a < 1. Show that
k=1

o2

.

4 4
| 1T 1+a) —1— 2 <
k=1 k=1 1 —a

t) The entire functions E(2,0) = 1 — z, E(z,p) = (1 — 2) exp (z + %2 + ...+ Z?P)
are called primary factors; show that, for |z < 1/2
[E(z.p) — 1] < 4z)f +1.
(Observe that for |z << 1/2

22 2
log (1 —2) 2+ + ... + < 2P + 1)

and that for [/ <1, [¢f — 1| << 2)2].)
c) Let (a,) be an infinite sequence of complex numbers s 0, such that the sequence

(laa|, is increasing and lim |a,| = + . Show that for any z€ C, the series of
#n—» 0

general term (z/a,)” is absolutely convergent.
d) Deduce from a), b) and c) that the sequence of entire functions

Pals) = b E(i,k— 1>

k=1 ak

is uniformly convergent in every compact subset of ¢ (apply Cauchy’s criterion, and
evaluate the difference 1 — (p,,(2)/pa(2)) for m > % by using a) and b); then apply c)).
The limit f(z) of the sequence (p,(z)) is thus an entire function, which is written

et z
fle) == IT E(—n — 1); show that the only points where f(z) = 0 are the
n=1 An
points a, (use the preceding estimate).
e] Suppose that there is an integer p > 0 such that the series of general term
la,|~? is convergent. Show similarly that the sequence of entire functions

Gol) = 1T E<f— p—l)

B
ak
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is uniformly convergent in every compact subset of C; its limit is again written

-]
z
2)= Il E{—,p — 1}. Prove that there is a constant ¢ > 0 such that
g

n=1 Ay
lg(2)] < exp (c|z[?).

(For any given z, consider separately the product of the factors for which |a,| > 2]2|,

and of the other factors; use b) to majorize the first product; on the other hand,

prove that there is a constant b such that |E(z,p — 1)| << exp (b|zP —1) for any z € C.)
2) Show that the sequence of entire functions

(1) ful2) = z(z + 1) ... (2 + n)[n*n!

(where n* = exp (z log #) by definition) is uniformly convergent in every compact
subset of C to the entire function

(2 ;=ze7" ;; 1+—z- e
I'(2) P n

1 1

where y = lim |14+ —+ ... + — — logn | (‘Euler’s constant”). (Use the result
n— o 2 n
n

of problem 1 e), writing logn = X log (k/(# — 1)) to compare (1) and (2), and using
k=2

1
the mean value theorem to majorize - log

k—l)'

Prove that I'(z) satisfies the functional equation

L'iz+1)=2zI(2)

when z is not an integer — #» <{ 0, and that I'(n) = (n — 1)! for » integer and > 0.

3) An endless road in an open subset A € € is a continuous mapping y of R into A
such that in every compact interval I ¢ R, vy is the primitive of a regulated function.
If f is a continuous mapping of y(R) into a complex Banach space E, f is said to be

@
improperly integrable along y if the improper integral f fy@®)y’()dt exists (i.e. if
— oo .

b 0
both limits lim I fiy(®)y’(H)dt and lim f f(y(?)y’(t)dt exist in E); the value

b—>+x 0 a—>— o a

of that integral is then called the integral of f along y and written _f f(2)dz.
Y

Let B be an open subset of (?, ¢ a continuous mapping of y(R) X Binto E; suppose
that for each x € p(R), the function (z,,...,2p) — g(#,2y,...,2p) is analytic in B and
that each of the functions 9g/0zx(%,2;,...,2p) is continuous in y(R) X B. Finally
suppose that for each (z,,...,2p) € B, #—g(#,2,...,2p) is improperly integrable

”n
along y, and that Ig(y(t),zl,. . -,2p)y’(t)dt tends uniformly to fg(x,zl,. .., Zp)dx when
—n Y

(21, . .,2p) Temains in a compact subset of B and # tends to + co. Under these condi-
tions, show that the function (z,...,2) — jg(x,zl,. . .,2p)dx is analytic in B.
Y
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4) Extend the result of problem 2 of section 9.9 to functions of p complex va-
riables, D (resp. D_) being defined by S (z) > 0 (resp. #(z,) < 0). (Observe that,
by (9.12.1), for each z, such that #(z,) = 0 and the intersection B of A with the set
P —1x {2y} is not empty, the function (z;,...,25 1) >f(, - . .,2p _ 1,2p) is analytic in B.)

5) In the plane €, let Q be the square of center 0, defined by |#(z)| < 1, |#(2)| < 1.

. 1+: 2 —144 =z
Let Qp, Qy, Qq, Qs be the images of Q by the mappings z — +E,z—>———— 5
—1—-7 =z 1—12 =z
Z > — L — | z +E. Let my =10, and for any %2>1, let

2 2 2
mp=4+42+ ...+ 4% if n=my+ 4k 44 with h=1, O0<<h<<4r—1,
0<{j< 3, define inductively Q, as follows, let n; = my _1 + %, and let 2, be the
center of Q,; let @, (2) = 2, + z/2* and take Qn = @u,(Q)).

a) Let B be the unit disc |¢| << 1, U the unit circle |¢| = 1. Show by induction
on # the existence of three sequence of numbers (a,,), (¢4), (¢,) defined for » > 4, having

o,
2z "
the following properties: 1°0 < a, < 1, |t,| = 1,¢,€ C; 2°if g,(2) = cn(l — (1 - —) )

2y,
”
{definition in section 9.5, problem 8) for ze€ B, and f,(?) = z + X gyz), then
g=4
W(B) € Q and f,(#) € Qr for A< n; 3° the series Xlc,| is convergent. (Observe
n

that g,(¢,) = ¢,, but that, given any neighborhood V,, of ¢, in B, it is possible to take
oy, small enough so that g, (z) will be arbitrarily small in B — V,,. Choose £, close to Iy,
(with the notations introduced above), the #, being all distinct, and take V,, so that
it contains no #; with & < #.)

b) Under the preceding conditions, the limit f(z) of (f,(¢)) exists for any z€ B,

f is continuous in B, and analytic in ]%, and f(U) = Q (“Peano curve”, cf. section 4.2,
problem 5).

13. Equicontinuous sets of analytic functions

(9-13.1)  Let A be an open set in C°, @ a set of analytic mappings of A into a
complex Banach space E. Suppose for each compact subset L of A, there is a
constant my > 0 such that ||f(2)|| < my for all { € @ and every ze L. Then
D is equicontinuous in A (7.5); if in addition E is finite dimensional, then
for every compact subset L of A, the set @ of restrictions to L of the functions
[ €D, is relatively compact in the space €(L) (7.2).

Let a € A; there is a closed ball P c A of center a, radius 7, and as P
is compact, ||f(2)|| < mp for all ze P and all fe®. Let Q be the closed
ball of center @ and radius 7/2; for any z € Q and f € @ we can write

4
f(z) — f(a) =k§1 (flzpse e 20 g, - p) — H2, ez 18R 1 1e e - ,ap)).
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Now
Fz 2 1208 10 e 08p) — (21,0 o 02 1,88 1 - -5 p)
1
= 2[ D21, - o2y _ 18 + 82 — @),8, 1, -+ -,8,) (2 — @3)dE.
Write g,(#) = f(21,. . - .2, _ 1, %84 4 1,- - -,8); g, is analytic in an open set

of € containing the ball |u — a,) <7, and|[g,(u)|| < mp in that ball.
Applying (9.9.3) to g, and to the circuit ¢ — a, + re* defined in [0,2x],
we obtain

llga(w)]] < dmplr

for |u — a,| < 7/2. Therefore, for any z€ Q, and any f€® we have
4pm
i@ — fa)l| < 22 |z —

which shows @ is equicontinuous at the point @. The last statement of
(9.13.1) follows from the fact that any bounded set in a finite dimensional
space is relatively compact ((3.17.6) and (3.20.17)), and from Ascoli’s
theorem (7.5.7).

(9-13.2) Let A be an open connected set in CF, @ a set of analytic mappings
of A into a complex Banach space E. Suppose for each compact subset L of A,
the set @ of restrictions to L of the functions f e @ is relatively compact in
€p(L). If M is a set of uniqueness (9.4) in A, and if a sequence (f,) of func-
tions of @ converges simply in M, then (f,) converges uniformly (to an analytic
function) in any compact subset of A.

From (3.16.4) it follows that we need only prove that, for every compact
set L C A, the sequence of the restrictions of the f, to L has only one cluster
value in €(L). Suppose the contrary, and let (g,), (4,) be two subsequences
of (f,), each of which converges uniformly in L, the limits being distinct.
As A is locally compact (3.18.4) and separable, there exists an increasing
sequence (U,) of open subsets of A, such that U, (closure in €?) be compact
and contained in U, ;, and A = |J U, (3.18.3). Define by induction on

”

a sequence (g,), 10 ., Such that (g,,) is a subsequence of (g,_,,), with
%on = &, and that (g,,) converges uniformly in U,, which is possible by the
assumption on @. Then the ‘“‘diagonal” subsequence (g,,) converges
uniformly in every U,, hence, by (9.12.1) its limit g is analyticin A. In a
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similar way it is possible to extract from (k,) a subsequence (%,,) which
converges in A to an analytic function 4. Now by assumption g(z) = A(z)
for ze M, and by definition, we must have g = 4. But this contradicts

the definition of the subsequences (g,), (4,), q.e.d.

14. The Laurent series

(9.14.1)  Let A be an open subset of C, ry,r, two numbers such that 0 < ry << 7,,
and suppose the “open ring” S defined by ry < |2| < r, is such that its closure
Sin C (i.e. the “closed ring” 7o < |2| < 7y) is contained in A. For any analytic
mapping | of A into a complex Banach space E, we have, for any x €S

1 | f(2)dz 1 | f(z)dz
/(%) :%Sz—x _2—m'}z—x

Y1 Yo

where yy (resp. y,) is the circuit t — rye® (resp. t — 7,6") with 0 <t < 2.

As in the proof of (9.9.1), we first see that the function g(z) equal to
f'(x) at the point x and to (f(z) — f(%))/(z — %) for z 5~ %, z € A, is analytic
in A. Now, g(t,&) = &rge” + (1 — &)re (0 <t < 2m, 0 < £ 1) is a loop
homotopy in A of y, into p;; hence [g(z)dz = [g(z)dz by Cauchy’s theorem

Yo N
(9.6.3). But for 7y < |x] < 7;, we have j(x;y,) = 0 and j(x;y,) = 1 ((9.8.4)
and (9.8.5)), hence the result.

(9.14.2) Under the same assumptions as in (9.14.1), there exists a power

2]
series g,(z) = X ¢, 2", convergent for |2\ < 7y, and a power series in 1)z and
& ” 4 1
n=0

0
without constant term, gyo(z) = X d,z~", convergent for |z| > r,, such that
n=1
H(z) = g1(2) + go(2) 7 S (“Laurent series” of f). Moreover the power series
81,82 having these properties are unique, and, for every circuit y in S, we have

271 xnt+1 2n1
y v

0 :)en = <> S’("’d", f(o;y>dn=i.§x"-1f(x>dx.

1 f(x)dx . * . . 1 ]‘(x)dx
By (9.9.4) we have 2—7175 7 Z;an” for |z| < 7, withe, = Y )
Y1 "=



15. ISOLATED SINGULAR POINTS 235

the series being convergent for |z| < r,. On the other hand, for |z| > 7,,
|%| = 7o, we have

L. yE
z2—x 2"

n=1

where the right-hand side is normally convergent for |x| = 7, (2 fixed); by

©

1 | fx)dx v, . I T

(8.7.9), we get — ot S—; = él dnz—" with 4, = 3 | f(x)dx, the
Yo "= Yo

series being convergent for |z| > 7,. This proves the first part of (9.14.2).

Suppose next we have in S

(9.14.2.1) f(2) = Z’ az" + 2 byz—*

n=1
both series being convergent in S; let first y be a circuit in S, defined in I;
there are points £,¢ in I such that y(f) = x'nf y(s)=rand p(¢') = sup p(s) =7

sel
(3.17.10), hence ry < » < p(s) < 7' < 7y for any s € I. But, forr < |2| <7/,
both series in (9.14.2.1) are normally convergent (9.1.2), hence by (8.7. 9),
for any positive or negative integer m

_[zm—lf Vdz = Za,.fz"“”—ldz—i- Z'b j'z'" n—1da

n=1
As Z#t1(E 4 1) is a primitive of z* for £ % — 1, we have j‘z”dz =0 for

any circuit o; (9.14.2) then follows from the definition of the index.

If now 9 is in S, we remark that there is an open ring S;:
(1 — &)7y< |z| < (1 + )7, contained in A (3.17.11), and we are back to
the preceding case.

15. Isolated singular points; poles; zeros; residues.

If F is a subset of a metric space E, an isolated point of F is a point
x, € F such that there is a neighborhood V of x, for which VAF = {x}.
When every point of F is isolated, the topology of the subspace F is discrete
(i.e., identical with the topology defined by the distance (3.2.5)) and
conversely, since it means that every one point set {x} in F is open.
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(9.15.1) Let A be an open subset of C, a an isolated point of C — A, 7 a
number > 0 such that all points of the ball |z — a| < r except a belong to A.
If { is an analytic mapping of A into a complex Banach space E, then for
0<|z—a| <7, we have

()= Zcfz—a) + X dy(z—a)~"
n=20 n=1
. 1 f(x)dx
where both series are convergent for 0 << Iz — a[ <r,andc, = o S (7_ ap it ,
: y
d, = % 5 (x — a)*—f(x)dx, where y is the circuit t — a + re* (0<(<2n).

¥
This follows at once from (9.14.2) applied to the ring p < |z — a| < 7,
where p is arbitrarily small.

oo

Observe that the series u(x) = 2 d,x" is an entire function such that
n=1

#(0) = 0; we say that the function «(1/(z — a)) is the singular part of f
in the neighborhood of a (or at 4). When # = 0, f coincides in the open

set U: 0< |z —a|<r with the function g(z) = 2 ¢,(z — a)", which is

n=20
analytic for |z — a| < 7; conversely, if f is the restriction to U of an analytic
function /, defined for |z — a| <7, then f, = g by (9.9.4) and (9.15.1),
hence # = 0. When # 7 0, we say that a is an isolated singular point of f.
If u is a polynomial of degree #n >> 1, we say a is a pole of order n of f; if
not (i.e. if 4,, = 0 for an infinite number of values of m) we say a is an
essential singular point (or essential singularity) of f. In general, we define
the order w(a;f) or w(a) of f at the point a as follows: w(4) = — oo if a is
an essential singularity; w(a) = — nifaisa poleof ordern > 1; w(a) = m

@

if f#£0, =0 and in the power series X ¢,(z — a)" equal to f(z) for

n=0
0 <|z—a|<r m is the smallest integer for which ¢, # 0; finally
w(a;0) = 4 co. When w(a;f) =m >0, we also say a is a zero of order m
of f. Observe that if both /,¢ are analytic in the openset U: 0 < |z — a| < 7,
and take their values in the same space then w(a; f 4 g) > Min(w(a; f),w(a;g));
if one of the functions /,¢ is complex valued, then w(a; fg) = w(a; f) + w(a; g)
when one of the numbers w(a; f), w(a;g) is finite. Any function f analytic
in U and of finite order # (positive or negative) can be written in a unique
way (z — a)"f,, where f, is analytic in U and of order 0 at the point a. Finally,
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if / is analytic in U and complex valued, and of finite order m, then it follows
from the principle of isolated zeros and from (9.3.2) that there exists a
number 7 such that 0 < 7’ < 7 and that 1/f is analytic in the open set
0 < |z — a| <7'; we have then w(a;l/f) = — (a;]).

(9.15.2) Let f be analytic in the open set U: 0 < |z — a| <r. In order that
w(a; ) >=n where n is a positive or negative integer, 1t is mecessary and

>

sufficient that there exist a neighborhood V of a in C surch that (z — a)” "f(z)
be bounded tn VN U.

The condition is obviously necessary, since a function having order > 0
at a is the restriction of a function analytic in a ball [z — a| < 7. Conversely,
by considering the function (z — @)~ "f(z), we can suppose # = 0. Then it
follows from (9.15.1) and the mean value theorem that if ||f(z)|| < M in U,
we have, for any p such that 0 < p <7, ||d,|| < Mp™ for any m > 1;
as p is arbitrary, this implies d,, = 0 for each m > 1, q.e.d.

The coefficient d; in (9.15.1) is called the residue of f at the point a.

PROBLEMS

1) Show that there are no isolated singular points for analytic functions of p = 2
complex variables (in other words, if A is an open subset of C?, a € A and a mapping f
of A — {a} into a complex Banach space E is analytic, it is the restriction of an analytic
mapping of A into E; use problem 5 in section 9.10).

9) Let / be a complex valued analytic function of one complex variable having
an essential singularity at a point a € C; show that for any complex number A, it is
impossible that the function 1/(f — A) should be defined and bounded in an open set
of the form V — {a}, where V is an open neighborhood (use (9.15.2)). Conclude that
for any neighborhood V of a such that f is analytic in V — {a}, /(V — {a}) is dense
in ¢ (“Weierstrass’s theorem”; see section 10.3, problem 8).

3) An entire function which is not a polynomial is called a transcendental entire
function. Let f be a complex valued entire transcendental function of one complex
variable.

a) Show that for any integer # > 0, the open subset D(xn) of € consisting of the
points z € € such that |f(z)| > # is not empty and cannot contain the exterior of any
ball (apply problem 2 to the function f(1/z)).

b) Let K(n) be a connected component (3.19.5) of D(n). Show that K(n) is not
bounded and that |f(z)| is not bounded in K(x) (if a ¢ K(n), consider the function
f(1/(z — a)) and use problem 14 of section 9.5).

c) Show that there is a continuous mapping y of [0, + o[ into C, such that in every
interval [0,a], 7 is the primitive of a regulated function, and that lim lp)|= + o

t— + ©
and lim |f(p(#))| = + . (Consider a sequence of open subsets L, c C such that
t—+ ©
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L, is a connected component of D(x), and L, .| CL, for every »; the existence of
such a sequence follows from b). Use then (9.7.2).

d) Extend the preceding results to complex valued entire transcendental functions

”
of an arbitrary number of complex variables. (If f(z;,...,2p) = Z'a,, .. z’l". . .zpp ,

Anp
there exists at least an index % such that there are infinitely many monomials with
non zero coefficient a,, -y and arbitrarily large #;. On the other hand, prove that
if (g,,) is a denumerable family of entire complex valued functions of p complex
variables, none of which is identically 0, then there exist points (c,,...,c) for which
gm(Cy,- - -,¢p) # O for every m; to do this, use induction on p, and the fact that for
a function #(z) of one complex variable, analytic in AC C and not identically 0,
the set of solutions z of k(z) = 0 is at most denumerable (see (9.1.5)).)

4) Let ¢(x) be an arbitrary increasing and positive real function defined in
[0, 4+ oo[. Let (%,) be a strictly increasing sequence of integers such that #, = 1, and

(n/(n — l))k”> @(n + 1) for » > 1. Show that the power series

Q0 kﬂ
o) =1+ 2( i )
n=2\n—1

is convergent for all z € C, and that for every real ¥ > 2, f(#) = ¢(#) (in other words,
there are entire functions which tend to infinity ‘‘faster’’ than any given real function).

5) For any real numbers «,f such that > 0, let L,z be the endless road
(section 9.12, problem 3) defined as follows: for t<C — I, Lyg(t) = o — i — ¢t — 1;
for — 1<t Lyp(t) =a +ift; for t=1, Log(t) =a + i +¢— 1. Let
G5 = Ly p(R).

3
a) Show that if % < B < —g— , and if » ¢ G, g the function z — (exp (exp 2))/(z — #)

is improperly integrable along L, 3. Furthermore, is 8,,8, are such that |.# (¥)| < 8, <,
or | F(x)| > By> By, or X(x) < a, the mtegrals along L,p and L,z are the same;
similarly, if R(x) < a; < oy, or o; < ay < H(x), or |F(x)| > B the integrals along
Ly, and L, g are the same (use Cauchy’s theorem).

b) Deduce from a) that if L = Lg,,

can be extended to an entire function.
c) Show that

Iexp (exp 2)dz =1
2m

(prove that the integral along L, g of exp (exp 2) is independent of « and g (provided
n <5 3n )

— <-—)).

2 2 )
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d) Show that if » belongs to the open set A defined by () < 0 or |F(%)| > =,

1 F(x)
E(x) = — - + pr

where F(x) is bounded in A (express F(x) by an integral along Lg s with # < 7, using
a) and c)).

€) Show that if # belongs to the open set B defined by %(x) > 0 and |F(x)| <7,
then
1 G(#)

E(x) = exp (exp #) — > + 2

where G(#) is bounded in B (prove first, using Cauchy’s formula, that if — 1 < Z%(x) <0
and |£(#)| < 7, then

1 exp {exp 2,
E(x) = exp (exp #) + — fi(—x?—)dz
2mi 2 — %

where L’ = L_ ,. Show next that that formula is still valid for » € B using (9.4.2),
and express G(x) by an integral along L_, g with g > ).
f) Let H(x) = E(x)e~ E{®); show that H is an entire transcendental function such

that lim H(re'%) = 0 for every real 6 (use d) and e); compare with the result of
7 —+ 00

problem 3).

6) Let f be a complex valued entire function of p >> 2 complex variables. Show
that if f(ay,...,ap) = b, then for every » > 0, there exists z = (2y,- - -,%p) such that
Z)z, — a|® = r* and f(z,...,2) = b (use problem 5 b) of section 9.10).

k

7) Let f be an analytic mapping of an open subset A C ¢? into a complex Banach
space E. A frontier point z, of A is called a regular point for f if there is an open neigh-
borhood V of z, and an analytic mapping of A U V into E which coincides with f in A.
A frontier point of A is said to be singular for f if it is not regular.

a) Let R<+ o be the radius of convergence (section 9.1, problem 1) of a power
series f(z) = Zanz" of one-complex variable. There is at least one point z, such that
" .

|zo| = R which is a singular point for f. (Otherwise one could cover the circle [¢] = R
with a finite number of open balls B; whose centers b, are on that circle, and such that
in each open set B(0;R) U B, there is an analytic function f; coinciding with f in
B(0;R). Show that for any two indices &,k for which B, n B, # @, f; and f; coincide
in Bj N By, using (9.4.2), and conclude from (9.9.1) and (9.9.2) that the radius of

convergence of Za,z"” would be > R.)
”

b) With the notations of a), suppose a, = 0 for every #». Show that the point
z = R is singular for f. (One may suppose R = 1. Let ¢® be a singular point for f;

then for 0 < # < 1, the radius of convergence of the power series Zf®")(re'®)z"/n!
n

is exactly 1 — # (9.9.1). Observe that |/ (re")| < /™ (#), and use (9.1.2).)
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c) With the notations of a), suppose R = 1. Let b,c be two real numbers such that
0<b<1l c=1-—0> and let p be an integer > 1. In order that the point z = 1
be a singular point for f, it is necessary and sufficient that the Taylor series Xg(™)(0)u”/n !

n

for the function g(u) = f(bu? + cu? 1) have a radius of convergence equal to 1.
(Observe that if |u|<C 1, |[bu? + cu?+1[ <1, and that the two sides of the last
inequality can only be equal for # = 1. The proof for the necessity of the condition
has to use (10.2.5), in order to show that there is in the neighborhood of z = 1 an
analytic function %(z) such that z = g(k(z)) in that neighborhood.)

d) Suppose (with the notations of a)) that a, = 0 except for a subsequence (n;)
of integers such that n; 3 > (1 + 0)n; for every %, where 6> 0 is a fixed number.
Show that every point z, on the circle |z| = R is a singular point for f (“Hadamard’s

gap theorem’’; the circle |z| = R is called a natural boundary for f). (One may suppose
w

R = 1. Use the criterion of c), taking p > 1/0, and let g(u) = X d,u” be the Taylor
n=0

development of g at # = 0. By assumption, for given ¢ > 0 there is a subsequence (my)

of integers such that H“me > (1 — &)™ (section 9.1, problem 1). On the other hand
the function F(u) = Z(bu? + o +1)™ = Te,u” has u = 1 as a singular point, by b),

7 n
hence there is a subsequence (g;) of integers such that [eqll = (1— s)q’. Prove that

lidg)l = (1 — &)%)

16. The theorem of residues

We first remark that any subset S € C the points of which are all ssolated
is at most denumerable, for the subspace S of C is then discrete and separable
{by (3.9.2), (3.20.16) and (3.10.9)), hence S is the only dense subset of S
(3.8.4).

(9.16.1) Let AcC be a simply connected domain, (a,) a (finite or infinite)
sequence of distinct isolated points of A, S the set of points of that sequence.
Let | be an analytic mapping of A — S into a complex Banach space E,
and let y be a circuit in A — S. Then we have

| f@)dz = 2ni Xj(a,;y)R(a,)
y ”

wheve R(a,) is the residue of | at the point a,, and there are only a finite number
of terms £ O on the right-hand side (*‘theorem of residues”).

We can obviously suppose each a, is a singular point for f, for we can
extend f by continuity to all non-singular points ,, which does not change
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both sides of the formula (since R(a,) = 0 if 4, is not singular). Under
that assumption, for any compact set LC A, LN S is fimte, for LN S is
closed in L, as A — S is open in C by definition; hence L N S, being compact
and discrete, is finite (3.16.3). Let I be the interval in which y is defined,
and let P be the set of points ¥ € A such that j(¥;y) # 0. We know (9.8.6)
that the closure P of P in € is compact, and P does not contain any frontier
point of A, for such a point cannot be in y(I), nor have index # 0 with
respect to y, by (9.8.7); as the set of points x in € — y(I) where the index
j(x;y) takes a given value is open (9.8.3), any point in P which does not
belong to y(I) is in P, hence P c A. On the other hand, let ¢(t,£) be a loop
homotopy in A of y into a one-point circuit (€1, &€ J, where Jisa
compact interval). Then M = (I X J) is a compact subset of A. Let
HCN be the finite set of the integers # such that a, e MU P; for each
n e H, let u,(1/(z — a,)) be the singular part of f at the point a,. Let B be
the complement in A of the set of points a, such that » ¢ H; then B is open,
for a compact neighborhood of a point of B, contained in A, has a finite
intersection with S. By definition of the singular parts, there is a func-

tion g, analytic in B, and which is equal to f(z) — Z u,,( ) at every

z2— ay
neH
point z # a, (n€ H). As McC B by definition, y is homotopic in B to a

one-point circuit; hence, by Cauchy’s theorem, fg(z)dz = 0, in other
v

words S H2)dz = Z Su,, (il——) dz; the result then follows from (9.14.2),

Z — Qay
y neHy

. . 1 . A
applied to each of the functions #, (z——4> in an open ‘‘ring” of center a,,
n,

containing y(I).
17. Meromorphic functions

Let A be an open subset of C, S a subset of A, all points of which are
isolated. A mapping f of A — S into a complex Banach space E is said
(by abuse of language) to be meromorphic in A if it is analytic in A — S
and has order > — oo at each point of S. By abuse of language, we will
always identify f to its extension by continuity to all points of S which are
not poles of f; the argument used in (9.16.1) then shows that we can always
suppose that for any compact subset L of A, LN S is finite. If /g are two
meromorphic functions in A, taking their values in the same space, and
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whose sets of poles in A are respectively S,S’, then S U S’ has all its points
isolated, due to the preceding remark; f+ g is defined and analytic in
A — (Su¥’), and has order > —oo at each point of SUS’, hence is
meromorphic in A (note that some points of S U S’ may fail to be singular
for f + g). Similarly, if f and g are meromorphic in A, and g is complex
valued, fg is meromorphic in A. If f is meromorphic in A, S is the set
of its poles, T the set of its zeros, then all the points of SU T are isolated;
forif a € A and w(a) = A, then f(z) = (z — a)*/,(z) inaset 0 < |z — a| < 7,
where f, is analytic in |z — a| < 7 and f,(a) 5 0; the principle of isolated
zeros (9.1.5) shows that there is a number 7’ such that 0 < ' <7, and
f(2) # 0 for 0 < |z — a| < #'. This proves our assertion, and shows moreo-
ver that L n (S U T) is finite for any compact subset L of A (same argument
asin (9.16.1)). In particular, if / is complex valued, 1/f is meromorphic in A,
S is the set of its zeros and T the set of its poles. Moreover, with the same
notation as above, we have f'(z) = h(z— a)*~f,(2) + (z— a)*f;(z) for
0 < |¢ —a| <7, hence [/, which is analytic for 0 < |z — a| < 7', has
order 0 at the point a if # = 0, order — 1 and residue % at the point a
if 0.

(917.1) Let A be a simply connected domain in C, f a complex valued
meromorphic function in A, S (resp. T) the set of its poles (resp. zeros), g an
analytic function in A. Then, for any circuit y in A — (SUT), we have
"(z ) .
[0 0@ ar2ms 3 s ietaintain

Y aeSUT
a finite number of terms only being = O on the right-hand side.
This follows at once from the theorem of residues, for the residue of

g/’'/f at a point a € SU T is the product of g(a) by the residue of f'/f at the
point a.

(917.2) With the assumptions of (9.17.1) let t — y(t) (t € 1) be a circuit in
A — (SUT). If I'is the circuit t — f(y(t)), then

10;) = X j(a;y)w(a; f).

aeSUT

For it follows at once from (8.7.4) that S‘% = Sf @) dz, hence the
I v

result is a particular case of (9.17.1) for g = 1.
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(9.17.3) (Rouché’s theorem). Let AcCC be a simply comnected domain,
1.8 two analytic complex valued functions in A. Let T be the (at most
denumerable) set of zeros of f, T' the set of zeros of f + g in A, y a circuit in
A — T, defined in an interval 1. Then, if |g(2)| < |/(2)| in p(I), the func-
tion [ + g has no zeros on y(I), and

Z @@ f) = 2 jb;y)ob;f+ 8-

aeT beT’
The first point is obvious, since f(z) + g(z) = 0 implies |/(2)| = |g(2)|.
The function - = (f + g)/f is defined in A — T and meromorphic in A; we

e ¥ .
have =4+ —in A— (TUT’). Using (9.17.2), all we have
to prove is that the index of 0 with respect to the circuit I": ¢ — A(y(f)) is 0.
As gff is continuous and finite in the compact set y(I), it follows from

(3.17.10) and the assumption that » = sup |g(z)/f(2)] < 1. In other

zep(I)
words, I' is in the ball |z — 1| < 7, and as 0 is exterior to that ball, the
result follows from (9.8.5).

(9.17.4) (Continuity of the roots of an equation as a function of parameters).
Let A be an open set in C, F a metric space, { a continuous complex valued
function in A X F, such that for each a € F, z — f(z,4) is analytic in A.
Let B be an open subset of A, whose closure B in € is compact and contained
in A, and let oy € F be such that no zero of f(z,0) vs on the frontier of B. Then
there exists a neighborhood W of ag in F such that: 1° for any a € W, f(z,a)
has no zeros on the fromtier of B; 2° for any a € W, the sum of the orders
of the zeros of f(z,x) belonging to B is independent of a.

The number of distinct zeros of f(z,4,) in B is finite; let a,,...,a, be
these points. For each frontier point x of B, there is a compact neighborhood
U, of x, contained in A, such that f(z,a,) has no zero in U, (9.1.5); if we cover
the (compact) frontier of B by a finite number of sets U,j, the union U of B

and the ij is a compact neighborhood of B, contained in A and such that

f(z,%,) has no zero in Un (A — B). Let 7 be the minimum of the numbers
la; — a;| (1 #7), and for each 7 (1 <4 <), let D; be an open ball
|z — a;| < 7; of radius 7, < 7/2, contained in B; then D, N D; = & if 7 # 7.
Let H= U — (|J D,); thisis a compact set; let m be the minimum value

of |f(z,40)| in H; we have m > 0 by (3.17.10). Now, for each x € B, there
is a neighborhood V, of x contained in A and a neighborhood W, of a, in F,
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such that |f(y,2) — f(%,x)| < m/2 for yeV, and x e W,. As B is compact,
it can be covered by a finite number of sets V, (1<<k<<p); let

W = f;] ka; this is a neighborhood of «, in F, and by definition, for

any « € W and any yeB, we have [f(y,0) — f(y.0)| < m. As a first
consequence, it follows that f(y,«) = 0 for y e H and « € W; on the other
hand, as |f(z,0) — f(2,%)| < |/(2,)| in H, Rouché’s theorem, applied to
each circuit ¢ — a; + 7% (0 < ¢ < 2n) shows that the sum of the orders
of the zeros of f(z,&) in D; is independent of « € W, hence the theorem.

PROBLEMS

1) Let A c C be an open simply connected set, f a meromorphic complex valued
function in A, such that each pole of f is simple and the residue of f at each of these
poles is a positive or negative infeger. Show that there is in A a meromorphic func-
tion g such that f = g’/g. (If z, is not a pole of f, show that for any point z, € A which
is not a pole of f, and any road y in A, defined in I € R, of origin z, and extremity z,,
and such that y(I) does not.contain any pole of f, the number exp( _f f(x)dx) only

k%

depends on z, and 2, and not on the road y satisfying the preceding conditions (use
the theorem of residues).)

2) Let f be an entire function of one complex variable, such that for real x,y,
[Jf(x + iy)|| < el?l. Show that, for any z distinct from integral multiples nx of 7,

i(’.‘—“’) __ R e
dz \ sinz —w (22— nm?

where the series on the right-hand side is normally convergent in any compact subset
of € which does not contain any of the points n7n (»n integer). (Consider the integral

1 . f#) dx

2m1 n sinx (¥ — 2)2

where y,, is the circuit z — (n + })me for — x<{¢<m. Observe that for every
€ > 0, there is a number ¢(g) > 0 such that the relations |z — nn| = ¢ for every integer

|F@).

n € Z imply |[sin z| = c(e)e ; and use the theorem of residues.)
3) a) Show that for z 5 nn (n integer)

® 2z

1
cotgz = — + _—
g z  u—1 22— nin?

where the right-hand side is normally convergent in any compact subset of €
which does not contain any of the points #z. (Use problem 2 and the relation
lim (cotgz — 1/z) = 0.)

z2—0
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b) Deduce from a) that

o0 22
sinz=2z [IT|1—
we1 nin?

n 22
where the product is defined as the limit of I7 (1 o 2) , the convergence being
k=1 el

uniform in every compact subset of C. (Consider the entire function

4 z
o) = 1T (1 - ——) e—#n% (section 9.12, problem 1), and use a) to prove that
o nrx
the function (sin 2)/zf(z) is a constant.)

c) Deduce from b) the identity

1 1 .
——————— = —sinunz
'z -2z 7
(see section 9.12, problem 2).

4) Let f be a complex valued function analytic in an open neighborhood A of 0 in ¢?;
for convenience we write w instead of z, and 7 instead of (z,,...,25_1). Suppose that
f(0,0) = 0 and that the function f(0,w), which is analytic in a neighborhood of w = 0
in C, is not identically 0. Then there exist an integer » > 0,  functions %;(z), analytic
in a neighborhood of 0 in ¢?—1, and a function g(z,w) analytic in a neighborhood
BcA of 0in €, and s 0 in that neighborhood, such that

fzw) = (W + hw =1 + ... + k(2))g(z0)

in a neighborhood of 0 in (P (the ‘“Weierstrass preparation theorem”). (If 7(0,w)
has a zero of order » at w = 0, use (9.17.4) to prove that there is a number ¢ > 0
and a neighborhood V of 0 in C? —1 such that for any z €V, the function w — f(z,w)
has exactly r zeros in the disc |w| < ¢ and no zero on the circle [w| = ¢&. Let y be the
circuit # — ee® for — m << t<{ m; show that there are functions hile) 1<<7<<7)
analytic in V and such that the polynomial F(z,w) = w’ + hy(2)w” — 1 + ... + h(2)
satisfies the identity

Foz) 1  fuzw) 1

du

F(z,w) T 2 y Hew) w—wu

for zeV and |w| > &)

5) Let (f,) be a sequence of complex valued analytic functions in a connected
open subset A of €. Suppose that for each z € A, the sequence (f,(z)) tends to a limit
g(2), and the convergence is uniform in every compact subset of A. Suppose in addition
that each mapping z — f,(2) of A into C is ¢njective. Show that either g is constant
in A or g is injective (for any z, € A, consider the sequence (f,(z) — f4(2)) and apply
(9.17.4) and the principle of isolated zeros).

6) Let @ be a real valued twice differentiable function in the interval [0,1]. Suppose
|@(0)| < |@(1)], and let x;, be one of the zeros of ¢(0) — @(1) cos ¥ = 0 in ]— =z, = [.
Show that the entire function

1
F(z) = [ p(¢) sin z¢ d¢
]
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has a denumerable set of zeros; furthermore it is possible to define a surjective
mapping # — 2, of Z onto the set of zeros of zF(z), such that each zero corresponds

to a number of indices equal to its order, and that lim (22, — %y — 2n7) =
n— 4

lim (2,41 + %y — 227) = 0. (Integrating twice by parts, show that one
7n—>+4 00
can write zF(2) = @(0) — @(1) cos z + G(z), where |G(2)] << aelj(')‘/lzh minorize
|p(0) — @(1) cos 2| outside of circles having centers at the zeros of that function,
in the same way as [sin z| was minorized in problem 2; and use Rouché’s theorem
in a suitable way.) Treat similarly the cases in which |@(0)] > [@(1)| or |@p(0)] = |@(1)]-



Appendix to Chapter I1X

APPLICATION OF ANALYTIC FuNcTiONs To PLANE TopoLroGcy

(Eilenberg’s Method)

1. Index of a point with respect to a loop

(Ap1.1) Ift —yp(t) (a < t < b) is a path in an open subset A of C, there is
in A a homotopy @ of y into a road y,, such that ¢ is defined in [a,b] x [0,1]
and @(a,&) = y(a) and @(b,&) = p(b) for every & € [0,1].

Let I = [a,b]; as p(I) is compact, d(y(I),C — A) = p is > 0 (3.17.11).
As y is uniformly continuous in I (3.16.5), there is a strictly increasing
sequence (#,)o < x < » Of points of I such that #, = a, {,, = b, and the oscillation
(3.14) of y in each of the intervals [t,,t, ;] (0<CA<Km —1) is < p. Define y,;
in 1 as follows: for fy <t < o1, y(t) = 7(t) + Eéff—t_ktk (Wltss1) — p(5),
(0<<k<m—1); it is clear that y, is a road, with y,(a) = y(a), ,(8) = (b),
and p,(I) is contained in A, since y,([#,4,,]) is contained in the open ball
of center 9(#) and radius p. Define then ¢(t,&) = &yy() + (1 — &)p(t);
it is readily verified that g(¢,£) is in the open ball of center y(#,) and radius p
for t, <t <t,,; and 0K E ] (0 <<hk<<Km — 1); hence g verifies the
required conditions.

In particular, if y is a loop, we see that ¢ is a loop homotopy in A of y
into a circuit y,.

Consider now any loop y in C, defined in I, and any point a ¢ y(I). As
there are, by (Ap.1.1), circuits y, which are homotopic to ¢ in € — {a},
we can define the index j(a;y) as equal to j(a;y;) for any circuit homotopic
to y in € — {a}; by Cauchy’s theorem (9.6.3), this is independent of the
particular circuit y, homotopic to y in C — {a}.

Using (Ap.1.1) it is readily verified that the index of a point with
respect to a loop does not depend on the origin of the loop (9.6), and that
properties (9.8.3), (9.8.5), (9.8.6) and (9.8.7) still hold when ‘“circuit” is
replaced by “loop” in their formulation.

247
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2. Essential mappings in the unit circle

Let E be a metric space. We say that a continuous mapping f of E into
the unit circle U: |z| = 1 is inessential if there is a continuous mapping g
of E into R such that f(x) = ¢**) for every x € E. A continuous mapping f
of E into U is called essential if it is not inessential.

(Ap.2.1) If f,.f, are inessential mappings of E into U, f,f, and 1/f, = f- are
inessential; if f, is essential and [y inessential, then f\f, and f,|f, are essential.

(Ap.2.2) If fis an inessential mapping of E into U, and g a continuous
mapping of a metric space F into E, then fog is inessential.

These properties are obvious consequences of the definition.

(Ap.2.3) Any continuous mapping f of a metric space E into U such that
f(E) 5 U ds inessential.

Let {, €U — f(E). There is « € R such that {, = ¢ and the restric-
tion of ¢ —€” to the open interval Ja,« + 2x[ is a homeomorphism of
that interval onto U — {{} (9.5.7); if 4 is the inverse homeomorphism, we
have f(x) = ¢*!® for every x € E, q.e.d.

(Ap.2.4) If f.f, are two continuous mappings of a metric space E into U,
such that f,(x) # — fy(x) for any x € E, and if f, is essential (resp. inessen-
tial), so is f,.

For f = £/, is a continuous mapping of E into U which does not take
the value — 1, hence is inessential by (Ap.2.3).

(Ap.2.5) Let E be a compact metric space, 1 = [0,1], f a continuous mapping
of E X 1 into U. If the mapping x — f(x,0) is essential (resp. inessential),
50 s the mapping x — f(x,1).

As f is uniformly continuous in E X I (3.16.5), there is an integer n > 1
such that the relation |s —#| < 1/n implies |f(x,s) — f(x,£)| <1 for any x € E.

Let fu(x) = f<x, %) for 0 <k << n; we therefore have [fi(x) — frs1(x)| < 1

forany xe Eand 0 <k <Cn — 1, and as [f(x)| = |f,,,(x)] =1 for x € E,
we have f,(x) % — f,,.1(x) for x € E. Hence the result by (Ap.2.4).

(Ap.2.6) Any continuous mapping [ of a closed ball (in R*) into U is

inessential.
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Let E be the ball d(x,a) < 7, and define g(x,t) = f(a + ¢(x — a)); then
g is continuous in E x [0,1], g(x,1) = f(x) and g(x,0) = f(a); as x — g(x,0)
is inessential (Ap.2.3), so is f by (Ap.2.5).

(Ap.2.7) Let A,B be two closed subsets of a metric space E, such that E=AUB,
and that AN B be connected. Let f be a continuous mapping of E into U;
if the restrictions of f to A and B are inessential, f is inessential.

There are, by assumption, continuous mappings g, of A and B into R
such that f(x) = ¢%* in A, f(x) = ¢*® in B. For x€ AN B, we have
therefore ¢#*) = ¢*®) hence (9.5.5) (g(x) — h(x))/27 is an integer; but
as g — h is continuous in the connected set A N B, this implies g — & is a
constant 2nx in ANB by (3.19.7). Let then u(x) =g(x) in A, u(x) = h(x) + 2nn
in B; it is clear that f(x) = ¢*( in E, and as g and % 4 2nz coincide in
A n B, u is continuous in E, q.e.d.

(Ap.2.8) In order that a continuous mapping f of U into itself be essential,
a mecessary and sufficient condition is that {(0;y) # O for the loop y: ¢t — f(e")
(0 <t < 2n).

By (9.8.1) we can write f(¢¥) = ¢“), where ¢ is continuous in [0,2n],
and (2n) — H(0) =2nn by (9.5.5), » being the index 7{(0;y). Let
(€ = () + Ent + $(0) — §(?); if, for £ =e* (0 <t < 27) and for
0 < £ < 1, we write g(,£) = %9, g is continuous in (U — {1}) x [0,1]
by (9.5.7), and as %9 = 08 — (1) for any & g is extended by
continuity to U x [0,1]. By (Ap.2.5), we are thus reduced to proving the
theorem for the mapping f: { — {". It is clear that for n = 0, f is inessen-
tial. Suppose # 7% 0, and let us prove by contradiction that f cannot be
inessential. Otherwise, there would exist a nonconstant continuous
mapping % of U into R such that {* = ¢*® in U. As A4(U) is a compact
(3.17.9) and connected ((9.5.8) and (3.19.7)) subset of R, A(U) is a compact
interval [a,b] with a < b (3.19.1). Let {, €U such that A({;)) = a. We
therefore have {3 = ¢*; there is a neighborhood V of ¢, in U such that
the oscillation (3.14) of 2 in V be < #; on the other hand, (9.5.7) applied
to the interval Ja — m/n,a + m/n[, proves that there exists a point { eV
such that {* = ¢@~9, where &£ > 0 is sufficiently small. By (9.5.5),
k(L) — (@ — &) is a multiple of 2z, and the choice of V implies that this
multiple can only be 0 as soon as ¢ < s; but this contradicts the defini-
tion of a.

(Ap.2.9) The identity mapping { — ¢ of U onto itself is essential.
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3. Cuts of the plane

In a metric space E, we say a subset A of E separates two points x,y
of E — A if the connected components (3.19) of » and y in E — A are
distinct. We say that A cuts E (or is a cut of E) if E — A is not connected.

For any two points 4,b of € such that a # b, let s,,(2) be the function
z = (z — a)/(z — b), defined in C — {b}; it is readily verified that s,, is a
homeomorphism of C — {¢} onto C — {1}.

(Ap.3.1) (Eilenberg’s criterion). Let H be a compact subset of C; in
order that H separate two distinct poinis a,b of C — H, a necessary and suffi-
cient condition is that the mapping z — s, ,(2)/|s,,(2)| of H into U be essential.

a) Sufficiency. Suppose a and b are in the same connected component A
of C — H. As C — H is open in € and C is locally connected ((3.19.1) and
(3.20.16)), A is open in € (3.19.5). By (9.7.2) there is a path ¢ — p(¢) in A,
defined in I = [0,1], such that 9(0) = 4, y(1) = b. As p(f) ¢ H for any
value of ¢, the mapping (z,t) — f(2,f) = s,,4)(2)/[s,,4(2)| is continuous in
H x I, and f(z,0) =1, f(z,1) = s,,(2)/|s,5(2)|; the result follows from
(Ap.2.5).

b) Necessity. Let A be the connected component of C — H which
contains a; A is open in C and all its frontier points are in H (they cannot
be in another connected component of ¢ — H, otherwise A would have
common points with that open component); as b¢ AUH, we have
d(b,AU H) > 0. Let A’,H’ be the images of A,H under the homeomorphism
z = s,,(2) of C — {b} onto C — {1}; H' is compact and A’ is a connected
open subset of C — H’, which is bounded and contains 0. Moreover, the
frontier points of A’ in € are points of H' and (possibly) 1; hence A’ is
compact and so is A’ U H'. In addition, if 1 belongs to the boundary of A’,
this means that A is unbounded, hence has points in common with the
exterior of a ball containing H; but as that exterior is connected (9.8.4),
it is contained in A by definition of a connected component (3.19). This
shows that there is a ball V of center 1, such that V — {1} € A’, hence 1
is not a frontier point of C — A’, which proves that the frontier of ¢ — A’ is
always contained in H'. We have to show that the mapping u — u/|u|
of H' into U is essential (Ap.2.2). Suppose the contrary; then there would
exist a continuous mapping f of H' into R such that u/|u| = ¢/™ foru € H".
By the Tietze-Urysohn theorem (4.5.1), f can be extended to a continuous
mapping g of A’U H’ into R. Define a mapping % of € into U by taking
h(u) = uf|u| for ue C — A’, h(u) = €™ for ueA’; it follows at once from
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the definition of g that h is continuous in C. Let r > 0 be such that A’ is
contained in the ball B: |z| < 7; the restriction of 4 to B is inessential
(Ap.2.6), and so is therefore the restriction of 4 to S: |z| = ». But the
identity mapping ¢ — ¢ of U onto itself can be written 4 og;, where A, is
the mapping z — z/Jz| of S onto U, and g, the mapping { —7{ of U onto S.
However, A, is the restriction of 4 to S, hence inessential, and therefore
hyog, would be inessential (Ap.2.2), contradicting (Ap.2.9).

(Ap.3.2) (Janiszewski's theorem). Let A,B be two compact subsets of C,
a,b two distinct points of C — (A U B). If neither A nor B separates a and b,
and if AN B is connected, then AU B does not separate a and b.

From the assumption and (Ap.3.1) it follows that the restrictions of
z — 5,,(2)/[s,4(2)| to A and B are inessential; by (Ap.2.7) the restriction
of that mapping to AUB is also inessential, hence the conclusion by
(Ap.3.1).

4. Simple arcs and simple closed curves

An injective path ¢ — p(f) in C, defined in I = [4,8], is also called a
simple path; a subset of C is called a simple arc if it is the set of points y(I)
of a simple path. A loop y defined in I is called a simple loop if y(s) # (i)
for any pair of distinct points (s,f) of I, one of which is not an extremity
of I. A subset of € is called a simple closed curve if it is the set of points
of a simple loop. Equivalent definitions are that a simple arc is a subset
homeomorphic to [0,1], and a simple closed curve a subset homeomorphic
to the unit circle U (9.5.7).

(Ap.4.1)  The complement in C of a simple arc is connected (in other words,
a simple arc does not cut the plane).

Let y be a simple path defined in I, and let f be the continuous mapping
of y(I) onto I, inverse to . Let a,b be two distinct points of € — y(I).
By (Ap.3.1), we have to prove that the restriction @ of z —s,,(2)/s,,(2)]
to y(I) is inessential. But we can write ¢ = (goy)of; the continuous mapping
@oy of I into U is inessential (Ap.2.6), and so is therefore ¢ by (Ap.2.2).

(Ap.4.2) (The Jordan curve theorem). Let H be a simple closed curve in C.
Then:

a) € — H has exactly two connected components, one of which is bounded
and the other unbounded.
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b) The frontier of every comnected component of ¢ — H is H.

c) Ifyisasimpleloop defined in 1 and such that y(I) = H, then j(x;y) =0
tf x 1s in the unbounded connected component of C — H, and j(x;y) = + 1
if x is in the bounded connected component of C — H.

The proof is done in several steps.

(Ap.4.2.1) We first prove b) without any assumption on the number of
components of € — H. Let A be a connected component of ¢ — H; as
€ — H is open, we see as in (Ap.3.1) that the frontier of A is contained in H.
Let ze H, and let / be a homeomorphism of U onto H; let ¢ = ¢® U
be such that f({) = z. Let W be an arbitrary open neighborhood of z in C,
VecW a closed ball of center z; then there is a number w such that
0 < o < mand that f(¢”) e V for § — w < ¢ < 6 + w; let ] be the image
of that interval by ¢ — f(¢"); then the complement L of J in H is the
image by ¢ — f(e") of the compact interval [0 4+ w — 27,0 — w] (9.5.7),
and is a simple arc by (9.5.7). It follows from (Ap. 4.1) that the open set
C—L>C—H is connected. Therefore (9.7.2) for any xreAcC — L,
thereisa pathyin ¢ — L, defined in I = [a,b], such that y(a) = %, p(b) = 2.
The set p(I) N J is compact and contained in V; let M be its inverse image
by y, which is a compact subset of I, such that a¢ M; let ¢ = inf M > a.
Then the image by y of the interval [a,c[ is a connected set P ((3.19.7) and
(3.19.1)), which does not meet J nor L, hence is contained in ¢ — (JU L) =
C — H; as P contains z, it is contained in A by definition. But when ¢ < ¢
tends to ¢, y(f) € A tends to y(c) € V, hence y(f) e W as soon as ¢ — ¢ is
small enough; this shows that z €A, q.e.d.

(Ap-4.2.2) We next prove the theorem under the additional assumption
that H contains a segment S with distinct extremities. Applying to C a
homeomorphism z — Az 4 u, we can suppose S is an interval [—a,a]
of the real line R. Let p = d(0,H — S) < 4, and consider an open ball D:
2] <7, with » <p; then DNn(C—H)=Dn(€C—S), and it is clear
that D N (C — S) is the union of the two sets D;: |z| < 7, £z > 0 and D,:
|2} < 7, £z < 0, which have no common points. It is immediately verified
that the segment joining two points of D, (resp. D,) is contained in D,
{resp. D,), hence (3.19.3) that D,,D, are connected. On the other hand,
we have seen in (Ap.4.2.1) that every connected component of ¢ — H
meets D, hence meets D, or D,; but if two connected components of
C — H meet D, (resp. D,), they are necessarily identical, since D, (resp. D,)
is connected and contained in ¢ — H (3.19.4). This proves that ¢ — H
has at most two connected components. We prove next that C — H s #ot
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connected, hence has exactly two components. Suppose the contrary, and
let xeD,, y e D,; as D is connected, C — D does not separate x and y;
on the other hand, if C — H is connected, H does not separate x and y.
But Hn (C — D) is the complement in H of the open interval J—r,(;
by (9.5.7), this complement is therefore a simple arc, hence connected.
By Janiszewski’s theorem (Ap.3.2), the union HU (C — D) does not
separate x and y; but this is absurd, since the complement of HU (C — D)
in C is D, UD,, and D,,D, are open sets without common points, hence
D, U D, is not connected.

As H is compact, it is contained in a ball of center 0, whose complement
in € is connected, hence contained in a connected component of C — H;
this shows one of these components A is unbounded, and the other B is
bounded. Moreover, it is clear that j(x;y) = 0 when x € A (9.8.5). On the
other hand, D, is contained in one of the components of C — H, D, in the
other; all we need to prove therefore is that f(x;;y) — f(%5;y) = £ 1 for
ome point x, € D; and one point x, € D, (9.8.3). Supposing the origin of y
to be the point a € S, let J €I be the inverse image by y of H — S, which
is a compact interval [«,8] and let 9, be the path ¢ — y(#) defined in J, of
extremities — 4 and a. By (Ap.1.1) there is a homotopy ¢, in € — D of
y, into a road p,, such that ¢, is defined in J X [0,1] and ¢y(«,&) = p(a),
@1(8,&) = p(B) for any £. Define g in I x [0,1] as equal to ¢, in J X [0,1]
and to p(f) for any (t,€) € (I — J) x [0,1]; then for any x, € D; (resp.
x,€D,), @ is a loop homotopy in € — {x,} (resp. € — {xp}) of ¥
into a circuit y;. We can therefore limit ourselves to proving that
§(%,;%) — j(%2;y) = = 1 when p is a circust defined in I, having the fol-
lowing properties: 1° Scy(I) and if T is the inverse image y~(S), then
T is a subinterval of I and the restriction of y to T is a homeomorphism of T
onto S; 2° y(I — T) is contained in C — D (note that perhaps this new
y is not a simple loop). Then the inverse image by y of the interval [—7,7]
is a subinterval [A,u] of T; suppose for instance that y(2) = — 7, y(u) = 7.
We can suppose (replacing y by an equivalent circuit) that A = — z, u = 0,
and moreover that — 7 is the origin of y, so that I = [— m,w] with @ > 0.
Take x; = ¢€, %, = — & with 0 < £<7; let o be the road ¢ — y(t),
— n<t<0, 8, the road ¢ —ré*, — . <t<0, &, the road ¢t »7re™ ¥,
— <t < 0. Then, Cauchy’s theorem applied in the half-plane f(z) < £
(resp. F(2) > — &) which is a star-shaped domain (9.7.1) yields

S dz _5 dz d dz _ dz
T—4E Jz—z & Z+iE )zt

a [N 4 8,
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Hence

. ., a a 2:&y'(¢)dt
Pai(aiy) = 1(xiy)) = L = E raEt g W(ztf)yz(l &
s o ¢

Now the left-hand side is independent of &, and when & tends to 0, the right-
hand side tends to 24, using the fact that |y(f)| > 7 for 0 <t < w, the
mean value theorem (to majorize the last integral), and (8.11.1).

(Ap.42.3) We now turn to the case in which H contains no segment
with distinct extremities. Let a,b be two distinct points of H, S the segment
of extremities ,b; we may again suppose that S is a closed interval in R.
By assumption, there is at least one point x € SN (C — H); let J be the
connected component of x in SN (€ — H), which is an open interval ]y,z[
since SN (C— H) is open in R ((3.19.1) and (3.19.5)); moreover its
extremities y,z are in H. Let g be a homeomorphism of H onto the unit
circle U, and let g(y) =€, g(z) = ¢¥, where we may suppose that
c<d<c+ 2n (9.5.7). Let U,U, be the simple arcs, images of ¢ — e,
c<t<<d, and ¢t > ¢ d<t<c+ 2n, and let H,H, be their images
by the homeomorphism / of U onto H, inverse to g. Using (9.5.7), we see
immediately that there is a homeomorphism f, (resp. f,) of U, (resp. U,)
onto the closed interval J = [y,z], such that f(6%) = f2(e®) =y,
fi(e) = fy(e) = z. Let h, (resp. hy) be the mapping of U into €, equal
to /in U, (resp. in U,), to /, in U, (resp. to f, in U,); the definition of J
implies that 4,,h, are homeomorphisms of U onto two simple closed curves
Gy =H,U ], G,=H,U ], each of which contains the segment J. Let
w € H,, distinct of y and z; there is an open ball D of center w, which does
not meet the compact set G,. From (Ap.4.2.1), each connected component
of € — G, has points in D; moreover, if @’,%’" are two points of D in a
same connected component of C — Gy, »’ and '’ are not separated by G,;
they are not separated either by G,, since they belong to DcC — G,
which is connected. But G, n G, = J is connected, hence, by Janiszewski’s
theorem (Ap.3.2), »’ and w"”’ are not separated by G, U G,, nor of course
by HE€ G; U G,. In other words, »’ and »"’ belong to the same connected
component of C — H. But as € — G; has exactly two connected compo-
nents, and each connected component of € — H has points in D by
(Ap.4.2.1), it follows that C — H has af most two connected components. On
the other hand, it follows from (Ap.4.2.2) that there are two points w’,
@'’ in D which are separated by G,. We show they are separated by H.
Otherwise, as they are not separated by G,, and G, N H = H, is connected,
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they would not be separated by G, U H> G, (Ap.3.2), contrary to assump-
tion. We have thus shown that C — H has exactly two connected compo-
nents; the same argument as in (Ap.4.2.2) proves that one of them, A,
is unbounded and the other, B, is bounded.

Finally, we can suppose v is the origin of the loop y, and, if I = [«,8],
that H;, = y([«,4]), Hy = p([4,8]). Define the loops y, and y, as follows:
yil) = (t—a+ Dy —2) + 2 for a — 1 <t<a, () = p(t) for a <t < A;
Yall) = ylt) for A <t < B yalt) = ¥ + (t — Bz — ») for << B+ L.
Using (Ap.1.1) it is immediately verified that for any point x ¢ G, U G,,
1(x;9) =7(%;p1) +7(x;p,). With the same meaning as above for D, let again
w',w"’ be two points of D separated by G, ; then we have j(w’;y,) =7(w’’; y,)
since w’ and '’ are not separated by G, (9.8.3), and j(w’;y;) —j(w"";y;)= %1
by (Ap.4.2.2). From this it follows that j(w';y) — j(»'’;y) = £ 1, which
ends the proof.

(Ap.4.3) Let H be a simple closed curve in €, D the bounded connected
component of C — H. Then, for any loop y in D, j(x;y) = 0 for any x € H.

Let U be an open ball of center x, having no common points with the set
y(I) of points of y. There exists in U a point ze € — (DUH) =€ —D
(Ap.4.2), and as U is connected, j(x;y) = 7(z;y) (9.8.3). Butj(z;y) = 1(y;y)
for all points y of the unbounded connected component ¢ — D of H (9.8.3),
and there are points y € C — D which are exterior to a closed ball containing
y(I); for such points, j(y;y) = 0 (9.8.5), hence the result.

PROBLEMS

1) Let A be a connected open subset of C; show that for any two points a,b of A,
there is a simple path y contained in A, having a and b as extremities, and whose set
of points is a broken line (section 5.1, problem 4; this amounts to saying that y is
piecewise linear). (Use a similar argument as thatin (9.7.2). If a “square” Q=1IX ICA
(I closed interval with non empty interior in R) is such that a¢ Q, and there is a
simple path ¢ — 9,(f) in A, defined in J € R, with origin @ and extremity ¢ € Q, consider
the smallest value fy€ J such that y,(f) € Q, and observe that the segment of
extremities y,(f,) and any point of Q is contained in Q.)

2) Is Janiszewski’s theorem still true when A and B are only supposed to be
closed subsets of C, even if A N B is compact (and connected) ? Show that the state-
ment of the theorem remains true in the two following cases: 1° A,B are two closed
sets, one of which is compact; 2° A and B are two closed sets without a common point.
(If ¢ is a point sufficiently close to a, consider the mapping z — 1/(z — ¢), and the
images of a,b,A and B under that mapping.)

3) For any simple closed curve H in C, denote by S(H) the bounded component
of ¢ — H.
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a) Let A be a connected open subset of C, H a simple closed curve contained in A.
Show that A — H has exactly two connected components, which are the intersections
of A and of the connected components of C — H (use problem 2).

b) More generally, if H; (1 <C ¢ < ») are » simple closed curves contained in A,

and such that no two of them have common points, the complement of |J H; in A
i

has exactly » + 1 components (use induction on 7).

¢) If H,H’ are two simple closed curves without a common point in C, show that
either §(H) n §(H’) = @, or the closure of one of the sets S(H),8(H’) is contained in
the other. (Observe that if Hc #(H’), the unbounded component of C — H’ has no
common point with g(H), using (3.19.9).)

d) Suppose a connected open subset T of € has a frontier which is the union of »
simple closed curves H; (1 << i<{7), no two of which have common points. Show
that there are only two possibilities: 1° T is unbounded and no two of the sets g(H;)
have common points, their union being the complement of T; 2° there is one of the H;,

say H,, such that the S(H,) are contained in S(H,) for 1 << i<< 7 — 1, no two of the
B(H;) 1<i< 7 — 1) have common points, and T is the complement of the union
of the B(H;) (for 1 <Ci<{7 — 1) in B(H,). (If y; is a simple loop whose set of points
is H; (1 << i <), observe that the indices j(#; 9;) are constant for # € T, and that at
most one of them may be # 0; otherwise, using c), show that one at least of the

H; would not be contained in the frontier of T.)

4) Let A be a bounded open connected subset of C, such that for any loop y in A
and any ze€ C — A, j(z;9) = 0.

a) Show that for any simple closed curve H € A, the bounded component B(H)
is contained in A. (Observe that otherwise it would contain points of C — A, using
(3.19.9) and part b) of the Jordan curve theorem.)

b) A grating of width o > 0 in C is the set of points (m + in)a, where m,n are
arbitrary rational integers; these points are called the verfices of the grating. For
each vertex (m + im)a, the four vertices ((m + 1) + i(n + 1))a are called the
neighboring vertices of (m + in)a. The set Q,,, consisting of the points ¥ + iy such
that ma < » < (m + la and na < ¥ < (n + l)a is called the open square of the
grating, of indices m,n; its closure is called the closed square of the grating, of indices
m,n; the frontier of Q,, contains four vertices and is the union of the segments
joining those of these vertices which are neighbors (the sides of Q,,,, or of Q,,,).

Let B be the union of a finite number of closed squares of a grating. Show that
if a vertex of the grating belongs to Fr(B), the number of neighboring vertices belonging
to Fr(B) is equal to 2 or 4. If there is no vertex of the grating belonging to Fr(B)
and such that all 4 neighboring vertices belong to Fr(B), show that Fr(B) is the union
of a finite number of simple closed curves, no two of which have common points,
and each of which is the union of sides of the squares of the grating. (Starting from
two neighboring vertices of the grating, a,,a, in Fr(B), show that one may by induction
define a sequence (a,) of vertices of the grating belonging to Fr(B) and such that
a, and a,, ; are neighboring vertices.)

c) Let B be a union of a finite number of closed squares of a grating of width o,
such that on Fr(B) there is no vertex all of whose 4 neighboring vertices belong to
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Fr(B), and that Fr(B) is a simple closed curve (union of sides of the squares of the
grating). Let a,b be two neighboring vertices on Fr(B); show that there exists a
continuous mapping (z,f) — @(z,f) of B X [0,1] into B such that: 1° ¢(z,0) = z in B;
2° @(z,8) = z for any ¢ in [0,1] and any z in the segment S of extremities ab;
3° @(z,1) € S for any ze€ B. (Use induction on the number N of squares whose union
is B; let m be the largest integer such that there is a Q,,, € B, and for that m, let »
be the largest integer for which Q,,, C B; distinguish two cases, according to whether
the point (m + im)a is or is not a frontier point of B, and in both cases, consider B
as the union of two similar sets, each of which is the union of less than N squares of
the grating.) Conclude that the interior of B is simply connected.

@ Let B be the union of all the closed squares of a grating of width a which are
contained in A; « is supposed small enough for B to be non empty. Let D be one of

the (open) connected components of l%; show that on Fr(D) there is no vertex of the
grating such that all 4 of the neighboring vertices are in Fr(D). (Suppose the contrary,
and for simplicity’s sake, suppose 0 is that vertex; then, for instance, Qgoand Q_ 1, 1
are in D, there is a point z, € §_ ¢ and a point z, € g, _ 1 belonging to Fr(A). Using
problem 1, show that there is a simple closed loop I' contained in Du {0}, and
containing the segment of extremities (1 + ¢)a/2 and — (1 + 4)a/2. Reasoning as in
(Ap. 4.2.2), show that the indices j(z;I") and j(z;[") cannot be equal, which is a
contradiction.)

e) With the notations of d), show that Fr(D) is a simple closed curve. (Use b)
and problem 3 d), to prove that if Fr(D) was the union of more than one simple closed
curve, there would be simple loops y in A and points z € Fr(A) such that jlz;y) = 1)

f) Conclude that A is simply conmected, and is the union of an increasing sequence
(D,,) of open simply connected subsets, each of which is the bounded component of
the complement of a simple closed curve (use c) and e)). Conversely, such a union is
always simply connected.

g) Extend the result of f) to arbitrary simply connected open subsets of € (for
each #, consider the closed squares of the grating of width 1/# which are contained
in the intersection of A and of the ball B(0;r)).

h) Let A be an open connected subset of C such that the complement C — A has
no bounded component; show that A is simply connected (use (9.8.5)).

5) Show that the following open subsets of C are simply connected but that their
frontier is not a simple closed curve:

1° The set A, of points » + iy such that 0 < ¥ <1, —2<y < sin(1/%).

2° The set A, of points x -+ 4y such that —1<zs<0and —1<y<], or
0Lr<land 0< |y|< L

(In both cases, define an increasing sequence of bounded components B(H,),
where H,, is a simple closed curve, such that the union of the g(H,) is the given open
set. To prove that Fr(A,) is not homeomorphic to U, show that it is not locally
connected, using (3.19.1); to prove the similar property for Fr(A,) consider the
complement of the point z = 1 in that set.) Are Fr(A,) and Fr(A,) homeomorphic?

6) Let A be a simply connected open subset of C, distinct from €. Show that the
frontier of A contains at least two distinct points. (Show that otherwise, one would
have A = C — {a}, using (3.19.9) and the fact that € — {a} is connected, to prove
that there can be no exterior point of A; conclude by using (9.8.4) and (9.8.7).)
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7) Let y be a simple loop defined in I = [0,2], and let H — y(I) be the cor-
responding simple closed curve. Let a be a simple path defined in I, = [1,2] and
such that: 1° a(l) = p(1), «(2) = p(2) = »(0); 2° a(f) € p(H) for every te]1,2[;
let L = a(I,). Define the simple loops Y1,¥2 in I by the conditions:

Y28} = (2) for 0<Ci<C 1, py(f) = aff) for 1<C2<C 2

Yalt) = (2 — 1) for 0TI L, po(t) = p(f) for 1<C e 2.

Let H; = y(I), Hy = p,(1).

a) Show that for any z € € which does not belong to H, U Hy, j(z;y) = j(z;3,) + j(2:y,)
(use (Ap.1.1)).

b) Prove that there are points z, € §(H) such that j (21;71) = 0, and points z, € S(H)
such that j(z,;y,) = 0 (use b) of the Jordan curve theorem (Ap.4.2)).

¢) Deduce from a) and b) that g(H) is the union of B(H,),8(H,) and L n g(H),
no two of these sets having common points.

8) a) Let H be a simple closed curve Ly (1< & <{ #) » simple arcs, having their
extremities in H, and whose points distinct from the extremities are in B(H). Suppose
in addition that no two of the L, have common points belonging to B(H). Then the

n
interior of the complement of |J L; in B(H) has % + 1 connected components, each
k=1
of which is the bounded component of the complement of a simple closed curve in C.
(Use induction on #, and problem 7.)

b) Let H;,H, be two simple closed curves in €, such that H, n H, is finite. Show
that each connected component of A(H;) n (H,) is the bounded component of the
complement in C of a simple closed curve (use a)).

9) Let y be a simple loop in C, defined in I = [—1,1], let H = y»(I), and suppose
(for simplicity’s sake) that 9(0) = 0 and the diameter of H is > 2. Define inductively
two decreasing sequences of numbers, (a,) and (pn), tending to 0, such that pp=1la,

1
is the largest number > 0 such that |y(#)| < p, for |f| < a,, and Pn+1 = inf <—+—1 , (5,,) »
n

where J, is the distance of 0 to the set of points y(f) such that |¢| = a,.

a) Prove that if z,2” are two points of #(H) such that lz] < pn+1and |2| < pyi1,
then there is a path of extremities 7,2/, contained in the intersection of B(H) and of
the closed disc of center 0 and radius pn- (Let L be a simple broken line of extremities
2,2/, contained in S(H) (problem 1). Suppose first that the segment S of extremities
2,2’ has no point in common with L, distinct from 2z,2’; then R = LU S is a simple
closed curve. Prove that if €I is such that y(#) € B(R), then || < a,: observe that
the intersection R N H is contained in S, and show that if there was a £ € I such that
¥(?) € B(R) and [t| > &, there would be another #' € I such that y() € Sand |'| = ay,
contradicting the definition of Pn+1- Conclude in that case by taking the connected
component of the intersection of S(R) and the open disc of center 0 and radius Prns
which contains points arbitrarily close to S, and applying problem 8 b) to the frontier
of that component. In the general case in which L and S have more than two common
points, use induction on the number of these points.)

b) Prove that for any point » € §(H), there is a simple arc of extremities 0 and x,
whose points # 0 are in B(H). (“Schoenflies’s theorem”. Consider a sequence (z,)
of points of 5(H) such that EARS Pn+1, and apply a) to two consecutive points of that
sequence.)



Chapter X

Existence Theorems

There are of course many kinds of existence theorems in mathematics
and this chapter only deals with ore kind, namely, those which are linked
to the notion of completeness; roughly speaking, the most intuitive result
(10.1.3) says that when in a Banach space the identity mapping is “slightly”
perturbed by an additional term in the neighborhood of a point, it still
remains a homeomorphism around that point. The word “slightly’’ has
to be understood in a precise way, which means more than mere “‘smallness”
of the perturbing function (see section 10.2, problem 2), and has to do with
a limitation on the rate of variation of that function, generally referred te
as a condition of “lipschitzian” type. As a consequence, the natural field
of application of theorems of that type consists of equations in which some
limitation is known on the derivatives of the given functions; furthermore,
the existence theorems obtained in that way are of a Jocal nature. In the
next chapter, we will meet different kinds of existence theorems, which
can be applied to global problems.

The main applications of the general existence theorems of section 10.1
are: 1° the implicit function theorem (10.2.1) together with its consequence,
the rank theorem (10.3.1) which (locally) reduces to a canonical form the
continuously differentiable mappings of constant rank in finite dimensional
spaces; 2° the Cauchy existence theorem for ordinary differential equa-
tions (10.4.5) with its various improvements and consequences; both
theorems are among the most useful tools of both classical and modern
Analysis. Of course, what is said of differential equations in this and the
next chapter is only a tiny fraction of that vast theory; the reader who
wants to go farther in that direction is referred to the books of Coddington-
Levinson [10], Ince [15] and Kamke [17].

As a last application, we have given a proof of the theorem of Frobenius
(10.9.4), which, as we state it, appears as a natural extension of the Cauchy

259
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existence theorem to functions of several variables; it is usually for-
mulated in a more geometric way, as an existence theorem of manifolds
having at each point a given ““tangent space”. For that formulation and
the important applications it has to differential geometry and Lie theory,
we refer the reader to the books of E. Cartan [7] and Chevalley [9].

It goes without saying that as usual we have expressed all results for
vector valued functions, so that, for instance, we practically never speak
of “systems” of equations; it is one of the virtues of the ““vector space
methods” that one never needs to consider more than one equation, at
least for the proofs of the general theorems.

1. The method of successive approximations

As in chapter IX, K will denote either the real or the complex field,
and whenever a statement is made about Banach spaces without specifying
K, it is understood that all the Banach spaces concerned are over the same
field.

(10.1.1) Let E,F be two Banach spaces, U (resp. V) an open ball in E
(resp. F) of center 0 and radius a (resp. ). Let v be a continuous mapping of
U XV into F, such that [[v(x,y,) — v(%,99)|| < k- |lyy — ¥q|| for x€ U,
V1€V, v, €V, where k is a constant such that 0 <k <1. Then, if
[lv(2,0)|| < B(1 — &) for any x € U, there exists a unique mapping f of U
into V such that

(10.1.1.1) (%) = v(x.f(%))

for any x € U; and f is continuous in U.

For any x € U, we will show there exists a sequence (y,) of points of V
such that y, =0, vy, = v(x,y,_,) for any n>1. We have to show that
if y, is defined and in V for 1 <<p<#, then v(x,y,)eV. But we
have then for 2<<p<n, ¥, — ¥p_1 = v(%,y,_1) — v(x,9,_,), hence
1% — ¥p—1l| <A |9 -1 — ¥5_2||, and by induction on p we conclude that
1Yy — ¥p—all < #7'||y||. Hence

(101.1.2) iy [[SA+A+E+ ... + )N <[In/lIQ -4 <4

which proves our contention. Moreover, by induction on #, we can write
¥, = f.(%), where f, is a continuous mapping of U into V (3.11.5). We
have furthermore ||f,(%) — f,_.(%)|| <&~ 'B(1 — &) for x€ U, hence the
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series (f, — f,_1) is normally convergent (7.1) in #5(U); as F is complete,
the series (f,(x¥) — f,_1(#*)) is convergent for any x € U, and if f(x) is its
sum, [ is continuous in U (7.2.1); moreover, by the principle of extension
of inequalities applied to (10.1.1.2), ||/(*)|| < |jv(%,0)||/(1 — k) < B for any
x€U, hence f is a mapping of U ¢nto V. From the relation /,(x) = v(x.f, _ ;(%))
we deduce (10.1.1.1) by passage to the limit, for every x € U. Finally,
suppose g is another mapping of U into V such that g(x) = v(x,g(x)) for
any x € U. Then, from that relation and (10.1.1.1) we deduce

llg(x) — A#)|| = [lo(x.8(x)) — v(x.f(2)|| < %~ ||g(%) — A(=)]]

and this implies g(x) = f(x) since 2 < 1.

(10.1.2) (Fixed point theorem). Let F be a Banach space, V an open
ball in F of center y, and radius B. Let v be a mapping of V into F such that
[[o(y) — v(y )l < k- {|y2 — ¥al| for any pair of points y,,y, of V, where k
is a constant such that 0 < k < 1. Then, if ||[v(yo) — ¥ol| < B(L — k), there
s one and only one point z € V such that z = v(z).

Observe that v is continuous in V and apply (10.1.1) to the mapping
(%,5) = v(y + ¥¢) — ¥ Wwhich is independent of x.

(10.1.3) Let F be a Banach space, V an open ball in F of center 0 and radius §.
Let w be a mapping of V into F such that |jw(y,) — w(yy)|| < k- ||y, — 2|
for any pair of points of V, with k constant and 0 < k<< 1., Then, if
llw(0)|| < $8(1 — k), there is an open neighborhood W 'V of 0, such that
the restriction to W of the mapping y — g(y) = y + w(y) is a homeomorphism
of W onte an open neighborhood of 0 in F.

We apply (10.1.1) to E = F, U being the open ball of center 0 and radius
= f( , and to the mapping (x,y) — v(x,y) = x — w(y);
the conditions of (10.1.1) are then verified, hence there is a continuous
mapping f of U into V such that f(x) = x — w(f(x)), in other words
g(f(x)) = x for x€eU. To prove f is a homeomorphism of U onto f(U),
we need merely to show that g is an ¢ujective mapping of V into g(V)
(since f is clearly injective in U); but the relation g(y,) = g(y,) implies
11 — ol = |fe(31) — w(ya)|| < kv, , hence y, =y, since k& <1.
Therefore g is the homeomorphism of W = f(U) onto U, inverse to f;
moreover W = g=1(U) is open in F since U is open in F (3.11.4). Finally
we have 0 € W, for that condition is equivalent to g(0) € U, and this means
||@(0)|| < «, which is equivalent to |jw(0)|| < $8(1 — k).




262 X. EXISTENCE THEOREMS

PROBLEMS

1) Let A be a compact metric space, d the distance on A, v a mapping of A into
itself such that for every pair (x,y) of distinct points of A, d(v(x),v(y)) < d(#,y). Show
that there exists a point z € A such that v(z) = 2. (Use contradiction, by considering
the number ¢ = inf d(x,v(x)) and proving that there exists a point y € A such that

x€EA
d(y.v(y)) = ¢.)
2) LetBbe theball ||#|| <C 1in the space (cy) of Banach (section 5.3, problem 5). Let

1
u be the continuous linear mapping of (¢,) intoitself such that u(e,) = (1 - W) en i1

(n=0), and let v(x) = }(L + ||#||)e, + u(¥). Show that v is a continuous
mapping of B into itself such that for any pair (+,y) of distinct points of B,
Hu(¥) — v(3)|| < || — »||, but that there is no point z € B such that v(z) = z (use

n n
the inequality I7 (1 —o;)>1— X g; for 0oy << 1).
i=1 i=1

3) Let E, F, be two normed vector spaces, # a linear homeomorphism of E,
onto a subspace #(E) of F; let v: #(E) — E be the inverse mapping of #, and let
m = |lo||.

a) Let A be an open subset of E, w a mapping of A into F such that
Hlw(x) — w(xy)|| < k||#;, — #,]| for x,,%, in A. Show that if the constant % is such
that Am < 1, then » — f(¥) = u(*) 4+ w(#) is a homeomorphism of A onto f(A). If
in addition, E and F are Banach spaces, and »(E) = F, show that f(A) is an open
subset of F (use (10.1.3).)

b) Suppose w is a continuous linear mapping of E into F such that ||w|| < 1/m.
Show that f is then a linear homeomorphism of E onto f(E). Furthermore, for any
¥o€ #(E) such that ||y,|| = 1, show that there exists y f(E) such that ||y — y,||<< m||w||;
conversely, for any y € f(E) such that ||y|| = 1, show that there exists y, € u(E)
such that ||y — y|| < m||w||/(1 — m||w]|]).

4) Let E,F be normed spaces, # a continuous linear mapping of E into F, such
that N = %»—1(0) is a finite dimensional subspace, and there exists* a closed top-
ological supplement M of N (5.4) such that the restriction of # to M is a homeomorphism
onto #(M) = #(E). Let w be a continuous linear mapping of E into F; show that
if ||w|| is small enough, and f = # + w, then f~(0) has finite dimension at most equal
to the dimension of #~1(0), and there is a closed topological supplement P of f~1(0),
such that the restriction of f to P is a homeomorphism onto f(P) = f(E) (use prob-
lem 3 b)).

5) Let E be a Banach space, F a normed space, # a linear homeomorphism of E
onto #(E) such that there is a topological supplement Q of »(E) in F. Show that if w
is a continuous linear mapping of E into F with sufficiently small norm [|w||, and
[ = u + w, then Q is still a topological supplement of /(E) in F. (Show that the projec-
tion of F onto u(E), restricted to f(E), is a linear homeomorphism onto #(E) when ||w||
is small enough, using problem 3.)

* It can be shown that this last condition is a consequence of the other ones (see [6]
in the Bibliography).
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6) Let E,F be two Banach spaces,  a continuous linear mapping of E into F such
that N = »~1(0) has finite dimension p, and has a topological supplement M such that
the restriction of » to M is a homeomorphism onto #(M) = »(E). Suppose in addition
u(E) has finite codimension ¢ in F. Let w a continuous linear mapping of E into F;
show that if ||w]|| is small enough, f = u + w is such that the dimension r of /~1(0)
satisfies the inequalities p — ¢ <C # <{ p, and that the codimension of f(E) in F is
equal to ¢ — p + ». (Use problems 4 and 5, as well as (5.9.3).)

7) Let I = [0,1], and let P be the subspace of the Banach space €Rr(I) (7.2)
consisting of the restriction to I of the polynomials x(¢) with real coefficients. In the
normed space P, let # be the identity mapping ¥ — x, and let w be the linear mapping
which to each polynomial x(f) (restricted to I) associates the polynomial =x(¢2),
restricted to I. For any ¢ such that 0 < ¢ < 1, the linear mapping f = u + cw is a
linear homeomorphism of P onto the subspace f(P), but the codimension of (P} in P
is infinite (compare to problem 6).

8) Let E,F be two Banach spaces, » a continuous linear mapping of E into F such
that »(E) = F, and that* there exists a number m > 0 such that for any yeF
there is an # € E for which »(¥) = y and ||#|| < m||y||. Let w be a continuous mapping
of an open ball U = B(a;7) CE into F, such that |jw(x)) — w(x,)|| << k||#; — |
for x,,%, in U. Prove that if 2 and ||w(a)|| are small enough, the continuous mapping
x — f(x) = u(*) + w(#) is such that f(U) contains an open ball of center u(a). (Use
the same method as in the proof of (10.1.1).)

9) Suppose E,F,U,V and v satisfy the assumptions of (10.1.1). In addition, let ¢
be a continuous mapping of U into itself such that |lp(x)|| < ||#|| for any x e U.
Show that (under the condition ||v(#,0)]| < B(1 — k) for x € U) there exists a unique
mapping f of U into V such that

H(2) = v(x.f(p(#))

and that f is continuous in U.
Generalize to equations of the form

F(#) = v(x.H@s(#), . . - .F(p(#))).

10) Let E,F,U,V have the same meaning as in (10.1.1). Suppose the continuous
mapping v of U X V into F satisfies the following conditions: 1° ||v(x,y;) — v(#,7,)|| <
< clll#l2+ 12l + [13alP 1y — 3alls 20 [lo(x.0)| < efl#][1+2% where ¢ and u
are constants > 0. Let A be an element of K such that |4] > 1. Finally, let ¥ — L(#)
be a continuous linear mapping of E into F, and let ¥ — ¢(*) be a continuous mapping
of U into itself such that ||@(x)|| <C ||#||. Show that there exists a mapping f of a
neighborhood W € U of 0 into V, having the following properties: 1° f satisfies in W
the equation

1) — i (;) = o(mHg(¥):

* It can be shown that this last condition is a consequence of the other ones (see [6]
in the Bibliographyy).
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2° lim (f(x) — L(#))/||#]| = 0. Furthermore, any two mappings having these prop-

x—0
erties coincide in a neighborhood of 0. (Reduce the problem to the case in which
L(x) = 0. Observe that if f satisfies the preceding conditions, then one must have
in a neighborhood of 0

- S i)

n=

where the series is normally convergent in a neighborhood of 0. Then use the method
of (10.1.1) to prove the existence of a solution of (*) in a sufficiently small neigh-
borhood of 0; show, by induction on #, that there exists an » > 0 such that, for
(1 # and {[fa(®) — fu— 12| < ||2][1+74).

11) a) Let F(#,,...,%5,5) be an entire function in K?P+1 such that in the power
series equal to F(xy,...,%p,y), all monomials have a total degree > 2. Let ¢ be a
linear mapping of K? into itself such that ||p(#)|| < ||#]| for any # = (x,,...,%p) € K?;
finally, let L{x) be an arbitrary linear form on K?. Show that there is a unique solu-
tion f of the equation

f(%) — A (x[2) = Fixnf@)) (14 >1)
which is defined in a neighborhood of 0 and such that lim (f(x) — L(%))/||#|| =

z-->0
Furthermore, that solution is an entire function in K?. (Apply problem 10 in a neigh-
borhood of 0; reduce the problem to the case K = €, and apply (9.12.1) and (9.4.2)
to prove that f is an entire function.)

b) Show that there is no solution of the equation f(¥) — Af(¥/1) = x (A > 1)
defined in a neighborhood of 0 in R and such that f(x)/x is bounded in a neigh-
borhood of 0.

12) Let I = [0,a], H = [—b,b], and let f be a real valued continuous function in

I x H; put M= sup |f(#,9)], and let J = [0, inf (a,b/M)].
{x,y)el xH

a) For any x € J, let E(x) be the set of values of y € H such that y = xf(»,y).
Show that E(x) is a non empty closed set; if gy(¥) = inf (E(#)), gy(*) = sup (E(#)),

show that g,(0) = g,(0) = 0, and that lim g(#)/r = Hm go(x)/x = £(0,0).
x—»0,x>0 z—0,x>0

If g, = g, = g in J, g is continuous (cf. section 3.20, problem 5).
b) Suppose a = b = 1; let E be the union of the family of the segments S,:
¥ = 1/2" 1/47+1 < y << 1/4" (n > 0), of the segments S,,: y = 1/4%, /2" << # << /2%~ 1
(n > 1) and of the point (0,0). Definef(x,y) as follows: f(0,y) = 0; for 1/2" < x<C 1/2" 1
+

and y << 1/4", take f(x,9) =(1+d((x,y),E)> ; for 1/2"< x<<1/2*~1 and
x

1/4" < y << #2, take f(x,9) = ¥ d((#,9),E) and finally, for /2" < x<C /271
x

and y > #2, take f(x,9) = # — d((x,#%),E) (x> 1). Show that f is continuous, but
that there is no function g, continuous in a neighborhood of 0 in I and such that
g(¥) = af(x,8(#)) in that neighborhood.
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c) Let u, be a continuous mapping of ] into H, and define by induction
un(%) = xf(¥,uy _1(¥)) for n > 1; the functions «,, are continuous mappings of J into H.

With the notations of a), suppose that inan interval [0,c]€ J, lim (u, 1(%) — 4, (%)) =0
7 —>» 00

for every #, and g,(x) = gy(#); show that lim u,(¥) = g (x) for O0< r<e.
# —>» 00

Apply that criterion to the two following cases: 1° there exists 2 > 0 such that
|H(x.2;) — H(#,25)| << Rlzy — 25| for x €1, 2,2, in H (compare to (10.1.1)); 2° for
O0< »<<y<Caand 2,5 in H, [{(x,2) — f(%.2)] < |7, — 2|/

d) When { is defined as in b), the sequence (%,(#)) is convergent for every z €1,
to a limit which is not continuous.

e) Take a=b=1, f(x,y) =y/x for 0<2<<], |y|<<#2 f(x,9)=2x for OCa<<],
y= 22 f(vy) = — x for 0<x<<1, y<< — »% Any continuous function g in I

|21 — 24|

such that |g(#)|<C #? is a solution of g(x) = x/(x,g(x)) although [f(x,2,) — f(%,25)| <

for 0 < # << 1, 23,25 in H; for any choice of u,, the sequence («,) converges uniformly
to such a solution.

f) Define f as in e), and let f,(#,y) = — f(x,y). The function 0 is the only solution
of g(x) = xf,(»,4(#)), but there are continuous functions %, for which the sequence
(un(#)) is not convergent for any x # 0, although |f,(#,2,) — fy(#.25)| < |2, — 2,7
for 0 < << 1, 2,2, in H.

13) Generalize the results of exerc. 12 a) and 12 c) when H is replaced by a disc
of center (0,0) in R2 (use the result of problem 3 of section 10.2).

2. Implicit functions

(10.2.1) (The implicit function theorem). Let E,F,G be three Banach
spaces, | a continuously differentiable mapping (8.9) of an open subset A of
E X F into G. Let (%y,y,) be a point of A such that [(x,,y,) = O and that
the partial derivative Dof (x4,Y,) be a linear homeomorphism of F onto G. Then,
there is an open neighborhood Uy of %y in E such that, for every open connected
neighborhood U of x,, contained in Uy, there is a unique continuous mapping
u of U into F such that u(xg) = v,, (¥,u(x)) € A and f(x,u(x)) = O for any
x € U. Furthermore, u is continuously differentiable in U, and its derivative
is given by

(10.2.1.1) w(x) = — (Dyf(x,u(x)) )0 (Dyf(x,u())).

Let T, be the linear homeomorphism D,f(x,y,) of F onto G, T; ! the
inverse linear homeomorphism; write the relation f(x,y) = O under the
equivalent form

(102.1.2) y=y— Ty {(xy)
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and write g(x,y) the right-hand side of (10.2.1.2). We are going to prove
that it is possible to apply (10.1.1) to the mapping

(*,y") — &% + %" 30 + ¥) — Yo
of E x F into F, in a sufficiently small neighborhood of (0,0). As T 'eTy=1
by definition, we can write, for (x,y,) and (x,y,) in A,

8(%,y)) — g(%,y5) = Ty '+ (Dof(%9,5) - (¥1 — ¥3) — (F(2,31) — [(%,52)))-

Let £ > 0 be such that ¢||T; || <1/2; as f is continuously differentiable
in A, it follows from (8.6.2) and (8.9.1) that there is a ball U, (resp. V)
of center x, (resp. ¥,) and radius « (resp. 8) in E (resp. F) such that, for
x €Uy, v €V, ¥V, we have

[17(%.91) — £(%,95) — Daf(%0,%) - (y1 — ¥2)|| <élly — %l
whence |lg(x,57) — g(%,2)|| < el| T5 || - |[y1 — 22ll < 3|71 — p5l| for any
x €Uy, y, €V, ¥5€ Vy. On the other hand, g(x,y,) — Yo = — Ty '/ (%,%0);
as f(%,,%,) = 0 and f is continuous, we can suppose ¢ has been taken small
enough to have ||g(¥,y9) — ¥o|| < B/2 for x€U,. We can then apply
(10.1.1), which yields the existence and uniqueness of a mapping # of U,
into V,, such that f(x,u(x)) = 0 for every x € Uy; as f(x9,) = 0, this
gives in particular #(xy) = ¥,; finally # is continuous in U,

Next we prove that if Uc U, is a connected open neighborhood of x,
u is the unique continuous mapping of U info F such that u(xy) = y,,
(%,4(x)) € A and f(x,u(x)) = 0. Let v be a second mapping verifying these
conditions, and consider the subset Mc U of the points x such that
u(x) = v(x). This set contains x, by definition and is closed (3.15.1); we need
therefore only prove M is open (3.19). But by assumption, x — D,f(x,u(%))
is continuous in U, hence (replacing if necessary U, by a smaller neigh-
borhood), we can suppose that D,f(x,u4(x)) is a linear homeomorphism of F
onto G for x € Uy, by (8.3.2). Let a € M; the first part of the proof shows
that there exists an open neighborhood U,c U of 2 and an open neigh-
borhood V,cV of & = u(a) such that, for any xe U,, #(x) is the only
solution y of the equation f(x,y) = O such that y € V,. However, as v is
continuous at the point a, and v(a) = u(a), there is a neighborhood W of a,
contained in U, and such that v(x) € V, for x € W; the preceding remark
then shows that v(x) = #(x) for x € W, and this proves M is open, hence
#=v in U.
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Finally we show that # is continuously differentiable in U, pro-
vided ¢ has been taken small enough. For x and x 4 s in U, let us write
t=u(x+s) —u(x); by assumption f(x+ su(x)+¢ =0, and ¢
tends to 0 when s tends to 0. Hence, for a given x €U, and for
any >0, there is >0 such that the relation ||s|| <7 implies
[F(x + su(x) + £) — f(xu(x)) — S(x)-s — T(x) - ¢| < 8(|Is|| + |[¢]]) where
S(x) = Dyf(x,u(x)) and T(x) = Dyf(x,u(x)) (8.9.1). This is equivalent by
definition to

IS(0) -5+ T(s) -l < ollsl] -+ [

and as T(x) is a linear homeomorphism of F onto G, we deduce from the
preceding relation

(1021.3)  |[(T-1()oS(x) -5 + 1] < S| T-0)][(s]| + I1£l)-

Suppose ¢ has been taken such that 6||7-(x)|| < 1/2; then, if we put
a = 2||T~Y(x)oS(x)|| + 1, we deduce from (10.2.1.3) that

a— 1

= 252 sl < (Ll =+ sl

i.e., |t]] < al|s||, and therefore

It 4+ (T2 (%)oS(x)) - sl| < 8(a + V[T ()| |[}s]]

as soon as [[s|| < 7. By definition of ¢, this proves # is differentiable at
the point x and has a derivative given by (10.2.1.1). Using (8.3.2) and
(8.3.1), formula (10.2.1.1) then proves u is continuously differentiable in Us.

We formulate explicitly the most important case of (10.2.1), i.e. the one
in which E = K™, F = G = K" are finite dimensional spaces:

(10.2.2) Let f; be n scalar functions defined and continuously differen-
tiable in a neighborhood U X V of a point (ay,. . oa,,b,..000,) of E X F,
such that fj(ay,...,a,,by,...,b,) =0 for 1 <t <m, and that the jacobian

frs- - -oin)

(Y1, e v o) Vn)
borhood Wy C U of (ay,. . .,a,,) such that, for any connected open neighborhood

WeW, of (ay,...,a,), there is a unique system of n scalar functions g,
(1 < i < n), defined and continuous in W and such that g(a,....a,) =b;
for 1 < i n, and

is not O at (ay,...,amby,...,0s). Then there is an open neigh-

[ZC7VRE - 2 NN ) R X € P x,)) =0
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for 1<in and any (x,,...,x,) € W. Moreover, the functions g,; are
continuously differentiable in W, and the jacobian matrix (D;g,(x)) is equal
to — B4, where A (resp. B) is obtained by replacing y; by g(%,,...,x,,)
(1 <4< n) in the jacobian matrix (9f;/9x,) (resp. (9f;/dy;)).

(10.2.3)  If the assumptions of (10.2.1) are verified, and if in addition f is p
times continuously differentiable in a neighborhood of (xy,y,), then u is p
times continuously differentiable in a neighborhood of x,.

We prove by induction on % that # i$ £ times continuously differen-
tiable for 1 <& < p; for £ = 1, this follows from (10.2.1), and moreover
u’(x) = F(x,u4(x)), where F(x,y) = — (Dof(x,y)) " 1o(D,/(%,y)) is p — 1 times
continuously differentiable by (8.12.9), (8.12.11) and (8.12.10). By (8.12.10),
4’ is therefore £ — 1 times continuously differentiable (for Z < p) and that
means that « is % times continuously differentiable by (8.12.5).

(10.2.4) Suppose E,F,G are finite dimensional, and f is analytic in A; then
% 1s analytic tn a neighborhood of x,.

If the field of scalars K is C, the result follows from (10.2.1) and the
characterization of analytic functions as continuously differentiable func-
tions (9.10.1). Suppose now K = R, E = R™, F = G = R"; then there is
an open set B € €**” such that BAR™*" = A and an analytic mapping g
of B into C" which extends f (9.4.5). Identifying D,f and D,g with jacobian
matrices shows that D,g(x,,y,) transforms a basis of R” over R into a basis
of R”, and these bases are also bases of €" over C, hence Dyg(%,,y,) is a
linear homeomorphism of C* onto itself. We therefore can apply (10.2.1)
to g, which shows the existence of an analytic mapping v of a neighborhood
W of x, in € such that g(z,v(z)) = 0 and v(xy) = y,. Moreover it follows
from formula (10.2.1.1) by induction on |v| that all the derivatives D"
at the point x, map R™ into R” (since all derivatives of g at (x,,y,) are equal
to the corresponding derivatives of f); hence, by (9.3.5.1), v maps a neigh-
borhood of %, in R™ into the space R”, and the uniqueness part of (10.2.1)
therefore proves that the restriction of v to W n R is identical to #, q.e.d.

One of the most important applications of (10.2.1) is the following:

(10.2.5) Let EF be two Banach spaces, f a continuously differentiable
mapping of a neighborhood V of xy€ E into F. If f'(x,) is a linear ho-
meomorphism of E onto F, there exists an open neighborhood UcCV of x,
such that the restriction of f to U is a homeomorphism of U onto an open
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neighborhood of vy = f(xg) tn ¥. Furthermore, if f is p times continuously
differentiable in U (resp. analytic in U, E and F being finite dimensional),
the inverse mapping g of f(U) onto U is p times continuously differentiable
(resp. analytic) in f(U).

Apply (10.2.1) to the function h(x,y) = f(x) — ¥, exchanging the
roles of x and y ; as D,k(x,,v,) = f'(%,), We conclude that there is an
open ball W of center y, in F and a continuous mapping g of W into E such
that g(W) € U, f(g(y)) = y in W and g(y,) = %,; furthermore, by (10.2.3)
(resp. (10.2.4)), if f is p times continuously differentiable (resp. analytic),
g is p times continuously differentiable (resp. analytic). From the identity
f(g(y)) = y it follows that g is injective in W, hence is a bijective contin-
uous mapping of W onto V = g(W) c U; moreover, g(W) = f~1(W) is open
in E, and f is a homeomorphism of V = g(W) onto W, which ends the proof.

PROBLEMS

1) Let E,F be two Banach spaces, A an open neighborhood of a point %, € E,
f a continuous mapping of A into F, which is differentiable at x, (but not necessarily
at other points of A). Suppose f'(x,) is a linear homeomorphism of E onto its image
in F; show that there is a neighborhood U € A of x, such that f(x) # f(x,) for every
xe U such that x # #x,. (Observe that the assumption implies the existence of a
constant ¢ > 0 such that ||f'(x) * s|| = ¢||s|| for all s€ E (5.5.1).)

2) Let f = (f.f,) be the mapping of R? into itself defined by fy(%),%;) = #;;
fhitpr) = % — 51 for A< 2y faltpr) = (32 — mxg)]31 for 0< %<}, and
finally fo(#,, — %3) = — fo(#,,%y) for x,>> 0. Show that f is differentiable at every
point of R?; at the point (0,0) Df is the identity mapping of R? onto itself, but Df
is not continuous. Show that in every neighborhood of (0,0), there are pairs of distinct
points #’,x"* such that f(x") = f(x"") (compare to (10.2.5)).

3) Let B be the unit disc |z] < 1 in R?, and let z — f(z) = z + g(z) be a contin-
uous mapping of B into R? such that |g(z)| < |¢| for every z such that |z| = 1. Show
that f(B) is a neighborhood of 0 in R? (“Brouwer’s theorem” for the plane*). (Let y
be the loop ¢ — f(e) defined in [0,2n]; show that j(x;y) = 1 for all points » in a
neighborhood V of 0 (see proof of (9.8.3)); using the fact that, in B, y is homotopic
to 0, deduce that there is no point of V belonging to the complement of (B).)

4) Let E,F be two Banach spaces, B the unit open ball ||#|| < 1in E; let «, be
a continuously differentiable homeomorphism of B onto a neighborhood of 0 in F,

such that u,(0) = 0; suppose g tis continuously differentiable in a ball V,: ||y]| <7

contained in %y(B), and Dy, is bounded in B and Dug ! is bounded in V,. Let V be a
ball ||y|| < 8, with g < r.

* It can be shown that the same result holds in any space R”, B being the euclidian
ball ||#|| < 1, and the condition on g being ||g(#)|| < ||#]] for ||#]| = 1.
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a) Show that for any & < 1, there is a neighborhood H of u, in the space Qg)(B)
(section 8.12, problem 8) such that, for any u € H, the restriction of » to U: ||#}| < «
is a homeomorphism of V onto an open set of F containing V, such that the restric-
tion of #~1 to V is a continuously differentiable mapping @(«) of V into E. (Use
(10.1.1).)

b) Show that the mapping # — @(u) of H into @g)(V) is differentiable at the
point %, and that its derivative at u, is the linear mapping s—— (u(',odi(uo)) ~1e(soD(uy)).

5) Let E,F be two Banach spaces, f a continuously differentiable mapping of a
neighborhood V of %, € E into F. Suppose there are two numbers 8 > 0, A > 0 such
that: 1° [|f(x)|| < B/24; 2° in the ball U: |[|x — x| < B, the oscillation of f is
<< 1/24; 3° for every x € U, f/(x) is a linear homeomorphism of E onto F such that
[|(#'(%)) 71| << A. Let (z,) be an arbitrary sequence of points of U; show that there
exists a sequence (x,),>¢ of points of U such that x, 1=, — (f'(z,)) "1+ f(»,) for
#n > 0. Prove that the sequence (x,) converges to a point y € U, such that y is the
only solution of the equation f(¥) = 0 in U. (“Newton’s method of approximation”.
Use (8.6.2) to prove by induction on # that ||, — #, _1|| < 27~ "B and ||f(x,)|| < /2"+ 14).

6) Let E,F be two finite dimensional vector spaces over K, A a connected open
subset of E, f a continuously differentiable mapping of A X F into F. Suppose that
the set I' of pairs (x,y) € A X F such f(#,5) = 0 is not empty, and that for any
(#,y) € I, Dof(x,y) is an invertible linear mapping of F onto itself.

a) Show that for every point (xy,%,) € I” there is an open neighborhood V of that
point ¢» I" such that the restriction of the projection p7, to V is a homeomorphism
of V onto an open ball of center x, contained in A. (Use the fact that there is an open
ball U of center x, in A and an open ball W of center y, in F such that for each » € U,
the equation f(#,y) = 0 has a unique solution y € W, and apply (10.2.1).)

b) Deduce from a) that every connected component G of I' (3.19) is open in I
and that p7,(G) is open in A. It is not necessarily true that p»,(I') = A (as the example
A=E=F=R, f(x,y) = xy® — 1 shows), nor that if pr,(I") = A, pr,(G) = A for
every connected component G of I" (as theexample A = E = F = R, f(»,9) = x#y2 — y
shows). Prove that if pr,(I') is bounded in F, then p7,(G) = A for every connected
component G of I'. (If %, is a cluster point of p7,(G) in A, show that there is a se-

quence (#,,¥,) of points of G such that lim #, = #, and that lim y, exists in F;
7— n—> 0

apply then a).)

¢) The notions of path, loop, homotopy and loop homotopy in A are defined as in
section 9.6, replacing C by E. Suppose there is a connected component G of I' such
that p7,(G) = A; if y is a path in A, defined in I = [4,b] C R, show that there exists
a continuous mapping u of I into G such that p» (#()) = y(f) for each ¢ € I (consider
the Lu.b. ¢ in I of the points £ such that there exists a continuous mapping ug of
[a,§] into G such that pr,(ug(f)) = p(¢) for a << ¢ <C & and use a)). Is that mapping
always unique? (Consider the case E=F =C, A =C — {0}, f(x9) = ¥* — x.)
Show that if two continuous mappings u,v of I into G are such that pr,(u(?)) =
pri(v(t)) = y(t) for each 7€ 1, and if they are equal for one value of €I, then # = v
(use a similar method).

d) Under the same assumptions as in c), let ¢ be a continuous mapping of I X ]
into A, where J = [¢,d]CR. Let v be a continuous mapping of J into G such that
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pri(v(8)) = @(a,§) for £€ J; and for each £€ J, let ug be the unique continuous
mapping of I into G such that pr (ug(t)) = @(t,§) for €1 and wug(a) = v(§). Show
that the mapping (£,€) — u(f) is continuous in I X J. (Given { € ], there is a number
r > 0 such that for any ¢ € I, the intersection V; of I" and of the closed ball in E X F,
of center u#;(f) and radius 7, is contained in G and such that pr, is a homeomorphism
of V; onto the closed ball in E of center p(f) and radius ». If L = us(I), let M be
the supremum of ||(Dgf(#,¥))1o(D\f(#,9))|| for all points (#,y) € G at a distance
<7 of L. Let & > 0 be such that ¢ < 7/4 and ¢éM < r/4. Show that if § is such that
the relation |& — | < & implies ||p(t.8) — @(t.0)]| << ¢ for te I, then the relation
|& — | < 6 implies ||ug(t) — u(t)|| << 7/4 for tel; prove this by considering the
Lu.b. of the ¢ € I for which the inequality holds, and using (10.2.1).)

e) Conclude from d) that if the loop y defined in I = [a,b] is loop homotopic to
a point in A, then any continuous mapping % of I into G such that pr,(«(f)) = p(?)
for ¢t eI is such that u(b) = u(a). In particular, if A is simply connected (i.e. if any
loop in A is homotopic to a point in A), then pr, is a homeomorphism of G onto A,
i.e. there exists a unique continuously differentiable mapping g of A into F such that
f(x,g(x)) = 0 in A and that (x,g(x)) belongs to G for at least one x € A.

7) With the notations of problem 6, show that the condition p7,(G) = A is
satisfied for every connected component G of I" in each of the following cases:

1° f(x,9) = f,(y) — f4(#,y), and there exist numbers R > 0, 2> 0, £ > 0 and a
positive continuous function » — H(x) in A such that for ||y|| = R, ||}l = lw||*
and ||fo(%.%)|| < H(#)|[y|[* ~ %

2° F = €, E is a vector space over C, f(x,9) = ¢¥ — g(»), where g is analytic in A
and g(x) # 0 in A (this last condition already insures that p7,(I") = A; observe that
f(%,y) = f(x,y") implies that 3’ — y is a multiple of 27i, hence for any r€A
there is an open ball U of center » contained in A such that for any connected
component V of pry 1(U) n I, pr, is a homeomorphism of V onto U; if x is a cluster
point of pr,(G), G must have a common point with one of these components V, hence
contains V).

8) a) If f is a complex valued entire function in €?, such that f(») % 0 for every
x € P, show that there exists a complex valued entire function g in €? such that
f(x) = e8®) (use problem 7).

b) Let f be an arbitrary complex valued entire function in €, which is not iden-
tically 0; there is a finite or infinite sequence (a,) (with » >> 1) of complex numbers
(which may be empty) such that |a,| < |2, 41|, f(@,) = 0 and for every ¢ & € such
that f(c) = 0, the number of indices » for which a, = ¢ is equal to the order w(c;f);

when the sequence (a,) is infinite, lim |a,| = + o (9.1.5). Show (with the nota-
n—r

tions of section 9.12, problem 1) that there exists an entire function g such that

f(z) = 8% f; E(i,n - 1),

n=1 an
9) Let A and B be two open neighborhoods of 0 in E = C?, A being connected;
let (»,y) — U(»,y) be an analytic mapping of A X B into Z(E;E) (identified to the
space of p X p matrices with complex elements).
a) Suppose there exists a sequence (u,) of analytic mappings of A info B such
that ug(#) = 0in A and u,(x) = U(#,4, —1(#))+ # in A for » > 1. Suppose in addition
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that for every compact subset L of A, the restrictions of the u, to L form a relatively
compact subset of %E(L). Prove that the sequence (uy) converges uniformly in any
compact subset of A to an analytic mapping v of A into B such that v(x) = U (%0(%) -»
in A; furthermore, v is the unique mapping satisfying that equation (use (10.2.1)
and (9.13.2)).

b) Suppose that in E, A and B are the open balls of center 0 and radii 4 and b.
Let @ be a continuous mapping of [0,a[ X [0,b] into R such that 7 —@&n) is
increasing in [0,b[ for every &€ [0,2[ and suppose that ||U(,9)|| << @(||#]}.|[¥]]) in
A X B. Suppose in addition that there exists a continuous mapping 8 of [0,4] into
[0,6[ such that 6(&) = @(£,0(£))& in [0,a[. Prove that under these conditions there
is a unique analytic mapping v of A into B such that v(x) = U(x,0(%))* # in A, and
that ||v(#)|| << 6(||#])) in A (use a); prove the existence of the mappings u, by induc-
tion on ).

¢) Suppose A and B are defined as in b); let gi(n) be the Lu.b. of ||U(x,3)|]
for ||#]] < a, ||y|]| < #, when 5 > 0, and take )(0) = (0 +). Suppose that i(0) > 0
and that the function  — 17/¢(1)) is increasing in some interval [0,y[, where y <C b,
and y/h(y—) << a. Then there is a unique analytic mapping v of the open ball P of
center 0 and radius y/¢(y—) into B, such that v(x) = U(x,v(x))+ % in P.

10) Let f,g be two complex valued analytic functions defined in a neighborhood
of the closed polycylinder P c €2 of center (0,0) and radii a,b. Let M (resp. N) be the
Lu.b. of |f(x,y)| (resp. |g(#,y)|) for |#| = a and [y| < b (resp. for |#| < a and |y| = b).
Then, there exist two uniquely determined functions u(s,?), v(s,?), analytic for |s| < a/M
and |¢| < b/N, such that (u(s,t),v(s,?)) € P for (s,f) in the polycylinder Q defined by the
- previous inequalities, and that

u(s,t) — sf(u(s,),v(s,t)) = 0 and v(s,?) — 1g(u(s,t),v(s,)) = 0

in Q. Furthermore, let

or of
1—s— — s
ox dy
A(x,y,8,8) =
_ %k %
ox y

and let i(x,y,5,t) be an arbitrary analytic function in P x Q; show that

h(u(s,t),v(s,2),s,2)
_— = [
Au(s,t)v(s2),58)  mzo0n=0

for (s,) € Q, where ¢y, is the value for ¥ = y = 0 of the function

1 omtn

m W [h(x’y»s!t)(f(x’y))m (g(x’y))”]

and the series on the right-hand side is convergent in Q; note that Cmn depends on s
and ¢ if h does. (“Lagrange’s inversion formula”. First apply Rouché’s theorem
(9.17.3) to x — sf(#,y), considered as a function of x; this defines an analytic func-
tion w(s,y) such that w(s,y) — sf(w(s,y),y) = 0, by (10.2.4); next apply similarly
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Rouché’s theorem to y — fg(w(s,y),y) considered as a function of y. Finally, let y,8
be the circuits § — ae'®, § — bei® in € (0 << 6 <C 27). Consider the repeated integral

h(x,y,s,t)dx
d .
IO e — e

On one hand, find the value of that integral by repeated application of the theorem
of residues (9.16.1); and on the other hand, consider the power series development
of (1 — &§~1 — %)~ ! in which £ is replaced by sf(x,y)/x and 5 by fg(x,¥)/y.)

Generalize to any number of complex variables. From the inversion formula for
one variable, deduce the formula

h(u(s)) = R(0) + 21 ;—' D* = 1(&(0)(£(0))")

where u(s) — sf(u(s)) = 0 and |[s] < a/M, with M = sup |f(#)|, & being analytic
|z]<a
for |x| < a.

3. The rank theorem

Let E,F be two finite dimensional vector spaces of dimensions # and m,
A an open subset of E, f a continuously differentiable mapping of A into F.
The rank of the linear mapping f'(x) at a point x € A is the largest number p
such that there is at least a minor of order $ in the matrix of f'(x) with
respect to two bases of E and F, which is not 0. As these minors are contin-
uous functions of x, it follows that if the rank of f'(x,) is p, there is a neigh-
borhood of x; in which the rank of f(x) is at least $; but it can be > p
at every point x # x, of that neighborhood, as the example of the mapping
(x,9) — (x% — y%xy) shows at the point (0,0).

(10.3.1) (Rank theorem). Let E be an n-dimensional space, F an m-dimen-
stonal space, A an open neighborhood of a point a € E, | a continuously
differentiable mapping (resp. q times continuously differentiable mapping,
analytic mapping) of A into ¥, such that in A the rank of {'(x) is a constant
number p. Then there exists:

1° an open neighborhood U C A of a, and a homeomorphism u of U onto
the unit ball 1" : |x;| < 1 (1 < i << n) in K*, which is continuously differen-
tiable (resp. q times continuously differentiable, analytic) as well as its inverse;

2° an open neighborhood V 2 f(U) of b = f(a) and a homeomorphism v of
the unit ball I™: |y <1 (1 < ¢ << m) of K™ onto V, which is continuously
differentiable (resp. g times continuously differentiable, analytic) as well as
its inverse,
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—such that | = vofjou, where f, is the mapping

(%, 2 %,) = (%, - +,%,,0,...,0)
of I" wnto 1™,

We write the proof for continuously differentiable mappings, the
modifications in the other cases being obvious.

We can suppose a =0, =0, replacing f by the mapping x —f(a + x) — b.
Let M be the kernel of the linear mapping f'(0), which is an (n — p)-
dimensional subspace of E, and let N be a (p-dimensional) supplement of
Min E; we take as a basis of E a system (¢); .;<, of # vectors such
that ¢;,...,c, form a basis of N, ¢, ,;,...,c, a basis of M, and we write

¥ = X @ix)c; for any x€E, the ¢, being linear forms. If ¢,,...., is
i=1

the canonical basis of K", we denote by x — G(x) the linear mapping

x - X @ix)e; of E onto the subspace K" ~? of K generated by the e,

i=p+1
of index 7 > p.
Let P be the image of E (and of N) by the linear mapping f'(0); it is a
p-dimensional subspace of F, having the elements d; = f/(0) - ¢; (1 <7 < p)
as a basis; we take a basis (4);;<,, of F, of which the preceding basis

of P form the first p elements, and we write y = X ;(y)d; for any y € F,
i=1
the ¢; being linear forms. We denote by y — H(y) the linear mapping

L4
y — 2 ;(y)e; of F onto the subspace K? of K” generated by the ¢; of

i=1
index 7 < .

We now consider the mapping x - g(x) = H(f(x)) + G(x) of A into K*,
which is continuously differentiable. Moreover, by (8.1.3) and (8.2.1), we
have g'(x)-s = H(f'(x) - s) + G(s) for any se E, hence g'(0):c,=¢,; for
1 <7< n (ie. g'(0) is represented by the unit matrix with respect to the
bases (c;) and (¢;)). Using (10.2.5), we conclude that there is an open neigh-
borhood U, € A of 0 such that the restriction of g to Uy is a homeomorphism
of U, onto an open neighborhood of 0 in K", and that the inverse homeo-
morphism g-1 is continuously differentiable in g(U;). Let » > 0 be such
that the ball |x,| <7 (1 <4 < n) is contained in g(U,), and let U be the
inverse image of that ball by g, which is an open neighborhood of 0; our

1
mapping # will be the restriction to U of the mapping » — 7g(x).
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Up to now we have not used the assumption that the rank of f'(x) is
constant in A ; this implies that the image P, of E by f'(x) has dimension p
for any x € A. Now we may suppose U, has been taken small enough
so that g’(x) is a linear bijection of E onto K” for x € Uj (8.3.2); as we have
g'(x)-s = H(f'(x)-s) for seN, the restriction of f(x) to N must be a
bijection of that p-dimensional space onto P,, and the restriction of H to
P, a bijection of P, onto K?. Denote by L, the bijection of K? onto P,,
inverse of the preceding mapping; we can thus write f/(x) = L oHof'(x).

‘Now consider K" as the product E; x E, with E; = K?, E, = K"~ 7;
we are going to prove that the mapping (z;,2,) — f1(21,2s) = f(#™1(2y,2,)) of
I* into F does not depend on z,, i.e. that Dyf,(2,2,) = 0 in I" (8.6.1). By

definition, we can write f(x) = f; (—i— H(f(x)), % G(x)), hence by (8.9.2)

()t = Dify (} H(f(x), + G(x)) (%)

+ Dy (l H(f(), %G(x)) Gl

for any t € E. This yields
(103.4.1) Dy, (} H(f(x), }G(x)) Glt) = S, H(f' (%) 1)

where S, = 7L, — D,f; (%H(f(x)), %G(x)) is a linear mapping of K = E,

into F. We prove that S, = 0 for any x € U,. Indeed, if £€ N, we have
G(t) = 0 by definition, hence S,- H(f'(x)-#) =0 by (10.3.1.1). Baut
t—H(f'(x) - £) = g'(x) - t is a bijection of N onto E, for xeU,, and this proves

S,=0. From (10.3.1.1) we then deduce D,f; (%H(f(x)), %G(x)) - G(¢) = 0 for

" 1 1
any t€ E; but G maps E onto E,, hence by definition, Dyf; (7 H(f(x)), 76(9&)) )
which is a linear mapping of E, into F, is 0 for any x € U,. The relation

D,f,(21,25) =0 in I" then follows from the fact that x»(% H(f(x)), %G(x))

is a homeomorphism of U, onto an open set containing I”.
We can now write f,(z,) instead of fy(z,2,) and consider f; as a
continuously differentiable mapping of E, = K? into F; we then have
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Kx)=f (% H(f(x))) for x € U, in other words y = f, (—:—H(y)) for yef(U).

This proves that y —>—:—H(y) is a homeomorphism of f(U) onto I?cE,,

and z, — f,(2,) the inverse homeomorphism.

Consider now K™ as the product E, x E; with E; = K®~?, Let T
be the linear bijection of E, onto the supplement Q of P in F generated by
dy, 4.4, which maps the canonical basis of K™~ ? onto Ayirre e sy
We define v(z;,25) = f1(z;) + T(z5) for z;€?, z,€I™~?; it is obviously
(8.9.1) a continuously differentiable mapping. By definition, we have
H(v(zy,23)) = H(f,(z)) = rz;; hence the relation v(z,25) = v(z,2;) implies
z; = z;, and then boils down to T(z3) = T(z;), which yields z; = z,;
therefore v is énjective. The relation S, = 0 proved above shows that for any
z €12, fi(z;) = rL, where x is any point in U such that f(x) = f,(z); the
derivative of v at (z,2;) is therefore the linear mapping (¢,,t5) >7L, - &, + T'(t5)
((8.9.1) and (8.1.3)). But as the restriction of H to P, is injective, P, is a
supplement of Q in F, hence v'(2,,2;) is a linear homeomorphism of K™ onto F.
For any point (z,z,) € I, there is therefore an open neighborhood W of
that point in I” such that the restriction of v to W is a homeomorphism
of W onto an open subset v(W) of F, by (10.2.5). Asin addition v is injective,
it is a homeomorphism of I” onto the open subset V = »(I™), whose inverse
is continuously differentiable in V. The relation f = vofjou then follows from
the definitions.

PROBLEMS

1) Let E,F be two Banach spaces, A an open neighborhood of a point %, €E,
f a continuously differentiable mapping of A into F.

a) Suppose f'(x,) is a linear homeomorphism of E onto its image in F; show that
there exists a neighborhood U c A of x, such that f is a homeomorphism of U onto
f(U) (use problem 3 of section 10.1).

b) Suppose f/(x,) is surjective and such that there exists an a > 0 having the
property that ||f'(x,) - s|| = a|ls|| for any s€ E *. Show that there exists a neigh-
borhood V € A of x, such that f(V) is a neighborhood of f(#,) in F (use problem 8 of
section 10.1).

2) Let A be an open subset of C?, and f an analytic mapping of A into €?. Show
that if f is injective, then the rank of Df(x) is equal to p for every ¥ € A. (Use contradic-
tion, and induction on p; for p = 1, apply Rouché’s theorem (9.17.3). Assume Df(a)
has a rank < p for some a € A; show first that after performing a linear transforma-

* It can be shown that this last property is a consequence of the fact that f'(#,)
is continuous and surjective; see [6] in the Bibliography.
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tion in F, one may assume that, if f(z) = (/;(2),....fp(?)) then D.f,(a) = 0, and if
g(2) = (fa(2).. . ..1p(2)), the rank of Dg(a) is exactly p — 1; then there is a neigh-
borhood U € A of a such that Dg(x) has rank p — 1 for # € U. Using the rank theorem
(10.3.1), reduce the proof to the case in which a = 0, fg(z) = 2 for 2< A< p.) Is
the result still true when C is replaced by R?

3) a) Let A be a simply connected open subset of C, distinct from C, and let a,b
be two distinct points of Fr(A) (Ap. to Chap. IX, problem 6.) There exists a
complex-valued analytic function 4 in A such that (h(z))* = (¢ — a)/(z — b) (section
10.2, problem 7); % is an analytic homeomorphism of A onto a simply connected
open subset B of ¢ (problem 2 and (10.3.1)); furthermore, BN (— B) = @, hence
there are points of C exterior to B.

b) Deduce from a) that there exists an analytic homeomorphism of A onto a simply
connected open subset of C contained in the disc U: || < 1, and containing 0.

4) a) Let A be a simply connected open subset of € contained in the unit disc U:
|2| < 1, containing 0, and let H be the set of all complex valued analytic functions g in
A, such that g is an injective mapping of A into C, |g(z)] < 1 in A, g(0) = O and g’(0) is
a real number > 0. For each compact subset L of A, the set Hj of the restrictions to
L of the functions of H is relatively compact in €¢(L) (9.13.2). Show that the set of
real numbers g’(0) (for g € H) is bounded (cf. proof of (9.13.1)); let A be the lu.b. of
that set. Show that there is a function g, € H such that g:,(O) = A (use the result
of section 9.17, problem 5).

b) Suppose g € H is such that g(A) 7 U, and let ¢ € U — g(A). Replacing g by g,
defined by g,(z) = e~*%(z¢'%), one can assume, for a suitable choice of 6, that ¢ is
real and > 0. There exists a function % which is analytic in A and such that

(B(2)* = (c — £(2))/(1 — cg(2))

and %(0) = Vc—> 0 (same argument as in problem 3 a)); show that the function g,
defined by

1z = (o — g1 — Jegal)

belongs to H, and that g:(0) > ¢’(0).

c) Conclude from a) and b) that the function g, defined in a) is an analytic
homeomorphism of A onto U; using problem 3 b), this implies that for any simply
connected open subset D of €, distinct from C, there is an analytic homeomorphism
of D onto U (‘‘the conformal mapping theorem”’).

5) a) Let f be a complex valued analytic function in the unit disc U: [z] < 1 such
that f(0) = 1 and |f(2)] < M in U; show that for |z| << /M, |f(z) — 1| << Mz (apply
Schwarz’s lemma, (section 9.5, problem 7) to the function g(z) = M(f(z) — 1)/(M2 — f(2))).

b) Let f be a complex valued analytic function in U such that f(0) = 0, f’(0) = 1,
|7(z)] < M in U; show that for |z| << 1/M, |f(2) — 2| << M[z|?/2 (apply a) to [').

c) Show that under the assumptions of b), the restriction of f to the disc B(0;1/M)
is an analytic homeomorphism of that disc onto an open subset containing the disc
B(0;1/2M) (apply Rouché’s theorem (9.17.3), using the result of b)).

d) For any complex number ae€ U, let wu(z) = (2 — a)/(dz — 1); for any
complex valued function f analytic in U, show that, if g(z) = f(u(z)), then
lg/ (2|1 — |2]?) = |'(4())|(1 — |u(2)}®) for any ze U.
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e) Show that there is a real number b > 1/3]/3—(“Bloch’s constant”’) having the
following property: for any complex valued function f analytic in U and such that
#(0) = 1, there exists z,€ U such that, if x, = f(z,), the open disc B of center x,
and radius b is contained in f(U) and there is a function g, analytic in B and such
that g(B) € U and f(g(z)) = z for z € B. (Consider first the case in which f is analytic
in a neighborhood of U, and take for z, a point where [f'(z)|[(1 — |#|2) reaches its
maximum; use then d) to reduce the problem to the case in which z, = 0, and apply
in that case the result of ¢) to a function of the form a 4 f(Rz), where a and R are
suitable complex numbers. In the general case consider the function f((1 — ¢)z)/(1 — &),
where ¢ > 0 is arbitrarily small.)

6) a) Let I be the set of all complex valued functions f analytic in the unit disc U:
|z2] < 1, such that f(U) does not contain the points 0 and 1. For any function f € 9,
there is a unique analytic function g in U such that exp (2mig(z)) = f(z) in U and
[#£(g(0))| < 7 (section 10.2, problem 7); g(U) does not contain any positive or negative
integer. Furthermore (same reference) there is an analytic function % in U such that
g(2)/(g(z) — 1) = ({1 + R(2))/(X — k(2)))?; R(U) does not contain any of the points 0,1,
t,: =(]/;+ l/rT—_fF and c;, = (V;— VrT— 1)2 (z integer > 1). Finally, there
is an analytic function ¢ in U such that exp (¢(z)) = &(z); @(U) does not contain any
of the points log c; + 2kmi, log c;,l + 2kni (k positive or negative integer, n > 1).
Show that no disc of radius > 4 can be contained in @(U); using problem 5 e), deduce
from that result that

lo" ()| < 4/6(1 — |#])

for |#| <1 (consider the function ¢—ce(¥ + (1 — |#])#), for a suitably chosen
constant ¢). Conclude that there is a function F(u,v), finite and continuous in
(C — {0,1}) x [0,1[, such that for every function /e IR, log |/(z)| < F(f(0),7) for any
o <7 < 1.

b) Let f e M be such that either [f(0)| < 1/2 or |[f(0) — 1| < 1/2. Given # such that
0 << 7 < 1, show that either |f(z)| <C 5/2 for |z| <C #, or there exists a point # such that
|#| < » and |f(x)] = 1/2, |f(*) — 1| > 1/2 and |1/f(x)| = 1/2. Applying the result
of a) to the function f((z — ¥)/(¥z — 1)), conclude that there is a function F,(u,0),
continuous and finite in [0,+ oof X [0,1[, such that for any function fe IR, the
relations |f(0)| < s and |z| <C 7 imply |f(z)] << Fy(s,#) (“‘Schottky’s theorem”).

7) Let A be an open connected subset of C, and (f,) a sequence of functions of the
set M (problem 6). Show that for any compact subset L of A, there exists a sub-
sequence (/,,k) such that either that subsequence is uniformly convergent in L, or

the sequence (1 /)‘nk) converges uniformly to 0 in L. (Using Schottky’s theorem, prove
that the points »# € A such that lim (1/f,(x)) = 0 form an open and closed subset

n—r o
of A, hence equal to A or empty; in the second case, show, using the compactness
of L, that there is a subsequence of (f,) which is bounded in a compact neighborhood
of L, and apply (9.13.1); in the first case, use similarly (9.13.1) applied to the se-
quence (1/f,).)
8) a) Let f be a complex-valued function, analytic in the openset V: 0 < |z — a| <7,
and suppose a is an essential singularity of f (9.15). Show that € — f(V) is empty
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or reduced to a single point (‘‘Picard’s theorem”. Let W be the open subset of V
defined by 7/2 < |z — a] < » and consider in W the family of analytic functions
falz) = f(z/2"%); if there are at least two distinct points in € — f(V), apply problem 7
to the sequence (f,), and derive a contradiction with problem 2 of section (9.15),
using (9.15.2).)

b) Deduce from a) that if g is an entire function in €, which is not a constant,
then € — g(C) is empty or reduced to a single point (consider g(1/2) in € — {0}).

9) a) Show that there is an entire function f(#,9) in € satisfying the identity

f(ax,4y) — 4 (x,y) = — B6(f(2x, — 29))® + 2(/(2%, — 2y))°

and such that the terms of degree <C 1 in the Taylor development of f at the point
(0,0) are » + y (section 10.1, problem 11).

af.
b) Let g(s.9) = (25, 29), and et J(5.) = 5.1 show that J (22, —25) = (5,
%,y
and conclude that J(x,y) = — 4 in C? (express f(x,y) and g(x,y) in terms of f(2x,—2y)

and g(2x,—2y)). Prove that the analytic mapping u: (#,9) — (f(x,9),8(x,y)) of C?
into itself is injective (if it was not, it would not be injective in a neighborhood of (0,0),
owing to the preceding expressions).

c¢) Show that there is a neighborhood of (1,1) which is not contained in %(C?). (Ob-
serve that there exists ¢ such that 0< e < 1 and that the relations |f(2%,—2y) — 1|<e,
lg(2x,—2y) — 1| << e imply |f(x,y) — 1{<<e and lg(x,¥) — 1| < &; conclude that
the relations |f(#y) — 1|<<e and [g(x,y) — 1| << & would imply |7(0,0) — 1| < e
and [g(0,0) — 1| < ¢, a contradiction) (compare to problem 8 b).)

4. Differential equations

Let E be a Banach space, I an open set in the field K, H an open subset
of E, f a continuously differentiable mapping of I x H into E. A differen-
tiable mapping # of an open ball JcI into H is called a solution of the
differential equation

(10.4.1) x = [(t,%)
if, for any ¢ € J, we have
(10.4.2) u'(t) = f(¢,u(t).

It follows at once from (10.4.2) that u is then continuously differentiable
in J (hence analytic if K = C, by (9.10.1)).

(10.4.3) In order that, in the ball J C 1 of center ty, the mapping u of J into
H be a solution of (10.4.1) such that w(ty) = %, € H, it is necessary and
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sufficient that u be continuous (resp. analytic) in J if K = R {resp. K = ©),
and such that

(10.4.4) ult) = x5 + ff(s,u(s))ds

(where, if K = C, the integral is taken along the linear path & —ty+ &(t—1t,),
0<E<).

This follows from the definition of a primitive, for if f and # are
analytic, so is s — f(s,u(s)) (9.3.2).

(10.4.5) (Cauchy’s existence theorem). If f is continuously differentiable
i 1 X H, for any tye 1 and any x, € H there exists an open ball Jc1 of
center by such that there is in J one and only one solution u of (10.4.1) such
that u(ty) = x,.

We first prove a lemma:

(10.4.5.1) Let A be a compact metric space, F a metric space, B a compact
subset of F, g a continuous mapping of A X F into a metric space E. Then
there is a neighborhood V of B in F such that g(A X V) is bounded in E.

For any /€ A and any z € B, there is a ball S,, of center /in A and a
ball U,, of center z in F such that g(S,, x U,,) is bounded, since g is
continuous. For any z € B, cover A by a finite number of balls S e and
let V, be the ball U, . of smallest radius. Then g(A X V,) is bounded (3.4.4).
Cover now B by finitely many balls V,j; the union V of the V’i satisfies
the requirements (3.4.4).

a) Suppose first K =R. Let J, be a compact ball of center %, and radius a,
contained in I. By (10.4,5.1) there is an open ball B of center ¥, and

radius b, contained in H, and such that M= sup ||f(t%)|| and
(t,x)ejaxB

k= sup ||D,f(t,x)|| are finite. Let J, for r < a be the closed ball
&) eja X B

of center £, and radius 7, and let F, be the space of continuous mappings
y of ], into E, which is a Banach space for the norm ||y|| = sup ||y(f)]|
te],

(7.2.1). Let V, be the open ball in F,, having center x, (identified to
the constant mapping ¢ — x,) and radius . For any y € V,, the mapping

t
t — x5 + [ f(s,y(s))ds is defined and continuous in J,, since y(s)e B by

t
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definition, for y € V,; let g(y) be that mapping; g is thus a mapping of Vr
into F,. We will prove that for 7 small enough, g verifies the conditions of
(10.1.2); applying that theorem and (10.4.3) will then end the proof,
with J = J,.

Now, for any two points y;,y, in V,, we have, by (8.5.4)

1/(5,71(8) — H(s.v2(N|| < &+ |I3a(s) — v < B ly1 — 92l

for any s € J,; therefore, by (8.7.7), for any t€ J,,

”.[ (5,91(5)) — f(s,¥2(s Nds|| < k"“)’l—yzH

hence ||g(y1) — €(¥2)|] < #7||y; — ¥.||- On the other hand, for any y € V,,
||f(s.¥(s))|| < M for any s € J,, hence ]|_ffsy ))ds|| < Mr by (8.7.7) and

therefore ||g(%) — %o|/| < Mr. We thus see that in order to be able to apply
(10.1.2), we should have kr < 1 and Mr < (1 — k7), and both inequalities
will be satisfied as soon as r < b/(M 4 kb).

b) Suppose now K = C; define J,, J,, B, M and % as above, and let F, be
the space of mappings y of J, into E which are continuous in J, and analytic

in J This is again a Banach space for the norm ||y}| = sup |[y(®)|],

te],

by (7.2.1) and (9.12.1). For y€V,, the mapping ¢ — %, +_[f(s,y(s))ds

again belongs to F,, for it is analytic in J, since s — f(s,y(s)) is (9.7.3);
and its continuity in J, at once follows from (8.11.1). We therefore have
defined a mapping g of V, into F,, and the end of the proof is then
unchanged.

(10.4.6) Remark. The proof of (10.4.5) shows that the result is still valid
when K = R and when f satisfies the following weaker hypotheses: a) for
every continuous mapping ¢ — w(¢) of I into H, ¢ — f(t,w(t)) is a regulated
function in I (7.6); b) for any point (£,%) € I X H, there is a ball J of
center ¢ in I and a ball B of center x in H such that f is bounded in J X B,
and there exists a constant £ >0 (depending on J and B) such that
f(s,31) — H(s,99)]| < B|[y1 — ¥a|| for s € J, y1,, in B. Such a function f
is said to be locally lipschitzian in I x H; equation (10.4.2) is then to be
understood as holding only in the complement of an at most denumerable
subset of J. This last remark also enables one to replace the open intervals
I and J by any kind of interval in R.
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5. Comparison of solutions of differential equations

We say that a differentiable mapping # of an open ball Jc1I into H
is an approximate solution of (10.4.1) with approximation ¢ if we have

[l () — few(®)]| <e
for any te J.
(10.5.1)  Suppose [IDof(t,%)|| <k in I x H. If up are two approximate

solutions of (10.4.1) in an open ball J of center by, with approximations e,,é,,
then, for any t € J, we have

rlt—tl _ 1

(10.5.1.1)  |[u(®) — v(t)|| < ||u(ty) — V(o) || 1t~ 5l - (&) + &) 7

(For £ = 0, (¢*#=% — 1)/k s to be replaced by |t — t,|). We immediately are
reduced to the case K =R, f{,=10 and £>0 by putting ¢ = ¢, + a¢,
[a] =1, £>0; then if (&) = u(ty + aé), v,(&) = vty + a&), u, and v,

1 .
are approximate solutions of x’ = af (to + aé&, " x) , whence our assertion.

From the relation |ju/(s) — f(s,u(s))|| < & in the interval 0 <s <, we
deduce by (8.7.7)

t
[|ee(t) — w(0) —J/(s,u(s))ds“ <egt

and similarly
t

() — v(0) —Jf(s,v(s))ds“ < gyt

whence [|u(t) — v(#)|| < |[#(0) — »(0)|| + HJ (F(s,u(s)) — f(s,0(s))) ds||+ (&, +&)t.
From the assumption on D,/ and from (8.5.4) and (8.7.7) this yields

(10.5.1.2) w(t) < w(0) + (&, + &)t + kfw(s)ds
0

where w(#) = ||u(f) — v(#)||. Theorem (10.5.1) is then a consequence of the
following lemma:

(10.5.1.3)  If, in an interval [0,c], @ and s are two regulated functions > 0,
then for any regulated function w >0 in [0,c] satisfying the inequality
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(10.5.1.4) w(t) < (t) + [(s)w(s)ds

we have in [0,c]

(105.1.5) w(t) < glt) + [ @(s)h(s) exp ([ (&)dg)ds
0 s
Write y(f) j(/: ds; y is continuous, and from (10.5.1.4) it follows

that, in the complement of a denumerable subset of [0,c], we have

(10.5.1.6) y'(8) — (0 y(t) < p(t)(?)

t

by (8.7). Write z(¢) = y(¢) exp (— [(s)ds); relation (10.5.1.6) is equiv-
0

alent to

t

2(t) < @(O)p(t) exp (— [h(s)ds).

0
By (8.5.3) and using the fact that z(0) = 0, we get, for £ € [0,c]

t

< [ @(s)g(s) exp (— I P(€)dé)ds

0 0
whence by definition

t

1) < [ @ls)d(s) exp ([ h(€)d&)ds

0

and (10.5.1.5) now follows from the relation w(f) << @(f) + ¥(f).

(10.5.2) Suppose f is continuously differentiable in 1 X H. If u,v are two
solutions of (10.4.1), defined in an open ball ] of center ty, and such that
u(ty) = v(ty), then u=v in J.

It is enough to prove that # and v coincide in every compact ball L of
center #, contained in J. This follows from (10.5.1) applied to # and v,
provided we know that D,f is bounded in some set L x H’, where H' is an
open subset of H containing both #(L) and »(L). But the existence of such
a set follows at once from (10.4.5.1).
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(10.5.3) Suppose E is finite dimensional and f is analytic in I X H. Then
any solution of (10.4.1) in an open ball J €1 is analytic,

This is immediate by definition if K = €. Suppose K = R, and let
E = R"; then for any point (%) € I X H there is a ball L, € C of center
tp and a ball P € C” of center x,such that Lyn RcIand PN R”c H, and an
analytic mapping g of L, X P into €™ whose restriction to (L,nR) X (PNR™)
coincides with f (9.4.5). There is by (10.4.5) an open ball L ¢ L, of center
%o in C such that there exists a unique solution v of the differential equation
z’ = g(t,2), taking the value x; at the point 4, and v is analytic in L. Using
the relation v'(¢) = g(¢,0(t)), and the definition of ¢ and v, it is immediately
verified by induction on # that all derivatives v™(¢) belong to R”; hence
(9.3.5.1) v(¢) belongs to R™ for £ L n R. This proves that the restriction
# of v to L N Ris a solution of (10.4.1) (see (8.4), Remark), such that u(fy) = x,.
But by (10.5.2), any solution w of (10.4.1) in a ball M of center ¢, such
that w({) = x, coincides with # in L N M, hence is analytic at the
point £, q.e.d.

(10.5.4) Remark. When K = R, the proof of (10.5.1) shows that the
inequality (10.5.1.1) is still valid when f is lipschitzian in I x H for a
constant £ > 0, i.e. such that condition a) of (10.4.6) is satisfied and that
[|f(t,%)) — H(t.%5)]] < k- ||%, — x,|| for any t€I, x,,x, in H; J can then
be taken as an interval of origin (or extremity) #, containing f#,,
# and v are primitives of regulated functions in J, and the relations
||’ () — ftu®)|] < e, |[v'(f) — Htv()]| < & are only supposed to hold
in the complement of an at most denumerable subset of J. The uniqueness
result (10.5.2) holds likewise (when K = R) under the only assumption
that fis Jocally lipschitzian (10.4.6) in I x H.

(10.5.5) Let f be analytic in I x H ¢f K = C, locally lipschitzian in 1 x H
tf K=R. Suppose v is a solution of (10.4.1) defined in an open ball J:
[t — t| < 7, such that J 1, that v(]J) C H, and that t — f(t,v(t)) is bounded
wn J. Then there exists a ball J': |t — to| < 7' contained in 1, with v' > 7,
and a solution of (10.4.1) defined in J' and coinciding with v in J.

a) K =R. By assumption, we have ||f(£,v(t))|| <M for t€ ], hence
[|['(#)|] <M in the complement of an at most denumerable subset of J.
This implies |jv(s) — v(#)|| < M|s — ¢| for s,¢in J by the mean value theorem
(8.5.2). From the Cauchy convergence criterion (3.14.6) we conclude that

the limits v((fy — #)+) and v((¢, + 7)—) exist and belong to »(J) € H. By
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(10.4.6), there exists a solution w; (resp. w,) of ¥' = f(¢,x) defined in an
open ball U, (resp. U,) of center {;, 4 7 (resp. #, — 7), contained in ], and
taking the value v((f, 4+ 7)—) (resp. v(({, — 7)+)) at this point; from
(10.5.2) it follows in addition that w, (resp. w,) coincides with v in U, n J
(resp. Uy N J), and the proof is therefore concluded in that case.

b) K = C. For any complex number { such that || = 1, put ¢ = ¢, + (s,
with s > 0, and v,(s) = v(¢, + {s). Then the same argument as in a) proves
that v,(r—) exists and is in H; hence there exists a solution w, of x’ = f(¢,x)
defined in an open ball V, of center #, 4 {7, contained in J, such that
we(ty + Cr) = v, (r—). From (10.5.2) it follows that w, and v coincide in
the intersection of J NV, with the segment of extremities ¢, and #, + {7;
as these functions are analytic in J NV, they coincide in J NV, by (9.4.4).
Now cover the compact set |t — #)|= 7 with finitely many balls fo
A<em); if Vc,- n V‘i # @, the functions w, and W, coincide in VC; n V"i’
for both coincide with v in the non-empty open set J n VC;‘ n Vgl_, and we

have only to apply (9.4.2) (to show that the preceding intersection is not
empty, remark that the assumption implies 7|{; — ;| < p; + pj» where
pi,p; are the radii of V,, and V‘i; hence there is 2€]0,1[ such that
Al — Gl < pi and 71— Q)¢ — | < p;; it follows that the point
to + 7((1 — A)¢; + AL;) belongs to Jn v, n Vci). There is therefore a
solution of x’ = f(¢,x) equal to v in J, to w,, in each of the Vc,-' and there

is an open ball of center £, and radius 7' > 7 contained in the union of these
sets (3.17.11), which ends the proof.

(10.5.6) Let f,g be two continuously differentiable mappings of 1 x H into E,
and suppose that, in 1 X H, ||{(t,x) — g(t,%)|| < « and ||Dyg(t,x)|| < k. Let
£
(o, %o) be a point of 1 X H, u,B two numbers >0, and p(&) = uet+ (a4 B) %
for £ > 0. Let u be an approximate solution of x' = g(t,x), with approxima-
tion B, defined in an open ball J: [t — to| < b contained in 1, and such that,
for any te J, the closed ball of center u(t) and radius @(|t — t,|) is contained
wn H. Then, for any y € H such that ||y — x,|| < u, there exists a unique
solution v of x' = [(¢,x), defined in J, taking its values in H and such that
V(o) = y; furthermore |ju(t) — v(t)|| < @(Jt — #|) for te].

Let A be the set of numbers 7 such that 0 < 7 <{ b and that there
exists a solution v, of ' = f(¢,%) with values in H, defined in the ball J,:
[t —t| <7 and such that v,({,) =y. By Cauchy’s existence theorem
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(10.4.5), A is not empty. Moreover, we have, in J,, [lo,8) — gt0, )] < a,
in other words v, is an approximate solution of x’ = g(¢,x) with approxima-
tion «, and by (10.5.1.1) we conclude that ||u(t) — 5,00)|| < @(|t — %)) in J,.
If 7,7 are in A and such that » < 7/, then v, and v, coincide in J,, by (10.5.2).

Let ¢ be the Lu.b. of A; we have to prove ¢ = b. Suppose the con-
trary; there is then a unique solution v of x' = f(£,x) in J., equal to
v, in each of the balls J, with » < ¢, taking its values in H and such
that [lu(?) — v(f)|| < @(jt —%|) in J,. We therefore have le(tv(®)||
< |lgtu(®)]] + ko(|t — ty)) in J,, and as ¢ — g(¢,u(#)) is continuous in Jo it
is bounded in that compact ball; from which it follows that ¢ — g(tu(?))
is bounded in J,. On the other hand, any cluster point z of v(J,) is the limit
of a sequence (v(f,)) where £, € J, and ¢, tends to ty+ ¢ with |7] < 1;
by continuity, we have |[z — u(f, + ¢£)|| < ¢(c|¢]), hence z € H by assump-
tion. We thus can apply (10.5.5) and obtain a solution of x’ = £(t,x) defined
inaball J,, with 7" > ¢ and taking the value y at #,, which contradicts the
definition of .

We again remark that if K = R, we can relax the hypotheses on f and g,
supposing merely that g is lipschitzian for the constant %, and f locally
lipschitzian in I x H.

PROBLEMS

1) Let f{t,%) be a real valued continuous function defined in the ball fl<a ¢/ <b
in R2, such that f(z,#) < 0 for £x > 0, and f(t,#) > 0 for tx < 0. Show that » — 0
is the unique solution of the differential equation " = f(¢,#) defined in a neighborhood
of 0 and such that #(0) = 0 (use contradiction, and consider, in a compact interval
containing 0, the points where a solution reaches its maximum or minimum).

2) Let f(2,%) be the real valued continuous function defined in R2 by the following
conditions: f(£,#) = — 2t for x>>12, f(t,x) = — 24/t for |x| <12, f(t,x) = 2t for x< — £2.

¢
Let (y,) be the sequence of functions defined by y,(f) =72, yn(t)=f/(u,yn__1(u))du
0

for n > 1. Show that the sequence (y,(#)) is not convergent for any ¢ € R, although
the differential equation x’ = f(f,#) has a unique solution such that %0) =0
(problem 1).

3) For any pair of real numbers « > 0, 8 > 0, the function equal to — (¢ — )2
for t < a, to 0 for a <C#<C B, to (¢ — B)2 for £ > B, is a solution of the differential
equation x’ = 2|x|1/2 such that »(0) = 0.

Let u, be an arbitrary continuous function‘defined in a compact interval [a,b],

t
and define by induction u,(t) = 2 [|u, _ 1(s)[V2ds for ¢ [a,b]. Show that if p is the
a
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largest number in [a,b] such that u,(f) = 0 in [a,y], the sequence (u,) converges
uniformly in [a,b] to the solution of #' = 2|x|*2 which is equal to 0 for a << < y,
to (t — )% for y<{t<Cb. (Consider first the case in which #y(f) = 0 for 1<y,
uy(f) = k(¢ — 9)? for y < ¢t << b. Next remark that, replacing if necessary u, by u,,
one may suppose that u, is increasing in [a,b]; observe that tor any number ¢ > 0,
there are two numbers k; > 0, 2, > 0 such that in {a,b]

Rivg(t — y — &) K up(t) < hyvp(t — y + 8)

where vy(f) = 0if t<C 0, vy(f) =2 if 1> 0.)
4) The notations being those of section 10.4, suppose K = R, f is continuous and

bounded in I X H, and let M =  sup [|Ht.#)]|. Let z, be a point of H, S an
tx)elx H

open ball of center ¥, and radius #, contained in H.

a) Suppose in addition f is uniformly continuous in I X S (a condition which is
automatically satisfied if E is finite dimensional and I is contained in a compact
interval I, such that f is continuous in I; X H). Prove that for any ¢ > 0, and any
compact interval [£,,%, + k] (resp. [{, — h.,]) contained in I and such that 2 <7/(M +¢),
there exists in that interval an approximate solution of #” = f({,#) with approxima-
tion ¢, taking the value x, for # = #,. (Suppose 4 > 0 is such that the relations
[ty — 5| << 8, ||¥, — #,|| << 8 imply ||f(t,#,) — f(t2.%;)|| << &; consider a subdivision
of the interval [f,f, + k] in intervals of length at most equal to inf (§,6/M), and
define the approximate solution on each successive subinterval, starting from f,.)

b) Suppose E is finite dimensional and I = Jt; — a,ty + a[. Prove that there
exists a solution of »’" = f({,»), defined in the interval [y, + c] (resp. [f, — c.t,])
with ¢ = inf (a,7/M), taking its values in S, and equal to x, for £ = #,. (‘‘Peano’s
theorem”: for each #, let u, be an approximate solution with approximation 1/x,

1
defined in J, = [’o»fo +c— —], whose existence is given by a). Observe that
n

for each m, the restrictions of the functions u,, (for » == m) to J,, form a relatively
compact subset of the normed space €g(J,) (7.5.7), and use the ‘‘diagonal process”

as in the proof of (9.13.2); finally apply (10.4.3) and (8.7.8).)
5) Let f be the mapping of the space (¢,) of Banach (section 5.3, problem 5) into

1

itself, such that, for x = (,), /(*) = (¥a), With ¥, = |%,|'/2 + TI1 Show that f
n
is continuous in (¢y), but that there is no solution of the differential equation #’ = f(x),
defined in a neighborhood of 0 in R, taking its values in (cy), and equal to 0 for ¢ = 0-
(If there was such a solution u(f) = (u,(¢)), compute the value of each u,(f) by
straightforward integration, and show that the sequence (u,(f)), > ¢ does not tend to 0
for ¢ # 0.)

6) a) The notations being those of section 10.4, let f be analyticinI X Hif K = C,
locally lipschitzian in I X H if K = R. Let I, be an open ball of center ¢, and radius a,
contained in I, and S an open ball of center #, and radius », contained in H. Let
h(s,z) be a continuous function defined in [0,a[ X [0,[ CR2 such that A(s,z) = 0
and that, for every s € [0,a[, the function z — k(s,z) is increasing in [0,7[. Suppose
that: 1° ||f(t,2)|| << k(| — 2).||x — %||} in Iy X S; 2° there exists an interval [0,x]




288 X. EXISTENCE THEOREMS

with « < a, and a function @, which is a primitive of a regulated function ¢’ in [0,a],
and is such that @(0) = 0, @(s) € [0,7[ and ¢’(s) > k(s,p(s)) in the interval [0,a], with
the exception of an at most denumerable set of values of s. Show that there is a
solution u of ' = f(¢,x), defined in the open ball J of center ¢, and radius «, taking
its values in S and such that (%) = #x,; furthermore, in J, ||u(t) — || << @(|t — 4)).
(Use (10.5.5) to prove that there is a largest open ball J, of center £, contained in I,
and in which there is a solution v of " = f(¢,%), taking its values in S and such that
{lv(t) — #|| < @(Jt — %) in J, and furthermore that solution is unique; use then
the mean value theorem to prove by contradiction that J c J,.)
b) Suppose that H = E, and that there is a function A(z) > 0 defined,
+© g
continuous and increasing in [0,4 oco[, and such that 5 m = + o0, and that
Ift.#)|] < h(||#||) in I, x E. Show that every solution of 2’ = f(t,x) defined in a
neighborhood of £, is defined in I, (use a)).

c) If ||f(t.#)]| < M in I; X S, then there exists a solution » of »* = f(¢,x) in the
ball J of center ¢, and radius inf (a,7/M), taking its values in S and such that u(f;)) = x,
(take k(s,z) = M). Suppose K = E = C, and a == #/M; show that, unless { is a
constant, there is an open ball J'D J in which # can be extended to a solution of
¥" = f(2,%) taking its values in S. (Observe that, due to the maximum principle (9.5.9),
|#’()| <M for t € J; for any { such that [{| = 1, consider the function ug(s) = (¢, + {s};
arguing as in (10.5.5), prove that the assumptions of (10.5.5) are satisfied.) It is not
possible to take for the radius of J* a number depending only on a,» and M, and not
on f itself, as the example f{t,x) = ((1 + #)/2)1/* (section 9.5, problem 8), with
to=%; =0, a=7r=M =1, shows (n arbitrary integer > 1).

7) Let f be a real valued bounded continuous function in the open polycylinder P:
[t—1t| <a, |¥* — x| < bin R? and let M = sup |f(2,#)|; let » = inf (a,b/M), and let

(t,x)eP
I =1 — 7t + r[. Let ® be the set of all solutions  of " = f(¢,x), defined in I,
taking their values in the open interval ]x, — b,x, 4+ b[ and equal to %, for ¢ = #,;

the set @ is not empty (problem 4 b)). For each fel, let u(t/,x,) = inf u(y),
ueP

w(t,tg. %) = sup u(f); show that v and w belong to @ (section 7.5, problem 11); v
ued

(resp. w) is called the minimal (resp. maximal) solution of ' = f(¢,%) in I, corresponding

to the point (Z,x,).

For each 7€1, let & = v(t,0,,%,). Show that v(f,7,§) = v(t4,%,) in an interval
of the form [r,z + h[ if T > ¢, of the form Jr — A,7] if T < 4, (with 2 > 0). Conclude
that there is a largest open interval }¢,,%,[ contained in ]{, — a,fy + a[ and containing ¢,
such that v(2,4,,%,) can be extended to a continuous function g defined in ]¢,,2,[, taking
its values in Jx, — b,x, + [, and such that, for every te 14,,2,[, g(s) = v(s,t,g(t))
in an interval of the form [, + h[ if £ > ¢, of the form ¢ — A,t}if ¢ < ¢, (with & > 0).
(If g, is another such extension of v(t,7),%,) in an interval ]t;,t; [, show that g and g,

coincide in the intersection of 1¢,,t,[ and ]t;,t;[ by considering the Lu.b. (resp. g.l.b.)
of the points s in that intersection such that g and g, coincide in [y,s[ (resp. in ]s,%y]).
Furthermore, either #, = /¢ —a (resp. #, =1{ + a), or g, +) = % + b (resp.
gty —) = %o + b).
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6. Linear differential equations

The existence theorem (10.4.5) can be improved in special cases:

(10.6.1) Let 1€ K be an open ball of center t, and radius r. Let f be contin-
uous in I X E if K =R, analytic in 1 X E ¢f K=C, and such that
[[H(t.xy) — f(t.x5)]] < R(Jt — Lo|)||%, — %[ for t €1, %y, %, in E, where & — k(&)
is a regulated function in [0,7[. Then for every xy € E, there exists a unique
solution u of (10.4.1), defined in I, and such that u(ty) = x,.

We only have to prove that, if ¢ is the Lu.b. of the numbers p such that
0 < p < r and that there exists a solution of (10.4.1) defined in |t — | < p
and taking the value %, at ¢, then ¢ = 7 (by (10.5.2)). Suppose the contrary;
then, by (10.5.2), there is a solution v of (10.4.1) defined in J: |t — #)| < ¢
and such that v(¢) = x,, We are going to show that the conditions of
(10.5.5) are satisfied; applying (10.5.5) then yields a contradiction and
ends the proof.

As here H = E, the condition »(]) € H is trivially verified, so we have
only to check that ¢ — f(t,v(¢)) is bounded in J. Now, in the compact
interval [0,c], k is bounded and so is the continuous function ¢ — ||f(,%,)||
in the compact set J; hence there exist two numbers m >0, 2 >0
such that ||f(t,%)|| < m||%||+ % for te] and xeE. This implies
[l )| < m|v@)|]| + & for t€J; if we write w(§) = [[v(fy + A£)|| with

£
|A] = 1, the mean value theorem shows that w(£) <C||xo|| + hc + m [w({)dC.
0

We therefore can apply lemma (10.5.1.3), which shows that
llo(®)]|<ae™* =% 4+ in J (a and b constants), hence v is bounded in J,
and so is [|f(t,v(2))|| < m|jv(t)|| + A.

Here again, when K = R, the condition of continuity on f can be relaxed
to condition a) of Remark (10.4.6).

A linear differential equation is an equation (10.4.1) of the special form
(10.6.2) 2= A(t) - x + b(i) (= f(t,x))

where 4 is a mapping of I into the Banach space #(E; E) of continuous
linear mappings of E into itself (5.7), and & a mapping of I into E. We have
here H = E, and by (5.7.4)

(Ift.%0) — FE2) || < | AW)]] - [l — %]
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forall €1, x,x, in E. Applying (10.6.1) and the remark which follows,
we therefore get:

(10.6.3) Let 1 c K be an open ball of center ty. Suppose A and b are regulated
L if K = R, analytic in 1if K = C. Then, for every %9 € E, there exists
a unique solution u of (10.6.2), defined in I and such that u(t,) = x,.

Observe that if b = 0, and %, = 0, the solution # of (10.6.2) is equal to 0.
From (10.6.3) we easily deduce the apparently more general result:

(10.6.4)  The assumptions being the same as in (10.6.3), for every s € 1 and
every %o € E, there is a unique solution u of (10.6.2) defined in 1 and such
that u(s) = x,.

Replacing ¢ by ¢ — £, we may assume that £, = 0. Suppose I is a ball

. - . - t—
of radius7; it is readily verified that ¢ — 72— pe>

morphism of I onto itself, mapping s on O (one has only to write

t—s 2 72 — |s]?
72 =_(1— ||_

is an analytic homeo-

S S 72 —3
of the right-hand side for |¢| <7, and to see that number is equal to7). Now,
. (5t — 7?2 , t— 8 (5t —7%)2 t—s

== == b 2 _ »
Tl =g A" g =) 80 =gt e
one sees at once that if v is the unique solution of the differential equation

>, to evaluate the l.u.b. of the absolute value

x = At) x4+ b,(f)

- >is the unique

14
defined in I and such that v(0) = x,, then u(t) = v (1'2 R

solution of (10.6.2), defined in I and such that u(s) = x,.
When E = K”, A(f) = (a;(t)) is an n X » matrix, b() = (b,(¢)) a vector,
the () and b,(t) being regulated in I if K = R, analytic if K = C; if

%= (%;); <i<n the equation (10.6.2) is equivalent to the system of scalar
linear diffevential equations

(10.6.5) =X a;;(8)%; + b(t) 1<i<<n).
i=1
The (scalar) linear differential equations of order n > 1

(10.6.6) D"x —a,()D*""'x — ... —a,_,()Dx — a,(t)x = b(t)
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are equivalent to special systems of type (10.6.5); one has only to write
%=1, x,=D"x for 2<<p<<n and (10.6.6) is equivalent to

qoeny | HTer P ishsesd
l %, = ay(8)%, + ag()%, _1 + ... + a,(t) % + ().

7. Dependence of the solution on parameters

(10.7.1) Let E be a Banach space over K, 1 an open subset of K, H an open
subset of E, P a metric space, | a mapping of I X H X P into E. Suppose
that: 1° for any z € P, (t,x) — f(£,%,2) is a continuously differentiable mapping
of I X Hinto E; 2° f and D,f are continuous in I X H X P. Then, for any
point (tg,%0,%9) €I X H X P, there exists an open ball JC 1 of center ty and
an open ball T C P of center z, such that, for each z € T, there exists in J one
and only ome solution t — u(t,z) of the equation x' = [(¢,%,2) such that
u(ty,2) = x5 Moreover the mapping (1,7) — u(t,2) ts bounded and continuous
m J x T.

The proof is very similar to that of (10.4.5). Let J, be a compact ball
of center #, and radius a contained in I. By (10.4.5.1), there is an open
ball B of center x, and radius b contained in H, and an open ball T of center
zo in P, such that ||f(¢,x,2)|| << M and ||D,f(t,%,2)|| < kin J, x B x T. For
7 < a, let J, be the closed ball of center £, and radius ». If K =R, we
define F, to be the space of bounded continuous mappings y of J, X T
into E, which is a Banach space. If K = C, we define F, as the space of
mappings v of J, X T into E which are bounded and continuous in J, and
such that, for any z € T, ¢ — y(¢,2) is analytic in j,; this is again a Banach
space by (9.12.1). The remainder of the proof of (10.4.5) is then unchanged.

For linear differential equations, there is a better result:

(10.7.2) Let IcK be an open ball of center t,; suppose A and b contin-
uwous in 1 X P, and, if K = C, such that for each z€ P, t -~ A(t,z) and
t — b(t,2) are analytic in 1. For any x € E, let t — u(t,z) be the solution of
% = A(t,2) - x + b(t,2) defined in 1 and such that u(ty,z) = x,; then u is
continuous in 1 X P.

Let z, € P, and consider an arbitrary compact ball Jc1I of center ¢,
and radius 7; it will be enough to prove that # is continuous at each point
(t.zg) where te J. As u(fz,) is continuous in J, it is bounded in that
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compact set, let ||u(f,z))|| < Min J. By (10.4.5.1), there is a neighborhood U
of z, in P such that ||A(42)|| <k for ze U and ¢€ J. Given arbitrarily
an & > 0, let us show next that there exists a neighborhood V € U of Zyin P
such that ||A(2,2) — A(t,2,)|| <& and |[|b(t,2) — b(t,2)|| < & for te J and
z€ V. We only have to remark that for any s € J there is a neighborhood W,
of s in J and a neighborhood V,c U of z, in P such that the preceding
inequalities hold in W, x V; then we cover J by a finite number of
neighborhoods Wsi, and take for V the intersection of the Vs‘_. We can

now write
W (t,2) — u'(t,2)
= A(t,2) - (u(t,2) — wl(t.z)) + (A(t,2) — A(b,20)) - w(t,z0) + blt,2) — b(t.z,)
hence, for te J and zeV
[l (t.2) — o' (L2g) || k- ||m(tz) — w(tzg)|| + e(M + ).
Put t=t+A¢ with |A|=1, 0<CE7, and w(&) = |[u(ty + A£.2) — ulty + AE,2) ||
then by the mean value theorem, we have w(&) <{e(M4 1)+ kof w({)d¢

for 0 <& <7, and using (10.5.1.3), we obtain w(£) < &(M + 1)re for
0 < & <7, in other words, we have ||u(t,2) — u(t,z,)|| < e(M + 1)re" for
t€ ] and zeV; as ¢ is arbitrary, this ends the proof (since ¢ — u(Z,z,) is
continuous in J).

(10.7.3) In addition to the assumptions of (10.7.1), suppose that P is an
open subset of a Banach space G, and that | is continuously differentiable
in I X H X P. Let J, €1 be an open ball of center ty and T, C P an open
ball of center zy such that, for every z € T,, there is a solution t — u(t,z) of
%' = f(t,%,2) (necessarily umique by (10.5.2)) defined in J, and such that
u(ty,z) = %g. Then, for any open ball J of center t,, such that J C J,, there
exists an open ball T € T, of center z, such that (t,z) — u(t,2) is continuously
differentiable in J x T. Furthermore, for any z € T, t — Dyu(t,2) is equal
in ] to the solution U(t,2) of the linear differential equation

(10.7.3.9) U’ = A(t,z)oU + B(t,2)

such that U(ty,2) =0, where A(t,z) =D,f(t,u(t,2),2) and B(t,z) = Dyf(,u(t,z),2).
Let J be an open ball of center ¢, and radius 7, such that Jc J,. By
(10.4.5.1), there is an open ball S ¢ H of cénter x, and an open ball T € T, of
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center z, such that D,f and D,f are bounded in J x S X T, let ||Dyf(¢,%,2)
and ||Dyf(¢,%,2)|| < b. Then, by (8.5.2) and (8.9.1), we have,

|<a

(107.3.2) (If(t,%0,20) — 1(t,20.2) || < afy — 2] + B[z — 2]

for t € J, %,,%, in S, 2,2, in T. Taking (10.7.3.2) into account, we see that,
by (10.5.1), we have, for € J and 2,2, in T

(10.7.3.3) [lw(t.21) — w(t,29)]| < ellzy — 2|

with ¢ = b(¢” — 1)/a. We next prove that, given a point ze€ T and ¢ >0,
there exists p > 0 such that, forany w € Psuch that z 4+ w € Tand |[w|| <p,
and any te J, we have

|If(t.ult,z + w),2 + w) — f(t,ult,2),2) — A(t,2) - (u(t,z +w) —u(t,2)) — B(¢,2) -w||
(10.7.3.4) < gl|w]].

Indeed, using (8.6.2), (8.9.1), the continuity of D,f and Dgf in I x H X P,
and relation (10.7.3.3), for any s € J, there is a neighborhood W, of s in J;
and a number p(s) > 0 such that relation (10.7.3.4) holds for ¢t € W and
llw|| < pls); covering J by finitely many W, we need only take for p

the smallest of the p(s;) to have (10.7.3.4). Due to the definition of u(¢,2),
(10.7.3.4) can also be written

||Du(t,z + w) — Dyu(t,z) — A(t.2) - (u(t,z + @) — u(t,2)) — B(t,2) - w||
(10.7.3.5) < effw|-

Now the existence of U(t,z) in J X T is guaranteed by (10.6.1). Put
v(t,z2,w) = u(t,z + w) — u(t,z) — U(,2) - w; this function has a derivative
with respect to ¢ equal to

D,v(t,z,w) == Dyu(t,z + w) — Dyu(t,z) — A(t2) - (U(t,2) - w) — B(t,2) - w,
by (10.7.3.1). Relation (10.7.3.5) therefore can be written
||Dyu(t,2,0) — A(t,2) - v(t,2,0)|| < & |||,

for any ¢ € J and any w such that z + w € T and ||w|| < p. In other words,
v(t,2,w) is an approximate solution, with approximation &||w||, of the linear
differential equation

(10.7.3.6) y = A(tz) - y.
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Furthermore, we have v(fy,z,©) = 0 by definition; as [|44,2)|| < a in
J x T, we conclude from (10.5.1) (since 0 is a solution of (10.7.3.6)) that

l[o(t,2,0)[| < ot ]|

where ¢y = (¢ — 1)/a, this inequality being valid for any te J and any w
such that 2 + w € T and [[@|| < p. As e is arbitrary, the definition of the
derivative of a function shows that  is differentiable with respect to z
at any point (¢2) € J X T and that Dyu(t,2) = U(t,2).

Finally, from the assumptions and (10.7.2), it follows that U is contin-
uous in J x T; on the other hand, D,u(t;z) = f(t,u(t,2),2) is continuous
in J X T by (10.7.1). Therefore, by (8.9.1), u is continuously differentiable
in J X T, and this ends the proof of (10.7.3).

(10.7.4)  In addition to the assumptions of (10.7.3), suppose [ is p times
continuously differentiable in 1 x H x P. Then, for any open ball J of
center 4y, such that J € ]y, it is possible to take T such that u is p times contin-
uously differentiable in J x T.

If p = 1, this is (10.7.3). Using induction on p, suppose we have proved
the result for (p — 1) times continuously differentiable mappings. Then,
in the right-hand side of (10.7.3.1), 4 and B are P — 1 times continuously
differentiable mappings in J x T (by (8.12.10)); therefore, by (10.7.3)
(applied to U(t,2)), Dyu(t,z) is p — 1 times continuously differentiable in
J X T (when T has been conveniently chosen). On the other hand
Dyu(t,z) = f(tu(tz),2) is also p — 1 times continuously differentiable in
J X T by the induction hypothesis and (8.12.10) ; therefore Du(t,z) is p — 1
times continuously differentiablein J x T by (8.9.1), (8.12.9) and (8.12.10);
but this implies that « is p times continuously differentiable in J x T,
by (8.12.5).

(10.7.5)  Suppose that the Banach spaces E and G are finite dimensional
and that f is analytic in 1 x H x P. Then, for any open ball J of center t,,
such that J J,, it is possible to take T such that w is analytic in J X T.

If K = C, this follows immediately from (10.7.1), (10.7.3), (9.10.1) and
(9.9.4). If K = R, we apply an argument exactly similar to that of (10.5.3),
which we accordingly suppress.

(10.7.6) Remarks. There are several improvements and variants of
the preceding theorems. For instance, in (10.7.3), when K = R, the
existence of D,f is not required to insure that Dyu(t,z2) exists: we need
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only the continuity of D,/ and D,f as functions of (x,2), and their
boundednessin J x S x T, as well as the fact that ¢ — f(¢,4(t),2) is regulated
in I for any function 4 continuous in I and similarly for D,/ and D,f. We
can also consider the case in which I is an open set in R and E a real Banach
space, but G a complex Banach space; for any ¢t € Ji, # = u(t,z) is then
analytic in T.

PROBLEMS

1) The notations being those of section 10.4, let I be an open ball in K of center £,
and radius @, S an open ball in E of center x, and radius », G the normed space

%E (I x S) (section 7.2). For each M > 0, let Gy be the ball /l<Min G. LetL
be the subset of G consisting of all continuous lipschitzian mappings of I X Sinto E
(10.5.4); for each M > 0, let Jy be the open ball of center £, and radius inf (a,7/M);
for each function f € L n Gy, there is a unique solution # = U(f) of " = f(t,x) taking
its values in S, defined in Jy and such that u(fy) = #, (section 10.5, problem 6 c)).

a) Let (f,) be a sequence of functions belonging to L. N Gy, and suppose f,, converges

uniformly in I X S to a function f; show that in the space (fg (Jm), every cluster
value of the sequence of functions u, = U(f,) is a solution of z" = f(5,), taking its
values in S, and equal to x, for ¢ = #, (use (10.4.3) and (8.7.8)). Give an example in

which the sequence (%,) has no cluster value in (5;30 (Jm) (see section 10.5, problem 5).

b) Suppose in addition that E is finite dimensional; using the result of a), give
a new proof of Peano’s theorem (section 10.5, problem 4 b); use Ascoli’s theorem
(7.5.7) and the Weierstrass approximation theorem (7.4.1)).

2) a) In the polycylinder P: [t — 4| < a, |¥ — x| <b in R2 let g,k be two real
valued continuous functions such that g(f,#) < h(¢,») in P. Let « (resp. v) be a solution
of 4’ = g(4,%) (resp. &’ = h{t,x)) defined in an interval [f,,f, + ¢[, taking its values in
1%y — b7y + b[ and such that u(fy) = %, (resp. v(ty) = #,); show that u(f) < v(?)
for t, < t < ty + ¢ (consider the lL.u.b. of the points s in [£,,%, + ¢[ such that u(f) < v(?)
for ty <t < s).

b) Let g be continuous and real valued in P, and let » be the maximal solution
of x* = g(t,%) corresponding to (f,%,) (section 10.5, problem 7); suppose u is defined
(at least) in an interval [fy,%, + ¢[ and takes its values in Jxy — b,xy + b[. Show
that in every compact interval [f,f, + 4] contained in [fo.f, + ¢[, the maximal and
minimal solutions of ° = g(t,%) + ¢ are defined and take their valuesin ]z, — b,% + b(
as soon as ¢ > 0 is small enough, and converge uniformly to « when ¢ tends to 0.
(Given g > 0, there exists an s > {, such that the maximal and minimal solutions
of all the equations 2’ = g(,x) + & for 0 < & <C g, corresponding to (fy, %), are defined
and take their values in J¥, — b,x, + b[ in [fy,s]; observe that all these functions
form an equicontinuous set in [#,s], and prove the uniform convergence to u in [tg,s]
by applying the result of a), Ascoli’s theorem (7.5.7), (10.4.3) and (8.7.8). Finally,
show that the Lu.b. of the numbers d having the stated property is necessarily equal
to ¢, using in particular the last statement of section 10.5, problem 7.)

c) In the ball P, let ¢ and % be two continuous real valued functions such that
g(t,x) << h(t,x) in P. Let [f,t, + ¢] be an interval in which a solution u of ¥ = g(¢,»)
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such that u(f) = x, and the maximal solution v of #’ = h(t,¥) corresponding to
(t,%o) are defined and take their values in ]x, — b,%, + b[. Show that () < v(t)
for 1y <<t <ty + ¢ (apply a) and b)).

3) a) Show that the conclusions of problem 6 a) of section 10.5 are still valid when
E is finite dimensional, and the assumptions are modified as follows: 1° f is supposed
to be continuous in I X H (when K = R), but not necessarily locally lipschitzian;
2° @ is the maximal solution (section 10.5, problem 7) of the equation 2’ = h(s,z)
in [0,&], corresponding to the point (0,0). (Use the results of problems 1 a) and 2 b),
and apply the diagonal process as in problem 4 b) of section 10.5.)

b) Suppose in addition that there exists a sequence (Y,),=q of real valued
functions, continuous in [0,«], taking their values in [0,7], such that for # > 1,

s
Y(s) = _fh(&,Y,,_ 1(£))d¢ for 0T s Ca. Let y, be continuous in J if K = R, analytic
0

in J if K = €, with values in S, and such that ||yy(f) — %o|| <C Yo(Jt — %) in J. Show
that there exists a sequence (y,),>1 of mappings of J into S, which are continuous

¢
if K = R, analytic if K = C, and such that y,() = %, + I/(O,yn_l(O))dﬂ, and that
to

|[¥5(8) — %o|| < Yu(|t — %|) in J for every > 1. When K = €, conclude that the
sequence (y,) converges in ] (uniformly in every compact subset of J) to the unique
solution u of #” = f(t,x). (Use (9.13.2) and the proof of (10.4.5).) Is this last statement
still true when K = R and { is not supposed to be locally lipschitzian (cf. section 10.5,
problem 2)?

4) a) Let I = [¢,¢y 4+ c[C R, and let w be a real valued continuous function >0, de-
finedin I X R. Let S be an open ball of center #, in E, and let f be a continuous mapping
of I X Sinto E such thatfortel, € Sand #, €S, ||[f(t,%)) —f(t,%,)|| < w(,||%,—#,])).
Let u,v be two solutions of #’ = f(,#), defined in I, taking their values in S, and such
that u(fy) = x;, v(t, %)) = x,5; let w be the maximal solution (section 10.5, problem 7)
of 2’ = w(t2) corresponding to (%,||#; — #,||), and suppose w is defined in I; show
thatin I, ||u(?) — v(#)|| << w(?). (For small ¢ > 0, consider the maximal solution w(z.¢) of
z’ = w(tz) + € corresponding to (4,]|#; — #,||), which is defined in [f,f, + d]
if d < ¢, as soon as ¢ is small enough (problem 2); show that for ¢, << ¢, + d,
|lu(t) — v(#)|] < w(t,e), using contradiction: consider the g.Lb. #, of the points ¢ such
that ||y(?)|]] > w(t,¢), where y(f) = u(f) — v(¢), and observe that for ¢ > ¢,

@l = Hly@I < lly@ — vyl sup |y’ ()]~ (¢ — 1))
L <s<t

b) Let I’ = J{, — ¢,,], and suppose that the assumptions of a) are verified when I
is replaced throughout by I’. Let now w be the minimal solution of z/ = w(¢,z) cor-
responding to (%,||#; — #,||), and suppose it is defined in I’; show that in I,
|lu(®) — v(®)|| > w() (same method).

5) a) Let I be the open interval ]0,a[ in R, and let w be a continuous function in
I X [0,+ o[, such that w(f2) > 0, and w(:,0) = 0 for € I; w can be extended to
I R by the condition w(t, — 2) = w(t,2) for z < 0. We suppose that if w is a solution of
2’ = w(¢,2) defined in an open interval ]0,a[CI, such that w can be extended by continu-
ity to the half-open interval {0,a[ by taking w(0) = 0, and that in addition w’(0) is then
defined and €qual to 0, then necessarily w(#) = 0 identically in ]0,«[. Let now S be an
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open ball of center #, in a real Banach space E, f a continuous mapping of [0,a[ X S
into E, such that, for 0< ¢ < a and #,%, in S, ||[f(4,%) — (2] < w(t||%; — 2,]))-
Show that in an interval [0,a] with & < a, there is af mos¢ one solution u of »* = f(¢,)
such that #(0) = #,. (Use contradiction: if v is a second solution such that v(0) = x,,
minorize ||#(f) — v(#)|| in ]0,x], using problem 4 b).)

b) Let 6(¢) be a continuous function defined in ]0,a[ and such that 6(f) = 0. Show
1+ 6()

t ik

20(¢
that if the integral _f ¥ dt is convergent, the result of a) applies to w(¢,z) =
0

2 6(#)

if, on the contrary, _f——- dt = 4+ o, give an example of a continuous real valued
o ¢

. 1+ 6()
function f in [0,a[ X R, such that |[f(t,x,) — f(t.%,)| << —

|#, — #,], and that
the equation »’ = f(f,#) has an infinity of solutions in [0,a[, equal to 0 for ¢z = 0.

a

1+ 6
(Let @(t) = exp(-— _[ —j_——(—s—)— ds) ; define f(t,%) as equal to (1 + 6(2))#/t for |2} << (1),
F s
and independent of x for |*| = ¢(?).)

6) Let I be an open interval in R, H an open subset of a Banach space E over R.
Let #, be a point of 1.

a) Suppose fis continuousin I X H, and that there is a number % such that 0 < 2 <1

k
and that, for any ¢ # £, and x,,x, arbitrary in H, ||[f(t,#,) — f(t.%5)|| < W EE A
There is then at most one solution of ¥’ = f(t,) taking a given value x,€ H for ¢ = {,
and defined in a neighborhood of 4, (problem 5 a)). But in addition, if «,v are two
approximate solutions of #’ = f(£,#) in an open ball J of center f, contained in I,
with approximations ¢,,65, and such that u(f) = v({) = #,, then, for any t€ ]

() — o0l < 22— gy,
1—%
(Use the same method as in (10.5.1).)

b) Let I =]—11[, H=E = R, and let @ be the set of all real valued func-
tions f, continuousin I X H, and such that, for¢ % 0in L, |f(8,%,) — /{2, %,) | << |#,— 2|/ }4].
There is then at most one solution of »* = f(£,%) taking a given value for ¢ = ¢, and
defined in a neighborhood of #, (problem 5 a)). But prove that there is #no function
@(t,e) == 0 such that, for amy pair (u,v) of approximate solutions, with approxima-
tion ¢, of any equation »’ = f(¢,) with f € @, such that # and v are defined in I and
u(ty) = v(ty), the relation ||u(?) — v(#)|| << @(|¢t|.¢) would hold for every tel. (For
any a« € }0,1[, let f be the continuous function equal to x/t for |*| < #2/(a — ?),
0<t<a, and forf > o, and independent of ¢ for the other values of (f,%) such
that ¢> 0; define f(t,#) = f(— t,x) for t<< 0. Take u =0; let v(f) =& for
|t| < a, and take for v a solution of x’ = f(¢,#) for the other values of .)

7) The notations being those of section 10.4, suppose E is finite dimensional and
f is continuous in I X H; let (#,x,) be a point of I X H, ] an open ball of center £,
contained in I, S an open ball of center x, such that Sc H. Suppose f is bounded
in J X S, and the following conditions are verified:
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1° There is at most one solution of »* = f(t,x) defined in an open interval contained
in J and containing ¢, and taking the value #, for ¢ = ¢,
2° There exists a sequence (%,), > ¢ of continuous mappings of J into S such that

¢
un(t) = x4 + If(s,un_l(s))ds for =1 and t€].
2o

3° For every te J, u, 1 1(t) — u,(!) converges to 0 when # tends to + oo.

Show that in every compact interval J' €] containing #, the sequence (u,)
converges uniformly to a solution of #* = f(%,%) equal to %, for t = ;. (Observe that
the sequence (u,) is equicontinuous; use Ascoli’s theorem (7.5.7), as well as (3.16.4)
and (8.7.8).)

8) Suppose E is finite dimensional, @ and f verify the conditions of problem 5 a),
and in addition, for every € ]0,a[, the function z — (t,2) is increasing in [0, + oof.
There is then at most one solution of &’ = f(2,%) defined in an interval [0,x[ € [0,a]
and taking the value x, for £ = 0 (problem 5 a)). Suppose in addition that there
exists, in an interval J = [0,x] € [0,a[, a sequence (#n)n=0 of continuous mappings

¢
of J into S such that u,() = 7, + ff(s,un_l(s))ds forn>1and ¢t€].
0

a) For every te], let y,(t) = ||up11(t) — un(9)]|, 2,()) = sup Yn+1(f), and
k=0

w(t) = inf 2,(s). Show that the functions z, and w are continuous in J (use problem 11
n=0
of section 7.5).
b) Let £,z — h be two points of J (k> 0); show that, for every ¢ > 0, there is
an N such that, for n > N,
¢
valt) = vult = B < [ @s,0(s) + d)ds.

(Use the mean value theorem (8.5.1), as well as (7.5.5).)
¢) Deduce from b) that, for > N
¢

lon(®) — 2t — B)| < [ w(s,w(s) + d)ds
t=h
(consider in succession the cases z,(t) < zy(t — k) and z,(t) = z,(t — h)). Hence

i
lwt) — w(t — B)|< [ wlsw(s)ds (by (8.7.8)).

d) Conclude that w(f) = 0 in J (same argument as in problem 4 b) and pro-
blem & a)), and using problem 7, prove that the sequence (#,) converges uniformly
in J to a solution of # = f(£,#) taking the value %, for ¢ = 0.

9) The notations being those of section 10.4, suppose E is finite dimensional, and }
is continuous and bounded in I X H. Suppose in addition there is af most one solution
of #” = f(t,%) defined in any open interval JcI containing f,, and equal to x»,€ H
for t = 4,. Suppose that, for any integer # > 0, there exists an approximate solution
u, of %" = f(¢,x), with approximation 1/n, defined in I and taking its values in H,
and such that u,(f)) = #,. Show that in any compact interval contained in I, the
sequence (u,) is uniformly convergent to a solution % of 4’ — f(¢,%), taking its values
in H and such that u(f,) = #,. (Use the same argument as in problem 7.)
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8. Dependence of the solution on initial conditions

(10.8.1) Let f be locally lipschitzian (10.5.4) in I x H if K = R, analytic
I X Hif K= C. Then, for any point (a,b) €1 x H:

a) There is an open ball JC 1 of center a and an open ball VCH of
center b such that, for every point (t,,%) € J X V, there exists a unique solu-
tion t — u(t,ty,%,) of (10.4.1) defined in J, taking its values in H and such
that w(tyty, %) = %,.

b) The mapping (t,ty,%9) — u(t,ty,%,) is uniformly continuousin J x J X V.

c) There is an open ball WC 'V of center b such that, for any point
(tlgxg) €] X J X W, the equation xy = u(tyt,x) has a unique solution
% = u(tly,x) in V.

a) By assumption, there is a ball J,cI of center a and a ball
B, € H of center b and radius » such that in J, X By, ||f(£,%)]| <M, and
[[£(t,21) — (8, x5)]| < k- ||%y — #p]] for £ € Jo, #,,% in By. By (10.4.5) there
is an open ball J, € J, of center £, and a unique solution v of (10.4.1) defined
in J;, taking its values in H and such that v(a) = b. We are going to see
that the open ball V of center 4 and radius 7/2, and the open ball J of
center ¢ and radius p, answer our specifications as soon as p is small enough.
Apply (10.5.6) to the case « = 8 = 0; this shows that there exists a
solution of (10.4.1) defined in J, with values in B, taking the value x, € V
at the point 4, € J, provided we have

(10.8.1.1) llo(®) — ]| + |jv(to) — xo”eklt-tnl< y

for every te J. But by the mean value theorem, we have [jv(t) — ||
S M[t —a|<Mp for every te]J; as by assumption ||z, — b|| < 7/2,
the inequality (10.8.1.1) will be satisfied if p is such that

(10.8.1.2) Mp + (Mp + %) e <7

which certainly will be satisfied for small values of p > 0.
b) From the mean value theorem, we have

(10.8.1.3) |lee(ty b, %) — wltato %0) || < Mty — 1]

for Z,t1,t, in J, x4 in V. By (10.5.1), we have

(10.8.1.4) [[00(tt0,21) — w(t g, %5) || < € |24 — 2,
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for ¢y in J, x;,%, in V. Finally, (10.8.1.3) for #y = ?, yields by definition
|lea(tr.t0,%0) — || < Mty — &

and as ¢ — u(t,t, %) is the unique solution of (10.4.1) in J which is equal
to u(t;,t,%,) at the point ¢, we have, by (10.5.1)

(10.8.1.5) ([t by %) — wlt g, o) || < MeP* [ty — 1y

for t,t,,t, in J, %€ V. The three inequalities (10.8.1.3), (10.8.1.4) and
(10.8.1.5) prove that % is uniformly continuous in J X J X V.

c) By (10.8.1.3), we have [|ju(tty %) — %o|| < M[t — o] < 2Mp in
J x J x V. Suppose p satisfies (10.8.1.2) and in addition the inequality
2Mp < 7/4; then, if W is the open ball of center b and radius /4, we have
u(tty,%) €V for ttyin J and x5 € W. Let x = u(t,ty,%,) for such values of
L0, %; thens — u(s,t,x) is defined in J and is the unique solution of (10.4.1)
with values in H which takes the value x at the point ¢; but ass — u(s,ty, %)
has these properties, we have w(st,x) = u(s,f,,%,) for s € J; in particular
%o = W(tg,ty %g) = #(ly,t,x). Suppose now y € V is such that u(to,t,y) = %;
then s — u(s,t,y) is a solution of (10.4.1) defined in J and taking the value %,
for s = {,; therefore u(s,t,y) = u(s,ty,%,) for any s € J, and in particular,
for s = ¢, ¥ = u(t,%y,%,) = %, which ends the proof.

(10.8.2) With the notations of (10.8.1), suppose thal f is continuously differen-
tiable (resp. p times continwously differentiable, amalytic (if E is finite
dimensional)) in 1 x H. Then it is possible to take J and V such that the
function (t,t,%5) — w(tly,xg) s continuously differentiable (resp. p times
continuously differentiable, analytic) in J X J X V.

Indeed, if we write .u(sty,%) = u(fy + S.fo%) — %, We see that
s — v(s,45,%,) is a solution of the equation

2 = flty + 5% + 2)

which takes the value 0 at the point s = 0; the result then follows from
(10.7.3), (10.7.4) and (10.7.5).

For linear differential equations, there are much more precise results.
The equation

(10.8.3) X =A(t)x



8. DEPENDENCE ON INITIAL CONDITIONS 301

is called the homogeneous linear differential equation associated to (10.6.2);
the difference of any two solutions of (10.6.2) in I is a solution ot (10.8.3)
in I, and the solutions of (10.8.3) in I constitute a vector subspace 5# of
the space €g(I) of all continuous mappings of 1 into E.

(10.8.4) For cach (s,xy), let t — u(t,s,x,) be the unique solution of (10.8.3)
defined in 1 and such that u(s,s,xy) = %,.

1° For each t € 1, the mapping xy — u(t,s,%y) is a linear homeomorphism
C(ts) € Z(E) of E onto itself.

2° The mapping t — C(t,s) of 1 into the Banach space £ (E) is equal
to the solution of the linear homogeneous differential equation

(10.8.4.1) U’ = A(t)oU

which is equal to Iy (identity mapping of E) for t =s.
3° For any three points r,st in 1

(10.8.4.2) C(r,t) = C(r,5)oC(s,?) and C(s,t) = (C(t,s))~ L

It is clear that w(ts,x,) + %(4,5,%;) (resp. Au(ts,x)) is a solution of
(10.8.3) which is equal to x; + x, (resp. Axy) for £ = s; hence (10.6.4) it
is equal to u(Zs,x; + %3) (resp. u(t,s,Axy)) in I, which proves that the
mapping x, — %(2,5,%,) is linear; let us write it C(¢,s) (we have not yet
proved that this mapping is continuous in E).

Now the bilinear mapping (X,Y) - XoY of Z(E) x Z(E) into Z(E)
is continuously differentiable (8.1.4); denote by R(f) the continuous linear
mapping U — A(t)oU of #(E) intoitself. From (5.7.5) it follows at once that

IR(E) — R < [|4@) — A@)]|

hence, if K = R, ¢ — R(¢) is regulated if ¢ -~ A(¢) is regulated. On the
other hand, if ¢ — A(¢) is differentiable, so is { — R(¢), and its derivative
at the point ¢ (identified (8.4) to an element of #(E)) is the mapping
U — A'(t)oU ((8.1.3) and (8.2.1)); hence if ¢ — A’(¢) is continuous, so is
t - R'(]). We can therefore conclude that if K = C and if ¢ — 4(f) is
analytic in I, so is £ — R(¢) (9.10.1). In any case, we may apply (10.6.4)
to the equation (10.8.4.1); let V() be the solution of that equation equal
to Iy for t =s. We have, for any £ €I ((8.1.3) and (8.2.1))

D(V(t) - %) = V'(t) - g = A(#) - (V(?) - %)
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and furthermore, for ¢t =s, V(s) - xy = Ig - 5y = %,; it therefore follows
from (10.6.4) applied to (10.8.3) that C(¢,s) - xy = V(¢) - x, for any x, € E,
hence C(ts) = V() for tel. This proves that C(ts) € £(E) and that
t — C(t,s) is the solution of (10.8.4.1) which is equal to Iy for ¢t =s.

Finally, the function ¢ — C(¢,7) - %, is the solution of (10.8.3) equal to
C(s,7) - xo for t = s; hence, by definition

C(t,r) - %5 = C(2,5) - (C(s,7) - %g) = (C(2,8)0C(s,7)) * %y

for any x, € E, which proves the first relation (10.8.4.2); as C(t,¢) = I,
that relation yields C(¢,s)oC(s,t) = Iz. This shows that C(s,t) is a bijective
linear mapping of E, whose inverse mapping is C(¢,s) (hence also belongs to
Z(E)). With this we reach the end of the proof of (10.8.4).

The operator C(Z,s) is called the resolvent of (10.8.3) (or of (10.6.2)) in I.

(10.8.5) The mapping (s;t) — C(s,t) of I X 1 into L(E) is continuous.

We may indeed write C(s,f) = C(s,5,)o(C(¢,55))~1, and the result then
follows from (10.8.4), (5.7.5) and (8.3.2).

The knowledge of C(s) enables one to give the explicit solution of
(10.6.2) taking the value x, for # = ¢;:

(10.8.6) The function
t
u(t) = C(tty) - %9 + [ (C(t,s) - b(s))ds

is the solution of (10.6.2) in I which is equal to x4 for t = ¢, (if K = C, the
integral is to be taken along the segment of origin £, and extremity #).
Indeed, one may write, by (10.8.4.2)

2 i

J(C(t.s) - b(s))ds = Cltty) * (J (Cltoss) - b(s)) ds)

to to

using (8.7.6); therefore, we have u(f) = C(t4,) - 2(t), where
t
2(t) = %o + [ (Clty,s) - b(s))ds.
to

Hence ((8.1.4) and (8.2.1))

w(t) = C'(tt) - 2(t) + Clt.dy) - 2 (8).
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But by (10.8.4.1), C'(t,t,) = A(f)oC(tt,), and on the other hand,
2'(t) = C(ty,t) - b(¢) by definition; hence

w'(t) = A(t) - u(t) + 0(t)

and as #(t,) = «%,, this ends our proof.

When E = K", and the equation (10.6.2) is then written as a system
of scalar linear differential equations (10.6.5), the resolvent C(s,t) is an
invertible n X n matrix (c;(s,f)) whose elements are continuous in I X I,
and ¢ —c;(t,s) is a primitive of a regulated function in I.if K =R, an
analytic function in I if K = C.

PROBLEM

a) Suppose, in the linear differential equation (10.6.2), that 4 and b are analytic
functions in the simply connected open subset HC €. Show that, for any {, € H and
any x, € E, there is a unique solution % of (10.6.2), defined in H and such that u(ty) = x,.
(Use the same kind of argument as in (9.6.3): (10.6.3) allows one to define a solution
of (10.6.2) along a broken line (section 5.1, problem 4) in H, and the argument of
(9.6.3), along with local uniqueness, yields the result.)

b) Show that the result of a) is not valid for the scalar differential equation
x' = t/x: given any simply connected open subset Hc C, and any ¢{,€ H, there
exists an #, € E, such that ¥, # 0 and that there is #o solution of the equation defined
in H and equal to z, for ¢ = £,

9. The theorem of Frobenius

Let E,F be two Banach spaces over K, A (resp. B) an open subset of E
(resp. F), U a mapping of A X B into the Banach space L(E;F) (5.7).
A differentiable mapping # of A into B is a solution of the total differential
equation

(10.9.1) Yy =U(xy)
if, for any x € A, we have
(10.9.2) u'(x) = U(x,u(x)).

When E = K, Z(E; F) is identified to F (5.7.6), and a total differential
equation is thus an ordinary differential equation (10.4.1). When E = K*
ts finite dimensional, a linear mapping U of E into F is defined by its
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value at each of the # basis vectors of E, and by definition, (10.9.2) is thus
equivalent to the system of » ‘“partial differential equations”

(10.9.3) Dy =%y 5yy) (1<i<n).

In general, such a system will have no solution when »# > 1, even if
the right-hand sides f; are continuously differentiable functions. We say
that an equation (10.9.1) is completely integrable in A X B if, for every
point (xo,yo) €A X B, there is an open neighborhood S of x4 in A such that
there is a unique solution w of (10.9.1), defined in S, with values in B, and
such that u(xg) = ¥,.

We will suppose in what follows that U is continuously differentiable
in A x B; for each (x,y) € A x B, D,U(x,y) (resp. D,U(x,y)) is an element
of Z(E; #E;F)) (resp. Z(F;Z(E;F))), which can be identified to the
continuous bilinear mapping (s;,5,) — (D,U(%,y) - 5,) - 53 of E X E into F,
written (s,,s,) — D,U(x,y) - (51,55) (resp. the continuous bilinear mapping
(t,s) = (DU(x,y) - t)-s of F x E into F, written (t,5) — D,U(x,y) - (.9))
(5.7.8); furthermore, the linear mapping s; — (D,U(x,y) +s;) s, of E
into F, for each s, € E, is the derivative at the point (x,y) of the mapping
% — U(x,y) - s, of E into F, by (8.2.1) and (8.1.3); similarly, the linear
mapping ¢ — (D,U(x,y) - £) - s of F into F, for each s € E, is the derivative
at the point (x,y) of the mapping ¥ — U(x,y) - s of F into F.

(10.9.4) (Frobenius’s theorem). Suppose U is continuously differentiable
in A X B. In order that (10.9.1) be completely iniegrable in A X B,/it 1s
necessary and sufficient that, for each (x,y) € A X B the following relation

(109.41)  D,U(xy) - (s159) + DyU(x.Y)  (U(x,3) - 5358)
= D,U(%,y) * (s2,81) + DoU(x,) - (U(%,y) * 55,81
holds for any pair (s,s,) in E X E.

a) Necessity. Suppose u is a solution of (10.9.1) in an open ball SCA
of center x, such that u(xy) = y,; then, from (10.9.2) and the assump-
tion it follows that #'(x) is differentiable in S; moreover, for any
s, € E, the derivative at the point x, of the mapping x —u'(x)-s, is
s, = (%) * (s1,5) by (8.12.1). But by (10.9.2), that derivative is also
(using (8.2.1), (8.1.3) and (8.9.1))

s3 = (DU (%0,50) * 81) * S2 + (DU (%,50) - (#'(%g) * 51)) * Sg-
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Using the relation (10.9.2) again, and expressing that the second derivative
of u at the point x, is a symmetric bilinear mapping (8.12.2), we obtain
(10.9.4.1) at the point (x,,y,). But by assumption that point may be
taken arbitrarily in A X B, hence the result.

b) Sufficiency. Let S, A be an open ball of center x, and radius «,
T, € B an open ball of center y, and radius B, such that U is bounded in
Se X Ty, let ||U(x,y)|| < M. We consider for a vector z € E the (ordinary)
differential equation (where £ € K)

(10.9.4.2) w = U(xg + &Ez,w) -z = f(E,w,2)

and observe that if « satisfies (10.9.2) in a neighborhood ||x — || < p of
%, & — u(xy + &2) for ||z|| < p is a solution of (10.9.4.2) in the ball |&| <1
in K, taking the value y, for & = 0 (which already proves uniqueness of »
by (10.5.2)). Now the right-hand side of (10.9.4.2) is continuously
differentiable for |£] <2, |jw — || <8 and |[z|| < «/2, and we have
||/(&,w,2)|| < M||z|]| for such values. Applying (10.5.6) to f and to g=0,
we conclude that for any z € E such that ||z|| < 8/2M, there is a unique
solution & — v(&,2) of (10.9.4.2) defined for |£| < 2, taking its values in H
and such that v(0,2) = y,. We are going to prove that the function
u(x) = v(l,x — %) is a solution of (10.9.1) in the ball ||x — x,|| < B/2M.

Now, for ||z|| < 8/2M and |£| < 2, we know from (10.7.3) that v is
continuously differentiable, and that & —D,v(£,2) is, for |§| <2, the
solution of the linear differential equation

V' = Dyf(£,0(£,2),2)0V + Dyf(£,0(£,2),2)

taking the value 0 for £ = 0. For any s, € E, write g(&) = Dyv(£,2) - 59;
we have g'(&) = Dof(£,v(£,2),2) - g(8) + Dsf(§,0(£,2),2) -5, and from the
definition of f, this can be written

g'(&) = A(&) - (g(8).2) + B(&) - 5y + EC(8) - (51,2)

with A4(§) = DU(x, + &2,0(62)), B(§) = Ulx + &20(62), C(§) =
D,U(x, + £z,v(£,z)). We want to prove that g(&) = EU(xy + £2,0(&,2)) * 5
and we therefore consider the difference k(&) = g(&) — U (% + &2,0(£,2)) 5, =
g(é) — &B(§) -s;. We have

k(&) = A(§) - (g(€).2) + B(&) - sy + £C(&) - (51,2) — B(&) - 8 — EC(E) - (2,51)
— EA(8) - (B(£) - 2,51

’d
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using the relation Dyv(&,2) = U(xy + &2,0(£,2)) - 2 = B(&) - 2. But relation
(10.9.4.1). yields in particular

C(&) - (z,81) + A(&) - (B(§) - 2,8) = C(&) * (s1,2) + A(&) * (B(£) * 51,2)

hence

W (&) = A(&) - (g(§) — EB(&) - s,,2) = A(£) - (h(£) 7).

Furthermore, A(0) = 0; but the only solution of the linear differential
equation 7" = A(£) - (r,z) which vanishes for £ =0 is 7(£) = 0 (10.6.3),
hence A(£) = 0 for |&| < 2, which proves the relation

Dyv(&,2) + sy = EU(% + E2,0(£,2)) * 54

for any s; € E, i.e. Dyv(£,2) = £U(xy + £z,0(&,2)). This holds for |£] < 2
and ||z|| < 8/2M; in particular, for £ = 1, and putting x = x, + z, we
obtain «'(x) = U(x,u(x)) for ||x — x|/ < B/2M, which ends the proof.

(10.9.5) Suppose U is continuously differentiable in A X B and verifies
the Frobenius condition (10.9.4.1). Then, for each point (a,b) € A X B, there
s an open ball S C A of center a and an open ball T € B of center b, having
the following properties: 1° for any point (x5,y,) € S X T, there is a unique
solution x — u(x,%y,v,) of (10.9.1), defined in S and such that u(xy,%4,59) = Yo,
2° u is continuously differentiable in S x S X T. If tn addition U is p
times continuously differentiable (resp. analytic if E and F are finite dimen-
stonal) in A X B, then u is p tumes continuously differentiable (resp. analytic)
in S X S X T. Finally, there is an open ball W C T of center b such that,
for every point (x,xy,v,) €S X S X W, the equation y, = u(xy,x,y) has a
unique solution y = u(x,%q,%,) tn T.

Let S;C A be an open ball of center 4 and radius «, Ty € B an open
ball of center 4 and radius 8, such that ||U(x,y)|| < Min Sy X T,. Consider
the ordinary differential equation

(10.9.5.1) w = U(xy + £2,55 + ©) » 2 = {(§,0,2,%,Y,)-

As in the proof of (10.9.4) we see that there is a unique solution & —v(&,2,%,,¥,)
of that equation, defined for |&| < 2 and such that v(0,2,%,5,) = 0, provided
[[% — a|] < «/8, ||z|| < inf («/4,8/2M), ||y, — || < B.  Furthermore,
(10.7.3) shows that v is continuously differentiable for these values of
£,2,%,9, provided « and S have been taken such that the derivative of
U is bounded in S, X T, Then (10.9.4) shows that u(x,%,5,) =
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Yo + v(1,% — %g,%0,%,) is the unique solution of (10.9.1), defined in S:
|| — a||<a/8, taking the value y, for x=x, hence (x,%,¥o) —>%(¥,%:Yo)
is continuously differentiable in S X S X T,. The proof that  is p times
continuously differentiable (resp. analytic) when U has the corresponding
property, is done in the same way, using (10.7.4) (resp. (10.7.5)) instead of
(10.7.3). Finally, the last statement of the theorem is proved by the same
argument as part c) of (10.8.1).

When E = K", the Frobenius condition (10.9.4.1) of complete inte-
grability is equivalent, for the system (10.9.3), to the relations

0 d
(10.9.6) —a—’gfi(xl, e Xny) + 3}7]‘,-(;\:1,. X ¥)  i(Z e - %mY)

4 2
= a_:ciff(xl" X y) + Wff(x,,. o Zny)  FiEa e e %nY)

. 0 .
(where it must be remembered that @ fi(*1,- .., %,y) is an element of

Z(F; F) (a matrix if F is finite dimensional), and £,(%,,. . .,%,,y) an element
of F).



Chapter Xl

Elementary Spectral Theory

The choice of the subject matter of this Chapter has been dictated by
two considerations: 1° it is the first step in one of the main branches of
modern Functional Analysis, the so-called “Spectral theory”; 2° it draws
practically on every preceding Chapter for the formulation of its concepts
and the proof of its theorems, and thus may convince the student that the
“‘abstract” developments of these chapters were not purposeless generaliza-
tions.

General spectral theory, being closely linked to the general theory
of integration, falls outside the scope of this book, and the reader will
not find any results of that theory in this Chapter, with the exception of
the proof of the existence of the spectrum (11.1.3) and a few elementary
properties of the adjoint of an operator (11.5). We have concentrated
on the theory of compact linear operators, which can again be considered
as “‘slight” perturbations of general operators, although in a sense quite
different from the one which was prevalent in Chapter X; here what is
considered as “‘negligible’”” is what happens in finite dimensional subspaces,
and the substance of the main theorem (11.3.3) on compact operators is
that when we add such an operator to the identity, what we get is again
a linear homeomorphism, provided it is restricted to a suitable subspace
of finite codimension. Compact self-adjoint operators in Hilbert space
have a special interest, not only because it is possible to have much more
precise information on their spectrum than for general compact operators
(11.5.7), but also because their general theory immediately applies to
Fredholm integral equations with hermitian kernel (11.6), and in particular
to the classical Sturm-Liouville problem, which we have chosen as a
particularly beautiful illustration of the power of the methods of Functional
Analysis (11.7).

For more information on Spectral theory, and on its powerful applica-
tions, the reader can look into Taylor [23], Dunford-Schwartz [13] and

308
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Loomis [20]; we also strongly recommend Courant-Hilbert’s classic [11]
for its delightful style and its wealth of information.

1. Spectrum of a continuous operator

Let E be a complex normed space; a linear mapping « of E into itself
is often called an operator in E. The set #(E; E) of continuous operators
(which we will write simply #(E)) is a complex normed space (5.7); it
is also a noncommutative algebra over C, the “product’ being the mapping
(u,v) — uov, also written (u,v) —uv. The identity mapping of E is the
unit element of #(E), written 1. The mappings (#,v) — % + v and (#,v) — uov
are continuous in F(E) x ZL(E) (5.7.5).

We say that a complex number { is a regular value for a continuous
operator u if # — (-1 has an snverse v, in ZL(E) (ie. is a linear homeo-
morphism of E onto itself). The complex numbers { which are not regular
for u are called spectral values of u and the set of spectral values of u is
called the spectrum S(u) of u.

If ¢ € C is such that the kernel of # — ¢ - 1 is not reduced to 0, then {
is a spectral value of u; such spectral values are called eigenvalues of u;
any vector x¥ 7 0 in the kernel of # — (-1, i.e. such that u(x) = {x, is
called an eigenvector of u corresponding to the eigenvalue {; these eigen-
vectors and 0 form a closed vector subspace of E, the kernel of » — (- 1,
also called the eigenspace of u corresponding to the eigenvalue £, and
written E(Z) or E({;u).

When E has finite dimension #, elementary linear algebra shows that
any spectral value of an operator # is an eigenvalue of #; the spectrum
of u is a finite set of at most # elements, which are the roots of the
characteristic polynomial det(u — (- 1) of u, of 'degree n. Butif E is
infinite dimensional, there may exist spectral values which are not
eigenvalues.

(11.1.1) Example. Let E be a complex Hilbert space, (a,) a total
orthonormal system in E (6.6.1). To each vector x = 2,4, in E (with
||x]|2 = X,|Z,|») we associate the vector u(x) =Z,{,a,,,; it is readily
verified that # is linear and ||u(x)|| = ||#||, hence (5.5.1) # is continuous.
Moreover u(E) is the subspace of E orthogonal to a,, hence # is not sur-
jective, and this shows that { = 0 is a spectral value of «; but u(x)=0
implies x = 0, hence 0 is not an eigenvalue of «.
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(11.1.2) Suppose E is a complex Banach space, u a continuous operator
in E. The set R, of regular elements { € C for u is open in C and the mapping
{—(u—2C-1)"1of R, into L(E) is analytic.

Suppose {, € R,, and let vy = (u — {,- 1)~ For any { € €, we may
write, in Z(E)u—{-1=u—{5 1 —(E—Cp) 1= (u— Lo 1) (1 — (£ — &o)vp)-
But, by (8.3.2.1), for | — o < |[[l|™% 1 — (& — &o)vp has an inverse in

[

Z(E), equal to the sum of the absolutely convergent series X ({ — £o)"%;
n=20

hence, for these values of , # — ¢+ 1 is invertible in #(E), and its inverse,

equal to (1 — (& — {o)vy) vy, canbewritten (u—¢-1)"1 = X (£ — o), 1,

n=20
the series being absolutely convergent for |{ — {y| < [|vp]|~; which ends
the proof.

(11.1.3) If E ds a complex Banach space, the spectrum of any continuous
operator u in E is a non-empty compact subset of € contained in the ball
1] < [Jull-

First observe that for { £ 0, ¥ — -1 = — {(1 — {~1u), and therefore
# — { - 1is invertible in #(E) for |{| > ||u||, by (8.3.2.1). Furthermore, for

IZ] > ||u]|, (w—C-1)"1=— X {~""'u" where the series is absolutely

n=0

convergent, and ||(# — £ - 1)7Y| < ; []77 Y |w||* = (|¢] — |]#|)~2; as soon
n=20

as || > 2||u||, we have therefore ||(w — - 1)71|| < ||»||~L. Now, if we had
R, = C, (¥ — { - 1)~ would be an entire function (9.9.6), bounded in C since
it is bounded in the compact set |{| < 2||#|| and bounded in its complement;
by Liouville’s theorem (9.11.1) (¥ — {-1)~! would be a constant, hence
also its inverse # — { - 1, which is absurd. The first part of the proof shows
in addition that (» — (- 1)~! exists and is analytic for |{| > ||u||, therefore
the spectrum of %, which is closed in C, is compact and contained in the
ball [¢] < |fu].

It is possible to give examples of operators for which the spectrum is an
arbitrary compact subset of € (see problem 3).

PROBLEMS

1) Let E be a complex Banach space, » an element of .#(E),S(u) its spectrum.
a) Show that if a complex number { is such that, for an integer p > 1, |{[? > ||«?|],
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[=e]
then ¢ is regular for ». (Use (11.1.3), and from the convergence of the series X (™ "PunP,
n=0

w0
conclude that the series X {~"u* is also convergent.)
n=0
b) Show that the number p(«) = inf [|u”||/" is equal to the radius of the smallest
n

disc of center 0 containing S(u), and furthermore that the sequence (]|#"||Y"*) has
a limit equal to p(u). (Use a), problem 1 of section 9.1, and (9.9.4).) (For an example
in which p(u) # ||u||, see section 11.4, problem 4.

2) Let u,v be two elements of Z(E), where E is a complex Banach space. Show
that, with the notations of problem 1, S(vu) = S(uv). (Observe that if f,g are two
elements of Z(E) such that 1 — fg is invertible, and & = (1 — fg)~!, then 1 + ghf
is the inverse of 1 — gf.)

3) Let E be a separable complex Hilbert space, (e4),>1an orthonormal basis of E.
Let S be an arbitrary infinite compact subset of C, and let (p,) be a denumerable set
of points of S, which is dense in S (3.10.9). Show that there is a unique element
u € #(E) such that u(e,) = ppe, for every n > 1; prove that the spectrum of « is
equal to S, whereas the eigenvalues of  are the p,. If (€S, ¢ is not equal to any of
the py, and vz = u — {- 1, show that v(E) is dense in E but not equal to E (use
(6.5.3) to prove the first statement).

4) Show that the spectrum of the operator « defined in (11.1.1) is the disc ER!
in ¢; w has no eigenvalue. If vy = # — (- 1, show that for |{| <1, v;(E) is not dense
in E, but for |{] = 1, v;(E) is dense in E and distinct from E (cf. (6.5.3)).

5) Let E be a complex Banach space, E, a dense subspace of E. Show that for
any element « € #(E,), the spectrum of « is the same as the spectrum of its unique
continuous extension # to E (5.5.4). Give an example of an operator u € P(E,) and
of a spectral value { of u such that, if vy = — (-1, vz is a bijective mapping of E,
onto itself* (in problem 3, consider the subspace E, of E consisting of the (finite)
linear combinations of the vectors e,,).

2. Compact operators

Let E,F be two normed (real or complex) spaces; we say that a linear
mapping # of E into F is compact if, for any bounded subset B of E, u(B)
is relatively compact in F. An equivalent condition is that for any bounded
sequence (x,) in E, there is a subsequence (x,) such that the sequence

(u(x,,)) converges in F. As a relatively compact set is bounded in F (3.17.1),

it follows from (5.5.1) that a compact mapping is continuous.

* Tt can be shown that this is impossible in a Banach space E, as any bijective
continuous linear mapping of E onto itself is a homeomorphism. See [6] in the
Bibliography.
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Examples. — (11.2.1) If E or F is finite dimensional, every continuous
linear mapping of E into F is compact (by (5.5.1), (3.17.6), (3.20.16) and
(3.17.9)).

(11.2.2) If E is an infinite dimensional normed space, the identity operator
in E is not compact, by F. Riesz’s theorem (5.9.4).

(11.2.3) LetI = {a,b] be a compact interval in R, E = %(I) the Banach
space of continuous complex-valued functions in I (7.2), (s,t) — K(s,?) a
continuous complex-valued function in I X I. For any function f€E,

b
the mapping ¢ — [K(s,?)/(s)ds is continuous in I by (8.11.1); denote this

function by Uf. Then the mapping f — Uf of E into itself is linear; we
prove that it is compact. Indeed, if g = Uf, we can write, for {1, tel,

b
(11.2.3.1) g(t) — glty) = [ (K(s,2) — K(s,8))f(s)ds.

As K is uniformly continuous in I X I (3.16.5), for any ¢ > 0 there is a
0 > 0 such that the relation |t — #| < 6 implies |K(s,t) — K(s,t)| < & for
any se€I; hence, for any f in E

(11.2.3.2) lg(t) — glto)] < &0 — a)|If|]

by the mean-value theorem. This shows that the image U(B) of any
bounded set B in E is equicontinuous at every point ¢, of I (7.5); on the
other hand, for any te€I, we have similarly |g(s)| < k||f|| if |K(s,0)| <k
in I x I. By Ascoli’s theorem (7.5.7), U(B) is relatively compact in E.

(11.2.4) With the same notations and assumptions on K as in (11.2.3), let
now F be the space of complex-valued regulated functions in I (7.6), which
is again a Banach space, when considered as a subspace of the space #(I);
Ut is then defined as in (11.2.3) for any f € F, and the inequality (11.2.3.2)
still holds. The argument in (11.2.3) then proves that U is a compact
mapping of F into E.

(11.2.5) If u are two compact mappings of E into F, u + v 1s compact.

Let (x,) be a bounded sequence in E; by assumption, there is a sub-
sequence (x,) of (x,) such that (#(x,)) converges in F. As the sequence
(%) is bounded in E, there is a subsequence (x,) of (x,) such that (v(x}))
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converges in F. Then by (3.13.10) and (5.1.5), the sequence (u(x,,) + v(x,))
converges in F, q.e.d.

(11.2.6) Let EFE,F, be normed spaces, | a continuous linear mapping
of E, into E, g a continuous linear mapping of ¥ into ¥y. Then, for any
compact mapping u of E into F, uy = gouof is a compact mapping of E, into F.

For if B, is bounded in E,, f(B,) is bounded in E by (5.5.1), #(f(By)) is
relatively compact in F by assumption, and g(«(f(B,))) is relatively compact
in F; by (3.17.9).

(11.2.7) If u is a compact mapping of E into F, the restriction of u to any

vector subspace E, of E is a compact mapping of E, into u(E,).

For by (11.2.6), that restriction is a compact mapping of E, into F.

If B is a bounded subset of E,, #(B) is then a compact subset of F, and as

(B) c u(E,), #(B) is relatively compact in %(E,;).

E xample. — (11.2.8) With the same notations and assumptionson the function
Kasin (11 .2.3),let now G be the prehilbert space defined by the scalar product

(flg) j/ g()dt on the set €4(I) (6.5.1); we write the norm | (f]f) = ||f|l,
to dlstmgulsh it from the norm [|f|| = sup |f(¢)|, and we still denote by E
tel

the space %(I) with the norm ||f||; the identity mapping / — f of E into G

is continuous, since ||f||, < Vo —a- ||| by the mean value theorem; but
it is not bicontinuous, nor is G a Banach space. The Cauchy-Schwarz
inequality (6.2.1) is written here
b b b
(11.2.81) | H0g@arlz < (] lfo[a8) (]lg) ).
With the same notations as in (11.2.3), we therefore deduce from
(11.2.3.1) and (11.2.8.1) that |t, — ;| < 6 implies

(11.2.8.2) lett) — g(ta)| <l —a |If]le

and similarly |g(f)] < E/o —a- ||flls for any te 1. Hence, by the same
argument as in (11.2.3), f — Uf is a compact mapping of G info E; and as
the identity mapping of E into G is continuous, f — Uf is also a compact
mapping of G into G by (11.2.6).
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(11.2.9) Let E,F be two Banach spaces, Ey (resp. Fo) a dense subspace of E
(resp. F), u a compact mapping of Ey into F,, i its unique continuous extension
as a mapping of E into F (5.5.4). Then 4(E)CF,, and @ is a compact
mapping of E into F,,.

It is immediate that any ball ||x]| < 7 in E is contained in the closure
of any ball of center 0 and radius > 7 in E, (3.13.13), hence any bounded
set in E is contained in the closure of a bounded set B in E,. But #(B)
is contained in the closure in F of the set #(B) = u(B) by (3.11 4); now,
u(B) is relatively compact in F,, i.e. its closure in F, is compact, hence
closed iz F, and therefore equal to its closure % F. This shows that #(B)
is contained in F, and relatively compact in that space, q.e.d.

(11.2.10) Let E be a normed space, F a Banach space, (u,) a sequence of
mappings in L(E; F) (5.7) which converges to win L(E; F). Then,if every u,
15 compact, u s compact.

Let B be any bounded set in E; as F is complete, all we have to do
is to prove that (B) is precompact (3.17.5). Now B is contained in a ball
||#|| < a; for any & > 0, there is #, such that # > n, implies [l — u,||<el2a,
and therefore (by (5.7.4)), ||lu(x) — u,(x)|| < ¢/2 for any x € B. But as
u, (B) is precompact, it can be covered by finitely many balls of centers ¥;
(1 <7 < m) and radius ¢/2. For any x € B, there is therefore a j such that
||, (%) — 3;]| < /2, hence ||u(x) — y,|| < e, and the balls of centers ¥
and radius ¢ cover u(B), q.e.d.

In particular, any limit in #(E; F) of a sequence of mappings of finite
rank is compact by (11.2.1) and (11.2.10). Whether conversely any compact
mapping is equal to such a limit is still an open problem.

PROBLEMS

1) Let E be a Banach space, A an open subset of E, F a finite dimensional vector
space. Show that for any p >> 1, the identity mapping f — f of the Banach space
@g’)(A ) (section 8.12, problem 8) into 9({-" l)(A) (the latter being replaced by €5 (A)
for p = 1) is a compact operator. (Use the mean value theorem and Ascoli’s theorem.)

2) Let u be a compact mapping of an infinite dimensional Banach space E into

a normed space F. Show that there is in E a sequence (#,) such that ||#,)| = 1 for
every #, and lim wu(x,) = 0. (Observe that there is a number « > 0 and a sequence
”n-—»

(¥) in E such that ||y,|| = 1 for every %, and ||y, — ¥|| = « for m = = (section 5.9,
problem 3, and (3.16.1)), and consider the sequence (%(y,,)).)
Conclude that if the image by u of the sphere S: ||#|| = 1is closed in F, it contains 0.
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3) Let E be a separable Hilbert space, (ey) an orthonormal basis of E. If u is a
compact mapping of E into a normed space F, show that the sequence (u#(e,)) tends
to 0. (Use contradiction, and show that it is impossible that the sequence (x(e4))
should have a limit b % 0 in F.) If, conversely, F is a Banach space and the series of
general term ||u(e,)||? is convergent, show that u is compact (use the Cauchy-Schwarz
inequality to prove that the image of the ball ||#|| << 1 by u is precompact).

4) Let F be a normed space having the following property: there exists a constant
¢ > 0 such that, for any finite subset (a;)i<i<n of F, and any &£ > 0, there exists a
decomposition E = M + N of E into a direct sum of two closed subspaces, such that M
is finite dimensional, d(a;M) << e for 1<{ i< », and if for any z € F, v = p(x) + q(#),
where p(x) €M and g(x) € N, then ||g(#)|| < ¢-d(+,M). Show that, under that
assumption, any compact linear mapping of a normed space E into F is a limit in
Z(E; F) of a sequence of linear mappings of finite rank (use the definition of pre-
compact spaces). Show that any Hilbert space satisfies the preceding condition,
as well as the spaces (¢o) (section 5.3, problem 5) and /! (section 5.7, problem 1).

5) Let I = [a,b] be a compact interval in R, K(s,) a complex valued function
defined in I X I, and satisfying the assumptions of section 8.11, problem 4. Show
that if U is defined as in (11.2.3), U is still a compact mapping of E = €¢(1) into
itself.

3. The theory of F. Riesz

We will need repeatedly the following lemma:

(11.3.1) Let u be a continuous operator in a normed space E, v=1—u,
LM two closed vector subspaces of E such that Mc L, M # L and v(L) € M.
Then there is a point a € LOQM such that ||a|| < 1 and that, for any x € M,
u(a) — u(x)|| > 1/2.

By assumption, there is b € L such that b¢ M, hence d(b,M) = o > 0.
Let y € M be such that ||bp — y|| < 2«, and take a = (b — Wb — y||; we
have |ja|| = 1, and, for any ze M, a — z = b —y—|b— vl —
put as y+ ||b — y|zeM, we have |b—y —|[b— y||z|| = «, hence
|l@ — 2| >1/2 for any ze M. But, for x€ M, we have u(a) — u(x) =
a — (x + v(a) — v(x)), and by assumption, x + v(a) — v(x) € M; hence
our conclusion.

(11.3.2) Let u be a compact operator in a normed space E, and let v=1—u.
Then:

a) the kernel v—1(0) is finite dimensional;

b) the image v(E) is closed in E;

c) v(E) has finite codimension in E;

d) if v=1(0) = {0}, then v is a linear homeomorphism of E onto v(E)
(cf. (11.3.4)).
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a) For any x € N = v=1(0), we have u(x) = x, hence the image of the
ball B: |[x|| <1 én N by u is B itself; by assumption #(B) is relatively
compact in E, hence in N since N is closed in E. But this implies that N
is finite dimensional by Riesz’s theorem (5.9.4).

b) Suppose y € v(E); there is then a sequence (x,) in E, such that
y = lim v(x,) (3.13.13). Suppose first that the sequence (d(x,,N)) is

7 ~—> 0
unbounded; then, by extracting a subsequence, we may suppose that
lim d(x,N) = 4 oco. Let 2z, = x,/d(x,,N); it is immediate that d(z,, N) =1,

and therefore there is ¢, € N such that ||z, — ¢,|| < 2. Lets, = z, — ¢,, and
observe that by definition we have u(s,) = v(z,) = v(x,)/d(x,,N), and

d(s,,N) = 1. From the assumptions we deduce at once that lim w(s,) = 0.

But the sequence (s,) is bounded in E; as # is compact, there is
a subsequence (s”k) such that (u(s,,)) converges to a point ae E. As

lim (s, — u(s,)) = 0, we also have lim Ss, = @, hence, as x —d(x,N) is

#H—» O #H—>» 0O
continuous, 4(a,N) = 1. But v(¢) = lim v(sﬂk) =0, and this contradicts
k—

the definition of N.

We therefore can suppose that the sequence (d(x,,N)) is bounded by
a number M — 1; there is then a sequence x,, such that x, — x, € N and
[[%,]] <M; as v(x;) = v(x,), we may suppose that ||x,|| <M. Then as u
is compact there is a subsequence (%,,) such that (u(x,)) converges to a
point beE; as Xy, — u(x"k) = v(xnk) tends to y, (xnk) tends to b4 y and
by continuity we have v(b + y) = y, which proves that y € »(E), hence
v(E) is closed.

c) To say that y(E) has an infinite codimension in E means that there
exists an infinite sequence (a,) of points of E such that a, does not
belong to the subspace V,, _ , generated by v(E) and by a,,. . . ,a, _, forevery #.
Now each V, is closed since v(E) is closed (using (5.9.2)). By (11.3.1) we
can define by induction a sequence (b,) such that b,eV,, b,¢V, _,, ||5,]| <1
and |[u(d,) — u(b)|| > 1/2 for any j<<# — 1. This implies that the
sequence (#(b,)) has no cluster point, contradicting the assumption that #«
is compact.

d) In order to prove that v is a homeomorphism of E onto »(E) when
v~}(0) = {0}, it is only necessary to show that for any closed set ACE,
v(A) is closed in E (hence in v(E)) (3.11.4). But this is proved by exactly
the same argument as in b), replacing throughout E by A (and N by {0}).
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(11.3.3) Under the same assumptions as in (11.3.2), define inductively
N, =vY0), N,=v"YN,_,) for k>1, F;=v(E), F,= v(F,_;) for
k>1 Then:

a) The N, form an increasing sequence of finite dimensional subspaces,
the F, a decreasing sequence of finite codimensional closed subspaces.

b) There is a smallest integer n such that N, = N, for k = n; then
F,.1=F, for k= n, E is the topological direct sum (5.4) of F, and N, and
the restriction of v to F, is a linear homeomorphism of F,, onto itself.

a) Define by induction v; = v, v, = v,_,ov; I claim that v, = 1 — 1,
where u, is compact: this is shown by induction on &, for v,=(1 —uy_q)o(l—u)=
1—wu, ,—u-+u,_,ou, and the result follows at once from the inductive
hypothesis and from (11.2.6) and (11.2.5). Then by definition N, = v, 10)
and F, = v,(E), and our assertion follows from (11.3.2).

b) Suppose N, # N, for every k. We have (N, ;) €N, for £ >1;
by (11.3.1), there would exist an infinite sequence (x,) of points of E such
that x,eN,, %, N,_,, ||%]| <1 for > 1 and ||u(x;) — u(x;)|| > 1/2 for
any j < k. This implies that the sequence (u(x,)) has no cluster point,
contradicting the assumption that # is compact.

Similarly, suppose F,, # F, for every k. We have u(F,)cF, , for
k> 1; by (11.3.1), there would exist an infinite sequence (x;) of points of E
such that x, € Fy, %, ¢ Fy,y, ||%]| < 1for 2> 1, and [Ju(x,) — u(x)|| > 1/2
for any j > k. This again implies contradiction, hence there exists a smallest
integer m such that F,  , = F, for 2> m.

Next we prove that N, nF, = {0}: if yeF,nN,, then there is x€E
such that y = v,(x), and on the other hand v,(y) = 0; but this implies
that v,,(x) = 0, hence x € N,, = N,, and y = v,(x) = 0.

By definition, we have F,,cF, and v(F,) =F,; let us prove that
F, = F,,. Otherwise, we would havem > n; letzbesuchthatzeF, _,CF,
and z¢ F,; as v(z) € F,, = v(F,), there is a t € F,, such that v(z) = v(¢),
ie. z—teN,cN,; but as z—t€eF,, we conclude that z=¢, and our
initial assumption has led to a contradiction.

For each x € E we have v,(x) €F, =F,, and as v,(F,) = F, by defini-
tion of m, there is y € F, such that v,(x) = v,(y), hence x — yeN,,, and
therefore E = F, + N,. This last sum is direct since F,nN, = {0}; F, is
closed and N, is finite dimensional, therefore (5.9.3) E is the topological
divect sum of F, and N,,. Finally, the restriction of v to F,, is surjective and
its kernel is F, 0 N, € F, N N, = {0}, hence it is also injective. By (11.3.2.d)
that restriction is a linear homeomorphism of F, onto itself, and this ends
the proof.
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(11.3.4)  Under the same assumptions as in (11.3.2), if v is injective (i.e.
vY0) = {0}), then v is surjective, hence a linear homeomorphism of E onto
itself.

For the assumptions imply that N, = {0} for every %, hence n = 1
and N, is reduced to 0, therefore F; = E by (11.3.3) and the result follows
from (11.3.3).

PROBLEMS

1) Let E,F be two Banach spaces, f a continuous linear mapping of E into F
such that f(E) = F, and that* there exists a number m > 0 such that for any y € F,
there is an x € E for which f(x) = y and ||#|| < m||y]|.

a) If (y,) is a sequence of points of F which converges to a point b, show that
there exists a subsequence (¥ny), and a sequence (#3) of points of E, which converges

to a point 2 and is such that f(xp) = Yny, for every k. (Take (y,,h) such that the series
of general term ||ynk+ 1 ynkll is convergent.)

b} Let u be a compact mapping of E into F, and let v = f — #. Show that v(E)
is closed in F and has finite codimension in F. (Follow the same pattern as in the
proof of (11.3.2), using a).)

¢} Define inductively F; = v(E), Fp1 = v(f~1(Fy)) for 2 >1; show that there
is an integer # such that Fj; = F; for # > n (same method).

d) Take E = F to be a separable Hilbert space, and let (¢,),,>.1 be an orthonormal
basis of E. Define f and » such that f(e,) =¢, _ 3 for n >4, f(e,) = 0 for n < 3,
#(en) = en_ofnforn > 6, u(e;) = ule) = 0, ule)) = — g, uley) = e, ules) = ey + (e4/5).
Define inductively N; = v=1(0), Np4j = v~ I(f(Ng)) for k> 1; show that the N,
are all distinct and finite dimensional.

2) Let E,F be two normed spaces, f a linear homeomorphism of E onto a closed
subspace f(E) of F, # a compact mapping of E into F, and let v = f — u.

a) Show that »—1(0) is finite dimensional and v(E) is closed in F; furthermore,
if 71(0) = {0}, v is a linear homeomorphism of E onto v(E). (Follow the same method
as in (11.3.2).)

b) Define inductively N; = v~10), N1 = v~}(f(Ny)) for 2> 1; show that
there is an integer # such that N = Ny, for 2 > #n.

c) Give an example in which, when F; = v(E), and Fj 1 = v(f~1(Fp)) for 2 > 1,
the Fy, are all distinct (take for E = F a separable Hilbert space, and for f and « the
adjoints (11.5) of the mappings noted f and % in problem 1 d)).

3) Let E be a Banach space, g a continuous linear mapping of E into itself such
that ||g|| < 1/2; then f = 1 — g is a linear homeomorphism of E onto itself (8.3.2.1).
Let % be a compact operator in E, and let v = f — u; then the statements in (11.3.2)
and (11.3.3) are all valid. (First prove the following result, corresponding to (11.3.1):

* It can be shown that this condition is a consequence of the property f(E) = F,
when E and F are Banach spaces. See [6] in the Bibliography.



4, SPECTRUM OF A COMPACT OPERATOR 319

if McL, M+ L and v(L) €M, there is an a € L n (M such that ||a|| < 1 and for any
x€M such that |j2||<< 1, |ju(a) — »(#)|| = (1 — 2[lg|}/2)

4) In the space E = /! (section 5.7, problem 1; we keep the notations of that
problem), let f be the automorphism of E such that flear) = eany2 (R = 0), fe)) = ¢,
fleak +1) = €ap—1 for k> 1, and let » be the compact mapping such that u(e,) = 0
for n # 1, and u(e;) = ¢,. If v = f — u, and the Fj and N, are defined as in (11.3.3),
show that N3 1 # N and Fp 1 # F; for every &.

4. Spectrum of a compact operator

(11.4.1)  Let u be a compact operator in a complex normed space E. Then:

a) The spectrum S of u is an at most denumerable compact subset of C,
each point of which, with the possible exception of 0, is isolated, 0 belongs to S
if E is infinite dimensional.

b) Each number A 5 0 in the spectrum is an eigenvalue of u.

¢) For each A # 0 in S, there is a unique decomposition of E into a
topological direct sum of two subspaces F(A), N(A) (also written F(Au),
N(A;u)) such that:

(i) F(A) is closed, N(A) is finite dimensional;

(i) u(F(A)) € F(A), and the restriction of w— A-1 to F(A) is a linear
homeomorphism of that space onto itself;

(iii) w(N(A)) €N(A) and there is a smallest integer k = k(A), called the
order of A(also written k(A;u)), such that the restriction to N() of (w — 4 1)*4s0.

d) The eigenspace E(A) of u corresponding to the eigenvalue A0 is
contained in N(A) (hence fintte dimensional).

e) If Au are two different points of S, distinct from 0, then N(u) € F(4).

f) If E is a Banach space, the function { — (u — - 1)71, which is defined
and analytic in C — S, has a pole of order k(1) at each point A # 0 of S.

Let 2 5 0 be any complex number; as A~ is compact, we can apply
the Riesz theory (11.3). By (11.3.4), if A is not an eigenvalue of %, 1 — A~1%
is a linear homeomorphism of E onto itself, and the same is true of course
of u— A-1= — A1 — A=), ie. A is regular for %, which proves b).
Suppose on the contrary 4 is an eigenvalue of #; then the existence of
the decomposition F(4) + N(4) of E with properties (i), (ii), (iii), follows
from (11.3.3), as well as d) (E(4) is the kernel noted N, in (11.3.3)). To end
the proof of c), we need only show the uniqueness of F(4) and N(4). Suppose
there is a second decomposition E = F’ 4+ N’ having the same properties,
and write v =% — A-1. Then, any x € N’ can be written x =y + 2
where y € F(4), z € N(3); by assumption there is 2 > 0 such that v*(x) = 0,
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hence v*(y) = 0; as the restriction to F(1) of v* is a homeomorphism by
assumption, y = 0 and x € N(4). This proves that N’ € N(4), and a similar
argument proves N(1) € N’. Next, if ¥ = y + z € F' with y e F(1), ze N(4),
we have v*(x) = v*(y), hence v*(F’) c F(4); but as »(F’) = F’, this implies
F’ c F(4), and the inclusion F(4) € F’ is proved similarly.

Denote by u,,u, the restrictions of # to F(1) and N(4) respectively.
From the relation (#, — A+ 1)¥ = 0, it follows by linear algebra that there
is a basis of N(4) such that the matrix of u, — A-1 with respect to that
basis is triangular with diagonal 0; if 4 = dim (N(4)), the determinant of
uy — ¢+ 1 is therefore equal to (A — )%, and this proves that u, — -1
is invertible if { £ A. Let us prove on the other hand that #; — (-1 is
invertible for { — Asmall enough: wecanwriteu, —{+1=v, 4+ (A —1{) 1,
with v; = #; — A+ 1. We know by c) that v, is invertible; by (5.7.4), we
therefore have ||v; (%)|| < ||vr !|| - ||#|| in F(A), which can also be written
[loi(#)]] = ¢ ||x|| with ¢ = [jo; '||"2. Now if {7 0 and u; — (-1 is not
invertible, this implies, by b) (applied to F(1) and u,, using (11.2.7))
that there would exist an x 5 0 in F(1) such that #,(x) = {x, hence
[¢ — A - ||*]| = |Jvi(x)|| = ¢~ ||#||, which is impossible if [ — 4| < ¢. This
shows that for { £ 0, { # A and | — 4| < ¢, w — {1 is invertible (since
its restrictions to F(4) and N(Z) are), ie. { is not in S; therefore all
points A £ 0 in S are isolated, and S is at most denumerable. By b),
for each A~ 0 in S, there is ¥ ¢ 0 in E such that u(x) = Ax, hence
12| - ||| < ||#|| - ||#|| by (5.7.4), and |A| < ||#||, which proves S is compact.
To end the proof of a), suppose E is infinite dimensional; if # were a homeo-
morphism of E onto itself, the image #(B) of the ball B: ||x|| < 1 would
be a neighborhood of 0 in E, and as it is relatively compact in E, this
violates Riesz’s theorem (5.9.4).

If 4 is a point of S distinct from 0 and 4, and x € N(u), we can write
% = y 4 z with y € F(A), ze N(2). We have seen above that the restric-
tion of w = u — -1 to N(4) is a homeomorphism; as w*(x) = 0 for &
large enough, and w*(y) € F(4), w"(z) € N(1), we must have w"(y) = »*(z) = 0,
which proves statement e).

If E is a Banach space, the analyticity of (¥ —¢-1)~1 in € — S
follows from (11.1.2). With the same notations as above, 4 is not in the
spectrum of #,, hence (by (11.2.7)) (#; — {-1)~! is analytic in a neigh-
borhood of 4; in particular, there are numbers p > 0 and M > 0 such that
[[(w — ¢ 1)"Yx)|| < M- ||#]| for x € F(4) and | — 4] < p. On the other
hand, we can write u, — -1 = (A — ()1 4 v, with vy = u, — A-1, and
we know that for { # A, u, — (- 1 is invertible; moreover, we can write
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k
(11.41.1) (g — - 1)1=— =Nt

B=1
since v = 0. From this it follows that there is a number M’ > 0 such
that |0 — AP ||(up — &- D" YH)|| <K M[|x]| for [ —A[<p, {# 4 and
for any x € N(A). Now any x € E can be written x =y + 2 with y € F(4),
2eN(4), and there is a constant a >0 such that ||y|| <al|x[| and [|2]] < al|%]|
(5.9.3); therefore we see that, for |6 — 4 <p, {# A and any x eE,
we have | — A||/ — ¢ 1)"1(x)]| < a(Mp* + M')||x||. In other words
£ — 2~ Il — £ 17| < a(Mg" + M) for [ 7 and [t — 4| <p; by
(9.15.2), this implies that A is a pole of order < k for (u —¢-1)7L
But by definition there is an x e N(4) such that vE~1(x) = 0, hence
(& — A*Y((w — ¢ -1)~Y(x)) is not bounded when ¢ 2 tends to A, and this
proves that 1 is a pole of order %, and ends the proof of (11.4.1).

We say that the dimension of N(4) is the algebraic multiplicity of the
eigenvalue A of #, the dimension of the eigenspace E(A) its geometric mul-
tiplicity; they are equal if and only if %(4) = 1; when E is a Banach
space, this is equivalent to saying that 1 is a simple pole of (u—¢-1)7L

(11.4.2) Let E be a Banach space, Ey a dense subspace of E, u a compact
operator in Eg, @ its unique continuous extension to E. Then the spectra of
w and @ ave the same, and for each eigenvalue A # 0 of u, N(A,u) = N(4,4),
E(Au) = E(A%) and k(Au) = k(A4).

We know that @ is compact and maps E into Ey, by (11.2.9); if 1 £ 0
is an eigenvalue of @, any eigenvector x corresponding to A is such that
x = A~li(%) € E,, hence 4 is an eigenvalue of #, and E(A,%) c E(Ad,%); the
converse being obvious, we have S(#) = S(#) and E(Au) = E(A4)CE,
for each eigenvalue A 7 0. Considering similarly the kernels of (4 — A- 1)
and of its extension (# — A-1)* we see that they are equal, hence
k(A,u) = k(A,%) and N(Au) = N(4,#) CE,.

PROBLEMS

1) Let E be a complex Banach space, u a compact operator in E; we keep the
notations of (11.4.1), and in addition, we write p; (or Pay) and g3 =1—p; the
projections of E onto N(4) and F(4) in the decomposition of E as direct sum F(4) + N(4).

a) Show that — p; is the residue of the meromorphic function (4 — - 1)~ at
the pole A, for every 1€ S(u) such that 1 # 0.

b) If A,...,A4 are distinct points of the spectrum S(u), show that the projec-
tions m’. (1 < j < 7) commute, and that p; + ... + pa, is the projection of E onto
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N(4,) + ... 4+ N(4,) in the decomposition of E as direct sum of that subspace and of
F(A) nF(A,) n ... nF(4,).

2) Let E be an infinite dimensional complex Banach space, # a compact operator
in E, (#,), > 1 a sequence of compact operators in E, which converges to « in the Banach
space Z(E).

a) Prove that for any bounded subset B of E, the union |J #,(B) is relatively

n
compact in E. (Show that it is precompact.)

b) If A€ C does not belong to S(u), show that there is an open disc D of center 1
and an integer », such that, for n > »,, the intersection S(x,) N D = O (use (8.3.2.1))
and (u, — {- 1)~ converges uniformly to (u — {-1)~! for { € D.

c) Let (u,) be a sequence of complex numbers such that u, € S(u,) for every #;
such a sequence is always bounded. If 1 is a cluster point of (u,), show that 4 € S(u).

(One can assume that 4 = lim gy, % 0; there is then x, € E such that |[#,|| =1
n— 0

and u,(x,) = A,x,; use then a).)
d) Conversely, let A 7 0 be in S(#). Show that for each # there is (at least) a

number g, € S(u,) such that 1 = lim u,. (Otherwise, one can assume that there
n— 0

is an open disc D of center A and radius #, such that D n S(#) = {4} and DN S(«,,) = O

(extract from (u,) a suitable subsequence). Let then y be the road ¢— 1 4 reft

defined in [0,27]; consider the integral f (yy — £+ 1)7HE — A)~Wdf = 0, and use b)
Y

to obtain a contradiction.)

e) Let A 3 0 be in S(), and let D be an open disc of center A and radius 7 such
that D n S(u) = {1}; there exists #, such that, for » > #, the intersection of S(u,,)
and of the circle [{ — A| = 7 is empty (usec)). Let u,,...,u, be the points of D N S(u,,),

r
and write k, = X k(uj;u,). Show that there exists #, such that, for == #,,
j=1
kp == k(A;u). (Use the same method as in d), multiplying (%, — {- 1)~ by a suitable
polynomial in { of degree k,.) Give an example in which %, > k(A;u) for every =.
r

f) With the notations of €), let p = P4, Pu = P”i'“n; show that lim p, = p
1 .

1= n~—>» 0
in the Banach space £ (E) (use b), and problem 1). Deduce from that result that
there exists n, such that, for n > n,, N,, = N(u,;;u4,) + ... + N(u,;u,) is a supplement
to F(A;u) in E. (Suppose % is such that ||p — p,|]<C 1/2; if there was a point
%y € F(4) N N,, such that ||#,|| = 1, then the relations p(%,) = 0, p,(#,) = #, would
contradict the preceding inequality. Prove similarly that the intersection of N(4;u)
and of the subspace F(u,;u,) N ... N F(y,;u,) is reduced to 0.)

3) Let u be a compact operator in an infinite dimensional complex Banach space E,
and let P({) be a polynomial without constant term; put v = P(x). Show that the
spectrum S(v) is identical to the set of numbers P(4), where A1 € S(); furthermore,
for every u € S(v), N(u;v) is the (direct) sum of the subspaces N(Az;u) such that
P(4;) = u, and F(u;v) the intersection of the corresponding subspaces F(A;;u). (Let
V be any closed subspace of E, such that #(V) €V, and let uy be the restriction
of # to V. Show that there is a constant M independent of V and =, such that
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||(P(uv))”|l < MM|uf||- Apply that remark and problem 1 of section 11.1, taking
fo: V a suitable intersection of a finite number of subspaces of the form F(4;u).)

4) Let E be a separable Hilbert space, (e4)y >0 an orthonormal basis of E. Show
that the operator u defined by u(e,) = e, 1/(n + 1) for n =0 is compact and that
S(u) is reduced to 0 (more precisely, # has no eigenvalue).

5) Let u be a continuous operator in a complex Banach space E. A Riesz point
for u is a point 1 in the spectrum S(x) such that: 1° 1 is isolated in S(u); 2° E is the
direct sum of a closed subspace F(4) and of a finite dimensional subspace N(4) such
that w(F(4)) € F(4), #(N(4)) € N(4), the restriction of » — 41 to F(4) is a linear
homeomorphism and the restriction of # — 4+ 1 to N(4) is nilpotent.

a) If A and u are two distinct Riesz points in S(u), show that N(u) € F(4), and
F(A) is the direct sum of N(u) and F(A) n F(u).

b) A Riesz operator u is defined as a continuous operator such that all points # 0
in the spectrum S(u) are Riesz points. For any & > 0, the set of points A € S(«) such
that |A| = ¢ is then a finite set {u,,....4,}; let p; be the projection of E onto N(u;)
in the decomposition of E into the direct surn N(u;) + F(u;) (1<i<), and let

14
v =u — X uop, Show that S(v) is contained in the disc |{| <C ¢, hence (section 11.1,
i=1
problem 1) that lim |[o"||!* < e.

7 —» 0

¢) In the Banach space #(E), let X" be the closed (11.2.10) subspace of all compact
operators. Show that, in order that v € Z(E) be a Riesz operator, it is necessary and

sufficient that lim (d(u”, 2¢))Y* = 0. (To prove that the condition is necessary,
7n—> 0

use b), observing that u” = v® 4+ w,, where w, is an operator of finite rank, hence
compact. To prove that the condition is sufficient, use the result of problem 3 of
section 11.3, which can be interpreted in the following way: if ||g|| < 1/2, then either
A = 1 does not belong to S(g + u) or is a Riesz point for g + u.) 4

5. Compact operators in Hilbert spaces

Let E be a prehilbert space, u an operator in E. We say « has an adjoint
if there exists an operator #* in E such that

(11.5.1) (u(x)]y) = (x[w*(y))

for any pair of points #,y in E. It is immediate that the adjoint u* is unique
(when it exists), and (by (6.1.(V))) that then (#*)* exists and is equal to u.
It is similarly verified that when the operators # and v have adjoints, then
# ~+ v, Au and v have adjoints respectively equal to #* + v*, Ju* and v*u*.

(11.5.2) If u is continuous and has an adjoint, then u* is continuous and
|[u*|] = ||u|| in L(E). If E is a Hilbert space, every continuous operator in
E has an adjoint.
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From (11.5.1) and the Cauchy-Schwarz inequality (6.2.4) we deduce
|l (D] < (e[ [ ]] < el - ][] - ]y

for any pair x,y; taking x = u*(y), we get ||u*(y)|| < [|«]|- ||y|| for any
y € E, which proves the continuity of #* and the inequality ||u*|| < ||u/;
the converse inequality is proved by interchanging » and #* in the argument.
If E is a Hilbert space and « is continuous, then, for any y € E, the linear
form x — (u(x)|y) is continuous, and by (6.3.2) there exists a unique
vector #*(y) such that (11.5.1) holds. From the uniqueness of u*(y), we
conclude that #* is linear, hence the adjoint of #. The second statement
of (11.5.2) does not extend to prehilbert spaces.

An operator % in a prehilbert space E is called self-adjoint (or hermitian)

if it has an adjoint and if «* = «; the mapping (x,y) — (u(x)|y) = (Wyﬁc)
is then a hermitian form on E; the self-adjoint operator % is called positive
(resp. nondegenerate) if the corresponding hermitian form is positive (resp.
nondegenerate); one writes then #>>0. For any operator # having an
adjoint, # + »* and i(» — u*) are self-adjoint operators. If P is the
orthogonal projection of E on a complete vector subspace F (6.3), then
(Pxly — Py) =0 for x€E, ycE, hence (Px|y) = (Px|Py) = (x|Py),
which proves that P is a positive hermitian operator.

(11.5.3) If a continuous operator u in a prehilbert space E has an adjoint,
then w*u and uu* are self-adjoint positive operators, and ||\u*u|| = ||jun*|| =
[[||2 = ||u*||2. In particular, if u is self-adjoint, ||u?|| = ||ul|2.

The fact that #*» and wu* are self-adjoint follows from the relations
(u¥*)* = u and (uv)* = v*u*; moreover (u*u(x)|x) = (u(x)|u(x)) >0 for
any x € E, and it is proved similarly that #u* is positive. Further this last
relation shows that ||u(x)||><C |[u*u(x)|| - ||x|| by Cauchy-Schwarz, hence
(by (5.7.4)) ||u||2< ||#*u||. On the other hand |[u*u|| < ||u*|| - ||u|| = ||u||?
by (5.7.5) and (11.5.2), and this concludes the proof.

(11.5.4) If E is a Hilbert space, the adjoint of any compact operator u in E
is a compact operator.

As E is complete, it will be enough to prove that the image «*(B) of

the ball B: ||y|| <1, is precompact. Let F = u(B), which is a compact
subspace of E, and consider, in the space €¢(F) (7.2) the set H of the
restrictions to F of the linear continuous mappings ¥ — (x|y) of E into C,
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where y € B; we prove that H is relatively compact in €¢(F). Indeed, we
have |(x — #'|y)| < ||x — #’|| by the Cauchy-Schwarz inequality, since
lly|]| < 1, which shows that H is equicontinuous; on the other hand F is
contained in the ball ||x|| < ||#||, hence |(x|y)| < ||#|| for any y € B and
any x€F; Ascoli’s theorem (7.5.7) then proves our contention. Therefore, for
any & > 0, there exist a finite number of points y; (1 <{f <) in B such that
for any yeB, there is an index 7 such that |(#(x)|y — y;)| <& for any x€B.
But by (11.5.1) this last inequality is written |(x[u*(y) — #*(y,))| <e, and
either u*(y) = u*(y,) or we can take x =z/||z||, where z = u*(y) — u*(y;);
we therefore conclude that ||u*(y) — «*(y;)|| < &, and this ends the proof.

Note that the proof that »*(B) is precompact still holds when E is not
complete; but it can happen that in a prehilbert space E, a compact
operator has an adjoint which is not compact.

(11.5.5)  Let u be a compact operator in a complex prehilbert space E, having
an adjoint w* which is compact. Then:

a) The spectrum S(u*) is the image of S(u) by the mapping & — 3

b) For each A # 0 in S(u), k(A;u) = k(A;u*).

¢) If v=u— A-1, then v*¥(E) is the orthogonal supplement (6.3) of
v=1(0) = E(A;4), and the dimensions of the eigenspaces E(A;u) and E(4;u*)
are equal.

d) The subspace F(X;u*) is the orthogonal supplement of N(A;u), and the
dimensions of N(A;u) and N(X;u*) are equal.

We have v* = w* — 1-1, hence (v(x)|y) = (x[v*(y)) from (11.5.1), and
therefore the relation v(x) = 0 implies that x is orthogonal to the subspace
v¥(E). Now by (11.4.1) applied to «*, v*(E) is the topological direct sum
of F(1;u*) and of the subspace v*(N(Z;u*)) of N(4;4*), and from linear
algebra it follows that the codimension of v*(E) is equal to the dimension of
v*1(0) = E(A;u*); hence we have dim E(4;x) < dim E(1;#%¥). But
u = (u*)*, hence we have dim E(1;%) = dim E(Z ;u*); furthermore, the
orthogonal supplement of E(4;u) contains v*(E) and has the same codimen-
sion as v*(E), hence both are equal, which proves c). This also shows that
for any eigenvalue 1 # 0 of u, 1 is an eigenvalue of #*, and as the converse
follows from the relation u = (#*)*, we have also proved a).

The same argument may be applied to the successive iterates v* of v,
and shows that the image of E by v** = (v*)* is the orthogonal supplement
of the kernel of v*. Using (11.3.2), (11.4.1) and the relation # = (u*)*, this
immediately proves b) and d).
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Theorems (11.4.1) and (11.5.5) can be translated into a criterion for the
solutions of the equation #(x) — Ax = y:

(11.5.6) Under the assumptions of (11.5.4):

(i) If A is not in the spectrum of w, the equation w(x) — Ax = v has a
unique solution in E for every y e E.

(ii) If A is in the spectrum of u, a necessary and sufficient condition for
vy €E fo be such that the equation u(x) — Ax = vy have a solution in E 1s
that y be orthogonal to the solutions of the equation u*(x) — Ax = 0.

For a finite dimensional space, this reduces to the classical criterion for
existence of a solution of a system of scalar linear equations.

(11.5.7) Let w be a compact self-adjoint operator in a complex Hilbert
space E.  Then:

a) Every element of the spectrum S(u) is rveal and k(A) = 1 for every
eigenvalue A # 0 of u.

b) If A,u are two distinct eigenvalues of w, the eigenspaces E(A) and E(u)
are orthogonal.

c) Let (u,) be the strictly decreasing (finite or infinite) sequence of eigenvdlues
> 0, (v,) the strictly increasing (finite or infinite) sequence of eigenvalues << 0.
For each k such that u, (tesp. v;) is defined, let F}, (resp. F, ) be the orthogonal
supplement of E(u;) + ... + E(u,_,) (resp. E()) + ... + E(w,_,)); then
. (resp. v,) is the largest (resp. smallest) value of the function x — (u(x)|x)
on the sphere ||x)) = 1 in F, (resp. F;)), and the points of that sphere where
(u(x)|%) = py, (vesp. (u(x)|x) =w,) are the points which belong to E(u,)
(resp. E(»,)). Furthermore, ||u|| = sup (u,, — »y).

d) The space E is the Hilbert sum (6.4) of the subspaces E(u,), E(v,) and
E(0) = »~1(0).

(It may happen that either the u, or the », are absent, but from c) it
follows that the only case in which there are no eigenvalues 7 0 is the
case u = 0.)

For any eigenvalue 45~ 0 of #, we have, for an eigenvector x cor-

responding to A, (u(x)|x) = A(x|x), but (u(x)|x) = (x|u(x)) = (u(x)|x) is
real for any x € E, hence, as (x|x) isreal and £ 0, Aisreal. Ifv = — 1-1,
we therefore have v* = v, hence v(E) is the orthogonal supplement of
E(2) = v=1(0) by (11.5.4); this implies that the restriction of v to v(E) is
injective, hence, by definition (see (11.3.3)) N(1) = E(4), F(4) = »(E)
and therefore £(A) = 1. This proves statement a), and as E(u) = N(u) c F(4)
for any eigenvalue u 7% A by (11.4.1), we also have proved b).
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We first prove the last part of statement c¢). Let p = sup (u;, — »,).
Then by (11.1.2) the mapping { — (¥ — (- 1)~! is analytic for |{| > p,
whence it follows at once that the mapping & — (1 — &u)~1is analytic for
|&| < 1/p. Now, for £ in a sufficiently small neighborhood of 0, the power

@

series X2 &"u™ converges to (1 — &u)~! in Z(E) (8.3.2.1); by (9.9.4) that

n=0
power series converges for every £ such that |§| < 1/p. Furthermore, for
each 7 such that 0 <7 < 1/p, if M is the maximum of ||(1 — éu)~?|| for
|&| =7, the Cauchy inequalities (9.9.5) yield ||#"|| < M/r"<Mp". In
particular, if we use (11.5.3), we get here ||u||2" < Mp?” for every # >1;
taking 2™-th roots and letting » tend to + oo, we get, by (4.3), ||«|| < p.
On the other hand we have p < ||#|| by (11.1.3), hence ||u|| = p.

Let us now write (p,) for the strictly decreasing sequence of the absolute
values of the eigenvalues of %, so that p, = p = sup (u;, — »;); and let G,
be equal to the sum of the E(4) such that |A| = p, (there are of course either
only one or two such eigenvalues 4). Next let F, be the orthogonal sup-
plement of G, + ... 4+ G,_,; we have u(F,)CF, by a), and we prove
that the restriction «, of # to F, is such that ||u,|| < p,_,. Otherwise, by
what has just been seen above (and by (11.2.7)) there would be in F, an
eigenvector x such that u(x) = Ax with |A| > p,_,, which contradicts the
definition of F,. Write now x = y 4 z for every x€F,, with yeF, ,
and 2€G,; we have, by Cauchy-Schwarg,

— [ty 2] - Y112 + (w(2)]2) < ((2)]2) < [t 1] [|Y][2 + (#(2)]2).-

Suppose p, = u, = — v,, and write therefore z = z, + z, with z; € E(u,)
and z,€E(); this yields (@)]2) = py(llall® — [l As |22 =
[|¥112 4 ||z1]|? + |]22]|%. we see at once, using the preceding inequality and
the inequality ||u, || < p,, that on the sphere ||x|| =1 in F,, the largest
value of (#(x)|x) is p, and is reached at the points of E(u,) only, and the
smallest value is — p,, and is reached at the points of E(»,) only. The results
are similar and simpler if either there is no % such that p, = —»,, orno 4
such that p, = u,. Finally, if we remark that F, =F, +E(») + ... +E(»,)
if u, = p, and s is the largest value of % such that p, < — #,, and similarly
F, =F, +E(u) + -.. + E(y,) if v, = — p, and 7 is the largest value
of 4 such that p, < u,, an almost identical argument ends the proof of c).

Let now F_ be the closed subspace, intersection of all the F,; by
definition, #(F ) € F, and there can be 7o eigenvalue # 0 of the restric-
tion of # to F; by c) this implies that #(x) = 0 in F. Furthermore, if
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a vector x € E is orthogonal to F_ and to all the E(x,) and E(v,), by defini-
tion it is orthogonal to all the G,, hence belongs to F_, and being orthogonal
to F, it is 0. This proves (by (6.3.1)) that the algebraic sum of the sub-
spaces E(u,), E(»,) and F is dense in E; hence, by (6.4.2), E is the Hilbert
sum of those spaces. Any x € E can therefore be written uniquely
x = Xyx;, + Zyx, + %, where x,, x, and x, are the orthogonal projec-
tions of x on E(u,), E(»,) and F, respectively, the sums being convergent
series in E when the sets of indices are infinite (canonical decomposition of x);
we conclude that u(x) = Zyu,x, + 2,»,%,, and by the uniqueness of that
expression, we see that #(x) = 0 implies xeF ; in other words, F = #~1(0),
which ends the proof of (11.5.7).

Remarks. — (11.5.8) Let E, be a prehilbert space which is a dense sub-
space of a Hilbert space E (it can be proved that for any prehilbert space E,
there is a Hilbert space E having that property; we have proved in (6.6.2)
the special case of that theorem in which E, is separable). Let # be a
compact self-adjoint operator in E;; then the results a), b) and c) of theorem
(11.5.7) hold without change for u. For it follows from the principle of
extension of identities that the unique continuous extension # of # to E
is self-adjoint, and it is readily verified that |[|#|| = ||#||; our assertion
then follows from (11.4.2) and from the following remark: if F is a finite
dimensional subspace of E;, G, its orthogonal supplement in E,, G its
orthogonal supplement in E, then G, is dense in G; this is a consequence
of the fact that if v = 1 — P, in £(E) (notations of (6.3)), v is continuous
and v(E) = G, v(Ey) = G, (see (3.11.3)). With respect to the part d) of
(11.5.7), it is clear that the kernel of # is the intersection of E, with the
kernel of 4, hence is the subspace of vectors of E, orthogonal to all eigen-
spaces E(4) with 4 5= 0. But if we consider the canonical decomposition
x = 2%, + 2yx, + %, of an element x € E,, the sums on the right-hand
side and the element x, do not necessarily belong to E,.

(11.5.9) If x = Xyx; + Zyx; + %, ¥ =23y + 24¥, + Yo are the canon-
ical decompositions of two vectors x,y of E, then

(u(x)]y) = kE/»k(xélyé) + {vk(x;'!y;')

the series on the right-hand side being absolutely convergent (6.4). This
formula at once shows that the self-adjoint operator u is positive if and
only if there are no negative eigenvalues v,, and that it is nondegenerate if
and only if #=1(0) = {0}. If u is nondegenerate, and if in each eigenspace
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E(4) (A # 0), we take an orthonormal basis B, (consisting of a finite number
of vectors), then the union of the B, is a denumerable set which constitutes
a total orthonormal system in E (6.5).

(11.5.10) Under the assumptions of (11.5.8), it should be observed that
it is quite possible that the self-adjoint compact operator # in E, is non-
degenerate, whereas its continuous extension # to E is degenerate (in other
words, the kernel of % is not necessarily dense in the kernel of #); this may
happen even if « is a positive self-adjoint operator.

For compact self-adjoint operators in a Hilbert space E, (11.5.7) yields
a formula for the solutions of the equation u(x) — Ax =y in E:

(11.5.11) Let y = Zyyp + Zpyi + Yo be the canonical decomposition of y
in E. Then:

a) If A is not in S(u), the unique solution x of the equation u(x) — Ax =y
is given by its canonical decomposition

1 , 1 w1
1.5.11. = 2 E oy — Y,
(11.5.11.9) x < i 7 Nt =~ 7, PRI L

b) If A is ome of the eigenvalues i, (resp. v,), then, in order that the equa-
tion u(x) — Ax = y have a solution, it is necessary and sufficient that y, = 0
(resp. vy = 0). The solutions are then given by formula (11.5.11.1) in which
the term corresponding to m, (vesp. v;) is replaced by an arbitrary element of

E(us) (resp. E(3)).

c) In order that the equation w(x) = y have a solution, it is necessary and
sufficient that y, = 0 and that the series Z1[uz||y:l|2 and Z,1[||yy[|?
be comvergent; the solutions are then given by

1 ! 1 ”
(11.5.11.2) %= Zﬁwa;;yk + %,
k

k

with %, arbitrary in u=1(0).

Results a) and b) at once follow from (11.5.7) and (11.5.6), the formulae
being obtained by using the uniqueness of the canonical decomposition.
The same argument proves that if there are solutions to u(x) = y, they
are necessarily given by (11.5.11.2), hence the necessity of the conditions;
and if these conditions are satisfied, then the right-hand side of (11.5.11.2)
is an element of E (by (6.4)) which satisfies #(x) = y.
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PROBLEMS

1) Let E be the vector space of all indefinitely differentiable complex valued
functions defined in the interval [0,1] of R (section 8.12); E is made into a prehilbert
space by the hermitian form

1 ——
(#|y) = oj' x()y(p)ae.

Let u be the linear mapping of E into itself such that #(x) = ix’. Show that
u is self-adjoint, but is not continuous in E. (Consider the sequence (¥,) where
Zu(t) = (sinnt)[n.)

2) Let F be a separable Hilbert space, (e,) (# > 1) an orthonormal basis of F,
v the compact operator in F such that v(e,) = (¢; + ¢,)/n (section 11.2, problem 3).
Let E = y(F), and let » be the restriction of v to E, which is such that »(E)C E.
Show that in the prehilbert space E, u is a compact operator which has no adjoint.

3) a) Let E be a complex Hilbert space, f a continuous hermitian form on E X E;
show that there is a constant ¢ such that |f(¥,)| < ¢||#|| - ||¥|| (cf. (5.5.1)), and show
that there exists a unique continuous hermitian operator U in E such that
1x3) = (Ux]y).

b) Suppose E is separable, and let (e,), 1 be an orthonormal basis for E; let V

o]
be the continuous linear operator in E defined by Ve, = X ¢,/n, Ve, = 0 for¢ > 1,
n=1
and let W = VV*. Let E, be the subspace of E consisting of the (finite) linear combina-
tions of the e,, and let f be the restriction to E; X E, of the mapping (#,y) — (Wx|y).
Show that f is a continuous hermitian form on E; X E,, but that there is no linear
operator U in E, such that f(#,y) = (Ux|y) in E; X E,.
c) If u is the operator defined in problem 1, show that the hermitian form
(#,%) — (u(#x)|y) is not continuous in E X E.
4) Let E be a complex Hilbert space, # a hermitian operator in E. Prove that »
is necessarily continuous. (Assume the contrary, and show that it is possible to define

by induction a sequence (#,) of points of E such that ||#,|| = 1 for every n, and an
orthonormal sequence (e,) such that: 1° x,, is orthogonal to u(e,),...,u{e, —1); 2°if y,
is the orthogonal projection of «(#,) on the subspace V, orthogonal to e¢,,...,6,_1,

n—1
then ||y,|| = 2»® and ||y,|| > 2n’|(u( z xk/k2)|e,,)|; 3° e, = ¥,/||¥n||- Then consider
k=1

)
the point ¥ = X' x,/n?in E and obtain a contradiction by showing that |(«(#)|e,)| = »
n=1
¥ n—1
. . ’ n 7] . ’
for every »n; to do this, decompose x into #, + — t % with #, = X x/k%? and
n k=1
" o .
%, = X xp/k?% and use throughout the identity (u(y)|z) = (y|#(2)) (“method of

k=n+41
the gliding hump”’).) Compare to problem 3 c).
5) Let E be a complex prehilbert space; if U,V are two hermitian operators in E,
we write U > V if the hermitian operator U — V is positive, i.e. if (Ux|x) = (V|)
for any x € E.
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a) Suppose E is a Hilbert space, and there is a number m > O such that U = m - 1.
Show that U is a linear homeomorphism of E onto itself. (First remark that
||{U#|] = ml|#|| for any x € E, hence (problem 4) that U is a linear homeomorphism
of E onto a closed subspace M of E; next observe that if a point » € E is orthogonal
to M, then x = 0.)

b) Let F be the subspace of the prehilbert space E defined in problem 1, consisting
of the restrictions to [0,1] of all polynomials with complex coefficients. Let U be the
operator which associates to any polynomial » € F the polynomial (1 4 #)x(f). Show
that U is a continuous hermitian operator in F such that U > 1, but that U(F) is
dense in F and distinct from F.

6) a) If U is a positive hermitian operator in a complex prehilbert space E, show
that, for any € E,

U#||* < (Ux|2)(U?2|Ux)

(consider the positive hermitian form (¥,y) — (Ux|y) and use (6.2.1)).
b) Suppose in addition U is continuous (cf. problems 3 c¢) and 4). Deduce from a)
that [|U|| = sup (Ux|x).
ll=ll<1

7) Let F,G be two separable complex Hilbert spaces, (a,) (resp. (b,)) (> 1) an
orthonormal basis of F (resp. G), L the Hilbert sum (6.4) of F and G. Let v be the
continuous operator in L defined by v(a,) = 0, v(b,) = a,/n, and let E =v(G) 4 v*(v(G)).
Let u be the restriction of v to E. Show that # is compact and has an adjoint, but
that »* is not compact. (Observe that v(G) is dense in F but not closed in F; if (x,)
is a bounded sequence of points of v(G) converging to a point in F, but not in 9(G),
show that the sequence (u*(x,)) converges to a point in L which is not in E, using
the fact that the restriction of v* to F is injective.)

8) The notations and assumptions are those of (11.5.7). Let (A,) be the decreasing
sequence of numbers > 0 such that, for each &, the number of indices # such that
Aw = Wy is equal to dim(E(uy)); let (a,) be an orthonormal system in E such that,
for the indices # for which 4, = u;, the a, constitute a basis of E(u;). We say that
(An) is the full sequence of strictly positive eigenvalues of .

a) Show that 4, is the maximum value of (#(x)|#) when # varies in the subset of E
defined by the relations ||#|| = 1, (#|ap) = 0 for 1< ¥ < n — 1; furthermore, that
maximum value is attained for » = a, (use (11.5.7,d)).

b) Let z,...,z,_1 be arbitrary vectors in E, and denote by p,(z,,. . .,2,—1) the

Lu.b. of (u(x)|x) when x varies in the subset of E defined by the relations |||| = 1,
(#|z) = 0 for L <C k< m — 1. Show that A, = py(ay,....8,—1) << pul2y, . - -,2n —1) (the
“‘maximinimal principle’’; take x in the subspace generated by 4,,. . .,a, and verifying

the relations (¥|z;) = 0 for 1 <k n — 1).

c) Let «,u” be two compact self-adjoint operators, and suppose % = ' + u’’;
let (4.),(A;) be the full sequences of strictly positive eigenvalues of #’ and "
respectively, (a,) and (a;, ) the corresponding orthonormal systems. Show that if }.t:,l;’ and
Ap 4 q—1 are defined, then 4, ,_1<< l,', + l;' (consider p.,(a{, ... ,a;, P ,a;'_ 1)
If the sequence (Z;’) is finite and has N terms, and if l; and 4, 4 n are defined, then
AN < 11', (same method, observing that (w”’(x)|x) <C 0 if (x[a;') =0for 1<<j << N).
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d) Under the same assumptions as in c), show that if l,; and A, are defined, then
[ — l;[ < ||#”|| (use the relation i, = py(ay,..-,8p—1)). Furthermore, if u”’ == 0
(resp. u”’ < 0), then A, > }.1; (resp. 4, << Z.,;) (same method).

e) When E is finite dimensional, transcribe the results of b), c), d) for hermitian
forms on E X E see problem 3). Apply to the following problem: let f;
(1 < 4 <{ n) be regulated functions in a compact interval I = [a,b], and let " = [¢,d}

b _ d _
be an interval contained in I; let 4 = det (J‘fif,’dt), A’ = det (J.fifjdt) be the Gram
a c

determinants corresponding to I and I’; show that A’ <{ 4, by expressing the Gram
determinants as products of eigenvalues.

9) a) Let # be a compact self-adjoint operator in a complex Hilbert space E.
Let H be a closed subspace of E, and p the orthogonal projection of E onto H (6.3).
Show that the restriction v to H of pou (or of peucp) is compact and self-adjoint and
that (v(y)|y) = (#(y)|y) for y € H (use the relation p* = p). Let (A4),(pn) be the full
sequences of strictly positive eigenvalues of » and v respectively. Show that if A
and u,, are defined, then u, <C 4, (use problem 8 b)).

b) Suppose in addition « is positive. Show that for any finite sequence (Fn)1<h<n
of points of E, det((u(x)|#}) < Lidg-. .4y det((#;|#;)) (apply a) to the subspace H
generated by x,...,%,).

10) a) Let u be a hermitian operator in a complex prehilbert space E. Show that
for any integer # > 0, and any » € E, ||u®(x)||> < ||v" ~ )|« ||w* T1(#)]] (use Cauchy-
Schwarz).

b) Suppose E is a Hilbert space, and « is a compact self-adjoint operator. If
u(x) # 0, show that #”(x) # 0 for any integer » > 0, and that the sequence of positive
numbers o, = |[u*+1(x)||/|[#*(%)|| is increasing and tends to a limit, which is equal
to the absolute value of an eigenvalue of . Characterize that eigenvalue in terms of
the canonical decomposition of »; when does the sequence of vectors u"(%)/ [Ju™(2)]|
have a limit in E? (Use (11.5.7).)

11) Let u be a compact self-adjoint operator in a complex Hilbert space E, and
let f be a complex valued function defined and continuous in the spectrum S(u).
Show that there is a unique continuous operator v such that (with the notations of
(11.5.7)), the restriction of v to E(uy) (resp. E(v),E(0)) is the homothetic mapping

y — f(ur)y (resp. y — f(v)y, ¥ — 0). This operator is written /() ; one has (f())* = f(u).
If g is a second function continuous in S(u), and h = f + g (resp. h = fg), then
h(u) = f(u) + g(u) (resp. h(u) = f(u)g(w)). In order that f(x) be self-adjoint (resp.
positive and self-adjoint), it is necessary and sufficient that f({) be real in S(u) (resp.
#(&) = 0 in S(x)); in order that f(#) be compact, it is necessary and sufficient that
1(0) = 0.

12) Let u be a compact positive hermitian operator in a complex Hilbert space E.
Show that there exists a unique compact positive hermitian operator v in E such that
v2 = u; v is called the square voot of u.

13) Let E be a separable complex Hilbert space, (¢y)y>1 an orthonormal basis
of E. Let u be the compact operator in E defined by u(e,) = 0, u(e,) = ¢, —1/n for
n > 1. Show that there exists #no continuous operator v in E such that v? = «. (Observe

first that H = »*(E) is a closed hyperplane orthogonal to e,, and that it is contained
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in H’ = v*(E); as H’ is orthogonal to #; = v(e;), conclude that necessarily #, = 0;
next consider x, = v(ey), and observe that u(v(ey)) = 0, hence necessarily x, = Ae,,
where A is a scalar; but this implies x, = 0, hence u(e,) = 0, a contradiction.)
14) Let E be a separable complex Hilbert space, (éx)n>0 an orthonormal basis,
% the compact positive hermitian operator in E defined by u(ey) = 0, u(es) = eq/n
@

for n > 1. The point a = X (e,/n) does not belong to #(E). Let E, be the dense

n=1

subspace of E which is the direct sum of %(E) and of the one-dimensional subspace
C(ep + a). Show that the restriction v of u to E, is a compact positive hermitian
operator which is nondegenerate, although its continuous extension v=uto E is
degenerate; furthermore, in the canonical decomposition (11.5.8) of the vector
¢y + a € Ey, the summands do not all belong to E,.

15) a) Let U be a compact operator in a complex Hilbert space E, and denote by
R and L the respective square roots (problem 12) of the compact positive hermitian
operators U*U and UU* respectively. Show that there exists a unique continuous

operator V in E, whose restriction to F = R(E) is an isometry onto U(E), whose
restriction to the orthogonal supplement F’ to F is 0, and which is such that U = VR
(observe that ||Ux|| = ||R#|| for each » € E). Prove that R = V*U = RV*V, and
L = VRV*.

b) Let (a,) the full sequence of strictly positive eigenvalues of R, and (a,) a cor-
responding orthonormal system (problem 8). If b, = Va,, show that (b,) is an
orthonormal system, and that, for any x € E, Ux = Zu,(#|a,)b,, where the series

n

”
on the right-hand side is convergent (if R, = X ag(¥|az)a; show, using the proof
k=1

of (11.5.7), that lim ||[R — R,|| = 0, and apply a)). Deduce from that result that

7 —»
(&) is also the full sequence of strictly positive eigenvalues of L, and that (b,) is a
corresponding orthonormal system. The sequence (a,,) is also called the full sequence
of singular values of U.

c) Let (u,) be the sequence of distinct eigenvalues 7 0 of U, arranged in such an
order that |u,| = |u, 11| for every » for which g, |, is defined; let d,, be the dimension
of N(uy), and let (4,) be a sequence such that 4, = p,, |4,| = |4, 41| for every » for
which 4, ;1 is defined, and for each % for which gy is defined, the indices » for which
Ay = pyj form an interval of N having d;, elements. Show that, for each index » such

n n
that A, and «, are defined, II |A;| << IT ;. (Let V be the (direct) sum of the subspaces
i=1 i1=1

N(up) for 1 << k<7, and let Uy be the restriction of U to V; show that there is
in V an orthonormal basis (¢;)1 <j<m such that (Ulej)|er) = O for k > 7; for n < m,
if W,, is the subspace of V having e¢,,...,e, as a basis, let U, be the restriction of U

n
to W, and let P, be the orthogonal projection of E on W,,. Show that IT|4;]? is
j=1

equal to the determinant of U: U, = P,U*UP,, and apply problem 9 a).)
d) Let T be an arbitrary continuous operator in E, and let (y,) (resp. (J,)) be the
full sequence of singular values of UT (resp. TU). Show that y, <C ay||T|| (resp.
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8, << ay|| T||) for all values of # for which a,,y, and d, are defined (if S = TU, observe
that S*S < ||T||2U*U and use problem 8 d)).
e) Suppose T is also a compact operator, and let (8,) be the full sequence of its

n ” ”
singular values. Show that IT y; << ( IT o)( IT ;) for all values of » for which a,,8,
=1 =1 =1

and y,, are defined (apply problem 9 b)).

16) Let E be a complex Hilbert space, (a,) a sequence of points of E, (4,) a
sequence of real numbers. Show that if the series u(x) = ZAn(¥|ay)a, is convergent
n

in E for every x € E, % is a hermitian operator in E. The convergence condition is
always satisfied if the series of general term ,|(a,||? is absolutely convergent. If in
addition (a,) is an orthonormal system, the convergence condition is satisfied if the
sequence (A,) is bounded. When the A, are Z> 0 and the convergence condition is
satisfied, u is a positive hermitian operator.

17) Let E be an infinite dimensional complex Hilbert space. For a positive her-
mitian operator T in E, the following conditions are equivalent: 1° T(E) is dense
in E; 2° T—10) = {0}; 3° (Tx|2) > 0 for any » # 0 (use the Cauchy-Schwarz
inequality applied to (Tx|y)); 4° T is non-degenerate. We say that a compact operator
U in E is quasi-hermitian if there exists a non-degenevate positive hermitian operator T
such that TU = U*T.

a) Show that if U s 0, then TU? # 0 (observe that (TUZ2x|x) = (TU#x|Ux));
furthermore, for any integer p > 0, ||TU2P||2<C||TU% —2||- || TU%# || (use the

@
Cauchy-Schwarz inequality). Conclude that if U # 0, the series X {"TU"™ cannot

n=0
be convergent for every [ € €, and therefore the spectrum of U is not reduced to 0.

b) If Ais an eigenvalue of U, show that T(N(A;U)) EN(A;U*)and T(E(4;U)) cE(A;U*);
deduce from these relations that A is 7eal and that (A;U) = 1, hence N(4;U) = E(4;U)
(use (11.5.5) and the fact that (T#|x) = 0 implies » = 0). Furthermore T(E(A;U)) =
E(A;U*).

c) Let P be the orthogonal projection of E on F(4;U); show that PUP is a quasi-
hermitian compact operator in F(4;U) (observe that PUP = UP in F(1;U), and
that in F(A;U), PTP is a non-degenerate positive hermitian operator).

d) Let (4,) be the sequence of distinct eigenvalues of U, such that |1,| > [An +1]
for every », and suppose that sequence is infinite. Show that the intersection G of
the closed subspaces F(4,;U) is equal to U~Y(0) (if P is the orthogonal projection
of E onto G, observe that in G, PUP is a quasi-hermitian compact operator, and
use a)). Denote by P, the orthogonal projection of E onto F(4,;U); show that E
is the Hilbert sum of G and of the subspaces E(4,;P,U*P,). Conclude that the sum
(which is direct in the algebraic sense) of G and of the subspaces E(A,;U) is dense
in E. Furthermore, if H is the sum of the subspaces E(4,;U), Gn H = {0}. (Observe
that the subspace of E orthogonal to H is the kernel G’ = (U *)—1(0), and that T(G) € G,
and use the fact that (Tx|¥) = 0 implies » = 0.)

e) Conversely, let U be a compact operator in E such that: 1°all eigenvalues 4,
of U arereal, and k(A,;U) = 1 for every n; 2°if H is the sum of the subspaces E(A,:U),
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the sum of G = U—1(0) and H is direct and dense in E. Show that this implies that

both U and U* are quasi-hermitian compact operators (and therefore the adjoint

of a quasi-hermitian operator is quasi-hermitian). (As G’ = (U*)71(0) is the subspace

orthogonal to H, and the sum H’ of the subspaces E(4,;U*)} is such that A’ is the

subspace orthogonal to G, U* satisfies the same conditions as U. Consider a hermitian

operator T in E such that Tx = Zu,(#|b,)b, where a,> 0, the (b,) form a total
”

subset of E (5.4), and are eigenvectors of U*; cf. problem 16.)

6. The Fredholm integral equation

We now apply the preceding theory to the example (11.2.8). We
consider here the prehilbert space G of continuous complex-valued functions

in I = [a,b], with (f|g) f f(t)g(t)dt, and the operator U such that Uf is

the function

b

t — [ K(s,2)f(s)ds.

a

We say that the operator U is defined by the kernel function K.

(11.6.1)  The compact operator U in G has a compact adjoint which is defined
by the kernel function K* such that K*(s,t) = K(z,s).

We prove for a <{ x < b the identity

x b b x
(11.6.1.1) St [ K(s,p)f(s)ds = [ f(s)ds [ K(s,0)g(t)ds
a a a a
which, for x = b, will yield the result by definition. Both sides of (11.6.1.1)
are differentiable functions of x in [2,6], by (8.7.3) and Leibniz’s rule
(8.11.2); they vanish for x = 4, and their derivatives are equal at each
% € [a,b] by (8.7.3) and (8.11.2), hence they are equal everywhere in [a,b]
(8.6.1).
We leave to the reader the expression of the criterion (11.5.6) for that
particular case (the ‘“Fredholm alternative”).
If K(¢,5) = K(s,t) (in which case the kernel K is called hermitian), the
compact operator U is self-adjoint. As the prehilbert space G is separable
((7.4.3) or (7.4.4)), it can be considered as a dense subspace of a Hilbert
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space G (6.6.2), and therefore we can apply to the operator U the results
of (11.5.8). We shall denote by (4,) the sequence of the (positive or negative)
eigenvalues of U, each being repeated a number of times equal to its mul-
tiplicity, and ordered in such a way that |4,| > |4, ,|; and we will denote
by (¢,) an orthonormal system in G such that, if the values of » for which
A, = p, (tresp. A, =) are mm + 1,...,m + 7, then ¢,.@, 1, .@p4,
constitute a basis for the eigenspace E(u,) (resp. E(»,)); we therefore have
U(p,) = 4,9, for each n. The g, are called the eigenfunctions of the
kernel K.

(11.6.2) If K is a hermitian kernel, the series X, is convergent and
b b
Z 2L Jdt ] |K(s,p)|%s.
Indeed, if we apply the Bessel inequality (6.5.2) to the function s —K(s,?)
and to the orthonormal system (g,), we obtain, for any N
N b b
2 HK(s,t)qyn(s)ds '2 < [ |K(s,2)|%ds
n=1a a
ie.
N b
(11.6.2.1) 2 e, )2 < [ |K(s.0)|%ds
n=1 a

for every ¢ € L. Integrating both sides in I and using the relations (¢,|@,) =1
and (11.6.1.1) yields the result.
The canonical decomposition in G of any function / € G (11.5.7) can here

b N
be written f = X,c,@, + fo, Where ¢, = (flg,) = [ f())g,(t)dt; but, as already

observed, f, may fail to be in G; on the other hand, the series 2,c,p,
converges in the Hilbert space G, but not in general in the Banach space
E = %,(I) (in other words, the series X,c,,(¢) will not necessarily converge
for every ¢t € I). However:

(11.6.3) If K is a hermitian kernel, and [ = Ug for a function g€ G (i.e.
b

f(t) = [ K(s.t)g(s)ds), then the series Z,c,p,(f) converges absolutely and
a

uniformly to f(t) in L

We have in G the canonical decomposition g = X,d,¢, + go; as U is
a continuous linear mapping of G into E = €¢(I) (11.2.8) and Ug, = 0,
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we have f = Ug = 2, d,p,, where now the convergence is in E; i.e. the
series X A,d,9,(f) converges uniformly to (¢} inE; as ¢, = (flo,) = (Uglp,) =
glUq,) = Agle,) = A4, we have proved (11.6.3) except for the statement
on absolute convergence. But for any integer N, we have, by Cauchy-
Schwarz (for finite dimensional spaces)

N N N
( §1|cn(pn(t)\)2<( fl\an)( fllil%(t)iz)

and the right-hand side is bounded by a number independent of N, by
Bessel’s inequality (6.5.2) and (11.6.2.1).

(11.6.4) I} K is hermitian, and A is nmot in the spectrum of U, the
unique solution f of the equation Uf — Af =g, for any g€ G, is such that
) = — % g(t) + nZ mﬂ—"_—ﬂ) dupall), where the series is absolutely and
uniformly convergent in I, and d, = (glp,).

We know that the unique solution of Uf — Af = g in G belongs to G
since g € G (11.5.6), and by (11.5.11) we have ¢, = (flp,) = 1/(4, — 4). As
g + Af = U}, we can apply (11.6.3), and this proves the result.

(11.6.5) Under the same assumptions as in (11.6.4), the unique solution

b

of Uf—Af =g can be written [(f) = — —i—g(t) —+ fR(s,t;l)g(s)ds, with
2 a

R(s,t;A) = —%K(s,t) + X I(Z—]m:_) @n(S)pult), where the series 1is ab-

solutely and uwiformly convergent for (sf) el X L

By the proof of (11.6.3), wehave X, 4,d,¢,(t) = Ug(t), the series converging
absolutely and uniformly in I. As

1
MAn — 2)

1 An
TET WA

the formula in (11.6.4) gives

b b

2
0= — ) — e | Koo + 3 70 [strpts.

a
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The theorem will follow when we have proved the uniform convergence
of the series X,4Z|@,(s)|2: for there is a 6 > 0 such that |4, — 4| > ¢ for

each %, hence nZﬁ W—lli_—zf l@n(s)@alt)]| < BW 2 Ala(s)@alt)] <

3] l]l/ > Aal@als) Z l,,[q)"(t |2) by Cauchy-Schwarz, and this will prove

that the series 2, —i—— @n(s)@a(t) is absolutely and uniformly convergent

(A —2)

in I x I; the conclusion then results from (8.7.8).
Now consider the function H(s,) IK u,s)K(¢,u)du; for each fixed

t eI, we can apply to it (11.6.3), and we see that H(s,) = an?'(p”(s)m
where the series is convergent for any pair (s,f) €I x I. In particular
H(s,s) = 2,A2|g,(s)|? for all sel, and H(s,s) is continuous; by Dini’s
theorem (7.2.2), the convergence is uniform in I, g.e.d.

(11.6.6) If K is hermitian, then lim I|K (s,t) — Zlk(pk S)@y(f)|2dt = O

Nn—>»0 &

uniformly for sel.

With the notations of the proof of (11.6.5), we have

(11.6.6.1) lim (H(s,5) — & 20u(s)@a(s) = 0
k=1

n—>» 0
uniformly for s € I; if we evaluate the integral in the statement of (11.6.6),
using the fact that the ¢, are eigenvectors of U, and that they are orthogonal,
we obtain the expression in the left-hand side of (11.6.6.1), whence the
result.

In general, the series 2, lnq)”( Y, (¢) willnot be convergent forall (s,¢) eI X I;
but we have the special result:

(11.6.7) (Mercer’s theorem). Suppose the compact operator U defined by

the hermitian kernel K(s,t) ts positive. Then we have K(s,t) =2, 2,@,(s)@,(?),
where the series is absolutely and uniformly convergent in I X 1.

We recall that we have here 4, > 0 for every » (11.5.9). We first prove
that for each s € I, the series X,4,|p,(s)|? is convergent. For any s € I, we
have K(s,s) > 0. Otherwise, there would exist a neighborhood V of s
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in I such that Z(K(s,t)) < — d < 0 for (s,f) €V X V. Let ¢ be a contin-
uous mapping of I into [0,1], equal to 1 at the point s, to 0 in I — V (4.5.2).
Then we have

b____ b b
[ o(t)dt [ K( ds < — 8 ([ p(t)dt)2< 0

by (8.5.3). But the left-hand side is (Ugp|g), and this violates the assump-
tion that U is a positive operator.
Remark now that for any finite number of eigenvalues 4, (1 < & < n)

”
K,(s,f) = K{(s,%) ﬂ—kZ A@i(s)@s(f) is the kernel function of a positive op-
=1

erator U,, for we have
Wl = U = £ 3(ipal*

but the right-hand side of that equation can be written (Uglg) with

n

g =1f— Z (flgs)@s as is readily verified, hence is positive by assumption.

Therefore, by (5.3.1) it follows from K,(s,s) > 0 that the series Z,4,|@,(s)|?
is convergent, and we have X, 4,|p,(s)|? < K(s,s) for all s e I. By Cauchy-
Schwarz, we conclude that

q
(11.6.7.1) 2,11% 8)@a(t) ]<]/ zucp,, ): YRIAGID)

<]/< £ LoD,

for all (s,f) €I x I. Hence, as K(4) is bounded in I, for fixed s €I, the
series 2, Z,,(pn( )@,(8) is wniformly comvergent for tel. By (11.6.6), (8.7.8)
and (8.5.3), we conclude that X,A,¢,(s),(t) = K(s,t) for all (s,f) eI x I

since ¢ — |K(s,t) — Z,4,@,(s)p,(f)|2 is continuous in I and its integral in
I is 0. In particular, we have K(s,s) = Z,4,|p,(s)|?; by Dini’s theorem
(7.2.2) the series Z,4,|p,(s)|? is therefore wniformly convergent in I, and

(11.6.7.1) proves that the series an”@(p”(t) is absolutely and uniformly
convergent in I x I, which ends the proof.
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Remarks. — (11.6.8) The result (11.6.7) is still true when we only suppose
that U has a finife number of eigenvalues »,<< 0 (1 <<k <{m). For
(11.5.7c)) shows then that in the space F,,_;, orthogonal supplement of
E(») + ... + E(»,) in G, the restriction of the operator U is positive, and
we apply (11.6.7) to that operator, which, as is readily verified, corresponds

to the kernel function K(s,t) — 2, A,¢,(s)@,(¢), where % runs through all the
indices (in finite number) such that 4, < 0. The conclusion is then imme-
diate.

(11.6.9) We can consider the operator U in a larger prehilbert space,
namely the space F_ of regulated functions (7.6) which are continuous on

the right (i.e. such that f(t +) = f(¢) for a < ¢ < b) and such that f(b) =
b
for such a function the relation [ |f(#)|2d¢ = 0 implies f(£) = 0 everywhere

in I = [a,b], for it implies f(t} = O except at the points of a denumerable
subset D (by (8.5.3)), and every ¢ such that a < ¢ < b is limit of a decreasing
sequence of points of I — ID. The space G may be identified to a subspace
of F_, by changing eventually the value of a continuous function fe G
at the point &; it is easily proved (using (7.6.1)) that G is dense in F .
The argument of (11.2.8) then shows that U is a compact mapping of F_
into the Banach space E = € (1) (and a fortiori a compact mapping of the
prehilbert space I into itself). AIl the results proved for the operator U
in G are still valid (with their proofs) when G is replaced by F_.

PROBLEMS

1) Extend the results of section 11.6 (with the exception of (11.6.7)) to the case
in which K(s,#) satisfies the assumptions of section 8.11, problem 4 (use that problem,
as well as section 11.2, problem 5).

2) In the prehilbert space G of section 11.6, let (f,,) be a total orthonormal system

n
(6.5); let Ky(st) = X fk(s)fk(t), and let H,( I|K s,t)|dt (the ‘‘n-th Lebesgue
k

=1

n
function” of the orthonormal system (f,)). For any function g € G, let s,,(g) Z (&lfe)fr

b
so that s,(g)(x) = f K, (#,0)g(t)dt for any xel.
a

a) Prove that if, for an x, €I, the sequence (H,(%,)) is unbounded, then there
exists a function g € G such that the sequence (s,(g)(#,)) is unbounded. (Use contradic-
tion, and show that under the contrary assumption it is possible to define a strictly
increasing sequence of integers (#;), and a sequence (gz) of functions of G, with the
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b
following properties: 1° let ¢; = sup| _[K”(xo,t)gh(t)dtl (a. number which is finite
n a

by assumption), let dp = 65 + g + ... + cp_1, let my = f]Knk(xo,t) |dt, and let
qr = sup (my,...,mp_1); then ‘

my = 25 Tl{gp + 1)(dx + B);
2° let @y, be a continuous function such that gu(a) = <pk(b) =0, |pp)|<<1in I and

b
]IKnk(xo,t)tpk(t)dtl > my/2 (see section 8.7, problem 8); then g = ol (2(gr + 1)),
a

o]
Then show that the function g = X g is continuous in I and contradicts the assump-
k=1
b
tion: to evaluate the integral IK”k(xo,t)g(t)dt, split g into X g + g + 2 &
a i<k i>k

majorize the second integral and minorize the two other ones (“method of the gliding
hump”).)
b) “Show that for the trigonometric system (6.5)in I = [—1,1], the n-th Lebesgue

. . k| sin not 2

function is a constant h,, and that lim k, = + oo (observe that - = —

B> O (k—1j/n sin ¢ kn

for 2<{ k<< n). Conclude that, for any x, € I, there exists a continuous function g
n 1

inI, such that g(— 1) = g(1) = 0, for which the partialsums X' ( | gte= hntar)ettr¥ |2
k=—-—n —1

of the “Fourier series” of g are unbounded for x = x,.

3) Let g be a continuous complex valued function defined in I = [—1,1] and
such that g(—1) = g(1) = 0; g is extended to a continuous function of period 2 in R.

Let K(s,f) be the restriction of g(s — #) to I X I; if g(—?) = g(#), the compact opera-
tor U defined by the kernel function K(s,#) is self-adjoint. Show that the functions

eu(t) = e"”‘t/l/; are eigenvectors of U, the corresponding eigenvalue being the
1
“Fourier coefficient” a, = _fg(t)e‘ naitgs of g.
-1

Using that result and problem 2, give examples of a hermitian kernel function K

for which the series of general term A,,(s)@x(t) has unbounded partial sums for certain
values of s and ¢, and of a positive hermitian kernel function K for which there is a

o«
function fe G such that the series X (f|@n)@,(f) has unbounded partial sums for

n=1

certain values of 7.
4) Let I = [— 2x,27], and define K(s;) in I X I to be equal to the absolutely
o
convergent series X' — sin ns - sin n¢ for 0 <Cs<< 2w, 0<Ct¢<C 2m, and to O for
n=1"m"

other values of (s,¢) in I X I. Give an example of a function f € G such that in the
canonical decomposition of f, f, does not belong to G. (The eigenfunctions of K are
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1
the functions ¢, such that @,(f) = 0 for — 2R <C¢<C 0, @) = —=sinnt for

Tn

0 << < 2n. Take for f a continuous function in I equal to 2z — £ in [0,27], and show

@
that the series X' (f|@,)@,(f) converges everywhere in I, but has a discontinuous sum.)
=
5) With the general notations of 11.6, let K be a hermitian kernel defined in
I X I, and let U be the corresponding self-adjoint compact operator in G. Show that
for every h > 0, U" corresponds to the hermitian kernel Kj, which is defined induc-
tively by K, = K, and

b
Ku(s.t) = [Kp_1(s.4)K(u,t)du.

o0
Prove that, for > 2, Ku(st) = X Anhcpn(s)q;n(t), the series being absolutely and
n=1
o]

b b
uniformly convergent in I x I. Show in addition that A; = jds f |Kp(s,t)|2dt = |24,
a a 1

n=
and that the sequence (Aj 1 1/Ay) is increasing, and has a limit equal to |4,|2, where 4,
is an eigenvalue of K of maximum absolute value (use Cauchy-Schwarz).

6) With the notations of 11.6, let K be an arbitrary continuous kernel function
in I X I, and let U be the corresponding compact operator in G. Let M be a finite
dimensional subspace of G such that U(M) € M; let (1)1 <h<» be an orthonormal

n b b
basis of the space M, and write Uy, = Z appipp. Show that T |ap|? << Idt IIK(s,t) |2ds.
E=1 hk 2 a

(For each f€1, apply Bessel’s inequality (6.5.2) to the function s — K{s,#) and the
orthonormal system (i) in G.)

Let (4,) be the sequence defined (for the operator U) in section 11.5, problem 15 c).

] © b b

Prove that the series X' |A,|? is convergent, and X 4,2 << f dt I|K(s,t) |2ds. (Apply
n=1 n=1 a a

the preceding result to any sum of subspaces N(y;), with the notations of section 11.5,

problem 15 c).)

7) Give an example of a hermitian kernel K(s,#), such that, if U is the corresponding
compact operator in G, and V the square root of U2 (section 11.5, problem 12), there
is no hermitian kernel to which corresponds the compact operator V. (If there existed
such a kernel, Mercer’s theorem (11.6.7) could be applied to it; take then for K the
first example in problem 3.)

8) A kernel function K(s,f) defined in I X I (with I = [a,b]) and satisfying the
assumptions of section 8.11, problem 4, is called a Volterra kernel if K(s,t) = 0 for

s>t Let K= sup |K(s)|. If Uis the compact operator in G corresponding
stelx I

to K (problem 1), show that U” corresponds to a Volterra kernel K, such that
|Kau(s,t)] < MMt — 5)*~1/(n — 1)! for n > 1 and s <C ¢ (use induction on n)., Deduce
from that result that the spectrum of U is reduced to 0, and that for any (€ C,
10 = £U)=2 — 1| < MjgleME = el
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-7. The Sturm-Liouville problem

We consider, in a compact interval I = [a,b] of R, a linear differential
equation of the second order

(11.7.9) ¥ —q(x)y + Ay = f(%)

where g(x) is a real-valued continuous function in I, /(x) a complex-valued
regulated function in I, which is continuous except at a finite number of
interior points, and A a complex number. By a solution of (11 .7.1) is meant
a continuously differentiable complex-valued function y(x), such that y'(%)
is the primitive of a regulated function with only finitely many dis-
continuities, and that the relation

y"(x) — g(%)y(%) + Ay(x) = ()

holds in the complement in T of a finite subset of . The Sturm-Liouville
problem consists in finding solutions which also satisfy the two boundary
conditions

(11.7.2) hyy(a) + k(@) =0,  hyy(b) + ky'(b) =0

where hy,k,,hy,k, ate real numbers, and 4;,k; are not both 0 (1 = 1,2).
We assume in the following the elementary theory of linear differential
equations (see (10.8)). We first consider the homogeneous equation

(11.7.3) y"' —gq(x)y + 4y =0.
Note that y" is continuous in 1 for any solution of (11.7.3).

(11.7.4) There exists a number v > 0 such that, for A real and < —7,
the only solution of (11.7.3) satisfying the boundary conditions (11.7.2) is 0.

As g,A, the k%, are real, it is clear that if a solution of (11.7.3) verifies
(11.7.2), its real and imaginary parts are also solutions verifying the same
boundary conditions; we therefore can restrict ourselves to real solutions.
Suppose first that £k, 7 0, so that we can suppose & = ky = — 1. Then
we can also suppose y(a) # 0, otherwise we would have y'(a) = 0, and by
the existence theorem, our theorem would be proved. Multiplying ¥ by
a suitable constant, we may therefore assume that y(a) =1, y'(a) = A,
Note that if we put z = y’[y for y(x) % 0, we have

(11.7.4.1) 7 =q(x) —A—2%
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Let M = sup |¢(x)

zel
(@) = g(a) — 2 — ki > 1, and therefore z is strictly increasing in a neigh-
borhood of a in I. I claim that y(x) 7= 0 in I and that z(x) > &, for all
% > a. Suppose first that y(x) vanishes in I, and let %, be the smallest
solution > a of y(x) = 0. Then y(x) > 0 for a << x < x;, hence y'(x;) < 0
(it cannot be 0, or else ¥ would be identically 0 in I) and as ¢(x) — 1 >0
for all x €1, y"”’(x) > 0 for a < x < x; by (11.7.3), hence y’ is increasing
for a << ¥ < x;, and therefore is < 0 in that interval; it follows that when
x¥ < x; tends to x;, z(x) would tend to —oco. As z is continuous for
a < x < x;, there would be in that interval a smallest x, > a such that
2(x5) = hy and Ay < z(x) for a << x < x,. This implies that z'(x,) < 0; but
we have z'(x;) = g(x,) — A — h{ > 1 and we obtain a contradiction,
which proves both our assertions. In a similar way, we see that if we have
A< —M—h3—1, then z(x) < hy in I. The function z would thus be
such that |2(x)| < ¢ = sup (|hy|,|hy|) in I, where c is independent of 1. Now
from (11.7.4.1) we deduce z’(x) > — M — A — ¢ = y, hence, by the mean
value theorem, A, — %, = 2(b) — 2(a) = u(b — a). If we take A such that

, and suppose A< — M — 42 —1; then we have

g — b

b—a 1

A< —M—c2—

we obtain a contradiction, and this ends the proof of (11.7.4), when &,k, #0.

Suppose next & = 0, &k, 7 0 (hence we can suppose %k, = — 1). We
can now, by multiplying y with a suitable constant, suppose y(a) = 0,
y'(a) = 1; then z tends to + oo when x>a tends to 4. Suppose
A< — M — 2; then I claim first that y’(x) > 1in I. As y”(x) > 0 by
(11.7.3) for x > a in a neighborhood of 4, we have y’(x) > 1 for x > a in
that neighborhood. Suppose that y’(x) = 1 for some x > a, and let x, be
the smallest solution of that equation. Then y’(x) >1 for a < < x,, hence
y(x) >0 in that interval, and y"(x) >0 by (11.7.3); but we should have
y"(%,) <0, which is a contradiction. We thus see that y is strictly increasing

in I, hence z is finite for 2 < x < . I claim that z(x) > V— M—-1—-1;

otherwise, there would be a smallest x, such that z(x,) = V—— M—21-1,
and at that point we would have 2’(x,) < 0. But from (11.7.4.1) we deduce
Z(xy) 2 — M — A — 22(x,) > 1, and we have again reached a contradic-
tion. If now we suppose A taken such that 22 << — M — A — 1, we find
that the relation z(b) = h, is impossible, hence the theorem is proved in
that case. The case k, = 0, k; 7 Ois treated similarly. Finally, if k; =k, =0,
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we may again suppose y(a) = 0, y'(a) = 1, and the preceding argument
shows that y is strictly increasing in I as soon as A << — M — 2; this of
course is in contradiction with the condition y(b) = 0, and the proof is
complete.

Replacing if necessary g(x) by ¢(x) + 7, and 4 by 4 + 7, we can from
now on suppose that there is no nontrivial solution of (11.7.3) satisfying
both boundary conditions (11.7.2), for A < 0.

We will use the following identity

b
(11.7.5)  [("v — v"u)dt = (u'(D)v(b) — u(b)v'(b)) — (w'(@)v(a) — u(a)v'(a))

which is an immediate consequence of the particular case p = 2 of (8.14.1)
(u' and v"" are supposed to be regulated functions in I).

(11.7.6) For any t such that a <t < b, theve exists a real-valued continuous
function x — K,(x) defined in 1 and having the following properties:

a) In each of the intervals a < x <t, t<<x<b, K, is twice contin-
wously differentiable and is a solution of y'' — q(x)y = 0.

b) K, satisfies the boundary conditions (11.7.2).

) At the point x = t, Kj(x) has a limit on the vight and a limit on the
left, and Kt +) — K;(t—) = — L.

By the elementary theory of linear differential equations, there exists
a solution #; # O (resp. #, 7 0) of y"" — ¢(x)y = 0 satisfying the condition
hyouy(a) + k(@) = O (resp. hguy(b) + koug(b) =0), and u; and u, are
not proportional (otherwise there would be a nontrivial solution of (11.7.3)
with A = 0 satisfying both boundary conditions (11.7.2)); hence any
solution of y"" — ¢(x)y = 0 can be written in a unique way y = ¢;%; + Cyttp
with constant coefficients ¢,,c,, and the function u,(x)uy(x) — uy(x)u;()
is a constant d # 0 (by (8.14.1)). We now have only to choose the constants
¢,¢5 such that the function K, equal to ¢;u; for a << x ¢, to cyu, for
t < » < b, should be defined and continuous at the point ¢, and satisfy
condition c), which yields the relations

g (f) — Caglt) = 0
cytty (t) — cats(t) = 1

and therefore gives ¢, = — u,(f)/d, ¢y = — u,(t)/d as the solution of our
problem.
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We say (by abuse of language) that K, is the elementary solution of
y"" —¢(%)y =0 corresponding to the singularity ¢; the function (¢ x) —-K,(x)
is also written K(¢,x) and called the Green function corresponding to the
Sturm-Liouville problem under consideration. It is only defined for
a<t<b a<<x<b equalto — uy(t)u,(x)/d for x < ¢, to — u,(t Yuo(x)[d for
x > 1t, hence is continuous, and moreover can be extended by continuity
for £=a and ¢=b by taking K(a,x)= —u,(a)uy(x)/d and K(b,x)=
— #y(b)uy(x)/d; in addition it has the symmetry property

(11.7.7) K(t,x) = K(x,)
as follows at once from its expression.

(11.7.8) In order that a function y(x) be a solution of the equation
¥ — q(x)y = f(x) and verify the boundary conditions (11.7.2), it is necessary

b
and sufficient that vy(x) = —_[K(i,x)f(t)dt (f being a complex-valued

regulated functlon in I, which is continuous except at a finite number of
points of I)

a) Sufficiency. As

b x
y) = 9 [t . 22 [ oo

the verification of the differential equation (at the points where f is contin-
uous) and of the boundary conditions, reduces to routine computations of
derivatives (and use of (8.7.3)).

b) Necessity. Apply the identity (11.7.5) in both intervals a <t < »
and x <t << b, with u(f) = y(¢) and v(f) = K,(#); the relation y(x) =

b
— JK(t,x)f(t)d¢t follows at once from the properties (11.7.6) of the Green

function.
From (11.7.8) it follows that any solution of the Sturm-Liouville problem
is a solution of the Fredholm integral equation with hermitian kernel:

b
(11.7.9) y(%) — A [ K(t,%)y(t)dt = g(x),
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where
b

g(x) = — [ K{.2)f(0)dL,
and conversely. The inverses A, of the eigenvalues # 0 of the operator U
in the prehilbert space G defined in (11.2.8), corresponding to the kernel
function K, are called the eigenvalues of the Sturm-Liouville problem. We
can now state the following theorem which solves the Sturm-Liouville
problem in every case:

(11.7.10) For any real-valued continuous function g(x) in the compact
interval 1 = [a,b]:

a) The Sturm-Liouville problem has an infinite strictly increasing sequence
of eigenvalues (A,) which are real mumbers such that lim A, = + oo and

7? —» O

that the series X,1/22 is convergent.
b) For each eigenvalue A,, the homogeneous Sturm-Liouville problem has

b
a real valued solution @,(x) such that [ gi(x)dx = 1, and every other solution

is a constant multiple of @,,.

c) The sequence (g,) is a total orthonormal system in the prehilbert space G
(notation of (11.6)).

d) Let w be a complex-valued continuous function in 1, which is the prim-
itive of a regulated function w', such that: (i) w’ is continuous in 1 except at
a finite number of interior points; (ii) w’ has a comtinuous derivative w"
in each interval in which it is continwous; (ili) w satisfies the boundary

b
conditions (11.7.2).  Then, if ¢, = (v|p,) = [w(l)p,(t)dt, we have

w(x) = Z,c,p,(%) where the series is absolutely and uniformly convergent in 1.

e) If Ais not one of the eigenvalues A,,, for each regulated function f, contin-
uous in 1 except at a finite number of points, the Sturm-Liowville problem
has a unique solution w which is such that c, = (w|¢,) is given by the formula

b
¢, = d,|(A — A,), where d, = [ [(t)p,(t)dt.
f) For A = A,, a necessary and sufficient condition for the Sturm-Liouville
b
problem to have a solution is that [ [()g,(t)dt = 0. Then, for any solution w,

¢, = (wlgp,) is arbitrary, and for m # n, c, is given by the same formula
as in e).
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The homogeneous Sturm-Liouville problem cannot have two linearly
independent solutions, otherwise it would have solutions y for which y(a)
and y'(a) are arbitrary, which is absurd; this proves b). The fact that all
eigenvalues 4, are real follows from (11.7.7) and (11.5.7); moreover it
follows from (11.7.4) that at most finitely many 1, are negative. By
Mercer’s theorem ((11.6.7) and (11.6.8)), we have for the Green function

(11.7.10.1) Kitx) =2 % Pn(f)Pa(%)

n n
the series being absolutely and uniformly convergentin I x I (it is supposed,
as we may, that O is not one of the 4,). We observe that d) follows from
(11.6.3) and (11.7.8) when the additional assumption is made on w that w’
is contmuous wm 1. To prove d) in general, let ¢, (1 <4 < m) be the points
of T where »’ has a dlscontlnmty, and let o; = w'(f; +) — w'(f; —). Then

the function v = w Z K, satisfies all the conditions of d) and in
=1

addition has a continuous derivative, by (11.7.6). Using (11.7.10.1) we
conclude the proof of d). From the fact that the identity mapping of
E = %¢(I) into G is continuous, it follows that for the functions w satisfying
the conditions of d), we can also write w = X,c,@,, the sequence being
convergent in the prehilbert space G. To prove c) it will then be enough
to show that the set P of these functions w is dense in G. Now, for any
function # € G, consider the continuous function w, equal to # in

[a + % , 0 — %J , to a linear function x — ax + B satisfying the first
- . 1 1
{resp. second) boundary condition (11.7.2) in [a,a + %J (resp. [b ~ %m ,bJ) )
dt li function 1 h of the intervals | 1 1
and to a linear function in each o e intervals {a -+ o + |

1 1 .
[b ~ b — %} We can in addition suppose that at the points a,b,

the value of w, is 0 or 1; it is then clear that |u(x) — w,,(x)| < |j#|| + 1

1 1
in each of the intervals [a,a + ;] and [b ~ ,b] , and therefore || — wp||,

is arbitrarily small by the mean value theorem; as w,, satisfies all conditions
in d), this proves our assertion. Once c) is thus proved, it is clear that the
total sequence (g,) must be infinite, and (applying (11.6.2)), a) is also
completely proved. Finally, €) and f) follow at once from (11.5.11).
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Remark. 1t is possible to obtain much more precise information on the
¢, and 4, and to prove in particular that 4,/#* tends to a finite limit
(see problems 3 and 4).

PROBLEMS

1) Let I = [4,b] be a compact interval in R, and let H, be the real vector space
of all real-valued continuously differentiable functions in I; H, is made into a real
prehilbert space by the scalar product

b
(]y) = [ &y + 2y)d
a
a) Show that H, is separable (approximate the derivative of a function » € H,

by polynomials (7.4.1)); H, is therefore a dense subspace of a separable Hilbert
space H (6.6.2).

b) If (»,) is a Cauchy sequence in the prehilbert space H,, show that the sequence
(#,) is uniformly convergent to a continuous function v in I, and that if (y,) is a
second Cauchy sequence in H, having the same limit in H, then (y,) converges
uniformly in I to the same function v; the elements of H can thus be identified to
some continuous functions in I, which however need notf be differentiable at every

b
point of I. (Observe that for every function x e Hy, |#(f) — #(a)| << Vt — a(_l‘;v’zdt)ll2
a
in I) Show that, for any function z € Hy which is twice continuously differentiable
b b
in I and such that z'(a) = 2'(d) = 0, (v|¢) = — fvz”dt + fvzdt.
a a

c) Let «,8 be two real numbers, ¢ a continuous function in I. Show that in H,
b
the function » — @(x) = j(;r’2 + gx?)dt — a(x(a))? — B(x(b))? is continuous. Let A

a

b
be the subset of H consisting of the functions » such that _[xzdt = 1 (observe that

a
this is #ot a bounded set in the Hilbert space H). Show that in A n H,, the g.1.b. of
@D(x) is finite. (One need only consider the case « > 0, 8 > 0. Assume there is a
sequence (¥,) in AN H, such that lim &(x,) = — o, and, if yp, = (J‘x;zdt)l/z,
7 —» O

lim y, = + o; consider the sequence of the functions y, = #,/y, and derive a
n—- 0

b
contradiction from the fact that, on one hand lim fy:dt = 0, and on the other hand,
n—»x a
there is an interval [a,c] €I and a number p > 0 such that |y, ()| = p for every =
and every point ¢ € [a,c].)

d) Let u, be the g.1.b. of @(x) in A n Hy. Show that if (x,) is a sequence in A n H,

such that lim &(x,) = u,, (¥,) is bounded in H (same method as in c)). Deduce
n—x
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from that result that, by extracting a convenient subsequence, one may assume that
the sequence (#,) is uniformly convergent in I to a function # (which, however, need
not a priori belong to H) (use Ascoli’s theorem (7.5.7)).

e) ®(x)is a quadratic form in Hy, i.e. one has @(x + y) = D (x) + D(y) + 2¥(x,y),
where ¥ is bilinear; for any function z which is twice continuously differentiable in I

b b
and such that 2’(a) = 2’(b) = z(a) = 2(b) = 0, one has ¥(x,2) = — fxz”dt + quzdt;
a a

¥ (v,z) can be defined by the same formula for any function v continuous in I. Show that
b
for any such function zand any real number &, one has lim (®(x,+ fz)/_f(x,, + &2t >,
a

n—»0
and deduce from that result that one must have

b
f (wz"" — quz + puz)dt = 0.
a

Hence, if w is a twice continuously differentiable function such that w” = gu — u,u,
b
one has J (v — w)z”’dt = 0 by integration by parts; conclude that v — w is a pol-
a

ynomial of degree <{ 1 (observe that by substracting from # — w a suitable
polynomial p of degree 1, there exists a function z such that z”/ =% —w — p,
z(a) = z(b) = z’(a) = 2'(b) = 0). Hence u is twice continuously differentiable, satisfies
the differential equation

w’ —qu + pu =0,

b
and is such that fuzdt = 1; furthermore, w’(a) = — au(a), u'(b) = pu(b). (To prove
a

b
the last statement, express that for any ze H,, Pu + &)= pu,y I(u + &z)2dt, for
a

any real number ' &)

2) a) With the notations of (11.7.10), suppose first that k&, # 0, and let o = &/,
B = — hylky. Show that the ¢, can be defined (up to sign) by the following condi-
tions: 1° ¢, is such that, on the sphere A: (y|y) = 1 in G, the function ¢ (defined
in problem 1 c)) reaches its minimum for y = ¢;, and that minimum is equal to 4;;
2° for » > 1, let A, be the intersection of A and of the hyperplanes (y|p;) = 0 for
1<<k<n —1; then ¢, is such that on A, @ reaches its minimum for y = @,
and that minimum is equal to 4,. (The characterization of ¢, follows at once from the
results of problem 1; use the same kind of argument to characterize ¢,.)

b) If &, = 0, k, % 0, prove similar results, replacing « by 0 in @, but replacing
the sphere A by its intersection with the hyperplane in G defined by y(a) = 0. Proceed
similarly when &, % 0 and %, = 0, or when %, = &, = 0.

c) Under the assumptions of a}, let z,,...,z,_ be n — 1 arbitrary twice contin-
uously differentiable functions in I, and let B(z,...,2, _1) be the intersection of A
and of then — 1 hyperplanes (y|z;) = 0 (1 << k<< % — 1). Show thatin B(z,...,2, _ 1),
the function @ reaches a minimum p(z,...,2,_ 1) at a point of B(z,,...,2,_ 1), and
that A, is the Lu.b. of p(z,...,2, 1) when the z; vary over the set of twice contin-
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uously differentiable functions in I (the “maximinimal’’ .principle; same method as
in a) to prove the existence of the minimum; the inequality is proved by the same
method as in section 11.5, problem 8). Extend the result to the cases k%, = 0.

3) a) One considers in the same interval I two linear differential equations of
the second order 3"’ — ¢,3 + Ay = 0, ¥” — gy + Ay = 0, with the same boundary
conditions (11.7.2); let (}.f,l)), (),f,z)) be the two strictly increasing sequences of
eigenvalues of these two Sturm-Liouville problems. Show that if ¢, <C gz then
/15,1) < ).f,z) for every u, and if |g,(f) — ¢5(f}] < Min I, then ]Af,l) - Ai,z)| < M for every n
(use the maximinimal principle).

b) Conclude from a) that there is a constant ¢ such that

n2n?
2

Ay —

=¢C

for every #, with I = b — 4. (Study the Sturm-Liouville problem for the particular
case in which ¢ is a constant).
4) a) Let y be any solution of (11.7.3) in I = [a,b] for 1 > 0. Show that there
are two constants A,w such that y is a solution of the integral equation
t
— 1 —
* y() = Asin Vl(t + ) + lﬁjq(s)y(s) sin Vl(t — s)ds.

a

Show that there exists a constant B independent of 4, such that A%< B(y|y) (use
Cauchy-Schwarz in order to majorize the integral on the right-hand side of (*)).

b) Deduce from a) that if, in the Sturm-Liouville.problem, %,k, # 0 or ky=ky= 0,
then there are two constants C,,C,, such that, for every =z, and every tel

2 —
wﬂ(t) — —l— sin Vl”t

onlt) — l/—? J/2 cos ) 2t

(use a), and the result of problem 3 b)). What is the corresponding result when only
one of the constants &;,ky is 02

< Gy/n

and

<C with I=b—a
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In the following index the first reference number refers to the number of the
chapter in which the subject may be found and the second to the section within the

chapter.

A

Abel's lemma: 9.1

Abel’s theorem: 9.3, prob. 1

Absolute value of a real number: 2.2

Absolute value of a complex number: 4.4

Absolutely convergent series: 5.3

Absolutely summable family, absolutely
summable subset: 5.3

Agdjoint of an operator: 11.5

Algebraic multiplicity of an eigenvalue:
11.4

Amplitude of a complex number: 9.5,
prob. 8

Analytic mapping: 9.3

Approximate solution of a differential
equation: 10.5

Ascoli’s theorem: 7.5

At most denumerable set, at most
denumerable family: 1.9

Axiom of Archimedes: 2.1

Axiom of choice: 1.4

Axiom of nested intervals: 2.1

Banach space: 5.1

Basis for the open sets of a metric space:
3.9

Belonging to a set: 1.1

Bessel’s inequality: 6.5

Bicontinuous mapping: 3.12

Bijective mapping, bijection: 1.6

Bloch’s constant: 10.3, prob. 5

Bolzano’s theorem: 3.19

Borel-Lebesgue axiom: 3.16

Borel-Lebesgue theorem: 3.17

Boundary conditions for a differential
equation: 11.7

Bounded from above, from below (subset
of R): 2.3

Bounded subset of R: 2.3

Bounded real function: 2.3

Bounded set in a metric space: 3.4

Broken line: 5.1, prob. 4

Brouwer’s theorem for the plane: 10.2,
prob. 3

C

Canonical decomposition of a vector
relatively to a hermitian compact
operator: 11.5

Cantor’s triadic set: 4.2, prob. 2

Cartesian product of sets: 1.3

Cauchy’s conditions for analytic func-
tions: 9.10

Cauchy criterion for sequences: 3.14

Cauchy criterion for series: 5.2

Cauchy’s existence theorem for differen-
tial equations: 10.4

Cauchy’s formula: 9.9

Cauchy’s inequalities: 9.9

Cauchy-Schwarz inequality: 6.2

Cauchy sequence: 3.14

Cauchy’s theorem on analytic functions:
9.6 '

Center of a ball: 3.4

Center of a polycylinder: 9.1

Change of variables in a integral: 8.7

Circuit: 9.6

Closed ball: 3.4

Closed interval: 2.1
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Closed polycylinder: 9.1

Closed set: 3.8

Closure of a set: 3.8

Cluster point of a set: 3.8

Cluster value of a sequence: 3.18

Codimension of a linear variety: 5.1,
prob. 5

Coefficient (nth) with respect to an
orthonormal system: 6.5

Commutatively convergent series: 5.3,
prob. 4

Compact operator: 11.2

Compact set: 3.17

Compact space: 3.16

Complement of a set: 1.2

Complete space: 3.14

Complex number: 4.4

Complex vector space: 5.1

Composed mapping: 1.7

Condensation point: 3.9, prob. 4

Conformal mapping theorem: 10.3, prob. 4

Conjugate of a complex number: 4.4

Connected component of a set, of a point
in a space: 3.19

Connected set, connected space: 3.19

Constant mapping: 1.4

Contained in a set, containing a set: 1.1

Continuity of the roots as function of
parameters: 9.17

Continuous, continuous at a point: 3.11

Continuously differentiable mapping: 8.9

Convergence radius of a power series: 9.1,
prob. 1

Convergent sequence: 3.13

Convergent series: 5.2

Coordinate (nth) with respect to an
orthonormal system: 6.5

Covering of a set: 1.8

Cut of the plane: 9. App. 3

D

Decreasing function: 4.2

Degenerate hermitian form: 6.1

Dense set in a space, dense set with
respect to another set: 3.9

Denumerable set, denumerable family: 1.9

Derivative of a mapping at a point: 8.1

INDEX

Derivative in an open set: 8.1

Derivative of a function of one variable:
8.4

Derivative with respect to a subset of R:
8.4

Derivative on the left, on the right: 8.4

Derivative (second, pth): 8.12

Derivative (pth) with respect to an in-
terval: 8.12

Diagonal: 1.4

Diagonal process: 9.13

Diameter of a set: 3.4

Difference of two sets: 1.2

Differentiable mapping at a point, in a
set: 8.1

Differentiable with respect to the first,
second,..., variable: 8.9

Differentiable (twice, p times): 8.12

Differential equation: 10.4

Dimension of a linear variety: 5.1, prob. 5

Dini’s theorem: 7.2

Direct image: 1.5

Dirichlet’s function: 3.11

Disc: 4.4

Discrete metric space: 3.2 and 3.12

Distance of two points: 3.1

Distance of two sets: 3.4

E

Eigenfunction of a kernel function: 11.6

Eigenspace corresponding to an eigen-
value: 11.1

Eigenvalue of an operator: 11.1

Eigenvalues of a Sturm-Liouville
problem: 11.7

Eigenvector of an operator: 11.1

Eilenberg’s criterion: 9. App. 3

Element: 1.1

Elementary solution for a Sturm-
Liouville problem: 11.7

Empty set: 1.1

Endless road: 9.12, prob. 3

Entire function: 9.3

Equation of a hyperplane: 5.8

Equicontinuous at a point, equicontin-
uous: 7.5
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Equipotent sets: 1.9

Equivalent norms: 5.6

Equivalent roads: 9.6

Essential mapping: 9. App. 2

Essential singular point, essential sin-
gularity: 9.15

Euclidean distance: 3.2

Everywhere dense set: 3.9

Exponential function: 4.3 and 9.5

Extended real line: 3.3

Extension of a mapping: 1.4

Exterior point of a set, exterior of a set:
3.7

Extremity of an interval: 2.1

Extremity of a path: 9.6

F

Family of elements: 1.8

Finer distance, finer topology: 3.12

Finite number: 3.3

Fixed point theorem: 10.1

Fourier coefficient(nth): 6.5

Fredholm equation, Fredholm
native: 11.6

Frobenius’s theorem: 10.9

Frontier point of a set, frontier of a set:3.8

Full sequence of positive eigenvalues:
11.5, prob. 8

Function: 1.4

alter-

Function of bounded wvariation: 7.6,
prob. 3

Functions coinciding in a subset: 1.4

Functional graph, functional relation: 1.4

Fundamental system of neighborhoods:
3.6

Fundamental theorem of algebra: 9.11

G

Geometric multiplicity of an eigenvalue:
11.4

Goursat’s theorem: 9.10, prob. 1

Graph of a relation: 1.3

Graph of a mapping: 1.4

Gram determinant: 6.6, prob. 3

Greatest lower bound: 2.3
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Green function of a Sturm-Liouville
problem: 11.7

H

Haar orthonormal system: 8.7, prob. 7

Hadamard’s three circles theorem: 9.5,
prob. 10

Hadamard’s gap theorem: 9.15, prob. 7

Hausdorff distance of two sets: 3.16,
prob. 3

Hermitian form: 6.1

Hermitian kernel: 11.6

Hermitian norm: 9.5, prob. 7

Hermitian operator: 11.5

Hilbert space: 6.2 )

Hilbert sum of hilbert spaces: 6.4

Homeomorphic metric spaces, homeo-
morphism: 3.12

Homogeneous linear differential equation:
10.8

Homogeneous hyperplane: 5.8, prob. 3

Homotopic paths, homotopic loops, homo-
topy of a path into a path: 9.6 and
10.2, prob. 6

Hyperplane: 5.8 and 5.8, prob. 3

Hyperplane of support: 5.8, prob. 3

Identity mapping: 1.4

Image of a set by a mapping: 1.5

Imaginary part of a complex number: 4.4

Implicit function theorem: 10.2

Improperly integrable function along an
endless road, improper integral: 9.12,
prob. 3

Increasing function: 4.2

Increasing on the right: 8.5, prob. 1

Indefinitely differentiable mapping: 8.12

Index of a point with respect to a circuit,
of a circuit with respect to a point: 9.8

Index of a point with respect to a loop: 9.
App. 1

Induced distance: 3.10

Inessential mapping: 9. App. 2

Infimum of a set, of a function: 2.3
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Infinite product of metric spaces: 3.20,
prob. 7

Injection, injective mapping: 1.6

Integer (positive or negative): 2.2

Integral: 8.7

Integral along a road: 9.6

Integration by parts: 8.7

Interior point of a set, interior of a set: 3.7

Intersection of two sets: 1.2

Intersection of a family of sets: 1.8

Inverse image: 1.5

Inverse mapping: 1.6

Isolated point of a set: 3.9, prob. 2, and
9.15

Isolated singular point: 9.15

Isometric spaces, isometry: 3.3

Isomorphism of prehilbert spaces: 6.2

Isotropic vector: 6.1

l

Jacobian matrix, jacobian: 8.10
Janiszewski’s theorem: 9. App. 3
Jordan curve theorem: 9. App. 4
Juxtaposition of two paths: 9.6

K

Kernel function: 11.6

L

Lagrange’s inversion formula: 10.2,
prob. 10

Laurent series: 9.14

Least upper bound: 2.3

Lebesgue function (nth): 11.6, prob. 2

Lebesgue’s property: 3.16, prob. 1

Legendre polynomials: 6.6 and 8.14,
prob. 1

Leibniz’s formula: 8.13

Leibniz's rule: 8.11

Length of an interval: 2.2

Limit of a function, limit of a sequence:
3.13

Limit on the left, limit on the right: 7.6

Linear differential equation: 10.6

Linear differential equation of order #:
10.6

INDEX

Linear differential operator: 8.13

Linear form: 5.8

Linear variety: 5.1, prob. 5

Linked by a broken line (points): 5.1,
prob. 4 ‘

Liouville’s theorem: 9.11

Lipschitzian function: 10.5

Locally closed set: 3.10, prob. 3

Locally compact space: 3.18

Locally connected space: 3.19

Locally lipschitzian function: 10.4

Logarithm: 4.3 and 9.5, prob. 8

Loop: 9.6 and 10.2, prob. 6

Loop homotopy: 9.6 and 10.2, prob. 6

M

Majorant: 2.3

Majorized set, majorized function: 2.3

Mapping: 1.4

Maximal solution of a differential equa-
tion: 10.7, prob. 4

Maximinimal principle: 11.5, prob. 8 and
11.7, prob. 2

Mean value theorem: 8.5

Mercer’'s theorem: 11.6

Meromorphic function: 9.17

Method of the gliding hump: 11.5, prob. 4
and 11.6, prob. 2

Metric space: 3.1

Minimal solution of a differential equa-
tion: 10.7, prob. 4

Minorant: 2.3

Minorized set, minorized function: 2.3

Minkowski’s inequality: 6.2

Monotone function: 4.2

Morera’s theorem: 9.10, prob. 2

N

Natural boundary: 9.15, prob. 7
Natural injection: 1.6

Natural ordering: 2.2

Negative number: 2.2

Negative real half-line: 9.5, prob. 8
Neighborhood: 3.6

Nondegenerate hermitian operator: 11.5
Norm: 5.1 ‘
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Normally convergent series, normally
summable family: 7.1
Normed space: 5.1

o

One-to-one mapping: 1.6

Onto mapping: 1.8

Open ball: 3.4

Open covering: 3.16

Open interval: 2.1

Open neighborhood: 3.8

Open polycylinder: 9.1

Open set: 3.5

Operator: 11.1

Opposite path: 9.6

Order of an analytic function at a point:
9.15

Order of a linear differential operator:
8.13

Ordered pair: 1.3

Origin of an interval: 2.1

Origin of a path: 9.6

Orthogonal projection: 6.3

Orthogonal supplement: 6.3

Orthogonal system: 6.5

Orthogonal to a set (vector): 6.1

Orthogonal vectors: 6.1

Orthonormal basis: 6.5

Orthonormal system: 6.5

Orthonormalization: 6.6

Oscillation of a function: 3.14

P

p-adic distance: 3.2

Parallel hyperplane: 5.8, prob. 3

Parseval’s identities: 6.5

Partial derivative: 8.9

Partial sum (nth) of a series: 5.2

Path: 9.6 and 10.2, prob. 6

Path reduced to a point: 9.6

Peano curve: 4,2, prob. 5 and 9.12, prob. 5

Peano’s existence theorem: 10.5, prob. 4

Phragmén-Lindel6f’s principle: 9.5,
prob. 16

Picard’s theorem: 10.3, prob. 8

Piecewise linear function: 8.7
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\

Point: 3.4

Pole of an analytic function: 9.15
Positive definite hermitian form: 6.2
Positive hermitian form: 6.2

Positive hermitian operator: 11.5
Positive number: 2.2

Power series: 9.1

Precompact set: 3.17

Precompact space: 3.16

Prehilbert space: 6.2

Primary factor: 9.12, prob. 1
Primitive: 8.7

Principle of analytic continuation: 9.4
Principle of extension of identities: 3.15
Principle of extension of inequalities: 3.15
Principle of isolated zeros: 9.1
Principle of maximum: 9.5

Product of metric spaces: 3.20
Product of normed spaces: 5.4
Projection (first, second, ith): 1.3
Projections in a direct sum: 5.4
Purely imaginary number: 4.4
Pythagoras’s theorem: 6.2

Q

Quasi-derivative, quasi-differentiable
function: 8.4, prob. 4

R

Radii of a polycylinder: 9.1

Radius of a ball: 3.4

Rational number: 2.2

Rank theorem: 10.3

Real line: 3.2

Real number: 2.1

Real part of a complex number: 4.4

Real vector space: 5.1

Regular frontier point for an analytic
function: 9.15, prob. 7

Regular value for an operator: 11.1

Regularization: 8.12, prob. 2

Regulated function: 7.6

Relative maximum: 3.9, prob. 6

Relatively compact set: 3.17

Remainder (nth) of a series: 5.2

Residue: 9.15
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Resolvent of a linear differential equa-
tion: 10.8

Restriction of a mapping: 1.4

Riemann sums: 8.7, prob. 1

Riesz (F.)’s theorem: 5.9

Road: 9.6

Rolle’s theorem: 8.2, prob. 4

Rouché’s theorem: 9.17

Scalar: 9.1

Scalar product: 6.2

Schoenflies’s theorem: 9. App., prob. 9
Schottky’s theorem: 10.3, prob. 6
Schwarz’s lemma: 9.5, prob. 6

Second mean value theorem: 8.7, prob. 2
Segment: 5.1, prob. 4, and 8.5
Self-adjoint operator: 11.5

Semi-open interval: 2.1

Separable metric space: 3.10
Separating points (set of functions): 7.3
Separating two points (subset of the

plane): 9. App. 3
Sequence: 1.8
Series: 5.2
Set: 1.1

Set of mappings: 1.4

Set of uniqueness for analytic functions:
9.4

Simple arc, simple closed curve, simple
loop, simple path: 9. App. 4

Simply connected domain: 9.7 and 10.2,

prob. 6
Simply ~convergent sequence, simply
convergent series: 7.1

Simpson’s formula: 8.14, prob. 10

Singular frontier point for an analytic
function: 9.15, prob. 7

Singular part of an analytic function at
a point: 9.15

Singular values of a compact operator:
11.5, prob. 15

Solution of a differential equation: 10.4
and 11.7

Spectral value, spectrum of an operator:
11.1

INDEX

Sphere:- 3.4

Square root of a positive hermitian
compact operator: 11.5, prob. 12

Star-shaped domain: 9.7 '

Step function: 7.6

Stone-Weierstrass theorem: 7.3

Strict relative maximum: 3.9, prob. 6

Strictly decreasing, strictly increasing,
strictly monotone: 4.2 4

Strictly negative, strictly positive num-
ber: 2.2

Sturm-Liouville problem: 11.7

Subfamily: 1.8

Subsequence: 3.13

Subset: 1.4

Subspace: 3.10

Subspace of a normed space: 5.4

Substitution of power series in power
series: 9.2

Sum of a series: 5.2

Sum of an absolutely summable family:
5.3

Supremum of a set, of a function: 2.3

Surjection, surjective mapping: 1.6

Symmetric bilinear form: 6.1

System of scalar linear differential equa-
tions: 10.6

T

Tangent mappings at a point: 8.1

Tauber’s theorem: 9.3, prob. 2

Taylor’s formula: 8.14

Term (nth) of a series: 5.2

Theorem of residues: 9.16

Tietze-Urysohn extension theorem: 4.5

Topological direct sum, topological direct
summand, topological supplement: 5.4

Topological notion: 3.12

Topologically equivalent distances:

Topology: 3.12

Total derivative: 8.1

Total subset: 5.4

Totally disconnected set: 3.19

Transcendental entire function: 9.15,
prob. 3

Transported distance: 3.3
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Triangle inequality: 3.1 and 5.1
Trigonometric polynomials: 7.4
Trigonometric system: 6.5

U

Ultrametric inequality: 3.8, prob. 4

Underlying real vector space: 5.1

Uniformly continuous function: 3.11

Uniformly convergent sequence,
formly convergent series: 7.1

Uniformly equicontinuous set: 7.5, prob. 5

Uniformly equivalent distances: 3.14

Union of two sets: 1.2

Union of a family of sets: 1.8

Unit circle: 9.5

Unit circle taken # times: 9.8

uni-
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v

Value of a mapping: 1.4
Vector basis: 5.9, prob. 2
Vector space: 5.1

Volterra kernel: 11.6, prob. 8

w

Weierstrass's approximation theorem: 7.4

Weierstrass's preparation theorem: 9.17,
prob. 4

Weierstrass’'s theorem on essential sin-
gularities: 9.15, prob. 2

z

Zero of an analytic function: 9.15
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