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PREFACE

In recent years, linear mathematical models have assumed an important
role in almost all the physical and social sciences, and as was to be ex-
pected, this development has stimulated a remarkable growth of interest
in linear algebra. It is therefore surprising that the number and variety
of volumes written on linear algebra seem not to have kept pace with the
diversified needs of those in such fields as mathematics, engineering,
economics, operations research, and business. This text, however, repre-
sents an effort to meet the needs not only of those studying mathematics,
but also of those working in the physical and social sciences. It is intended
to be a reasonably rigorous, but not abstract, text. It was written with
the intention that it could be read and used by those with a limited
mathematical background.

An attempt has been made to introduce new ideas slowly and carefully,
and to give the reader a good intuitive “feeling” for the subject. The ab-
stract axiomatic development, while it has many things to recommend it,
did not seem appropriate here and was not used. Many numerical examples -
are given and, insofar as possible, each important idea is illustrated by an
example, so that the reader who does not follow the theoretical develop-
ment may assimilate the material by studying the example.

For simplicity, all scalars in the text are assumed to be real numbers,
although it is pointed out in appropriate places that the results hold for
complex numbers as well. However, the.author believes that students,
especially engineers and physicists,- shoulfi have the opportunity to solve
problems involving complex numbers, and therefore such problems are
included at the end of the appropriate chapters. It is interesting to note
that in many mathematics texts which are more general in their presenta-
tion and allow the scalars to be elements of a field, it is not possible to
find a single problem requiring the use of complex numbers.

Those who expect to make use of linear algebra must have some aware-
ness of the problems involved in making numerical computations. Conse-
quently, numerical techniques are discussed in somewhat greater detail
than is usual.

A novel feature of the text is the inclusion of a chapter covering certain
topics in convex sets and n-dimensional geometry. It also contains an
elementary discussion of some of the properties of sets of linear inequalities.

The author considers the problems at the end of each chapter to be very
important, and the reader should examine all and work a fair number of
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vi PREFACE

them. They contain additional theoretical developments as well as routine
exercises.

This text might be used in a variety of ways: for a one-semester or one-
quarter course in linear algebra; as a text or reference for part of a course
in engineering mathematics, mathematical physics, or mathematical eco-
nomics; as a supplementary text for courses in linear programming,
quantum mechanies, classical mechanics; ete.

The author is especially indebted to Professor J. H. Van Vleck, who
first impressed upon him the importance of gaining a firm intuitive grasp
of any technical subject. With respect to the text itself, the suggestions
of Professors H. Houthakker, H. Wagner (especially his insistence on
numerous examples), and of several other (unknown) reviewers were help-
ful. Jackson E. Morris provided a number of the quotations which appear
at the beginning of the chapters. The School of Industrial Management,
Massachusetts Institute of Technology, very generously provided secre-
tarial assistance for typing the manuscript.

G. H.



CONTENTS

CHAPTER 1. INTRODUCTION

1-1
1-2
1-3
14
1-5

1-6
1-7
1-8
1-9

Linear models

Linear algebra

Leontief’s interindustry model of an economy
Linear programming.

Graphical solution of a hnear progra.mmmg problem in two

variables . .
Regression analysis .
Linear circuit theory
Other linear models .
The road ahead .

CHAPTER 2. VECTORS

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

Physical motivation for the vector concept .
Operations with vectors

The scalar product . .
Generalization to higher dxmensmns
Generalized vector operations . .
Euclidean space and the scalar product
Linear dependence-

The concept of a basis .

Changing a single vector in a basm

2-10 Number of vectors in a basis for E®
2-11 Orthogonal bases.

2-12 Generalized coordinate systems
2-13 Vector spaces and subspaces

CHAPTER 3. MATRICES AND DETERMINANTS

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

Matrices .

Matrix operations .
Matrix multxphcatlon—mtroductlon . .
Matrix multiplication—further development
Vectors and matrices .
Identity, scalar, diagonal, and null matnces .
The transpose .
Symmetric and skew-symmetnc matnces
Partitioning of matrices

3-10 Basic notion of a determinant .
3-11 -General definition of a determinant
3-12 Some properties of determinants

vii

S W= =

12
14
14

17

17
19
22
25
28 |
30

39
41
43
45
48
50

61
64
68
71
73
76
78
79
85
85
88



viii CONTENTS

3-13 Expansion by cofactors . . . T ¢ (1]
3-14 Additional properties of determmants e .. o . . . 93
3-15 Laplace expansion . . B
3-16 Multiplication of determmants . .
3-17 Determinant of the product of rectangu]ar matnces . . . . 100
3-18 The matrixinverse . . . . . . . . . . . . . . 103
3-19 Properties of the inverse . . .. . . . . 105
3-20 Computation of the inverse by partltlomng P {14
3-21 Product form of the inverse . . R O |
3-22 Matrix series and the Leontiefinverse . . . . . . . . 116

CuaPTER 4. LiNEAR TRANSFORMATIONS, RANK, AND ELEMENTARY

TRANSFORMATIONS . . . . . . . . . . . . 132

4-1 Definition of linear transformations . . . . . . . . . 132
4-2 Properties of linear transformations . . . . . . . . . 135
4-3 Rank . . . . B K
4-4 Rank and determma.nts P 11
4-5 Elementary transformations . . . . . . . . . . . 144
4-6 Echelon matrices and rank B,
CHAPTER 5. SIMULTANEOUS LINEAR EQuatrons . . . . . . . 162
5-1 Introduction . . . . . . . . . . . . . . . . 162
5-2 Gaussian elimination . . . . . . . . . . . . . 162
5-3 Cramer’srule . . . . . . . . . . . . . . . 166
54 Rulesofrank . . . . . . . . . . . . . . . 167
5-56 Further properties . . . . . . . . . . . . . . 170
5-6 Homogeneous linear equations . . . . . . . . . . 173
5-7 Geometric interpretation . . . . . . . . . . . . 177
5-8 Basicsolutions . . . . . . . . . . . . . . . 178
CHAPTER 6. CoNVEX SETS AND n-DIMENSIONAL GEOMETRY .. . 188
6-1 Sets . . . . . . . . . . . . . . . . . . 188
6-2 Point sets .. B £:3)
6-3 Lines and hyperplanes e [ 7
6-4 Convexsets . . . . . . . . . . . . . . . . 202
6-5 The convexhull . . . . Coe e o207
6-6 Theorems on separating hyperpla.nes S (1)
6-7 A basic result in linear programming . . . . . . . . . 215
6-8 Convex hull of extreme points . . . . . . . . . . . 217
6-9 Introduction to convexcones . . . . . . . . . . . 219
6-10 Convex polyhedralcones . . . . . . . . . . . . 22

6-11 Linear transformations of regions . . . . . . . . . . 227



CONTENTS

CHAPTER 7. CHARACTERISTIC VALUE PROBLEMS AND QUADRATIC

7-1
7-2
7-3
-4
7-5
7-6
-7
7-8
7-9

ForMms .

Characteristic value problems .

Similarity . .
Characteristic value problems for symmetnc matnces . .
Additional properties of the eigenvectors of a symmetric matnx .
Diagonalization of symmetric matrices .
Characteristic value problems for nonsymmetnc matnces .
Quadratic forms .

Change of variables .

Definite quadratic forms

7-10 Diagonalization of quadratic forms .
7-11 Diagonalization by completion of the square
7-12 Another set of necessary and sufficient conditions for posmve and

negative definite forms .

7-13 Simultaneous diagonalization of two qua,dratlc forms
7-14 Geometric interpretation; coordinates and bases
7-15 Equivalence and similarity .

7-16 Rotation of coordinates; orthogonal transformatxons

x

236

236
238
239
242
247
249
251
253
254
255
257

259
263
264
267
269



CHAPTER 1
INTRODUCTION

“...to pursue mathematical analysis while at the same
time turning one’s back on its applications and on
intuition is to condemn it to hopeless atrophy.”

R. Courant.

1-1 Linear models. A large part of the history of physical science is
a record of the continuous human striving for a formulation of concepts
which will permit description of the real world in mathematical terms.
The more recent history of the social sciences (notably economics) also
reveals a determined attempt to arrive at more quantitatively subst..n-
tiated theories through the use of mathematics. To define mathematically
some part of the real world, it is necessary to develop an appropriate
mathematical model relating the one or more relevant variables. The
purpose of the model might be, for example, to determine the distance of
the earth from the sun as a function of time, or to relate the boiling point
of water to the external pressure, or to determine the best way of blending
raw refinery stocks to yield aviation and motor fuels. A model will con-
sist of one or more equations or inequalities. These may involve only the
variables, or they may involve variables and their derivatives (that is,
differential equations), or values of variables at different discrete times
(difference equations), or variables related in other ways (through in-
tegral or integro-differential equations, for example). It is not necessarily
true that the variables can be determined exactly by the model. They
may be random variables and, in this case, only their probability distribu-
tions can be found.

No model is ever an exact image of the real world. Approximations are
always necessary. In some cases, models of a high degree of accuracy can
be developed so that the values obtained will be correct to ten or more
decimal places. In other situations, the best models available may yield
values which differ by more than 1009, from the results of actual physical
measurements. In fact, at times we expect a model to serve only one pur-
pose, i.e., to predict, in a qualitative manner, the behavior of the variables.
The accuracy required from a model depends upon the ultimate use for
which it was devised.

The real world can frequently be represented with sufficient accuracy
by so-called linear models. Linearity is a very general concept: There are

1



2 INTRODUCTION " [cHar. 1

linear equations in the variables, linear ordinary and partial differential
equations, linear difference equations, linear integral equations, etc. All
linear models have the properties of additivity and homogeneity. Addi-
tivity means: If a variable z, produces an effect «; when used alone, and a
variable x5 produces an effect a; when used alone, then zy, z5 used together
produce the effect a; + as. Homogeneity implies that if a variable z;
produces an effect «;, then for any real number A, Az, produces an effect
Aa;. These remarks must be rather vague at present. The precise mathe-
matical definition of linearity will be given later.

From a mathematical point of view, linear models are of great ad-
vantage. The mathematics of nonlinear systems almost always presents
considerable difficulty to analytic treatment and usually requires the
use of digital computers to obtain numerical solutions. In many cases,
even large-scale digital computers are of no assistance. However, it is
often relatively easy to work with linear models and to find analytic or
numerical solutions for the quantities of interest. Both factors, ease of
manipulation and sufficiently accurate approximation of the real world,
have made linear models the most popular and useful tools in the physical
and social sciences.

1-2 Linear algebra. Almost all linear models lead to a set of simul-
tanecus linear equations or inequalities, although the original model may
consist of a set of linear differential or difference equations. The variables
in the set of simultaneous linear equations will not necessarily be the
physical variables in the original model; however, they will be in some
way related to them. We know from elementary algebra that a set of m
simultaneous linear equations has the form

1121 + *+ -+ 1%y = 7y,

2121 + -0+ Gontn = 13, (1-1)

An1T1 + * ** F GunTn = T

The coeflicients a;; are usually known constants. In some cases the r;
are given constants, and the z; j = 1,...,n, are the variables which
must satisfy the equations (1-1). In other instances, both the r; and z;
are variables, and the r; are related to the z; by (1-1).

The general concept of linearity, introduced in the preceding section,
can be made more concrete for a set of equations such as (1-1). The
contribution of variable z; to r; is a;; = a;;x;, and the sum of the con-
tributions of all the variables yields r;. If z; is changed to #; = Az, the
contribution to r; of Z; is a;; = Aax; = Aay;. This equality expresses
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the homogeneity property. If the contribution to r; of z; were a;; =
a;;z2, the expression would not be homogeneous since the contribution of
%; = Arj would be Aa;;. Linear models in a given set of variables cannot
involve any powers of the variables other than the first; neither can they
involve such functions as log z; or exp z;. Referring again to Eq. (1-1),
we note that the contribution to r; of z; and zx when used together is
aijz; + @ik = aij + o, that is, the sum of the individual contributions
of z; and z. This expression indicates the additivity property which is
characteristic of linearity. This property rules out the possibility that
products of the variables, such as z;zz, can appear in linear models since
the contribution of z; depends on the value of z;, and the combined con-
tribution of z; and =z is not the sum of the contributions of z;, zx when
used separately.

Linear algebra developed from studies of systems of linear equations,
such as Eq. (1-1), as it became necessary to derive theoretical results for
such systems and to invent simplified notations for their manipulation.
Further generalizations have led to a branch of mathematics with wide
applicability in the physical and social sciences. The techniques of linear
algebra can be extended to all linear models; in addition, they also simplify
operations with a wide variety of nonlinear models. The purpose of this
text is to provide a succinct and comprehensive introduction to linear
algebra which will enable the reader to use the subject in his own par- .
ticular field. No attempt will be made to illustrate in detail the usefulness
of the subject for any particular field; however, we shall discuss occa-
sionally applications of the techniques to specific models, such as, for
example, linear programming.

Before turning directly to the subject matter, we shall mention briefly
several linear models and note that the theory of linear algebra can be
used to great advantage in their analysis. We do not expect that the
reader will understand all (or even any) of the models. They are presented
only for the purpose of illustrating the range of problems to which linear
algebra is applicable.

1-3 Leontief’s interindustry model of an economy. In the early 1930’s,
Professor Wassily Leontief of Harvard University developed an interest-
ing linear model of the national economy. This model assumes that the
economy consists of a number of interacting industries, each of which is
imagined to produce only a single good and to use only one process of pro-
duction. For example, steel manufacture and agriculture might be treated
as industries. To produce its given good, each industry will have to pur-
chase goods from other industries, for example: The automobile industry
purchases steel from the steel industry and tires from the rubber industry.
In addition to selling its good to other industries, a given industry will,
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in general, be called upon to meet exogenous demands from consumers,
the government, or foreign trade.

Suppose that there are n different industries. Imagine also that, in a
given year, each industry produces just enough to meet the exogenous
demand and the demand of other industries for its good. Let z; be the
quantity of good ¢ produced by industry 7 in a given year. Assume that
in this year industry j will require y;; units of good 4, and that the exoge-
nous demand for ¢ will be b;. Thus, if industry ¢ produces exactly enough
to meet the demand, we obtain

Zi = Yia + Y2+ -+ Yin + b ‘(1-2)

Equation (1-2) allows for the possibility that industry ¢ may use some of
its own good. We obtain a balance equation (1-2) for each industry i.

If industry j is going to produce z; units of good j, we have to know
how many units of good ¢ will be required. Clearly, the answer depends
on the technology of the industry. Here, Leontief makes the important
assumption that the amount of good 7 required to produce good j is
directly proportional to the amount of good j produced, that is,

Yij = @ijZ;, (1-3)
where a;;, the constant of proportionality, depends on the technology of
industry j.

Substitution of (1-3) into (1-2) yields

Ty — @iT1 — Gig¥2 — * — Ginn = by
for each ¢, and we obtain the following set of simultaneous linear equations:
(1 — a11)x1 — @222 — +++ — @1aZn = by,

—a21%1 + (1 — @22)T2 — - -+ — agnty, = by, (1-4)

—QpiT] — ApaZy — -+ + (1 — )T = by

This is a set of n equations in n unknowns; intuitively, we suspect that
we should be able to solve for a unique set of z; which will satisfy these
equations. Thus, by specifying the exogenous demands b;, we expect to
determine how much each industry in the economy should produce in
order to meet the exogenous demands plus the demands of other industries.
Naturally, the relation between the z; and the b; depends on the tech-
nologies of the industries, that is, on the a;;.

Leontief also shows that the same type of analysis can be used to de-
termine the prices which should prevail in the hypothetical economy. The
technological coefficient a;; can be viewed as the number of units of product
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i required to produce one unit of product j. Let p; be the price of one
unit of 7. Then the cost of materials required to turn out one unit of j is

a1jp1 + -+ + GniPn.

The difference between the price of one unit of j and the cost of materials
required to produce this one unit is called the value added by industry j
and will be denoted by r;. Thus* ’

n
pi— Y api=ri, J=1...,mn (1-5)
=1

The value added may include labor, profit, etc. Equation (1-5) represents
a set of n simultaneous linear equations in the n prices pj, that is,

(1 — a1)p1 — @21P2 — *** — Gm1Pn = T1,
—aep1 + (1 — @22)P2 — *** — QpoPn = T2, (1-6)
—@12P1 — G2nP2 — *** + (1 — Gnn)Pn = Tn.

This set of equations looks quite similar to (1-4). The same coefficients
a;; appear. However, now they appear in transposed order. Intuitively, -
it would seem that once the value added is specified for each product in
the economy, the prices have been determined.

We have presented the bare outlines of a static model of an economy
(static because, for the period under consideration, nothing is allowed to
change with time). The model is linear. It permits us to determine the
quantities to be produced in terms of the exogenous demands, and the
prices in terms of the values added. This model has been found useful in
studies to determine whether the United States economy could meet
certain wartime demands with a given labor supply, and in investigating
the influence of a price change in one industry on prices in other industries.
The basic Leontief model has been generalized in many different ways
which we need not discuss here.

* The upper-case Greek sigma (3_) is a summation sign and, by definition,

n n
2 2 2
Zxa=x1+n+---+xn, er=x1+---—|—xm

1=1 =1

n
E aijps = a1;p1+ -+ + AP

i=1

This notation will be used frequently to simplify the writing of summations.



6 INTRODUCTION [cuaP, 1

1-4 Linear programming. Linear programming, a linear model de-
veloped within the last twelve years, has attracted wide attention. It
has been applied to a wide variety of problems, for example: programming
of petroleum refinery operations, determination of optimal feed mixes for
cattle, assignment of jobs to machines in manufacturing, etc. We shall
show how linear programming problems can arise in practice by studying
a typical, albeit oversimplified, example.

Let us consider a shop with three types of machines, A, B, and C,
which can turn out four products, 1, 2, 3, 4. Any one of the products has
to undergo some operation on each of the three machines (a lathe, drill,
and milling machine, for example). We shall assume that the production
is continuous, and that each product must first go on machine A, then B,
and finally C. Furthermore, we shall assume that the time required for
adjusting the setup of each machine to a different operation, when pro-
duction shifts from one product to another, is negligible. Table 1-1 shows:
(1) the machine hours for each machine per unit of each product; (2) the
machine hours available per year; (3) the profit realized on the sale of one
unit of any one of the products. It is assumed that the profit is directly
proportional to the number of units sold; we wish to determine the yearly
optimal output for each product in order to maximize profits.

TaBLE 1-1

Dara For ExampLE

Products Total time
Machine type available per
1 2 3 4 year
A 1.5 1 2.4 1 2000
B 1 5 1 3.5 8000
C 1.5 3 3.5 1 5000
Unit 524 | 7.30 | 8.3¢ | 4.18
profit

Examination of Table 1-1 shows that the item with the highest unit
profit requires a considerable amount of time on machines 4 and C; the
product with the second-best unit profit requires relatively little time on
machine A and slightly less time on machine C' than the item with the
highest unit profit. The product with the lowest unit profit requires a
considerable amount of time on machine B and relatively little time on C.
This cursory examination indicates that the maximum profit will not be
achieved by restricting production to a single product. It would seem that
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at least two of them should be made. It is not too obvious, however,
what the best product mix is. ‘

Suppose z; is the number of units of product j produced per year. It
is of interest to find the values of z;, rs, T3, 4 which maximize the total
profit. Since the available machine time is limited we cannot arbitrarily
increase the output of any one product. Production must be allocated
among products 1, 2, 3, 4 so that profits will be maximized without ex-
ceeding the maximum number of machine hours available on any one
machine.

Let us first consider the restrictions imposed by the number of machine
hours. Machine A is in use a total of

1.5z; + x3 + 2.4x3 + x4 hours per year,

since 1.5 hours are required for each unit of product 1, and z; units
of product 1 are produced; and so on, for the remaining products. Hence
the total time used is the sum of the times required to produce each
product. The total amount of time used cannot be greater than 2000 hours.
Mathematically, this means that

1.5131 + T + 2.4.’123 + Ta S 2000. (1—7)

It would not be correct to set the total hours used equal to 2000 (for
machine A) since there may not be any combination of production rates
that would use each of the three machines to capacity. We do not wish
to predict which machines will be used to capacity. Instead, we introduce
a “less than or equal to” sign; the solution of the problem will indicate
which machines will be used at full capacity.

For machines B and C we can write

z1 + 5z + x3 + 3.5x4 < 8000 (machine B), (1-8)
1.52y + 3z2 + 3.5z3 + z4 < 5000 (machine C). (1-9)

Since no more than the available machine time can be used, the variables
z; must satisfy the above three inequalities. Furthermore, we cannot
produce negative quantities; that is, we have either a positive amount of
any product or none at all. Thus the additional restrictions

r3 >0, 2220, 2320 2,20 (1-10)

require that the variables be non-negative.
We have now determined all the restrictions on the variables. If x;
units of product j are produced, the yearly profit z is ‘

z = 5.24xz, + 7.30z; -+ 8.34x3 + 4.18x4. (1-11)
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We wish to.find values of the variables which satisfy restrictions (1-7)
through (1-10) and which maximize the profit (1-11). This is a linear
programming problem. k

A general linear programming problem seeks to determine the values
of r non-negative variables z; which will yield the largest value of 2,

z2 = cix1 + - + ¢y, (1-12)

for those sets of non-negative z; which satisfy a set of m linear inequalities
or equations of the form

ez + - Fare A< =230, t=1,...,m.  (1-13)

One and only one of the signs <, =, > holds for each constraint, but
the sign can vary from one constraint to another. The value of m can be
greater than, less than, or equal to, 7. The linear function (1-12) is called
the objective function; the linear inequalities (1-13) are the constraints.
A set of non-negative variables (zy, ..., z,) which satisfies (1-13) is a
feasible solution; an optimal feasible solution maximizes z in (1-12). A
linear programming problem is solved when an optimal feasible solution
to the problem has been found.

1-5 Graphical solution of a linear programming problem in two vari-
ables. Linear programming problems involving only two variables can
be solved graphically. Consider, for example:

3z, + 5z < 15,

5xl + 2x2 S 10} (1_14)

zy, 23 2 0,
max z = 52y -+ 3xs.

First, we shall find the sets of numbers (x;, x3) which are feasible solu-
tions to the problem. We introduce an z,z,-coordinate system and note
that any set of numbers (z, x32) represents a point in the x,z,-plane. All
points (z;, x2) lying on or to the right of the zs-axis have z; > 0. Sim-
ilarly, all points lying on or above the z;-axis have 3 > 0. Hence any
point lying in the first quadrant has z;, z > 0 and thus satisfies the non-
negativity restrictions. Any point which is a feasible solution must lie
in the first quadrant.

To find the set of points satisfying the constraints, we must interpret
geometrically such inequalities as 3z; + 5z, < 15. If the equal sign
holds, then 3z, + 5z = 15 is the equation for a straight line, and any
point on this line satisfies the equation. Now consider the point (0, 0),
that is, the origin. We observe that 3(0) + 5(0) = 0 < 15; hence the
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origin also satisfies the inequality. In fact, any point lying on or below
the line 3z, + 5z = 15 satisfies 3x; + 5z, < 15. However, no point
lying above the line satisfies the inequality. Therefore, the set of points
satisfying the inequality 3z; + 5z2 < 15 consists of all the points in the
z,22-plane lying on or below the line 3z, + 52 = 15. However, not all
these points satisfy the non-negativity restriction and this inequality;
only the points in the first quadrant lying on or below the line 3z; +
5z, = 15 fulfill both conditions. By analogy, all points in the first quad-
rant lying on or below the line 5z, + 2z, = 10 satisfy the inequality
521 + 2z5 < 10 and the restriction of non-negativity.

The set of points satisfying both inequalities (3z; -+ 5rs < 15, 5z +
2z, < 10) and the non-negativity restriction is represented by the darkly
shaded region in Fig. 1-1. Any point in this region is a feasible solution,
and only the points in this region are feasible solutions.

Nothing has been said so far about the objective function: To solve
our problem, we must find the point or points in the region of feasible
solutions which will yield the maximum value of the objective function.
For any fixed value of z, z = 5z; + 3z is a straight line. Any point on
this line will give the same value of z. For each different value of 2, we
obtain a different line. It is important to note that all the lines represent-
ing the different values of z are parallel since the slope of any line z =
€121 + €ax2 is —e1/cz, and hence is independent of z. In our problem, .
¢y, ¢z are fixed, and the lines are parallel.

We wish to find the line of maximum z which has at least one point in
common with the region of feasible solutions. The lines in Fig. 1-1 repre-

Figure 1-1
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sent the objective function for three different values of z. Clearly, 2, is
not the maximum value of z: The line can be moved up (this increases 2)
and still have some points in the region of feasible solutions. Although
23 > 2 and 2y, the line representing 23 has no point in common with the
region of feasible solutions and thus does not satisfy our premise. Hence
23 is the maximum value of z; the feasible solution which yields this value
is the corngr A of the region of feasible solutions.

In Fig. 1-1, the approximate values of the variables for the optimal
solution are z; = 1, z; = 2.4. To find the exact values, we note that
the point representing the optimal solution is the intersection of the lines
3zy + 5zg = 15, 5xy + 2z, = 10. Solving these two equations simul-
taneously, we obtain z; = 1.053, z, = 2.368. Substitution of these
values into the objective function yields the maximum value of z = 12.37.

In our example of a linear programming problem, several features have
emerged which merit further discussion. First of all, there is an infinite
number of feasible solutions which form a region in the z,z,-plane. This
region has straight boundaries and some corners; geometrically speaking,
" it is a convex polygon. For any fixed value of 2, the objective function
is a straight line. The lines corresponding to different values of z are
parallel. The maximum value of z is represented by the line with the
largest value of z which has at least one point in common with the polygon
of feasible solutions. The optimal solution occurred at a corner of the
polygon. Interestingly enough, the same characteristics are found in
general linear programming problems with a feasible solution (z,, .. ., «,)
representing a point in an r-dimensional space.

In 1947, George Dantzig developed an iterative algebraic technique
(simplex method) which provides exact solutions to any linear program-
ming problem (it is not an approximation method). Since a very consider-
able number of arithmetical operations is required to find an optimal
feasible solution to a problem involving many variables and constraints,
large-scale digital computers are used to solve these problems.

1-6 Regression analysis. It is often necessary (particularly in the
fields of engineering and economics) to determine empirically the best
formula relating one variable to another set of variables. Economists
and engineers often start with the assumption that a linear relation exists
between the “dependent” variable and the “independent” variables. For
example, if y is the dependent variable and z,...,x, are the inde-
pendent variables, then a relation of the form

Y= a1y + -+ an, (1-15)

might be used to explain y in terms of the z;. The ; are assumed to be
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constants; the best a; are to be determined from experimental or historical
data. For example, we may wish to relate the demand for automobiles, y,
in a given year to the national income for the previous year, z;, the change
in national income over the last two years, z;, the demand for auto-
mobiles in the past year, x3, ete. If, after determining the a;, comparison
shows that the computed demand y (1-15) is a sufficiently close approxi-
mation of the actual demand, then formula (1-15) may be used to predict
from current data sales of automobiles for the coming year.

We have not yet defined the meaning of the “best «;” in (1-15) or shown
how these values are computed. Let us suppose that, from a series of
experimental or historical data, we obtain k(k > n) sets of data which
yield y for a given set of values of z,, ..., z,. The 7th set of data is de-
noted by y(z), 1(2), . . ., z,(z). For any given set of «; in (1-15), let §(z)
be the value of y¥ computed by using z,(%), . . ., »(?) in formula (1-15).
The criterion most frequently used to determine the best set of «; requires
that the sum of the squares of the differences between the measured
values of y and the value computed for the same set of z; by means of
Eq. (1-15) be minimal; that is, we wish to find the «; which minimize z
when

2= 32 1ui) — G (1-16)
But =
IO = 3 it (1-17)
and =

k n 2
z = [y(i) - aﬂj(i)]
=1 j=1

1 j=

k n n 2
=, {y%‘) — 2y(3) D ajwi(i) + [Z a,-xj@] ] (1-18)
=1 j=l j=l

Thus, z has been expressed in terms of the o; and the given data, and hence
the o; are the only variables.

The set of a; which minimizes z in (1-18) must satisfy* the following
set of n simultaneous linear equations:

n
D ugjaj =1, g=1,...,n, (1-19)
j=1

* The reader familiar with calculus will note that the necessary conditions
to be satisfied by a set of o; which minimizes z are 9z2/da; = 0,7 = 1,...,n.
These n partial derivatives yield the » linear equations (1-19).
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where
k

k
vg = DL YDz,(0), Ui = D z,(D)z;(3). (1-20)
‘i=l

i=l

Thus, to determine the «;, a set of linear equations must be solved.

The material discussed in this section is part of statistical regression
analysis and is used extensively in that branch of economics called econ-
ometrics. In engineering, the technique for determining the best «; is
often referred to as finding the best “least-squares” fit. The regression or
least-squares techniques lead to a set of simultaneous linear equations
to be solved for the best ;. Our starting point was a linear model, since
we assumed that y could be related to the z; by (1-15).

1-7 Linear circuit theory. Linear circuit theory provides an excellent
example of a linear model used in engineering. For d-c¢ (direct-current)
circuits, the fundamental linearity assumption is known as Ohm’s law
which states that the voltage drop E across a conductor is proportional
to the current I flowing through the conductor. The constant of propor-
tionality is called the resistance R. Resistance is a property of the material
through which the current is passing. Thus E = IR. The equation
indicates the homogeneity property of linearity. The additivity property
is also present: If the same current passes through a resistance network
of two resistors connected in series, the voltage drop across the network
is the sum of the individual voltage drops across each resistor.

Let us consider the d-c circuit in Fig. 1-2. Suppose that we wish to
find the values of all the labeled currents. The symbol _F;'Ili‘ repre-

Ficure 1-2
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sents a battery; if the current moves from the plus terminal of the battery
to the minus terminal, a voltage drop of E occurs (any internal resistance
of the battery is here neglected). The currents in each part’of the circuit
can be determined by two rules known as Kirchhoff’s laws. These laws
simply state that (1) the algebraic sum of the currents at any node (point
A in Fig. 1-2) is zero, that is, there is conservation of current at a node;
(2) the algebraic sum of the voltages (drops and rises) around a loop is
zero.

We wish to determine the six currents shown in Fig. 1-2. We shall
assume arbitrarily that the currents flow in the direction of the arrows.
If our choice of directions should prove incorrect, the solution will yield
negative values for the current. Intuitively, we feel that six independent
equations will be needed to determine the six currents. Let us obtain three
equations using the three loops shown in Fig. 1-2. From loop 1

E, — IsR3 + E3 — I¢R¢ — I1R7 — I1Ry = 0,
or . (1-21)
I3Rs + IgR¢ + I(Ry + R7) = E1 + Es.

Moving in a direction opposite to the assumed current flow, we obtain a
voltage rise which is the negative of the voltage drop occurring in the
direction of the current flow. For loop 2

—E; + I;Ry + IiRy — Es + I3R3 = 0,
or (1-22)
_ IR, + I,R, + I3R; = E; + Ej3;
for loop 3
Es — IsRs + IgRe — I4Ry = 0,
or (1-23)
I5R5 - IsRﬁ + I4R4 = E5.

Many other loops can be considered, such as a combination of 1 and 2,
or 2 and 3, etc. However, these do not yield independent equations. All
other loop equations can be obtained from (1-21) through (1-23) (prove!).
The remaining three equations are found by means of the first Kirchhoff
law concerning the conservation of flow at the nodes. Using nodes A4,

B, C, we obtain
I, +1I,—I3=0 (node A), (1-24)

Is—Is— Ig=0 (nodeB), (1-25)

Is+1I¢— I, =0 (node C). (1-26)

.
3
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Equations (1-21) through (1-26) provide a set of six simultaneous linear
equations to be solved for the currents. Here again a linear model leads
to sets of linear equations.

Linear circuit theory is also very important for the analysis of a-c (alter-
nating current) circuits where the currents and voltages vary sinusoidally
with time. Again, we obtain sets of simultaneous linear equations which,
however, involve complex rather than real numbers. The theory of linear
a-c circuits provides an excellent example of the usefulness of complex
numbers in engineering. Although they are not introduced specifically
in this book (except in some of the problems), the material developed
applies to both complex and real numbers.

1-8 Other linear models. Linear models and hence linear algebra are
valuable tools in the solving of a wide range of problems. Linear algebra
is used, for example, in:

(1) Linear differential and difference equations to deal with sets of simul-
taneous linear differential or difference equations;

(2) Linear vibration theory to determine the characteristic frequencies of
vibration (of atoms in molecules, for example).

(3) Statistics, probability theory, and in related areas dealing with noise
and stochastic processes (the theory of Markov processes in probability
theory provides an excellent example);

(4) Transformation theory in quantum mechanics to carry out trans-
formations from one representation of an operator to another (here, com-
plex numbers appear and have to be dealt with);

(5) Establishing sufficient conditions in classical theory of mazima and
minima (this theory finds important applications in economics, espe-
cially in the classical theory of production and consumer behavior);

(6) Rigid body mechanics to simplify the theoretical treatment of the
motion of a rigid body, such as a gyroscope.

This list and the examples given in the preceding sections do not ex-
haust by any means the applicability of linear models; however, they
furnish sufficient proof for the importance and usefulness of linear models
and of linear algebra.

1-9 The road ahead. The n variables in a set of simultaneous linear
equations (1-1) can be thought of as a point in an n-dimensional space.
In Chapter 2, a particularly useful n-dimensional space, the euclidean
space, is introduced. The algebraic properties of points in this space
are studied. Chapter 3 discusses matrices and determinants. Matrices
enable us to deal efficiently with linear models from both a theoretical
and practical standpoint, since they greatly simplify the mathematical
manipulation of linear relations.
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Chapter 4 continues the discussion of matrices and presents the notion
of linear transformations. This concept supplies the key to the general
meaning of linear models. The notion of rank is also introduced. Chapter 3
deals with the theory of simultaneous linear equations. It develops the
conditions which determine whether a set of equations has a solution,
and whether this solution is unique.

Chapter 6 discusses the geometry of n dimensions and introduces the
notions of lines, planes, spheres, regions, etc. It outlines the theory of
convex sets and its applicability to the study of many linear models of
which linear programming is an outstanding example. The chapter con-
cludes with a brief discussion of a particular class of convex sets known as
convex cones. These are useful in examining generalized Leontief models
in economics and in linear programming.

Finally, Chapter 7 discusses the subject of characteristic values. This
material facilitates greatly the study of linear vibrations, linear differential
and difference equations, and Markov processes—to mention only a few
applications. Nonlinear expressions, called quadratic forms, are also intro-
duced which are important in developing sufficient conditions for maxima
and minima of a function of a number of variables. The techniques of
linear algebra provide a very powerful tool for analyzing quadratic forms.
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CHAPTER 2
VECTORS

“. .. Arrows of outrageous fortune.”

Shakespeare—Hamlet.

2-1 Physical motivation for the vector concept. Vectors are frequently
used in many branches of pure and applied mathematics and in the physi-
cal and engineering sciences. The vector analysis applied by the physicist
or engineer to problems in their fields differs in many ways from the
n-dimensional vector spaces used in pure mathematics. Both types,
however, have a common intuitive foundation. The need for a vector
concept arose very naturally in mechanics. The force on a body, for
example, cannot in general be completely described by a single number.
Force has two properties, magnitude and direction, and therefore requires
more than a single number for its description. Force is an example of a
vector quantity. At the most elementary level in physics, a vector is de-
fined as a quantity which has both magnitude and direction. A large
number of physical quantities are vectors and, interestingly enough, the
same laws of operation apply to all vectors.

Vectors are often represented geometrically by a line with an arrowhead
on the end of it. The length of the line indicates the magnitude of the vec-
tor, and the arrow denotes its direction. When representing vectors
geometrically as directed line segments, it is desirable to introduce a
coordinate system as a reference for directions and as a scale for lengths.
Familiar rectangular coordinates will be used. Usually, the coordinate
axes will be named z;, z2, 3. Some vectors lying in a plane are shown
in Fig. 2-1.

We shall often represent a vector by a directed line segment. It should
be stressed that a vector s not a number. If we are considering vectors
lying in a plane, then two numbers are needed to describe any vector: one
for its magnitude and another giving its direction (the angle it makes
with one of the coordinate axes). If vectors in three-dimensional space
are being studied, three numbers are needed to describe any vector: one
number for its magnitude, and two numbers to denote its orientation with
respect to some coordinate system. In physics, the symbol associated with
a vector usually has a mnemonic connotation, such as f for force, a for
acceleration, etc. Since we shall not be referring to any particular physical
quantities, we shall simply use arbitrary lower-case boldface symbols for
vectors, a, b, x, y. Boldface type implies that the symbol does not stand
for a number. :

17
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In general, a vector may originate at any point in space and terminate
at any point. Physical quantities such as force are, of course, independent
of where one places the vector in a coordinate system. They depend only
on the magnitude and direction of the vector. For this reason, it is con-
venient to have a vector start always at the erigin of the coordinate
system (a in Fig. 2-1). In this book we shall adopt the convention that
all vectors begin at the origin of the coordinate system rather than at some
other point in space. This convention provides some simplifications in
dealing with vectors.

Consider the vector in Fig. 2-2. It will be observed that by specifying
point (a1, as, as), that is, the point where the head of the vector terminates,
we have completely characterized the vector. Its magnitude (in some
physical units) is -
o} + a3 + a3]'/?,

and its direction is characterized by the two angles 6 and ¢, where

as
2 211/2
[a2 + a2 + a2]V/

a
tan 6 = =2, cos ¢ =
a;

- Thus, there is a one-to-one correspondence between all points in space
and all vectors which emanate from the origin. For any given point
(a1, az, ag), a corresponding unique vector a can be drawn from the origin
to this point. Conversely, for any given vector a, there is a unique point
(a1, az, az) which is the point where the vector terminates. Because of
this correspondence between vectors and points we can write

a = (a,, as, ag). 2-1)
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Equation (2-1) means that a is the vector drawn from the origin to the
point (e;, as, az) with coordinates a,, a, a3.

The correspondence between vectors and points in space is fundamental
and important because of its practical value in vector computations;
it also offers the key to more abstract generalizations of the vector concept.

Exampres: (1) a = (1, 2, 3) is the vector drawn from the origin to the
point x; = 1,z = 2,23 = 3. (2) a = (3, 4) is a vector lying in a plane
drawn from the origin to the point z; = 3, zo = 4. (3) a = (1,0,0)
is the vector drawn along the z;-axistoz; = 1,22, = 0, 23 = 0.

2-2 Operations with vectors. We now shall consider the operations
that can be performed with vectors. First, from an istuitive point, of view,
two vectors are equal if they have the same magnitude and direction.
According to our point representation, this means that both vectors are
drawn from the origin to thc same point in space, that is, they are coin-
cident. Thus, if

a = (a1, a2,03), b= (by, bz bs),
then
a=h,
if and only if
a;="b, a2=0b; a3=bs (2-2)

Equality of two vectors in space therefore implies that three equations in
terms of real numbers must hold.

The next operation with vectors, which arises naturally in physics, is
that of changing the magnitude of a vector without changing its direction,
for example: The force on a body is doubled without altering the direction
of application. Figure 2-3 illustrates this point. It shows, in terms of
the point notation, that if the magnitude of vector a = (a;, a») is changed
by a multiple A, the new vector, Aa, is

Aa = ()\al, )\az).
To multiply the magnitude of a by A without changing its direction, each

T2

(2(11, 202)

a (a1, a9)

zy

Ficure 2-3
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coordinate has to be multiplied by A. The same procedure applies to
three dimensions:
Aa = (Aay, Naz, Aag). (2-3)

In the preceding section we have been assuming that A > 0. We can easily
generalize the notation and allow A to be negative. If A < 0, the magni-
tude of the vector is changed by a factor —X, and its direction along its
line of application is completely reversed. Frequently we shall refer to a
real number as a scalar (in contradistinction to a vector or matrix). The
operation of multiplying any given vector by a real number A will be
referred to as multiplying a vector by a scalar. The rule for multiplying
a vector by a scalar, when using point notation, is given by (2-3).

In geometrical language, the magnitude of a vector a, which we shall
denote by |a], is often called its “length,” since the length of the line
from the origin to the terminal point of the vector represents its magni-
tude. By our definition, the magnitude of Aa is |Aa| = |A| |a|, where [A|
is the absolute value of .

ExampeLes: (1) If a = (2,3), 6a = (12,18). (2) If a = (1, —1),
—4a = (—4, 4). Illustrate these graphically.

Another very important operation is the addition of vectors. Again
we turn to mechanics for our intuitive foundations. It is well known
that if two forces act on a particle (a proton, for example) ‘to produce
some resultant motion, the same motion can be produced by applying a
single force. This single force can, in a real sense, be considered to be the
sum of the original two ferces. The rule which we use in obtaining magni-
tude and direction of a single force which replaces the original two forces
is rather interesting: If a, b are the original forces, then the single force c,
which we shall call the sum of a, b, is the diagonal of the parallelogram
with sides a, b. This is illustrated in Fig. 2-4. The addition of vectors
follows what, in elementary physics, is known as the parallelogram law.

The rule for addition of vectors is very simple when point representa-
tion is used. We merely add corresponding coordinates as shown in
Fig. 2—4. If

a = (a1, az), b = (by, b2),
then
¢ =a-+ b= (ar + by, az + b3) = (c1, c2).

Examination of the parallelogram law, when applied to three dimensions,
shows that precisely the same sort of result holds. If

a = (ab as, a3), b= (bl; b2; b3)7 .
¢ = (c1,¢2,¢3) = a—+b = (a1 + by, az + bg,a3 + b3). (24)
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2

(a7 + by, a2 + by)

Ficure 24

To add three vectors, the first two are added to obtain the resultant, and
the third is then added to the resultant of the first two. If
a = (a1, 83,a3), b= (by,bs,b3), ¢ = (c1,¢2¢3);
d=a-tb-+tc= (a;+b1+ec1,az+bs+co a3+ bz c3) = (dy, da, d3).
(2-5)

In the same way any number of vectors can be added. Note that
a+b=Db-a.
To subtract b from a, we add (—1)b to a, that is,

a—b=a+ (—1)b=(a, — by, as — bs,a3 — b3). (2-6)

The concept of addition of vectors brings up a new idea, that of the
resolution of a vector into components. Consider the vectors

a = (aly a2)7 a; = (aly 0)) az = (0; a2)'

In this example, a, is a vector of length (magnitude) |a,| lying along the
x,-axis, and a, a vector of length |as| lying along the xp-axis. It will be
observed that

a=a; +as = (a,0) + (0, a2) = (a1, a2). 2-7

The vectors a;, a5 are called the vector components of a along the coordinate
axes (see Fig. 2-5).

The concept of resolving a vector into its vector components along the
coordinate axes is a very useful one. However, it can be developed even
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further. Applying the rule for multiplication by a scalar, we can write

a; = (a,0) = a:(1,0), a; = (0, a3) = a2(0, 1).
Hence
a = (a1, az) = a;(1,0) + a3(0, 1). (2-8)

The vector (1, 0) lies along the z;-axis and has length one. The vector
(0, 1) lies along the z,-axis and has length one. The vectors (1, 0) and
(0, 1) are called unit vectors and will be denoted by e;, e, respectively.
The numbers a,, a; are called the components of a along the z,, z;-axes.
They are not the vector components ay, az; the latter are obtained by
multiplying the components by the corresponding unit vectors. Note that
a;, the component of a along the ith coordinate axis, is the sth coordinate
of the point (a;, a2),7 = 1, 2.
Similarly, working with three dimensions, we can write

a = (al) az, a3) = al(l, 07 O) + 02(0, 17 0) + 03(0: 0) 1)

= a;e; + age; + ages.

@9

Equation (2-8) shows that any vector lying in a plane can be written as
the sum of scalar multiples of the two unit vectors. In three dimensions,
any vector can be written as the sum of scalar multiples of the three
unit vectors:

e, = (l: 0; O); €y = (07 1; 0); ez = (0; O) 1)

¢/ 2-3 The scalar product. We shall now discuss vector multiplication.
Let us assume that we have two vectors a, b, and that 6 is the angle be-
tween these vectors, as shown in Fig. 2-6. Consider the expression

|a] |b| cos 6. (2-10)

The number [b| cos 8 is, aside from sign, the magnitude of the perpen-
dicular projection of b on the vector a. It is called the component of
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b along a. Thus, Eq. (2-10) represents the magnitude of a times the
component of b along a. The number computed from (2-10) is called
the scalar product of a and b, and we write

ab’ = |a| |b| cos 6, (2-11)

where the symbol ab’ denotes the scalar product of the two vectors. The
scalar product of two vectors is a scalar, not a vector. This may seem to
be a rather strange definition. However, it can be easily explained by an
example taken from mechanics:

The work done in moving an object along a straight path a distance r
(distance is a vector since it has both magnitude and direction), using a
constant force £, is given by the product of the magnitude of the distance
and the component of the force along r, that is, by |r| |f| cos 6, if 8 is the
angle between f and r. Therefore, the work w (a scalar) is the scalar prod-
uct of f, r or w = fr'.

The definition of a scalar product implies that ab’ = ba’. Since the
scalar product of two vectors is a scalar, it is not possible to form the
scalar product of three or more vectors.

Next, we shall transform the scalar product into an expression which is
much more suitable for extension to higher dimensions. We can write

a = a;e; + azez + ases, b = bie; + bzea + bszes.
Consider also the vector ¢ = a — b:
¢ = (a; — by)e; + (az — bz)es + (az — ba)es.
Then from Fig. 2-7 and the cosine law of trigonometry

lc|2 = |a]> + |b|® — 2la] [b] cos 6.
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Therefore
ab’ = #{[a]® + [b|> — [c|?]. (2-12)
But
3 -3 8
lal2 = Z a%’ |b[2 = E b?} lclz = E (ai - bi)z-
t=1 =1 =1
Hence
ab’ = a;b; 4+ azbs + azbs. (2-13)

Equation (2-13) is important since it shows that the scalar product of
two vectors is computed by simply multiplying the corresponding com-
ponents and adding the results.

The unit vectors ey, ez, e; lie along the coordinate axes, which are
assumed to be at right angles to each other. Hence

™

5= 0, ejel = les|leifcos0 =1,

ele’2 = |e,| |e2| [Jo)3]

or, in general,
ee;j=0 (@E#j), eei=1 (=1,23). (2-14)

The scalar product of a vector with itself is the square of the length of
the vector:
aa’ = af + o + af = |a. (2-15)
ExampLES:
(1) Ifa = (2: 3, 1); b= (l) 7, 5)
ab’ = 2(1) + 3(7) + 1(5) = 28.
(2) Ifa= (ab as, 03), b = (O) 1) 0) = ez
ab’ = aey = a;(0) + az(1) 4 a3(0) = a,.

In the preceding sections we have attempted to give an intuitive de-
velopment of vector operations. Depending on one’s background, this
may or may, not have seemed to be a natural development. In any event,
it is desirable to have some familiarity with the material so that general-
izations will not seem completely unmotivated. 'Many operations with
vectors which are very important in physics and engineering have not been
considered here. We have only discussed those parts which form a foun-
dation for n-dimensional generalizations. Before going on to these gen-
eralizations, let us note that vector analysis of the type used in physics
and engineering goes back to Willard Gibbs (the founder of modern
thermodynamics) and to the more clumsy quaternions used by Hamilton.



2-4] ’ GENERALIZATION TO HIGHER DIMENSIONS 25

2-4 Generalization to higher dimensions. We have seen that at the
most elementary level in physics, a vector can be described as a physical
quantity possessing both magnitude and direction. The behavior of the
real world determines the laws governing operations with these vectors.
Next we observed that, instead of characterizing a vector by magnitude
and direction, an equally satisfactory description could be achieved by
the terminal point of a vector of proper magnitude and direction emanat-
ing from the origin of the coordinate system. We then wrote a =
(a1, az, a3); the a; were called the components of the vector along the
coordinate axes. The numbers a; were also the coordinates of the point
~ where the head of the vector terminated. From the laws for operating
with vectors we derived rules applicable to operations with their com-
ponents. .

Let us suppose that we would like to divorce the concept of a vector
from any physical connotations. In addition, we shall assume that we
would like to develop a sound mathematical theory of vectors. Naturally,
we hope to arrive at some useful generalizations of the theory. First we
must decide upon a suitable definition of a vector. From our new point
of view it is not very satisfactory to define a vector as a quantity having
magnitude and direction, since this definition does not provide a very
concrete concept and does not allow for an immediately obvious algebraic
expression. The concept is especially fuzzy if we contemplate extending .
it to spaces of dimension greater than three. However, such an extension
of the theory is one of the first generalizations which will come to mind.

The key to finding a definition which permits the development of a
rigorous theory lies in focusing attention on the point representation of a
vector. Our study of the intuitive foundations has shown us that a vector
can be represented by an ordered array of numbers (a1, az) or (ai, as, as);
hence, we may apply this concept when generalizing and simply define
a vector as an ordered array of numbers (a1, as) or (ai, as, @3). This
is precisely what we shall do. From our new point of view, a vector
will be nothing more or less than an ordered array of numbers; it will not
have any physical meaning attached to it whatever. Once we take this
step, it immediately becomes apparent that we are not limited to vectors
containing at most three components. We may now generalize our notion
of a vector to one containing any finite number of components, i.e., an
ordered array of n numbers (ai, @z, ..., @s), Which we shall call an
ordered n-tuple. Indeed, this generalization will be incorporated into the
theory.

Since we no longer plan to attach any physical meaning to vectors, we
are free to define operations with these vectors in any way we choose.
However, if the intuitive foundations of the subject are to be of any
value, they should point the way to proper definitions. This is the pro-
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cedure we shall follow. The definitions of operations with vectors in the
generalized sense will be direct extensions of the results obtained from
physical considerations. ,

When generalizing the theory of vectors, it is of considerable advantage
to retain some of the geometrical terms and concepts which were so
helpful in the intuitive approach. In this way, we may give to many of
the general results obtained a clear geometrical interpretation in two
and three dimensions. It is very easy to relate our new definition of a
vector to geometrical concepts. Just as (a;, a2), (a1, as, ag) can be con-
sidered to be points in two- and three-dimensional spaces respectively,
(@1, ..., a@,) can be considered to be a point in an n-dimensional space,
where the a; are the “coordinates” of the point. As a matter of fact, from
here on we shall assume that the concepts of point and vector mean pre-
cisely the same thing. Our development will then proceed simultaneously
along two paths, namely: (1) “rigorous” algebraic development; (2) geo-
metric interpretation. At first the geometric interpretation will be some-
what intuitive. However, before we are finished, the idea of an n-dimen-
sional space will have been removed from the intuitive realm, and we shall
have defined precisely what we mean by one important n-dimensional
space, called euclidean space. A number of useful properties of this space
will be developed.

After this rather long introduction to the subject of generalizing the
theory of vectors, we shall now proceed with the development of the
theory. First, we shall repeat in a more formal way our new definition of
a vector:

VECTOR: An n-component vector* a is an ordered n-tuple of numbers
written as a row (a,, as, . . ., a,) or as a column

a;
az

an
The a;, © = 1, ..., n, are assumed to be real numbers and are called the
components of the vector. :

Whether a vector is written as a row or a column is immaterial. The two
representations are equivalent. Notational convenience determines which
is most suitable. In the future we shall frequently use both row and column

* Frequently an n-component vector is referred to as an n-dimensional vector.
This seems to be a very appropriate terminology. However, some mathemati~
cians object to attaching the term “dimension” to a single vector or point in
space, since dimension is a property of space, not of a point. :
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vectors. However, the column representation will be used more frequently
than the row representation, and for this reason we shall in the remainder
of this chapter usually think of vectors as columns of numbers. Since
it is rather clumsy to print these columns, a row with square brackets
enclosing the n numbers will be used to represent a column vector:

ay

az
= [ala s )an]- (2_16)
(%
Parentheses will enclose the n components of a row vector, that is,
(ay, . .., an) will always represent a row vector. The notational difference
between row and column vectors should be carefully noted.

The ordering of the numbers in the n-tuple which forms a vector is
crucial. Different ordering represents different vectors. For example, in
three dimensions, (1, 2, 3) and (3, 1, 2) are clearly not the same vector.

As has been already indicated, there is a complete equivalence between
n-component vectors and the points in an n-dimensional space. An n-tuple
will be called a point or a vector depending on whether, at any particular
moment, we view it from an algebraic or geometric standpoint.* Although,
on several occasions, we have mentioned a point in an n-dimensional
space, it is expected that the reader has as yet only a vague intuitive idea
of such a space. More precise concepts of an n-dimensional space, co-
ordinates, etc., will be introduced shortly.

Several useful vectors are often referred to by name, and hence we shall
define them at the outset. We shall begin with an important set of vectors,
the unit vectors. For vectors having n components there are n unit vectors.
They are:

e; = [1,0,...,0], e2=1{0,1,0,...,0], ..., e,=][0,0,...,1]
2-17)

It will be recalled that these vectors were introduced to advantage in our
intuitive study of two and three dimensions.

UNIT VECTOR: A unit vector, denoted by e;, is a vector with unity as the
value of its ith component and with all other components zero.

* When we speak of a as a vector, then the a;, 2 = 1,...,n of (2-16) are
called the components of a. If we are thinking of a as a point in an n-dimensional
space, then the a; are frequently called the coordinates of a. Consequently,
component and coordinate are the respective algebraic and geometric names
for the same element in the n-tuple (2-16).
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The symbol e; will always be used for a unit vector. The number of com-
ponents in the unit vector will be clear from the context.

NvuLL vEcror: The null vector, or zero vector, wrilten 0, ¢s a vector all of
whose components are zero.

0=10,0,...,0] (2-18)

SuM VECTOR: A sum vector 18 a vector having unily as a value for each
component,; it will be written 1.

1=(@,1,...,1). (2-19)

In general, the sum vector will be used as a row vector rather than a
column vector. The reason for calling it a sum vector will become clear
later.

2-5 Generalized vector operations. Following the procedure suggested
in the previous section, we shall define operations with vectors as straight-
forward generalizations of the results obtained in three dimensions. The
method for generalizing is: (1) the operations are written using the point
representation, that is, in component form; (2) the generalization follows
immediately.

‘EquaLiry: Two n-component vectors a, b are said to be equal, written
a = b, if and only if all the corresponding components are equal.

a; = by, 1=1,...,n (2-20)

Equality of two n-component vectors means that, in terms of real
numbers, there are n equations which must hold. Two vectors cannot be
equal unless they have the same number of components. Note that if
a=b,thenb = a.

ExampLES:

(l) If a= [al, Qasg, a3, a4] and b = [b], b2, b3, b4], then if a == b,
a; = bl, ag = bz, az = bg, and ayqg = b4.

(2) The vectors a = [0, 2, 1] and b = [0, 2, 2] are not equal since the
third component of a is different from the third component of b.

3) Ifa=1[2,1] and b = [2,1, 3], a > b since a, b do not have the
same number of components.

Occasionally we shall find use for vector inequalities.

INEQUALITIES: Given two n-component vectors a, b, then a > b means
a; > by,i=1,...,n,anda < bmeansa; < b;,1=1,...,n.
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Similarly a > b means a; > b; forall , and & < bmeans a; < b;for all <.

EXAMPLES:

(1) a=10,1,2], b=[—1,0,1]; a > bsince0 > —1,1 > 0,
2> 1.

(2) a=[0,1,0], b=1-10,1]; a is not >b (written a 2 b)
since for the third components 0 < 1.

MULTIPLICATION BY A SCALAR: The product of a scalar N and a vector
a = [ay, ..., an), written \a, is defined as the vector

Aa = [Aag, Aag, . .., AGn). 2-21)

Ifa > b and A > O, then Aa > Ab. This follows immediately, since
a; > b;, and if A > 0, then Aa; > \b;. However, ifa>band A <0,
then Aa < Ab. This becomes equally clear if one considers the relations
in terms of the vector components. Multiplying an inequality of real
numbers by a negative number changes the direction of the inequality
G>1—-5< —1).

ExXAMPLES:

1) Ifa = [3, 4, 5]; 3a = [9, 12, 15].

Q) Ifa=1(312],b=[424]; a < b. Also —2a > —2b since
—2a = [—6, —2, —4] > —2b = [—8, —4, —8].

AppITION: The sum of two vectorsa = [ay, . . ., @z]and b = [by, .. ., bal,
written & -+ b, is defined to be the vector

a+b=[a;F by,as+ by, ...,as + bl (2-22)

This definition applies only to vectors having the same number of
components. The sum of two n-component vectors is another n-component
vector.

Since addition is done by components, we immediately see that the
addition of vectors possesses the commutative and associative properties
of real numbers:

a+b=Db-+a (commutative property), (2-23)
at+tb+c)=(@+b)+tc=a+b+c (associative property).

(2-24)

In the same way, we see that for scalars A: '

Aa + b) = Za + b, (2-25)

(A\1 + Az)(a + b) = Ma + \b + Aza + Asgb. (2-26)
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SuBTRACTION: Sublraction of two vectors is defined in terms of operations
already considered:

a—b=a+ (—Db=[a; —by...,an — by (2-27)

The concepts of addition and multiplication by a scalar can be combined
to yield a linear combination of vectors.

LINEAR COMBINATION: Given m n-component veclors ay, . .., a,, the ‘
n-component vector

m

a= ) Nai= a1+ + Andm (2-28)

i=1
is called a linear combination of ai,...,an for any scalars \;
t=1,...,m.
ExaAMPLES:

(1) a= [1; 3, 5]1 b = [2: 4: 6];

(2) a; = [2} 3’ 4’ 7]) az = [0, O) 07 1]} az = [17 0; 1) 0];
a; + 2a, + 3az = [2) 3, 4’ 7] + 2[0: O} 0; l] + 3[1) 0: 17 0] =
[5; 3, 7; 9]

3)a—a=0, a+0=a; (2-29)
ata implies a; + a; = 2a;; thus a-+a=2a.

2-6 Euclidean space and the scalar product. Using the operations
defined in the foregoing section, we see that any n-component vector can
be written as a linear combination of the n unit vectors (2-17):

a=Ilay,...,a,) = ae; + -+ ane,. (2-30)

This is a straightforward generalization from two and three to higher
dimensions. It will be recalled that, in operations with two and three
dimensions, the unit vectors lay along the coordinate axes. We have,
as yet, no coordinate system in our n-dimensional space. However, the
preceding discussion suggests that we use unit vectors to define a coordinate
system. If we imagine that a coordinate axis is “drawn” along each unit
- vector, we shall obtain a coordinate system for n-dimensional space.
Furthermore, the ¢th component of a is the component of a along the ¢th
coordinate axis (the same was true in three dimensions). The null vector 0
is the origin of our coordinate system. Whenever we write a vector a
as [a;, ..., a,), we automatically have a special coordinate system in
mind, that is, the coordinate system defined by n unit vectors.
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To complete the definition of our n-dimensional space by analogy to the
properties of three-dimensional space, we must introduce the notion of
distance and the related notions of lengths and angles. Distance is a very
important concept since it forms the basis for notions of continuity and
hence for analysis. A convenient way of introducing distance, lengths,
and angles is to define the scalar product of two vectors.

Scarar propbuct: The scalar product of two n-component vectors a, b is
defined to be the scalar

arby + asby + -+ + anby = Y ab. (2-31)
i=l

It will be helpful to use different notations for the scalar product, de-
pending on whether a, b are row or column vectors.* If a, b are both
column vectors, we denote the scalar product by a’b. If a, b are both
row vectors, the scalar product will be denoted by ab’. When a is a row
vector and b is a column vector, the scalar product will be written ab.
For the present, we assume that both vectors are column vectors; hence
the scalar product can be written

n
a’b = Z ab;. (2-32)
i=1
We see immediately that
«a’b = ba, (2-33)

a’'(b + c¢) = a’b + a’c, (a + b)’c = a’c + b’c, (2-34)
a’(Ab) = A(a’b), (Aa")b = A(a'b); A any scalar.  (2-35)

Distance: The distance from the vector (point) a to the vector (point) b,
written |a — b|, is defined as

la —b| = [(& — b)'(a — b)]'* = [Z (@; — b.~>2]”2. (2-36)

i=1
Distance, as defined by (2-36), has the following properties:
(1) |]a — b] > Ounlessa — b = 0; (2-37)
(2) la — bl = |b — af; (2-38)
() la—bl+[b—c¢c|>|a— ¢ (triangle inequality). (2-39)
- * Our notation for scalar products differs from others that are often used,

such as a-b and (a, b). We have chosen our system in order to achieve con-
sistency with the matrix notation introduced later.
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These algebraic expressions mean: (1) the distance between two different
points is always positive; (2) the distance from a to b is the same as the
distance from b to a; (3) in two and three dimensional spaces, the sum of
the lengths of two sides of a triangle is not less than the length of the
third side. The proofs for (2-37) through (2-39), based on definition (2-36),
are to be supplied in Problems 2-24 through 2-26.

It is important to note that we did not have to define distance by
(2-36). There are many spaces and geometries in which distance is de-
fined differently. Indeed, there are even geometries in which distance is
not defined at all. For our purposes, and for many others, definition (2-36)
is most suitable.

LenerH: The length or magnitude of a vector a, written la|, is defined as

n 1/2
la| = [a'a]'? = | a}| . (2-40)
=1
Note that length is a special case of distance since |a| = |a — O|.

The length of a is the distance from the origin to a.

The preceding definitions of scalar product, distance, and length are
direct generalizations of the corresponding expressions for three dimen-
sions. The appropriate definitions are fairly obvious. It is not quite
so clear, however, how the angle between two vectors should be general-
ized. Here, it is important to note that,.in the intuitive introduction,
the angle between the two vectors was part of the definition of a scalar
product.

In this section we have defined the scalar product without reference to
angles. We shall now use the original definition of the scalar product to
define the angle between two vectors:

ANGLE: The angle 0 between two vectors a = [ay,...,a,] and b =
[by, ..., ba], where a, b = 0, is computed from

cos 6 = a’b — ?=1 ab; .
lal bl (221 a2V b3
Note: The cosine of the angle between two vectors appears in statistics.

If we have n sets of historic or experimental data (y1, 1), ..., (Un, Ta),
and if we write

(2-41)

y=1[y1 — 7 ...,y — 7, x=1[r, —%...,2, — E,

where

S|

n
PIES
i=1

1 n
y=;§yi, T =
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then the cosine of the angle between y and x is the correlation coefficient
for the sets of data.

It can be easily shown that cos 6, as defined by (2-41), satisfies —1 <
cos 0 < 1; therefore, we can always compute an angle 8 lying between
0 and m. To establish that —1 < cos 8 < 1, is equivalent to showing
that for any n-component vectors a, b

la’b| < [a] [b]. (2-42)

This property is called the Schwarz inequality. Problem 2-25 requires
proof of (2-42).

In two and three dimensions, two non-null vectors are called orthogonal
if the angle between them is 7/2. In this case, the scalar product of the
two vectors vanishes [see (2-11) and note that cos 8 = 0]. We can gen-
eralize the concept of orthogonality to an n-dimensional space:

OrTHOGONALITY: T'wo vectors a, b (a, b # 0) are said to be orthogonal if
their scalar product vanishes, that 1s, a’b = 0.

From (2-41) we see that if two vectors are orthogonal,* cos § = 0,
and the angle between the vectors is w/2. We notice immediately that the
unit vectors are orthogonal since eje; = 0, ¢ # j. This means that
the coordinate system in n dimensions defined by the unit vectors is an
" orthogonal coordinate system analogous to the orthogonal coordinate sys-
tems for two and three dimensions.

Finally, we can define an n-dimensional space, often referred to as
euclidean space:

EvUcLIDEAN sPACE: An n-dimensional euclidean space (or euclidean vector
space) s defined as the collection of all vectors (points) a = [ay, . . ., a,).
For these vectors, addition and multiplication by a scalar are defined by
(2-22) and (2-21), respectively. Furthermore, associated with any two
vectors in the collection is a mon-negative number called the distance be-
tween the two vectors; the distance is given by (2-36).

The n~dimensional spaces which we shall discuss here will always be
euclidean, represented by the symbol E™ Ordinary two- and three-
dimensional spaces of the types considered in the intuitive introduction
are euclidean spaces. When n = 3, our n-dimensional space reduces to
the familiar concept of a three-dimensional space.

The definition of a euclidean space encompasses definitions for operating
with points in the space and for distance. Equation (2-41) provides the

* We can also say that 0 is orthogonal to every other vector, and that the
angle between 0 and any other vector is #/2. This will remove the restriction
a, b # 0 in the definition of orthogonality.
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definition of the angle between two points or vectors. Furthermore, we
have seen that the unit vectors can be used to define an orthogonal co-
ordinate system in this space. At this juncture, we could proceed to intro-
duce the notions of lines and planes in E* etc. However, we shall defer
the study of certain aspects of n-dimensional geometry to Chapter 6 and
devote the remainder of the present chapter to a discussion of some
properties of points or vectors in E™.

Before passing on to the subject of linear dependence, let us pause and
illustrate a use for the sum vector defined by (2-19). If we form the
scalar product of the sum vector and any other vector a, we obtain

la = Z a;. (2-43)
=1

This scalar product is the sum of the components of a. Any summation
can be written as the scalar product of the sum vector and the vector
formed from the elements in the summation. The reason for calling 1
the sum vector is now clear.

2-7 Linear dependence. If one vector in a set of vectors from E™ can
be written as a linear combination of some of the other vectors in the set,
then we say that the given vector is linearly dependent on the others,
and the set of vectors is also linearly dependent. If no vector in a collection
of vectors can be written as a linear combination of the others, then the
set of vectors is linearly independent.

Linear dependence or independence are properties of the set of vectors
and not of the individual vectors in the set. The differences between
linearly dependent and linearly independent sets of vectors are very
fundamental. The concepts of linear dependence and independence will
appear repeatedly in our later developments.

In a very crude intuitive sense, linearly dependent sets of vectors con-
tain an element of redundancy. Since at least one vector can be repre-
sented as a linear combination of the others, we could drop any such
vector from the set without losing too much. In contrast, linearly inde-
pendent vectors are essentially different from each other. No vector can
be dropped from a linearly independent set of vectors without losing
something. Although this intuitive discussion is very vague, the precise
meaning of dependence and independence will become clear as the theory
is developed further.

We shall now give a more symmetric definition of linear dependence,
which makes it unnecessary to single out any one vector and attempt to
write it as a linear combination of the others. This new definition, which is
the standard mathematical definition of linear dependence, will be shown
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to be equivalent to the intuitive concept outlined in the first paragraph
of this section.

LINEAR DEPENDENCE: A set of veclors ay, . . ., a8, from E™ is said to be
linearly dependent if there exist scalars \; not all zero such that

May + oag + - -+ + Apam = 0. (2—44)

If the only set of \; for which (2-44) holds is Ay = Ag = -+ = A, = 0,
then the vectors are said to be linearly independent.

The above definition implies that a set of vectors is linearly dependent
if we can find, by one means or another, scalars not all zero such that
multiplication of a vector by the appropriate scalar and addition of the
resulting vectors will provide the null vector. If, however, no set of A;
other than all \; = 0 exists, then the vectors are linearly independent. A
set of vectors which is not linearly dependent must be linearly independent.

Let us show that this definition is equivalent to the intuitive concept
discussed at the beginning of this section. We want to prove that the
vectors ay, . . ., n from E™ are linearly dependent if and only if some one
of the vectors is a linear combination of the others. If one of the vectors is a
linear combination of the others, the vectors can be labeled so that this
one vector is a,,. Then

a&n = A&+ + Mp—18m—1,
or

May -+ A8 + (—Da, = 0,

with at least one coefficient (—1) not zero. Thus, by (2-44), the vectors
are linearly dependent. Now suppose that the vectors are linearly de-
pendent. Then (2-44) holds, and at least one A\; ¥ 0. Label the X; so
that \,, ¥ 0. Then

—Amlm = M1 + - -+ Ap_18m1,
or

. T
ay = )vmal Am an—1,

and one vector has been written as a linear combination of the others.
In this proof we have assumed, of course, that there are at least two
vectors in the set.

Although when we speak of a set of vectors as being linearly dependent
or independent, it is usually assumed that two or more vectors are in the
set, we must, in order to make later discussions consistent, define what is
meant by linear dependence and independence for a set containing a
single vector. The general definition expressed by (2—44) includes this
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case. It says that a set containing a single vector a is linearly dependent
if there exists a A % 0 such that Aa = 0. This will be true if and only
if a = 0. Thus a set containing a single vector a is linearly independent
if a # 0, and linearly dependent if a = 0.

A vector a is said to be linearly dependent on a set of vectorsay, ..., an
if a can be written as a linear combination of ay, . .., a,,; otherwise a is
said to be linearly independent of a, ..., &,. It can be noted immedi-
ately that the null vector is not linearly independent of any other vector
or set of vectors since

0 = 0a; + 0az + -+ - + Oan. (2—45)

Thus the null vector is linearly dependent on every other vector, and no
set of linearly independent vectors can contain the null vector.

If a set of vectors is linearly independent, then any subset of these vectors
18 also linearly independent. For suppose aj, ..., a, are linearly inde-
pendent, while, for example, a;, as, az are linearly dependent (3 < m).
In this case, there exist A;, Az, A3 not all zero such that \ja; + A2 +

Agazg = 0. If we take Ay = --- = A, = 0, then > 7o, \;a; = 0, and
one or more X; in the set Ay, A2, A3 are not zero. This contradicts the fact
that a,, ..., a,, are linearly independent. Similarly, if any set of vectors

s linearly dependent, any larger set of vectors containing this set of vectors
18 also linearly dependent.

Given a set of vectors a;, . .., a, from E”. We say that the maximum
number of linearly independent vectors in this set is k if it contains at
least one subset of & vectors which is linearly independent, and there is
no linearly independent subset containing k¥ + 1 vectors. If the set
aj, ..., a, is linearly independent, then the maximum number of linearly
independent vectors in the set is m. Unless a set of vectors contains only
the null vector, the maximum number of linearly independent vectors
in the set will be at least one.

Suppose that k < m is the maximum number of linearly independent vec-
tors in a set of m vectors a,, . .., a, from E®. Then, given any linearly
independent subset of k vectors in this set, every other vector in the set can
be written as a linear combination of these k vectors. To see this, label the
vectors so that a,, . .., a; are linearly independent. The set a,, ..., az,
a, must be linearly dependent for any r = k- + 1,...,m. This implies
that (2—44) holds and at least one \; = 0. However, A\, cannot be zero,
because this would contradict the fact that a,, ..., a; are linearly inde-
. pendent. Hence a, can be written as a linear combination of ay, .. ., a.

ExampLes: (1). Consider the vectors of EZ2, that is, two component
vectors. Then any two non-null vectors a, b in E2 are linearly dependent
if Mja + Agb = 0,7\, A2 # 0 (why must both A\, and A\, differ from
zero?) or b = )a.
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In E2, two vectors are linearly dependent if one is a scalar multiple of the
other. Geometrically, this means that two vectors are linearly dependent
if they lie on the same line through the origin. For example, (1, 0), (3, 0)
are linearly dependent since (3,0) = 3(1, 0). Both vectors lie along the
T1-axis.

Because only vectors lying along the same line are linearly dependent
in E?, it follows that any two vectors not lying along the same line in E?
are linearly independent. Thus (1, 2), (2, 1) are linearly independent.

(2) It will be recalled that any vector in E2 can be written as a linear
combination of the two unit vectors e;, es. Let a, b be any two linearly
independent vectors in E2 We can write

a = a,e; -+ azes,
b= blel + bzez.
Consider any other vector x = (z;, z3) = x1€; + Zz€z in E2  Since

a, b are linearly independent, either a; or b; w111 differ from zero. Assume
a; # 0. Then

1
€1 = .a_l (a - a2e2)’
b = a]‘.; [b1a + (a1bz — azbi)eq). (2-46)

However, ajby — ash; # 0, since a, b are linearly mdependent The
vector X can be written

X = 51: [x1a + (@122 — asz)es]. (2-47)

Solving for e, in (2-46) and substituting into (2-47), we obtain

X _{[ bi(arzs — am)]a L g [alxz — ale]b}, (2-48)

abs — asby aby — agby
or
X = \a + Aqb.

We have expressed x as a linear combination of a, b and we see that there
cannot be more than two linearly independent vectors in any collection -
of vectors from E2. Any three vectors in E? are linearly dependent. The
geometrical analogue of (248) is shown in Fig. 2-8.
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T2

x = Ma+ Mb

ry

Ficure 2-8

(3) The vectors [1, 2, 4], [2,2, 8], [1, 0, 4] are linearly dependent since
[1: 2; 4] - [27 2) 8] + [1’ OJ 4] = [0; O’ 0]

The vectors e; = [1,0, 0], e; = [0, 1, 0], e3 = [0, 0, 1] are linearly inde-
pendent since
Aie; + Agez + Agez = [A, Az N3] = O

implies the component equations A\; = 0, Ay = 0, \3 = 0.

The arguments outlined in the second example could be used also to
demonstrate that any four vectors from E? are linearly dependent. Fur-
thermore, if three vectors are linearly dependent, then they all lie in a
plane which passes through the origin. Geometric reasoning will show
that such a plane can be passed through any two vectors, and any linear
combination of these vectors will lie in that plane (prove this). Hence, if
any vector can be written as a linear combination of two vectors, it must
lie in the plane determined by the two vectors. Conversely, any three
vectors in E2 which do not lie in a plane are linearly independent.

After having defined linear dependence and independence, we are faced
with the question of how to determine whether any given set of vectors is
linearly dependent. A complete answer will not be possible until after
Chapters 3, 4, and 5 have been covered. However, we can indicate the
nature of the problem. Suppose we have m n-component vectors a; =
[@11,---,@n1), -+ ., 8m = [@im) . . ., @um]. Two subscripts are used on
the components of the vectors. The first subscript refers to the relevant
component of the vector, and the second subscript indicates the relevant
vector. If the vectors are linearly dependent, then there exist \; not all
zero such that

i \a; = 0., (2-49)

t=1
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If (2-49) can be satisfied only with all \; = 0, the vectors are linearly
independent. Let us write the n component equations for (2-49). They
are:

ajih + .- + GimAm = 0:
asid1 + -0 + GamAm = 0, (2-50)

@i + ¢ o0+ GamAm = 0.

Here we have a set of n simultaneous linear equations in m unknowns, |
and we are to solve for the A;. Equations (2-50) are called homogeneous
since the right-hand side of each equation is zero. We have not studied
the properties of solutions to a set of equations like those in (2-50). We
shall do so in Chapter 5. The set of equations always has a solution, but
there may or may not be a solution with one or more A; different from zero.
If the vectors are linearly dependent, there will be a solution with not all
N=0.

2-8 The concept of a basis. We have already seen that any vector in
E™ can be written as a linear combination of the n unit vectors. Further-
more, we have noted that any vector in E 2 could be represented as a linear
combination of any two linearly independent vectors. A set of vectors
such that any vector in E™ can be represented as a linear combination of
these vectors is of special interest. We make the following definition:

SPANNING SET: A sef of vectors a,, ..., a, from E" i3 said to span or
generate E™ if every vector in E™ can be written as a linear combination of
&, ..., .

However, we are not looking indiscriminately for any set of vectors
which will span E"; rather, we are seeking a set containing the smallest
number of vectors which will span E®. Any set of vectors spanning E™
which contains the smallest possible number of vectors must be linearly
independent. If the vectors were linearly dependent, we could express
some one of the vectors of the set as a linear combination of the others
and hence eliminate it; in such a case, we should not have had the smallest
set. However, if the set of vectors is linearly independent, then we have
the smallest set, for if we dropped any vector, we could not express every
vector in E™ as a linear combination of the vectors in the set (in particular,
we could not express the vector dropped from the set as a linear combina-
tion of the remaining vectors). Any linearly independent set of vectors
which spans E™ is called a basis for E™:

" Basis: A basis for E* is a linearly independent subset of vectors from E*
which spans the entire space.
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A set of vectors which forms a basis has two properties. Its vectors must
span E™ and must be linearly independent. A basis for E® is by no means
unique. As we shall see, there are an infinite number of bases for E™.

To begin our discussion of bases, we prove that the n wunit vectors

€1, ..., €, form a basis for E®. The unit vectors are linearly independent
since the expression
ey Aen =1, ..., ] =0 (2-51)

implies that
M=0A=0,...,\ =0.

As observed previously, any vector x in E® can be written as a linear
combination of the e; in the following way:

X = 118 + ¢+ + z,€,.

Thus the unit vectors for E™ yield a basis for E™.

The representation of any vector in terms of a set of basis vectors is unique,
that is, any vector in E™ can be writlen as a linear combination of a set of basis
vectors in only one way. Let b be any vector in E™, and a,,...,a, a set
of basis vectors. Suppose that we can write b as a linear combination of
the a; in two different ways, namely:

b= na;+---+ Na, (2-52)
b = NMa; + -+ 4 NMa,. (2-53)
Subtracting (2-53) from (2-52), we obtain
(kl — M)al “+ -4+ ()\r —_ )\,’.)a, = 0.
However, the a; are linearly independent and thus
M—M)=0,...,A— N)=0. (2-54)
Hence A\; = A/, and the linear combination is unique.

It is not at all true that the representation of a vector in terms of an
arbitrary set of vectors is unique. Suppose we are given a set of m vectors
a; = [a11,...,8@nl,...,8n = [@1m, ..., Gam] and the vector b =
[b1, ..., bs]. We desire to write b as a linear combination of a,, . .., a,,

that is,
b= Ma; + -+ Anan. (2-55)

In component form, (2-55) becomes

by = ayhy + - - - 4 Gimdm,
: (2-56)
b = @1 4+ - - + G
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This is a set of n simultaneous linear equations in m unknowns (the ;).
These equations may have no solution, a unique solution, or an infinite
number of solutions. The conditions under which each of these possibili-
ties can occur will be studied in Chapter 5. If the set of a; forms a basis,
then we know that the equations (2-56) have a unique solution. If the
a; do not form a basis, there may be a unique solution, no solution, or an
infinite number of solutions.

Exampre: The vector a = [2, 3, 4] can be written uniquely in terms of
the vectors e; = [1,0,0], ez = [0, 1, 0], and e3z = [0, 0, 1] which form
a basis for E3:

a = 2e; + 3e; - 4e;.

Vector a can also be written uniquely in terms of the vectors e; and
b= [07 %) 1]:
a = 2e; + 4b.

However, it is not possible to express a as a linear combination of ey, e,
only. In this case, the set of equations (2-56) has no solution.

If we attempt to write a as a linear combination of the set of vectors
e, €5, €3, and ¢ = [1, 0, 1], the set of equations (2-56) will provide an
infinite number of solutions. Two possibilities are:

a = l.5e; -+ 302 + 3.503 + 0.50,
a=e; + 3ez;+ 3es + c.

2-9 Changing a single vector in a basis. We have mentioned earlier
that there is no unique basis for E*. We shall now investigate the con-
ditions under which an arbitrary vector b from E™ can replace one of the
vectors in a basis so that the new set of vectors is also & basis. The tech-
nique of replacing one vector in a basis by another such that the new set
is also a basis is fundamental to the simplex technique for solving linear
programming problems. '

Given a set of basis vectors a,, . . . , a, for E™ and any other vector b % 0
from E™: Then, if in the expression of b as a linear combination of the a;,

T
b= )Y aa, (2-57)

i=1

any vector a; for which a; = 0 is removed from the set a,, . .., a,, and b s
added to the set, the new collection of r vectors is also a basis for E™.

To prove this statement, note that, since a,, . . ., a, form a basis, they
are linearly independent and

-
E)\.-a;=0 implies \; = 0, t=1...,r

f=1
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- We would like to show that the new collection of vectors is also linearly
independent. Without loss of generality, we can assume that in Eq. (2-57)
ar 7 0, replace a, by b, and obtain the new set a;,...,a,_;, b. To
" demonstrate that this collection is linearly independent, it must be shown
that

r—1
D> da;+ b =0 implies 8; =0, i=1,...,7r—1,
i=1 ’
and
8 =0. (2-58)

If the set is linearly dependent, then & cannot vanish since, by assump-
tion, a,, . . ., a,_; are linearly independent.
Suppose § = 0. Using (2-57) in (2-58), we obtain

r—1
2 (8 + ai 8)a; + dara, = 0.

i=1

But o, 6 ¥ 0. This contradicts the assumption that ai,...,a, are lin-
early independent. Hence & = 0, and consequently é; = 0,7 =1, ...,
r — 1, which implies that a,, . . ., a,—1, b are linearly independent.

Foray, ..., a,.—;, b to form a basis, it has to be shown that any vector
x in E™ can be represented as a linear combination of this set. Vector x
can be represented as a linear combination of ay,...,a, because these
vectors form a basis, that is,

=3 va. (2-59)

i=1
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By assumption, a, # 0. From (2-57),
ay .
a, = - b — E — a;. (2-60)

Substituting (2-60) into (2-59), we obtain

r—1
— L% L
X = '=El (‘Y, ~ ‘Y,) a; + - b, (2-61)
which expresses x as a linear combination of a;, ..., 8,1, b. Thus
ay,...,a,—1, b form a basis for E".

If, in (2-57), b replaces a vector a; for which a; = 0, then the new set of
vectors is linearly dependent and does not form a basis for E". To prove
this, take o, = 0 and replace a, by b. Then

r—1
b = Z o8,

=1
or
r—1 :
b— Y aa;=0. (2-62)
i=1
The vectors ay, . . . , a,—1, b are linearly dependent.

ExampLE: Imagine that we want to insert the vector b = (3, 0, 4] into
the basis e;, €2, €3 and remove one of the vectors in the basis. We have

b= 381 -+ Oe; -+ 4es.

According to the preceding discussion, we can remove either e; or ej
to obtain a new basis; that is, €s, €3, b or e;, ez, b will form a basis for E3.
We cannot remove the vector e, and still maintain a basis. This is illus-
trated geometrically in Fig. 2-9. If e, is removed, €, €3, b all lie in the
z,z3-plane and are linearly dependent. If either e, or e is removed, the
new set of vectors does not lie in a plane.

2-10 Number of vectors in a basis for E*. The preceding theorems on
bases have not depended on the actual number of vectors in the basis.
However, our results have led us to suspect that every basis for E* con-
tains the same number of basis vectors, and that there are precisely n
vectors in every basis for E®. This is indeed correct, as we shall now show.

We shall begin by proving that any two bases for E™ have the same number
of basis vectors. Let a,, ..., a, be one set of basis vectors for E”, and
by, ..., b, be any other set of basis vectors. The theorem states that
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u = v. To prove it, note that b, can be expressed as a linear combination
ofay,...,a,: u
b, = > \ay,
i=1

and that at least one A; # 0 (since the null vector cannot be a member of
a linearly independent set). Without loss of generality, we can set A, 5 0.
From the results of the preceding section we know that a;, ..., a,_.1, b,
form a basis for E*. Hence b,—; can be written as a linear combination
of this set of basis vectors,

u—1
by_1 = D da; + &b,

t=1

At least one §; # 0; otherwise b,—; would be merely a scalar multiple of
b,, contradicting the fact that the b; are linearly independent. We can
assume that §,—; # 0. Hence, the set a,,...,a,_», b,-;, b, forms a
basis for £”. This process can be continued until a basis is found which
must take one of the following forms:

ag, ..., 88—y, bl, ey bv or bly ey bv- (2—63)

There must be at least as many a; as there are b;; otherwise a basis of the
form b,y 41, . . ., b, would be obtained, and the remaining b; would be
linearly dependent on b,_,1, - . ., by, contradicting the fact that all the
b; are linearly independent. Thus we conclude that

u > . (2-64)

However, one can start with the b; and insert the a;. This procedure would
yield
' v > u (2-65)

Therefore u = v, and the theorem is proved.

To determine the actual number of vectors in a basis for E*, it is only
necessary to find a basis for £” and count the number of vectors in this
basis. We have already shown that the n unit vectors ey, ..., e, form a
basis for E*. It tmmediately follows that every basis for E™ contains pre-
cisely m vectors.

We can now see that any set of n linearly independent vectors from E™
forms a basis for E*. Letay, ..., a, be such a set of linearly independent
vectors. To prove this result, we only need to start with the basis
ey, ..., e, and insert the a;. After n insertions, which can always be made
(for the same reasons used in proving that two bases always have the
same number of elements), we obtain a new basis aj, ..., a,. Thus, it
is obvious that any n + 1 vectors from E™ are linearly dependent, since the
assumption that they are linearly independent leads to a contradiction,
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because any subset of n of them is a basis, and the remaining vector could
be expressed as a linear combination of the basis vectors.

Any m < n linearly independent vectors from E" form part of a basis
for E", that is, if a,,...,a, from E" are linearly independent, then
n — m additional vectors in E™ can be found such that ay, ..., an, and
the other n — m vectors in E™ form a basis for E”. Again, the proof de-
pends on starting with a basis and inserting the a; in precisely the same
way as was done before. If we start with unit vectors as a basis, we see
that the additional n — m vectors used to fill out the basis can be unit
vectors. As a specific example of this theorem, any non-null vector from
E™ is part of a basis and, therefore, there is an infinite number of bases
for E™.

We have characterized the dimension n of a euclidean space by the
number of components in the set of vectors which form the space, that is,
E™ is the set of all n-component vectors. We have shown that the maxi-
mum number of linearly independent vectors in E” is n. In some ways,
it is more desirable to define the dimension of a space in terms of the
maximum number of linearly independent vectors which can exist in that
space. This definition avoids connecting the dimension of a space to the
number of components in the vectors forming the space. The advantage
of this approach will become clear in the discussion of subspaces.

*2-11 Orthogonal bases. It will be recalled that two n-component
vectors a, b are orthogonal if a’b = 0. Let us suppose that we have n
vectors vy, . . . , V, from E™ which are mutually orthogonal and all differ-
ent from O so that

vivi=0 (all?,j;2 # j). (2-66)

This set of vectors forms a basis for E*. The proof follows immediately
if we can show that the set vy, ..., v, is linearly independent since any
set of n linearly independent vectors from E” forms a basis for £”. Con-
sider the problem of finding the A; which will satisfy

A1Vy F oo AV = 0. (2—67)
Torming the scalar product of v, and (2-67), we obtain

M2 4 AaVive + - -0+ ViV, = VIO = 0, (2-68)
and by (2-66)
A =0,

since, by assumption, |v,|2 5 0. If we form the scalar product of (2-67)
and v,, we obtain A; = 0, etc. Hence, each \;, (i = 1,...,n) is zero, so

* Starred sections can be omitted without loss of continuity.
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the vectors are linearly independent and form a basis for E®. Thus any
set of n mutually orthogonal nonzero vectors from E* yields a basis for E™,
Let us divide each vector v; by its length |v;| and write

Vi
u; = W (.2_69)
This can be done since |v;| ¢ 0. The u; represent vectors of unit length;
thus
wu; = 1, uju; =0 (5 #j). (2-70)

ORTHONORMAL BAsIS: A sel of n mutually orthogonal vectors of unit
length from E™ forms what is called an orthonormal basis for E™.

Orthonormal bases are especially interesting because any vector x
from E™ can be expressed very easily as a linear combination of the

orthonormal basis vectors. If uy,...,u, form an orthonormal basis for
E" and we want to write
X = MU; + - + AUy, (2-71)
then the scalar product of u; and (2-71) will yield
A = uix [see (2-70)]. (2-72)
* The scalar ; is found simply by forming the scalar product of u; and x.
Note: the unit vectors e;, . . . , e, form an orthonormal basis for E*.

Since any set of mutually orthogonal nonzero m-compoment vectors is
linearly independent (proof?), it is not possible to have n + 1 mutually
orthogonal nonzero vectors in E™.

Any set of n given linearly independent vectors from E™ can be con-
verted into an orthonormal basis by a procedure known as the Schmidt
orthogonalization process. Let us suppose that a, . . ., a, are n linearly
independent vectors from E®. We select any vector from this set, for ex-
ample, a,. This vector defines a direction in space, and we build the
orthonormal set around it. Let us define the vector of unit length u, as

a

u = . 2‘“73

1 ‘all ( )

To obtain a vector v, orthogonal to u;, we subtract from a, a scalar
multiple of u,; that is, v, is expressed as

V2 = a2 — ajuy, (2-74)

and @, is determined so that ujve = 0. Hence
a) = ujay,

which can be thought of as the component of a, along u;. Also, the vec-
tor a;u, may be interpreted as the vector component of a, along u,.
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Thus,
v = a; — (u}az)u;. (2-75)

A second unit vector orthogonal to u; is defined by

— _v2_. !
U = IVzl ; (2-76)

this can be done since |va] 5 0 (why?). A vector orthogonal to uy, u, is
found by subtracting from ag the vector components of a3 along uy, u,.
This gives

vz = a3 — (ujaz)u; — (ubaz)u,. 2-77)

The vector v3 is clearly orthogonal to u;, u;. The third unit vector which
is orthogonal to u;, u; is

— —_-——V3 . —
uz = sl (2-78)

This procedure is continued until an orthonormal basis is obtained. In
general,

r—1
v, =a, — ), (dia)u, (2-79)
i=1
A/
U, = ——- 2-80
v (2-80)

ExampLE: Using the Schmidt process, construct an orthonormal basis
from a; = [2,3,0], a; = [6,1,0], and a3 = [0,2,4]. If we plot the
vectors a;, a3, a3, it is easily seen that they are linearly independent since
they do not line in a plane. Then if

u = T:_:T = (13)""22, 3, 0] = [0.554, 0.831, 0];

vy = a; — (ujay)uy;
(uiag) = 4.16,  (ujaz)u; = [2.30, 3.45, 0];
ve = [3.70, —2.45, 0];

Y2_ — [0.831, —0.554, 0];

Y2 = ol

vz = ag — (uiaz)u; — (ulaz)uy;

ujaz = 1.664, u%az; = —1.106;
(whaz)u; = [0.921, 1.386,0], (ubas)uz = [—0.921, 0.614, O];
V3 = [0; 0) 4];

ug = [0, 0, 1]
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The fact that any set of m < n linearly independent vectors from E™
constitutes part of a basis, and the Schmidt process demonstrate that
any set of m < n mutually orthogonal vectors of unit length in E™ is
part of an orthonormal basis; that is, there exist n — m vectors of unit
length in E™ which, together with the m orthogonal vectors of unit length,
form an orthonormal basis. .

If two nonzero vectors a, b from E™ are both orthogonal to n — 1 mutually

orthogonal vectors of unit length u,, . .., u,—y from E", then b is a scalar
multiple of a. This follows immediately since a, uy, . . ., u,—; form a basis,
and

b=+ MNug+ -+ Mqtp—1.
However,

ub=0 wWa=0 ((=1,...,n—1), un;=0 ({sj);

hence
)\,=0 (‘5=1; N 1)1
and
b = )a.

*2-12 Generalized coordinate systems. When writing a vector a =
[ai, . .., a,] as an ordered n-tuple of numbers, we have assumed that the
components @; lie along the coordinate axes defined by the unit vectors
ey, ..., e, Our preceding discussions were all implicitly based on a

coordinate system defined by unit vectors. There is no reason, however,
why we should be limited to one coordinate system since any set of basis
vectors can define a system of coordinates.

Let us consider a set of basis vectors vy, . . ., v, for E*. For convenience,
we shall assume that each v; is of unit length. If x is any point in E®,
then

X=o1Vy + 4 a,v,. (2-81)

In (2-81), all vectors x, v; can be thought of as referred to the basic
coordinate system defined by e;,...,e,. However, x can be equally
well characterized by the numbers a;, ..., a,. For example, the vector
X, = [aj, . .., a,] can be considered to be the representation of x in the
coordinate system defined by the basis vectors vy, ..., v,. A subscript
is placed on x to indicate that x, is not referred to the coordinate system
defined by eq,...,e, but instead to the coordinate system defined by
the v;.
If A is any scalar, multiplication of (2-81) by A shows that

(AX)y = AXy = [Nay, . . ., Aa]. (2-82)
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Assuming y to be any other vector in E", we obtain
y= ﬁlvl + .. + anm (2_83)

Yy = [ﬂl; ceey Bn]- (2_84)
Adding (2-81) and (2-83), we see that
E+Y)v=X1Y = fa; + By - an + Bal. (2-85)

and

Multiplication by a scalar and addition have precisely the same form
in an arbitrary coordinate system as in the system defined by ey, . . ., ex.

The scalar product, however, does not—in any coordinate system-—
have the form (2-31). Forming the scalar product of y, x by means of
(2-81) and (2-83), we see that

n n n ”
y'x = Z Z a;Biviv; = E Z a;f; cos 0;;
i=1 j=1 i=1 j=1
= E a:B; + Z a;fB; cos 0;;, (2—86)
=1 i
where 6;; is the angle between v; and v;. Equation (2-86) is not usually
2 aibi.
Let us suppose that v, . . . , ¥, is an orthonormal basis. Equation (2-86)

then becomes
n

yx = Z aif; = YvXy. (2-87)

=1

Hence, in any orthogonal coordinate system, all the operations with vec-
tors, including the scalar product, can be performed in the same way as
in the coordinate system defined by e;, ..., e,. For this reason, orthog-
onal coordinate systems are particularly useful.

Many mathematics texts do not start out with defining a vector as an
ordered n-tuple of numbers. Instead, they define vectors as algebraic
elements for which the operations of addition and multiplication by a
scalar are defined and assumed to possess the properties (2-23) through
(2-26). The entire theory is then developed without referring to an
n-tuple. This approach is abstract and tends to be somewhat difficult
for students with little mathematical background. However, it does have
the great advantage that it avoids the problem of coordinate systems
since vectors are defined without reference to a coordinate system. Hence
it follows immediately that the theory holds for any coordinate system.
[The scalar product is also defined abstractly in terms of its properties,
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and then it is shown that, for orthogonal coordinate systems, it takes
the concrete form of Eq. (2-31).]

2-13 Vector spaces and subspaces. For certain purposes, it is desirable
to treat collections of vectors from a slightly more abstract point of view
than we have as yet presented. We shall introduce now the concept of
a vector space.

VECTOR SPACE: A vector space is a collection of vectors which is closed
under the operations of addition and multiplication by a scalar.

The expression, “a set of vectors is closed under addition and multipli-
cation by a scalar,” means that if a, b are in the collection, the sum a + b
is also in the collection, and if a is in the collection, Aa is in the collection
for any scalar A.

The definition of a vector space says nothing about a scalar product,
length, or distance. These concepts do not need to be defined in a vector
space. Only addition and multiplication by a scalar need to be defined.
From the closure property, we see that if a is in a vector space, so is —a,
since (—1)a is in the collection. Similarly, the null vector is always in a
vector space, since Aa is in the space, and we can assume A\ = 0. The
totality of all n-component vectors is called an n-dimensional vector space and
18 denoted by V,. The space V, is identical with the n-dimensional eu-
clidean space E™ if length is defined in ¥V, as in E®. Although E™ is clearly
a vector space, it does not follow that any V, is an E™.

Out of all the vectors in V,, it is possible to find various subsets of
vectors which are themselves vector spaces. For example, the set of all
three component vectors forms a three-dimensional vector space. How-
ever, if we consider all three component vectors lying in the plane z, = z3,
that is, all vectors of the form [z, 3, z5], then this collection is also a
vector space. Although it is composed of three component vectors, we
do not call it a three-dimensional vector space since all the vectors lie in
a plane. Such a vector space is referred to as a subspace of V3.

SuBsPAcCE: A subspace S, of the n-dimensional vector space V, 1s deﬁned
to be a subset of V, which is itself a vector space.

The subscript » on S, means that the vectors have n components, i.e.,
are elements of V,. In assigning a dimension to a subspace, we shall find
it convenient to define the dimension of a space as the maximum number
of linearly independent vectors in the space, rather than to refer to the
number of components in the vectors generating the space. We define the
dimenston of a subspace S, as the maximum number of linearly independent
vectors in the subspace. In our example, any vector [z;, z3, 2] can be
written
[x1, x2, 2] = 101 + 22[0, 1, 1].

|
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The maximum number of linearly independent vectors in this subspace is
two; hence its dimension is two. This is precisely what we want intuitively
because we know that all the vectors lie in a plane. To simplify later dis-.
cussions, we consider S, = V,, to be a subspace of V, having dimension n,
i.e., the subspace is all of V,.

A clear geometrical interpretation of subspaces in E3 can be given.
Any subspace of E? is either E3 itself, a plane through the origin, a line
through the origin, or just the origin itself (this is a subspace of a single
element and has dimension 0).

ExampLE: The collection of all vectors A{1, 1, 1] for any scalar A form a
subspace of E® since

Ml 4 Al = (A1 + A1,

which is also an element of the collection. This collection of vectors lies
on the line which passes through the origin and the point [1, 1, 1] (see line
8} in Fig. 2-10).

The collection of all vectors {z;, 0, z3] is a subspace of E3 and repre-
sents the z,z3-plane (see S% in Fig. 2-10).

The collection of all linear combinations of m n-component vectors
ai,...,anis a subspace of V,. To prove this, note that any vectors a, b
in the collection can be written

m m
a= Y aa; b=y da;

=1 =1
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Then

m

Aa = E ()\a.-)a.-

=1

is also a linear combination of the a; and is in the collection. Furthermore,

m
a+b=73 (a+ aba
im1
is a linear combination of the a; and is in the collection.

A set of vectors from a subspace S, is said to span or generate S, if
every vector in S, can be written as a linear combination of this set of
vectors. A linearly independent set of vectors from 8, which spans S,
is called a basis for S,. If S, has dimension %, then a basis for S, will
contain precisely k vectors. The arguments used in Section 2-10 show
that if S, has dimension k, any k linearly independent vectors from S,
are a basis for S,.

If 8, is a subspace of E” having dimension k, then, except for notation,
S, is the same as E*. The vectors in S, will have n components rather
than k components. However, it is possible to establish a unique corre-
spondence between the veetors in S, and the vectors in E*. For example,
the subspace of E® (discussed above) which is the collection of all vectors
" [x1, z2, 22] has dimension 2. Corresponding to any vector in this subspace
there is one and only one vector [z, z2] in E?, and for any vector [z}, %3]
in E? there is one and only one vector [z}, x2, z2] in the subspace. We say
that a subspace of E™ of dimension k is isomorphic to E*.
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ProBLEMS

2-1. Given the vectors a = (2, 1), b = (1, 3), plot the vectors —2a, a1+ b,
and illustrate the use of the parallelogram rule to find a 4+ b, 2a + %b. ’

2-2. Given a = fa1,...,@a,), b = [b1,...,ba), ¢ = [c1,...,cn], show by
direct computation that . .

@a+b)+c=a+((b+c)=at+tb+tcg
a’b = b'a,
la —b] = |(a —¢) — (b —0)
2-3. Ifa = [3,2,1], b = [, 5, 6], solve.the following ’vector equation for x:
- 3a + 2x = 5b.
2-4. If a is an n-component vector, show by direct computation that

a+0=0+}+a=a, 3a =a-tata, a’0 = 0.

Show that the equation a -+ x = 0 has the unique solution x = —a.
2-5. Show that the vectors [2, 3, 1], [1,0, 4], (2, 4, 1], [0, 3, 2] are linearly
dependent.

2-6. Express x = [4, 5] as a linear combination of a = [1,3], b = [2, 2].

2-~7. Given three linearly independent vectors aj, ag, a3 from E3, obtain a
formula for any vector x in E3 as a linear combination of aj, ag, a3, that is,
evaluate the \; in terms of the components of x, a;, az, a3 when

X = Aia; + Asaz -} Asas.

2-8. Given the basis vectors e; = [1,0,0], {0,1,1], es = [0, 0, 1] for E3.
Which vectors can be removed from the basis and be replaced by b = [4, 3, 6],
while still maintaining a basis? Illustrate this geometrically.

2-9. Given the basis vectors ey, [0, 1, 1], ez for E3. Which vectors can be
removed from the basis and be replaced by b = [4, 3, 3], while still maintaining
a basis? Illustrate this geometrically.

2-10. Let by, ..., b, be a basis for E*. Suppose that when a given vector x
in E* is written as

X = Mbi+ -+ -+ Aaba,

it has all \; > 0. Assume that we have a vector a and want to remove some b;
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from the basis and replace it by a to form a new basis:
a = alb1+"'+anbn

Under what conditions can a replace b;? Assuming a can replace b;, write x
as a linear combination of the new basis vectors. In addition, let us require that
the scalar coefficients in the linear combination which expresses x in terms of
the new basis vectors be non-negative. Show that a necessary condition for the
new scalar multipliers to be non-negative when b, is removed is that a; > 0.
It does not follow, however, that simply because a; > 0, all the new scalar
coefficients will be non-negative. If several a; > 0, show how to determine
which vector b; is to be removed so that the new scalar coefficients will be non-
negative. Hint:

X = inbi = Z)\.’b.’ — 98+ 0&,
and

= 0> ab;, 0 > 0.

Note that A\; — 0c; must be zero for one b;, and A\; — 6a; > 0 for all other b;.

2-11. Suppose that in Problem 2-10, we have defined a function z0 = 3_c:\;,
where the c; are scalars, and the \; are as defined there. Corresponding to each
b; there is a number ¢; which we shall call its price. Let the price of a be c.
Now a is inserted into the basis and some b; is removed, the b; being chosen by
the method developed in Problem 2-10, so that the new scalar coefficients are
non-negative. Find an equation for the new value of zo when a is introduced
into-the basis. Denote Y c;a; by z. Imagine next that several different vectors a;
can be inserted into the basis, but that only one of them will be actually intro-
duced. Develop a criterion for selecting the a; which will produce the maximum
increase for zo. What happens when there is no increase in zo after insertion of
any of the a;? How is this expressed mathematically?

2-12. Compute the angle between the vectors

a=1047091,3] b=1[211,56,8].

2-13. If the n-component veetors a, b, ¢ are linearly independent, show that
a+ b, b} ¢, a4 c are also linear]y independent. Is this true of a — b,
b+c a+tc?

2-14. Show how the change of bas1s technique (discussed in Section 2-9)
can be used to express a vector in terms of some arbitrary basis by starting
with the unit vectors as a basis and then proceeding to insert the vectors of
the arbitrary basis. Illustrate by expressing b = [4, 6, 1] in terms of a; =
[37 11 2]y az = [17 3, 9]) az = [21 8, 5]'

2-15. Consider the set of n-tuples x = [z, z2, ..., z,] for which 1, ..., Tm
are completely unrestricted, while

Tm4s = E ai;Zj, i=1,...,n—m.
i=1
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Show that this set of vectors forms a subspace of V.. What is the dimension of
the subspace? Is the set of vectors

a1 =(1,0,0,...,0,a11,821, .-+, @a—mil, - . .,

am=10,0,...,1,81m ..., Gn—m,ml

a basis for the subspace?
2-16. Do the following vectors form a basis for E3?

(8) a1 = [3,0,2], a2=1[7,09], a3=1[412]
(b) ay = [1; 1, 0]) az = [3y 0) 1]) az = [57 2, ]];
(C) ay = [1, 5) 7]1 az = [4: 0: 6]’ ag = [17 0) 0]'

2-17. Consider two subspaces Si and S}/ of V.. Define the sum of the sub-
spaces, written symbolically S; 4 87/, as the collection of all veetors a + b,
_where a is any vector in S, and b is any vector in S;. Prove that S; + Sy
is also a subspace of V,. If Si is the collection of vectors A[2, 1], and Sy is the
collection of vectors a[l, 3], show that S; + Sy’ is V2. Illustrate geometrically.
2-18. Referring to Problem 2-17, prove that if 0 is the only vector which is
common to S, and S7, the dimension of (S, + S») equals dimension of S, +
dimension of S%. Hint: Let ay, . . ., a, be a basis for S, and by, ..., b, a basis
for S;/. Show that any vector in S5, + S» can be written as a linear combination
of a3,..., 8, by, ...,b,. To prove that aj,...,a,, b1, ...,b, are linearly
independent, suppose

Z:)\;a.- + Z éb; =0 or Z)\.'a; = -—Z osb;.

Note that >_\.a; is in S, and X_4b; is in Sy

2~19. The intersection of two subspaces, written S, N Sy, is the collection
of all vectors which are in both S, and Si. Prove that the collection of vectors
8%, N S is a subspace of V5. Let 85 be the collection of vectors Ae; and 8% = Va.
What is S N S4? Illustrate geometrically.

2-20. Prove that the dimension of S, N Sy < minimum [dimension of S,
and dimension of Sy].

2-21. Prove that dimension (S5 + SY) -+ dimension (S, N S;) = dimension

8., + dimension SY. Hint: Let uy, ..., u, be a basis for S, N S/, a1,..., a,,
ui, ..., u, a basis for 84, and by, ..., b,, uy, ..., u, a basis for S;.
2-22. Let a1,..., a8, be a set of linearly independent vectors from E™ and

a any other vector in E®. Show that if a is linearly independent of the set
ai,...,am thena, ay,...,a,is a linearly independent set of vectors.

2-23. In the text it was shown under what circumstances a vector could
be removed from a basis and replaced by another vector in such a way that the
new set of vectors was also a basis. Suppose now that we wish to form a new
basis by removing two vectors from a basis and replacing them by two other
vectors. Try to derive the conditions under which the new set of vectors will
be a basis. What are the difficulties? Is it easier to insert the two vectors one
at a time or both together?
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2-24. Prove that [a — b| > Ounlessa = b. Prove that|a — b| = |[b — a.

2-25. Prove the Schwarz inequality |a'b} < |af [b]. Hint: Aa+ b|2 =
A?[a|? + 2xa’b + |b|2 > O for all \. Thus the quadratic equation [A\a-+b|2 = 0
cannot have two different real rootss

2-26. Prove the triangle inequality |a — b/ 4 |[b — ¢/ > |a — ¢|. Hint:
[a —¢2< |a — bJ2+ 2{(a — b)Y (b — c)| + |b — c|2. Use the Schwarz in-
equality.

2-27. By direct computation, verify the Schwarz inequality for the special
case

a=[4,1,2] b = [31 7, 9]

2-28. Verify by direct computation the triangle inequality for the special
case
a = [37 7, 1]: b=191, 4], ¢ = [3’ 0, 2]'

2-29. Verify the triangle inequality when
a=(,11, b=[333 c¢=[-2-2-2.

Tllustrate geometrically. Repeat with ¢ = [2, 2, 2].
*9-30. Consider the basis a; = 5~V2(1, 2], az = 10-1/2[—1, 3] for E2. Using
aj, a2 to-define a coordinate system, find a1, az in

X = aif; + agaz,

where X = [z1, z2] when e, ez define the coordinate system. Illustrate this
geometrically.

*9-31. Using the Schmidt orthogonalization process, construct an orthonormal
basis for E3 from the following set of basis vectors:

ay = [21 6, 3]: a2 = [97 1, 0]’ az = [17 2: 7]

Illustrate this geometrically.

*9-32. Consider any subspace Ss of V.. The set of vectors orthogonal to every
vector in S, is called the orthogonal complement of S, [written 0(S.)]. Prove
that 0(S.) is a subspace of V,. Let S3 be a set of vectors of the form [r1, 2, 0].
What is O(S3)?

*9-33. Prove that any vector x of V, is in S, 4+ O(S.), that is, prove
8, + 0(8,) = V,. Hint: Choose an orthonormal basis ai, . . ., 8, for S, and
an orthonormal basis by, ..., b, for O(S.). No vector in ¥, can be orthogonal
to these basis vectors for S, and O0(S,). If x is not orthogonal to the set
ai,...,a, or the set by, ..., b,, then x — 2_; (alx)a; is orthogonal to the set
ay,...,a, Illustrate this theorem for the case where S, = 83 is the set of
vectors [z1, z2, 0].

*9-34. Prove that O[0(S,)] = S.. Illustrate this geometrically.

* Starred problems refer to starred sections in the text.
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The following problems deal with generalizations to vectors whose com-
ponents are complex numbers.

2-35. The solutions to a quadratic equation, such as az2+ Bz + 7 = 0
(a, 8, Y real), cannot always be written as real numbers. Depending on the
values of a, 8, 7, the solutions may take the form z = a % b, where 12 = —1
ori = v/ —1, and q,.b are real numbers. To see this, solve 22+ 2z + 5 = 0.
A number of the form z = a + b (a, b real) is called a complex number. Fur-
thermore, a is called the real part of 2z, and b the imaginary part of z (note that
there is nothing “imaginary” about b; it is a real number). We write z = 0
(0 = 04 ¢0) if and only if @ = b = 0. Given two complex numbers z; =
a1 + tb1, 22 = a2 + tb2, z1 = 22 if and only if a1 = a2, and b1 = ba. If the

" complex number z3 denotes the sum of z; and zg, it is defined to be

23 = 21+ 22 = (a1 + a2) + (b1 + b2).

If z3 represents the product of z1 and zg, it is defined to be
23 = z122 = (a1 + th1)(az + tb2) = (a1ag — bib2) + i(a1b2 + azby).

Note that we can obtain this expression by using the ordinary laws of multipli-
cation and ©2 = —1. If the complex number z3 is the quotient of z1. and z2, it
is defined to be

21

1 .
== m [(a1a2 + b1b2) + t(azbi — a1b2)].

Problem 2-38 will illustrate an easy method of obtaining the above expression.
Note that z1- = 2223.

Show that the definitions for equality, addition, multiplication, and division
are consistent with the theorems on solutions of quadratic equations. How
should subtraction be defined? Demonstrate that addition and multiplication
of complex numbers satisfy the associative and commutative laws [for multipli-
cation this means that z122 = 2221 and z1(z223) = (2122)23 = z12223]. Observe
that real numbers are included in the set of all complex numbers since b in
z = a -+ tb may be zero.

2-36. The complex conjugate of a complex number z = a + b is defined
to be z* = a — tb. Show that if z is the solution to a quadratic equation, so is
z*. Prove that

*

* * * % 21\ * z1
{21+ 22)* = 21 + 22,  (2122)* = 2122, (- ="
2z z;

2-37. The absolute value of a complex number z = @ - b, written [z], is
defined to be [z| = v/a2 +b2. Show that zz* = 2*2 = |z|2. Prove that
[2¥* = l2|, |z122] = |21| |22), |21/22] = |21|/|22]- To write z1/22 as the complex
number z3 = a3 4 b3, it is necessary to eliminate the ¢ in the denominator,
that is, we multiply the numerator and denominator by 23 and obtain z3 =

2123/|22|2; this is the result given above for the quotient of two complex numbers,
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2—38.* Eet 21 = 3+ 41, z2*= 2+ 4. Compute z122, 2221, 21 + 22, 21/22,
22/21, 21, 23, |21], |22], (2122)*, 2123, |21/22|, and verify the general rules developed
above.

2-39. Most of the theory developed in this chapter can be extended directly
to vectors whose components are complex numbers. Given two vectors z =

{e1,...,2.) and W = {wy, ..., wa] with complex components, z = w if and
only if z; = w;, ¢ = 1,...,n. Thenz+w = [z1 + wy, ..., 2, + w,], and
Yz = [Yz1,...,7z,] for any complex number ¥. Show that addition is associa-

tive and commutative. The scalar product is defined somewhat differently when
the vectors have complex components. The scalar product of z and w, written

Zw, is defined to be
n
- *
W = E 2 ws,
=1

where the * denotes the complex conjugate. This is often referred to as the
Hermitian scalar product which, if the components are real, reduces to the
definition of the scalar product given in the text. Show that zw = (Wz)*
and Zz = 3 -1 |2|2; Zz is called the square of the magnitude of z and is written
[z[2. Observe that [z| is a real number. One important difference between
vectors with real components and those with complex components is the loss of
the simple geometrical interpretation in the latter case, although it is still
possible to think of n-dimensional spaces with complex coordinates.

2-40. Let z = 3451, 244, 1+ %], w=[2¢, 4, 5+ 6], ¥ = 2+ 4s.
Compute z + w, 7z, Yw, Zw, Wz, |z], |w]|.

2-41. A set of k vectors zy, . . ., Zx with complex components is linearly inde-
pendent if the only set of complex numbers a; for which 3 %.; aiz; = 0 is
a; =0, ¢ =1,...,k Otherwise the set is linearly dependent. Thus we
see that the same definition applies formally to both types of vectors, i.e., to
those with complex components and to those whose components are real num-
bers. Under what conditions are the two vectors z = [z3, 22] and w = [wy, we]
linearly dependent? Reduce the condition to one involving real numbers only.
Consider the set of n-component vectors é;, ¢ = 1,...,n; all components of
&; are zero except the ¢th component which is 1 4 7. Show that these n vectors
are linearly independent. How can any n-component vector (with real or com-
plex components) be expressed as a linear combination of these vectors such
that z = 371 \;&; (the A\ being complex numbers). Hint: If w = q -} b,
w(l+ 1) = (@ — b) + i(a+b). Express z = [¢,4+ 51,2 + 3{] as a linear
combination of &1, &2, 3.

2-42. The set of all n-component vectors z = [z, ..., z,], with the z; taken
from the set of complex numbers, forms an n-dimensional vector space which
may be denoted by V,.(C), the C indicating that the components belong to the
set of complex numbers. A basis for this space is a set of linearly independent
vectors which spans the space. Show that every basis contains precisely n
vectors and that any set of n linearly independent vectors from V,(C) is a basis
for V,.(C). Demonstrate that any n + 1 vectors in V,(C) are linearly dependent.
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Show that the definition of a subspace can be applied to Va(C) without any modi-' -

_fication.

9-43. Two vectors with complex components are orthogonal if their Hermitian
gcalar product is zero. Generalize the Schmidt orthogonalization procedure to
vectors with compléx components. Construct an orthogonal basis from z; =

© [, 4+ 23], z2 = [54 64, 1]
92-44. Show that the unit vectors ey, . . ., e, are a basis for V,(C) as well as

En,



CHAPTER 3

MATRICES AND DETERMINANTS

“like the glaze in a
katydid wing
subdivided by sun
till the neltings are legion.”

Marianne Moore.

3-1 Matrices. Matrices provide a very powerful tool for dealing with
linear models. This chapter will discuss some of the elementary properties
of matrices and investigate the closely related theory of determinants.

MaTrIX: A matrix is defined to be a rectangular array of numbers arranged
into rows and columns. It is written as follows:

Qi1 G2 - Q1a
Q21 Qg2 °* - 0q2n

(3-1

An1 Apr2° ° ° Cpp

The above array is called an m by n matrix (written m X n) since it has
m rows and n columns. As a rule, brackets [ 1, parentheses ( ), or the form
I || is used to enclose the rectangular array of numbers. It should be noted
right at the beginning that a matriz has no numerical value. It is simply a
convenient way of representing arrays (tables) of numbers.

Since a matrix is in general a two-dimensional array of numbers, a
double subscript must be used to represent any one of its elements (eniries,
malriz elements). By convention, the first subscript refers to the row, the
second to the column. Thus az3 refers to the element in the second row,
third column; and a;; refers to the element in the ith row, jth column.
No relation at all needs to exist between the number of rows and the
number of columns. A matrix, for example, can have 100 rows and 10
columns or 1 row and 1000 columns. Any matriz which has the same
number of rows as columns is called a square matriz. A square matriz with
n rows and n columns s often called an nth-order matrix. Any nth-order
matrix is by definition a square matrix.

60
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ExampLis: The following are matrices:

[1 0]’ [a b]’ [1 2 3] 617,
01 c e 010

11
7
1 2 4
[3 ], [5 6]’ 8910

are not matrices since they are not rectangular arrays arranged into rows
and columns.

Matrices will usually be denoted by upper-case boldface roman letters
(A, B, etc.), and elements by italicized lower case letters (a;;, bsj, ete.)
unless specific numbers are used. We can write:

ayy - Qin
A= lagjl =1|: S E (3-2)
Am1 * * ° Qmn

Observe that the expressions A, [|a;;]| do not indicate how many rows or
columns the matrix has. This must be known from other sources. When
only the typical element a;; of the matrix is shown we use ||a;;|| rather than
(ai;) or [a;j]. The latter notations do not indicate clearly whether a matrix
is implied or whether parentheses (brackets) have been placed around a
single element. We shall adopt the convention that brackets will be used
to enclose matrices having at least two rows and two columns. Paren-
theses will be used to enclose a matrix of a single row. To simplify the
printing in the -text of matrices having a single column, they will be
printed as a row and will be enclosed by brackets. The same convention
is used in printing column vectors. In equations and examples, a matrix
with a single column will sometimes be printed as a column for added
clarity.

In this chapter and in the remainder of the text, the elements of matrices
will be real numbers. However, the results obtained also hold for matrices
with complex elements (see Problems 3-78 through 3-86).

3-2 Matrix operations. It is the proper definition of matrix operations
that determines their usefulness, since a matrix per se is merely a table of
numbers. We shall see that the definitions which seem intuitively ob-
vious for operating with tables of numbers are also the most useful ones.
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Equavriry: Two matrices A and B are said to be equal, written A = B,
if they are identical, that is, if the corresponding elements are equal. Thus,
A = B if and only if a;; = by, for every i, j. If A is not equal to B, we
write A = B.

ExampPLES:

wa-[s 9 e[t 1)

A  Bsince ajp % byg, a22 = bao.

[t o0 _[1 o],
oa=[1 09 s-[L 9 axn

12 1 2]
(3)A=[3 4], B=[3 4], A =B

Clearly, A cannot be equal to B unless the number of rows and columns
in A is the same as the number of rows and columns in B. If A = B, then
B = A -

MULTIPLICATION BY A SCALAR: Given a matriz A and a scalar A\, the
product of X and A, written A, is defined to be

Aair *c* Naia
A\ = )\021 <o len " (3—3)
A@m1** * NOmn

Each element of A is multiplied by the scalar A. The product A\A is then
another matrix having m rows and n columns if A has m rows and n
columns. We note:

M = |haijl| = [la:All = Ax.

ExaMpPLES:

(1) A =4 A=[1 2]; M=[4 8]-
01 0 4

@ A= —2, A__._[l 4 1]; Mz[—z —8 52]‘
2 03 —4 0 —6

-Apprriox: The sum C of a matriz A having m rows and n columns and a
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matriz B having m rows and n columns is a matriz having m rows and n
columns whose elements are given by

Cij = Q55 + bij (3,11 ‘i, ]'). (3—4)

Written out in détail, (3-4) becomes

Ci1*** Cin Q11 Q1n bii - - bia
C=|: :|=]: Pl :
LCm1° * * Cmn Qm1 * * * Qmn bmi -« bmn

_ (3-5)
a11 + b1y -0 @1 + bm]
_aml+bml"'amn+bmn
This expression can be abbreviated to
C = A+ B. (3-6)

Two matrices are added by adding the corresponding elements.

ExAMPLES:

(1)A=[1 2],. B=[1 0];
3 4 o 1l

C=A+B=[1+1 2+0]=[2 2J.
. 340 4+1] I3 5

(2)A=[4 5 6]’ Bz[l 0 1];
31 2 010

C=A+B=[5 5 7]_,
3 2 2

(3) A+ A = llag|| + llagll = llas; + aijll = |20 = 2A,

and
A+ A+ A= 3A ete

Note that addition of matrices A, B is defined only when B has the same
number of rows and the same number of columns as A. Addition is not
defined in the following example:

@) A = [1 2], B = [2 4 6] (addition not defined).
5 2] 1°3 5
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It is obvious from the definition that matrix addition follows the asso-
ciative and commutative laws, that is,

A4+ B=B-1A, 3-7)

A+B+C=@A+B)+C=A+B+C, (3-8)

since addition proceeds by elements and the laws hold for real numbers.
Subtraction is defined in terms of operations already considered:

A—-B=A+(—1)B. (3-9)

Thus, we subtract two matrices by subtracting the corresponding elements.
The restrictions on number of rows and columns are the same for sub-
traction and addition.

ExaMPLE:
2 5 4 2 —2 3
A=|3 6} B=|1 0}f; A—-B= 2 64
4 8 2 0 2 8

3-3 Matrix multiplication—introduction. It was fairly obvious how
equality, multiplication by a scalar, and addition should be defined for
matrices. It is not nearly so obvious, however, how matrix multiplica-
tion should be defined. At this point, the concept of matrices as mere
tables of data must be abandoned since this approach does not give a
clue to a proper definition. Our first thought would be to multiply the
corresponding elements to obtain the product. However, this definition
turns out to be of little value in the majority of problems requiring appli-
cation of matrices (although recently, in some data processing operations,
it has been found useful).

Instead, we shall approach the subject in a different way. The value
of matrices stems mostly from the fact that they permit us to deal effi-
ciently with systems of simultaneous linear equations and related subjects.
We have already encountered systems of simultaneous linear equations
in Section 2-8 on the linear dependence of vectors. Let us consider a
set of m simultaneous linear equations in #» unknowns, the z;, which can
be written

1171 + @12%2 + * -+ + A1aTs = dy,
: (3-10)
Am12) + Ap2T2 S + Amnln = dm-

Note, first of all, that the coefficients a;; can be arranged into an m X n
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matrix A = |la;j|. Furthermore, the variables z; may be arranged into
a matrix of a single column and n rows which will be denoted by X =
[z1, ..., 7s]. Similarly, the constants d; may be arranged into a matrix
of one column and m rows which can be written D = [dy, ..., d,]. The
idea suggests itself to write the entire set of equations (3-10) in the ab-
breviated form* :
AX = D. (3-11)

Equation (3-11) will be interpreted as meaning that the matrix D is ob-
tained by multiplying matrix A by matrix X. This interpretation will be
correct only if element d; of D is computed from the elements in A, X
according to (3-10):

d; = Z a;;%;, 1=1,...,m. (3-12)
j=1

Here we have a lead toward a useful definition of matrix multiplication.
However, Egs. (3-11) and (3-12) suggest a way only for the multiplication
of a matrix by another matrix of a single column. It is immediately ap-
parent, however, that if our definition is to make sense, the number of
columns in A must be the same as the number of rows in X; that is, in
(3-10), there is one column in A for each variable and one row (element)
in X for each variable. '

To generalize the definition of matrix multiplication, let us imagine
that the variables 2;; are defined in terms of another set of variables y; by
the following relations:

zy = bnys + -+ + bieyr,

(3-13)
Tn = baryy 4+ -+ + barlr,

or

r
T = Zb,-kyk, ji=1...,n
k=1

Each original variable z; is a linear combination of the new variables yy.

* The reader can, no doubt, think of many other possible forms beside that
. givenin (3-11). For example, we might write (3-10) as XA = D. Furthermore,
we could define X as a matrix with one row and n columns and D as a matrix
with one row and m columns, and with this notation, write AX = D or XA = D.
There are many other feasible combinations. The one we have selected leads to
a useful definition of matrix multiplication, while many of the others do not.
Instead of investigating all the possibilities, we shall begin with the one which
leads directly to our goal.
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Substitution of (3-13) into (3-12) gives

n r °
2 i D baye = di. (3-14)

j=1 k=1

Rearranging the summation signs, we have

E (Z a,-jbjk) Yk = di, T = 1, ceeym. (3—15)

k=1 \j=1
Let us write

n .
Cik = Z a,',-bjk, 1= 1, s, M, k= 1, P (3—16)
j=1
Then (3—15) becomes:

La .
Z cikyk = d" 7’ = 1) ey m. (3‘17)
\ k=1

This is a set of m simultaneous linear equations in r variables, the y;.

Suppose we write Bi: bkl and ¥ = [y, ..., v so that, using our
simplified notation (3-11), Eq. (3-13) can be written X = BY. Further-
more, if C = |cill, (8-17) becomes CY = D. If we replace X by BY
in (3-11), we obtain ABY = D. Thus it appears that C should be the
product of A and B, that is:

C = AB. (3-18)

For this interpretation to be valid, we must define multiplication in such
a way that each element ¢;; of C is computed from the elements of A, B
by means of (3-16). _

The matrix C is m X r, while A is m X n, and Bis n X r. To define
the product AB [see (3-18)], it is necessary that the number of columns
in A be the same as the number of rows in B since there is one column
in A and one row in B for each variable z;. However, there is no restric-
tion whatever on the number of rows (the number of equations) in A
or the number of columns (the number of variables ;) in B. Given any
two matrices A, B, the preceding discussion suggests a way to form the
product C = AB provided the number of columns in A is equal to the
number of rows in B, and we are now in a position to give the general
definition of matrix multiplication.

MATRIX MULTIPLICATION: Given an m X n matrix A and an n X r
mairix B, the product AB is defined to be an m X r matriz C, whose ele-
ments are computed from the elements of A, B according to
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n
= Ylaaby, i=1...,m, Jj=1L...,r. (319
k=1
In the matrix product AB, A is called the premultiplier, and B the post-
multiplier. The product AB is defined only when the number of columns
in A is equal to the number of rows in B, so that we arrive at the following
rule:

RuLE. A and B are conformable for multiplication to yield the product AB
if and only if the number of columns in A is the same as the number of rows
in B.

As long as the number of columns in A is the same as the number of rows
in B, AB is defined; it is immaterial how many rows there are in A or how
many columns in B. The product C = AB has the same number of rows
as A and the same number of columns as B.

Note: The reader who is not familiar with double sums and with inter-
changing the summation signs in going from (3-14) to (3-15) should
consider the following example: Imagine the m X n matrix

abi;  aibyz - - aibia

agbar  agbss - - - agbas

Ambm1  Gmbma - - - Gnbmn

> [i akbk:] -3 [ak > bk,] (3-20)

k=1 | j=1 k=1

Then

is the sum of all the elements axbx; in the matrix obtained by first adding
all the elements in one row and then summing over the rows. Similarly,

Z [E akbk,] (3-21)

j=1

is the sum of all the elements in the matrix where we first sum all the
elements in one column and then sum over the columns. Since (3~20)
and (3-21) are two expressions for the same thing, they are equal. Identi-
fication of the a, bi; of (3—20) and (3~21) with the a;;, bjryx of (3-14), re-
spectively, yields the desired result. Often it is useful to represent either
(3-20) or (3-21) by the simplified notation

Z akb,-k.
ik
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3—4 Matrix multiplication—further development. The consideration of
linear equations and the change of variables in linear equations led us to
the most useful definition of matrix multiplication. In fact, it was the
search for a simplified notation applicable to systems of linear equations
which inspired Cayley in the 1850’s to introduce matrix notation. We
shall now clarify the definition of matrix multiplication and develop some
of the properties of the matrix product.

At first glance, Eq. (3-19) looks rather strange; quite a few subscripts
appear. Note first of all that the element c;; depends on all the elements
in row 7 of A and on all the elements in column j of B. The rule for matrix
multiplication is quite similar to the definition of the scalar product of
vectors. Indeed, if we think of the ¢th row of A and the jth column of B
as vectors, then the element in the 7th row and the jth column of C is,
in fact, the scalar product of the ith row of A and the jth column of B.
Diagrammatically,

€11 C1r 11" Qin

: : : : b1 “ bir

o [Eg o | = I E R e
: : : : ba1 - - - “ bas

Cmi " Cmr Any " Gmn

Before we proceed any further, it will be helpful to examine some examples -

of multiplication.

EXAMPLES:

1) A = 1 3], B=[2 1];
2 4 3 5

(1(2) + 33)] (1Y) +3(5>]}= [11 16],
[22) +4@®)] [2Q) +46)1] [16 22

oo (]
6 1] 5
— AB — [3 2][4] _ [[3(4) + 2(5)]] _ [22}_
6 15l lie@ 11 |29
3) A = [au. axz], B — [bu bw];
az1 Qa2 bar bao
C — [[aubu + arzba1]l [@11b12 + a12b22]]‘

[az1bir - azsbei] lazibiz + azzbas]

coa
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’ B=[4 7];
6 8
[3 0
C = AB 11 [4 7]
| 5 2fi6 8
[13(4) + 0(8)] [3(7) + 0(8)] 12 21
= [l1@ + 16)] 1@ +1@®1|=|10 15|

[[5(4) + 2(6)] [5(7) + 2(8)] 32 51

In order to get a feeling for the size of the matrix resulting from multi-
plication of two matrices, it may be helpful to represent the matrices as
rectangular blocks (see Fig. 3-1).

Matrix multiplication does not obey all the rules for the multiplication
of ordinary numbers. One of the most important differences is the fact
that, in general, matrix multiplication is not commutative, that is, AB and
BA are not the same thing. In fact, it does not even need to be true that
AB and BA are both defined. Thus, as a rule, AB # BA. In the special
case where AB = BA, the matrices are said to commute.

3
4) A=]|1
5

N = O

I

ExAMPLES:

oncl ) [} wef)

However, BA is not defined since the number of columns in B is not the
same as the number of rows in A.

1 1 341 5
2 A= 2 ) .B‘= 3,4,1,5); AB= 2 (3,4,1,5) = 6 8 2 10’
0 0 000 O
1 1 3 4 1
1
BA = (3,415 2|~ 38+ 8+5) = (16).
1

In this example, both AB and BA are defined, but the products are com-
pletely different.



Figure 3-1

Multiplication does not have to be commutative even for two n X n
matrices where both AB and BA are defined and are n X n matrices.

EXAMPLE: ) : .
A=t 1] B=[0 1],
0 1] 1 0]
T 1
AB - |1 1[0 1]=[1 1]
o 1ll1 o 1 o]
— -
Ba |0 1[1 1]=[0 1]
1 oollor ) L1l
and

AB = BA.

Although matrix multiplication is not in general commutative, the
associative and distributive laws do hold (when the appropriate opera-
tions are defined):

(AB)C = A(BC) = ABC (associative law) (3-23)
AB + C) = AB + AC (distributive law). (3-24)

To prove the associative law, we only need to note that

E (Z aikbkr) Crj = E i (Z brrcri) = Z aixbrrCriy  (3-25)
k k r k,r

r ’

since, as discussed before, summation signs are interchangeable. Similarly,
for the distributive law, .

2 aalbe; + o) = D aabk + Y aa . (3-26)
k k k

According to the associative law, ABC is unique; we can compute this
product by either computing AB and postmultiplying by C, or by com-
puting BC and premultiplying by A.
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ExamrPLES:
1 A=(1,92), B=[3 4], C=[3 0 2];
2 1 510
AB = (1,2)|° 4]=<7,6>,
2 1
@aB)C = (7,6 ° 2]=(51,6, 1),
5 1 0
BC=[3 4[3 0 2]=[29 4 6],
2 uls 1 0l L1114
ABC) = (1,2)]| % * 8| = (51,6, 19).
11 1 4
@ ~ (1,9), B=[3 4], C=[4 2];
05 17
B+C=[7 6], A(B+C)=(1,2)[7 6]:(9,30),'
1 12 1 12
AB — (1,2)[3 4]= 3, 14),
0 5
AC = (1,2)[4 2]: ©, 16),
17

AB 4+ AC = (9, 30).

3-5 Vectors and matrices. The reader has no doubt noticed a pro-
nounced similarity between matrices of one row or column and vectors.
Indeed, even the notation is the same. We shall now point out the com-
plete equivalence between vectors and matrices having a single row or
column. First, if one examines the definitions of equality, addition, and
multiplication by a scalar for both vectors and matrices, it will be ob-
served that they are equivalent when a matrix has a single row or column.
Furthermore, the scalar product of a row vector and a column vector
corresponds precisely to our definition of matrix multiplication, when
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the premultiplier is a row matrix, and the postmultiplier a column matrix. *
We shall see later that the notation indicating the scalar product of two
column vectors or two row vectors will again be identical with the appro-
priate matrix notation. Hence, there is a complete equivalence between
matrices of one row or one column and vectors. We shall not distinguish
between them. Consequently, we shall continue to use lower case bold-
face letters for vectors or, equivalently, for matrices of one row or column
rather than the upper case boldface type denoting matrices in general.
This distinction makes it easy to differentiate between vectors and
matrices having more than a single row and a single column. Following
this convention, we shall henceforth write a system of simultaneous linear
equations as Ax = d and abstain from the notation AX = D used in
Section 3-3.

It has already been suggested that the element ¢;; of the product AB
is found by forming the scalar product of the ith row of matrix A with
the jth column of B. On many occasions, it is convenient to represent the
rows or columns of a matrix as vectors. Suppose that A is an m X n
matrix. If we define the column vectors as

a; = [ayj, ..., Gmjl, (3-27)

. then A can be written as a row of column vectors,

A= (ay...,a,). (3-28)
Similarly, if we define the row vectors as
a’ = (@i, ..., Qm), (3-29)
then A can be written as a column of row vectors,
A=1[a,...,a" (3-30)

(To refresh the memory: Square brackets mean that a column is printed
as a row.)

Let us consider the product AB where A is m X n and B is n X r.
Represent A as a column of row vectors and B as a row of column vectors,
that is,

A=1[l...,a" B= (by,...,b,).

* The careful reader will note that the scalar product of two vectors is a
scalar, while the matrix product of a row and column is a matrix having one
element. There is a complete equivalence between numbers and 1 X 1 matrices.

" The details of demonstrating this equivalence are left to Problem 3-56.
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Thus
albl albz R alb,

AB = [a},...,a"|(by,...,b,) = |a’b; a’by---a’b,|-  (3-31)
a"'bl a'"b2 R a"'b,

Here, we can see clearly that each element of the product matrix is a
scalar product of a row from A and a column from B. As noted above,
matrices will be frequently represented as a row of column vectors or as
a column of row vectors. Column vectors will always be denoted by sub-
scripts (a;), rows by superseripts (a®.

ExampLe: Let A be an arbitrary m X n matrix. Then
Ae,~ = aj. (3-32)

This is easily seen by direct multiplication; it can also be shown to be true
by writing

Ae; = [alej, ceey a"‘e,-] = [a1j, - .., 0mj] = a;.

3-6 Identity, scalar, diagonal, and null matrices. The number one in
. the real number system has the property that for any other number a,

la = al = a; also 1(1) = 1. A matrix with similar properties is called
the identity or unit matrix. :

IpENTITY MATRIX: The identity matriz of order n, written I or I, is a
square matrix having ones along the main diagonal (the diagonal running
from upper left to lower right) and zeros elsewhere.

10 0---0
010---0
I=1o 0 1---0| (8-33)
0 00 1
If we write I = | 4]/, then
=1 LT (3-34)
0, ij.

The symbol &;;, defined by (3-34), is called the Kronecker delta. The
symbol will always refer to the Kronecker delta unless otherwise specified.
It is tacitly assumed that in (3-34) the indices 7, j run from 1 to n.
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Occasionally, we shall also find it convenient to write an identity matrix
as a row of column vectors. The column vectors are the unit vectors e;.
Thus :

I= (ej,es...,6,). (3-35)

Frequently, we must deal with several identity matrices of different sizes.
Differentiation between such matrices is facilitated by writing I,, where
the subseript indicates the size of I.

Exampre: The identity matrix of order 2 is

I:Ir‘)z[l 0]’
01

100
I=I;=|0 1 0}
0 01

and of order 3,

If A is a square matrix of order n and I the identity matrix of order n,

I commutes with A:
JA = Al = A, (3-36)

To prove this, write B = IA, and note that by (3-34)
bij = Y bt = ay.
k=1

Similarly, AT = A. If we take A = I,
I=1
Tt seems natural to write II as I%. Thus
I2=1 and hence I3 = I, etc. (3-37)

If A is not square, then our result cannot be true, since either IA or AI
will not be defined. However, if A ism X n, then I,A = A and Al, = A.
Hence, we can always replace any m X n matrix A by I,A or Al,, without
changing the expression. This substitution is frequently useful.

Let us consider again a square matrix of order n. Then

AA =A%  AAA =A%  A*=AA*Y bk =4,5...,

are also square matrices of order n. By analogy to the kth-degree poly-
nomial



3-6] IDENTITY, SCALAR, DIAGONAL, AND NULL MATRICES 75

N T )

in the real number z, we can construct the matrix polynomial

MAF £ A AR s A (3-38)

where the \; are, of course, scalars. It is important to note that Ao must
multiply I, not the number 1. The matrix polynomial is an n X n matrix.

ScaLAR MATRIX: For any scalar \, the square matriz
S=[rsyll =M (3-39)
is called a scalar matrix.

Problem 3-55 will ask you to show that there is an exact equivalence
between the scalar matrices AI and the real numbers A.

DIAGONAL MATRIX: A square matriz
D = || 8l (3-40)
is called a diagonal matriz.

Note that the \; may vary with <.

ExAMPLES:

¢)] 2 0]= 2[1 0] is a scalar matrix.
0 2 01
[2 0 0

(2 |0 1 0| isa diagonal matrix.

L003

In the real number system, zero has the property a0 = Oz = 0 and
a4 0 = a. A matrix with similar properties is called the null matrix or
zero matrix.

NULL MATRIX: A mairiz whose elements are all zero s called a null or
zero matriz and is denoted by 0.

A null matrix does not need to be square.
Exampre: The following are null matrices:

0
o=[O 0], o=[°°°], 0= |o|
00 000

0
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When the operations are defined, we have

A+0=A=0+A, (3—41)
A—A=o, (3-42)
A0 = 0, ; (3-43)
0A = 0. (3-44)

When A, 0 are square matrices of order n,
A0 = 0A = 0. (3-45)

If a, b are real numbers, then ab = 0 means that a = 0, or b= 0,
or ¢ and b = 0. The matrix equation

AB =0 (3-46)

however, does not imply that A = 0 or B = 0. It is easy to find non-null
matrices A, B whose product AB = 0. This is another case where matrix
operations do not follow the behavior of real numbers.

i I

This product of two matrices is a null matrix, although neither of the
factors is a null matrix.

ExAMPLE:

3-7 The transpose. Sometimes it is of interest to interchange the rows
and columns of a matrix. This new form is called the transpose of the
original matrix.

Transposg: The transpose of a matriz A = |aj|| <s a matriz formed
Jrom A by interchanging rows and columns such that row i of A becomes
column % of the transposed matriz. The transpose is denoted by A’ and

A’ = |l when A = |ja;l|. ’ (347
If af; is the 7jth element of A’, then af; = ajs.
ExaAMPLES:
10
M A=[1 3]; A'=[1 2]- (2)A=[1 5 4J; N=|3 1.
2 5 3 5 010
4 0

It will be observed that if Aism X n, A’ is n X m.
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If the sum C = A -+ B is defined, then
C'=A"+B. (3-48)
We prove this by noting that
¢hi = ¢ji = @i + bji = abj + b

It is interesting to consider the transpose of the product of two matrices.
If AB is defined, then
(AB) = B'A/, (3-49)

that is, the transpose of the product is the product of the transposes in reverse
order. To prove this, let C = AB. Thus,

4 (A ' s
cii = ¢cjii = z :ajkbki = E ;akjba‘k = Z :bikakj-
k k k

Hence we have shown that the %jth element of C’ is the #jth element of
B’A’, and (3-49) follows. Suppose A ism X n and B is n X r so that AB
is defined. Then A’ is n X m and B’ is r X n. Thus if AB is defined,
then B’A’ is defined also. The same result as in (3-49) holds for any
finite number of factors, i.e., :

(AjAg...A,) = AL ... A%A,, (3-50)

This is easily proved by induction; the details are left to be worked out
in Problem 3-25.

ExAMPLE:

A=[1 3]’ B___[z 4]; AB=[5 10]’ (AB),=[5 5]_
0 5 12 5 10 10 10

A’=[1 0], 13'=[2 1]; B’A'=[5 5]=(AB)’.
3 5 4 2 10 10

It will be noted that
I'=1 (3-51)
Also,
(A7) = A, (3-52)
since
(a%)' = aji = aij.

It should now be clear why we used a’b for the scalar product of two
column vectors and ab’ for the scalar product of two row vectors. The
transpose symbol was introduced so that the product, expressed in matrix
terms, would be defined.

e e
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3-8 Symmetric and skew-symmetric matrices.

SYMMETRIC MATRIX: A symmelric malriz is a matriz A for which
A=A : (3-53)

Clearly, a symmetric matrix must be square; it is symmetric about, the
main diagonal, that is, a reflection in the main diagonal leaves the matrix
unchanged. An nth-order symmetric matrix does not have n2 arbitrary
elements since a;; = a;; both below and above the main diagonal. The
number of elements above the main diagonal is (n? — n)/2. The diagonal
elements are also arbitrary. Thus the total number of arbitrary elements
in an nth-order symmetric matrix is
n? —n n(n + 1)
g Tr=T g

Exampre: The following is a symmetric matrix:

2 0 7
0 3 5
7 5 1
SKEW-SYMMETRIC MATRIX: A skew-symmetric matriz is a matriz A for
which ‘
A= —A (3-54)
A skew-symmetric matrix is also a square matrix, and

Ai; = —Qjj.

Hence, the diagonal elements are zero, a;; = 0, and the number of arbi-
trary elements in an nth-order skew-symmetric matrix is

nn — 1)
2

ExampLE: The following matrix is skew-symmetric:

01 2
-1 0 —3|-
—2 3 0
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Any square matrix can be written as the sum of a symmetric and a
skew-symmetric matrix:

’ A A A+ A A-A .
A=A+5 —5="F+" (3-55)
Now
’
(A+A’)’=A+A’ (3-56)
2 2
and :
A — A A — A
( 2»):— 5" (3-57)
If we write
_ A+ A _A— XA
A,-— ) and Aa—— ) ’

then A, is symmetric, and A, is skew-symmetric. We have thus expressed
the square matrix A as the sum of a symmetric and a skew-symmetric
matrix.

EXAMPLE:
2 —4 7 2 —3 18
a={3 19| AEX_14 4 x|
T s 6 9] . B 15 9
A—A 0 A+A  A—A
__I— X . + __I.
=130 3, A=2T= 425
3 -3 o0

3-9 Partitioning of matrices. It is often necessary to study some subset
of elements in a matrix which form a so-called submatrix.

SuBMaTRIX: If we cross out all but k rows and s columns of an m X n
mairix A, the resulting k X s matriz is called a submatriz of A.

ExawmrLE: If we cross out rows 1, 3 and columns 2, 6 of the 4 X 6 matrix
A = |la;;||, we are left with the 2 X 4 submatrix

@21 G23 Qa24 Qaz25
Q41 @43 Q44 Q45

For a number of reasons we wish to introduce here the notion of partition-
ing matrices into submatrices. Some of these reasons are:

(1) The partitioning may simplify the writing or printing of A.

(2) It exhibits some particular structure of A which is of interest.

(3) It simplifies computation.
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We have already introduced one special case of partitioning when we
wrote a matrix as a column of row vectors or a row of column vectors.
We have seen that an m X n matrix B could be written

B = |[bijll = (by,...,ba),  bj=[byj...,bml;

B has been partitioned into n submatrices, the column vectors b;. Suppose
that we have an r X m matrix A; the product C = AB is then defined.
The matrix C will be r X n and can be written

C=(c1,...,Cn), ¢ = [e1s, .-, Crjl.
Cij = E @ixbj,
%
¢ = [Xawwbrjr 2a2wbj, - - ., 2arbisl.

This can be expressed in matrix form as follows:

c; = Ab;. (3-58)

However,

or

Hence, we can write the product AB as
C = AB = (Aby, Aby, ..., Ab,). (3-59)

Each column of C is computed by multiplying the corresponding column

of B by A.
We shall now consider partitioning from a more general point of view:

We have the matrix
aj;y Q12 @13 Q14

azy Q22 G23 ; 024
A= | (3-60)
@31 Q32 @33 | G34
41 Q42 Q43 5 Q44
as1 G52 G531 As54

Imagine A to be divided up by dotted lines as shown. Now, if we write

a;; a;z a a4
A11=[ 11 @12 13], A12=[ ]’

az; Qagz asz3 a24

az; Qaz2 0asgs 34 (3-61)
Az = lagr a4z aq3)’ Ags = |ag4 >

a51 as2 0Gs3 A54

then A can be written

A= [A” A”]- (3-62)
Az Az
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Matrix A has been partitioned into four submatrices, the A;;. The sub-
matrices will be denoted by upper-case boldface roman letters; some-
times, if they are vectors, by lower-case boldface type.

If partitioning is to be of any use for computations, we must be able
to perform the usual operations of addition and multiplication in parti-
tioned form. Clearly, if

A= [Au Am], B = [Bu Blz:l, (3-63)
Ay Ap B;; B2

then

Ay +Byy A+ 312]’ (3-64)

A—I—B:[
Az + Bar Az 4 By

provided that for every A;;, the corresponding B;; has the same number
of rows and the same number of columns as A;;. Hence the rule for addition
of partitioned matrices is the same as the rule for addition of ordinary matrices
if the submatrices are conformable for addition. In other words, the matrices
can be added “by blocks.” However, A, B must be partitioned “in the same
way” if (3—64) is to hold.

Next, we shall consider multiplication of partitioned matrices. We
would like the formula for block multiplication to follow the pattern of
the usual formula

Cij = E A ;:Bij, (3-65)
k

where the elements in (3-19) are now submatrices in (3-65). We note at
once that this rule cannot hold unless A;; and Bg; are conformable for
multiplication, that is, the number of columns in submatrix A;; must be
the same as the number of rows in submatrix B;. This will be true only
if the columns of A are partitioned in the same way as the rows of B.

We wish to show that multiplication by blocks does follow the ordinary
rules for multiplication:

A= [Au Au], B = [Bll Bm:I;
A21 Azz B21 B22
— AB = [AuBu + AjoBay AqBye + A12B22] _ [Cu Clz] ,
Aj B + AgeBar A2iBis -+ AgoBoo Co: Coo

(3-66)

provided that the submatrices A, By, are conformable for multiplica-
tion. As usual, if A; is m X n and Bijisn X r, then C;;ism X r.
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It is not hard to see that multiplication by blocks is correct. Suppose,
for example, that we have a 3 X 3 matrix A and partition it as

@11 G2 | Q13

A =|az azd)az|= [A“ Am]’ (3-67)
_________ [
az; Q32 | @33 Ay A,

bir b2
B = |bs1 bas| = [B“]. (3-68)
b3y b3 Bz:
Then any element of C = ||¢;j|| = AB is
cij = (@ibyj + @izbz;) + aizds;. -(3-69)

The quantity'a.-lbl,- + a;3bsj is simply the ¢jth element of A;;By; if
i < 2, and the ijth element of A;;By if 4 = 3. Similarly a;3bs; is the
1jth element of A,,B2; if 1 < 2, and of Ay9Bo; if 2 = 3. Thus C can be

written
C = I:Cl_l:l _ [AuBu + A12B21]. (3-70)
Ci2 A3 By + AgsBgy

It is important to note that in partitioning matrices for multiplication,
the partition line between rows s and s + 1 is drawn all the way across
the matrix so that there is a partition between rows s and s + 1 in every
column. These partitions are never jagged lines like that shown in the
following matrix:

a1 G122 G613 Q14

azi1 azz @33z (34
Ag1 Q42 Q43 COQg4

Similarly, when we start drawing a partition line between column r and
r + 1, we draw it all the way down the matrix. Only by drawing parti-
tions “all the way across” and “all the way down” can we be sure that
the expression 3_A;;By; is defined in terms of addition and multiplication.
For example, the number of rows in each A, is the same for each k and a
given 7 only because every column is partitioned between rows s and s 4+ 1.

Using the concept of partitioning, we can write the system of equations
Ax = b in another useful way. If we write A as a row of column vectors
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(ay, ..., a,), then

AX=a1x1+---+anxn=x1a1+---+xnan=b. (3“71)

Similarly, if we write A as a column of row vectors

then,
la'x,...,a™x] =b, or ax=b;, i=1...,m (3-72)

EXAMPLE: We are given the matrix A and partition it as follows:

1
1 2
A = [ 3]’ A, = [ ) Ay = (4, 1), Az = (7).
2 5

We also have matrix B; this will be partitioned so that block multiplica-
tion of AB is defined, that is,

0 1 2
Bll = l: :l’ B12 = [ ]7 le = (6)’ B22 = (O, l),
4 5

First, we shall compute C = AB by multiplying the matrices directly
without partitioning. This gives

1 3 2/]10 1 2 18 13 19
C=1]2 5 0||2 4 5]=[10 22 29]-
4 1 7116 0 1 44 8 20

If we use block multiplication, C should be

C = [AuBu + A12Bar A(Byp + A12B22] .
A21Bi1 + A22B21 AgiBiz + A2:Ba:
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However,

A;1By + ApBgy = 1 3:| [Ojl [2] 6) = [6 ]-l— [12] = [18] ,
‘ 10 Lo 10
A Bz + A12Bor = ][ ] [ ](O 1) = [13 17] + [O 2]
22 29 0 0

_ 13 19],
122 29

(=

Ay By + AgoBay = (4, 1)[ ] + (7)(6) = (44),

2
AsBiz + AgBas = (4, 1) [1 2]+ @0, 1) = (8,13) + (0,7)
4 5

= (8, 20).

Thus, by block multiplication,

[18] [13 19]
c=1|{10] [22 29
(44) (8 20)

The same result was obtained by direct multiplication.

We have seen that multiplication of matrices by blocks requires that
the partitioning of the columns in the premultiplier be ti:e same as the
partitioning of the rows in the postmultiplier. It makes no difference at
all how the rows in the premultiplier or the columns in the postmultiplier
are partitioned. If we are considering the product AB, then the number
of columns in A;; must be the same as the number of rows in By;.

The results of this section have shown that when matrices are appro-
priately partitioned for addition or multiplication, the submatrices be-
have as if they were ordinary elements of the matrix. It should be em-
phasized, however, that submatrices behave like ordinary elements only
when the matrices have been partitioned properly so that the operations
to be performed are defined.

We shall now interrupt our study of matrices for a while in order to
develop some aspects of the theory of determinants which will be needed
in our further investigation of the properties of matrices.
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3-10 Basic notion of a determinant. The concept of a second- or
third-order determinant should be familiar to everyone. A second-order
determinant is defined to be

.au a2

| = a11822 — @12021. (3-73)
az; Q22

It is a number computed from the four elements of the square array
according to (3-73). Determinants occur naturally in the solution of
simultaneous linear equations. In elementary algebra, we learn that the
solution to two simultaneous linear equations in two unknowns,

a11%1 + @127z = by,

(3-74)
a21Z1 + @272 = by,
can be written (when the denominator does not vanish):
bl [13%] ayy bl
by ags as; by
z1 = |a11 axz" T2 = ‘au 0112‘ ’ 3-75)
a1 Q22 a1 Qa2
A third-order determinant is defined to be
a1 Gi12 Q13
a1 G2z Q23| == G11822033 — (12021033 + a12a23a31
az1 a2 G433 — @13022031 + 13021832 — @11023032. (3-76)

It is a number computed from the elements of a 3 X 3 array according
to formula (3-76). Third-order determinants arise in solving three simul-
taneous linear equations in three unknowns. ’

It is of interest to generalize the notion of a determinant to n X n
arrays. In the 2 X 2 and 3 X 3 cases, it will be observed that the de-
terminant is the sum of terms such that each term contains one and
only one element from each row and each column in the square array.
Furthermore, the number of elements in each term is the same as the
number of rows in the array, that is, no element is repeated. We notice
also some alternation in the sign of the terms. We expect that a more
general definition of a determinant will include these features.

3-11 General definition of a determinant. First, we wish to develop
some properties of permutations of numbers. A set of integers 1,...,n
are in “natural order” when they appear in the order 1, 2,-3,...,n. If
two integers are out of natural order in a set of n integers, then a larger
integer will precede a smaller one. For example, the natural order of the
first five integers, beginning with 1, is (1,2, 3,4, 5). When the integers 2



86 MATRICES AND DETERMINANTS [cHAP. 3

and 4 are interchanged, we obtain (1, 4, 3,2, 5). The set is now out of
natural order because 4 precedes 3, 2, and 3 precedes 2. Any rearrange-
ment of the natural order of n integers is called a permutation of these
integers. The interchange of two integers, such as 2 and 4 in the above
example, is called a transposition. The number of ¢nversions in a permuta-
tion of » integers is the number of pairs of elements (not necessarily adja-
cent) in which a larger integer precedes a smaller one. In our example,
there are three inversions: (4, 3), (4,2), and (3, 2). It should be noted
that the number of inversions in any permutation of n integers from their
natural order is unique and can be counted directly and systematically.
A permutation is even when the number of inversions is even, and odd
when the number of inversions is odd.

Consider now the nth-order matrix

ai1- - Qin
A=]: S (3-77)
Qpy*** Qpp

If one element is selected from each row and column of A, n elements are
obtained. The product of these elements can be written

@1i@27Q3k * * * Gnr, (3-78)
where the set of second subscripts (2,4, k, . . ., r) is a permutation of the
set of integers (1,2,...,n). To determine the number of possible differ-

ent products of this type, we note that there are n choices for 7; given 1,
there are n — 1 choices for j, and given j, there are n — 2 choices for k,
ete. Thus in all there are

an — Dn —2)...1 =n! (3-79)

products of type (3-78) which can be formed from the =2 elements of A.
The symbol n! is read n-factorial and is defined by (3-79). All possible
products (3-78) are obtained by using all possible permutations of the
integers 1, 2, ..., n as the set of second subscripts on the elements.

ExampLE: Let us find all the different products of three elements in
a 3 X 3 matrix A such that any one product contains one and only one
element from each row and column of A. These products can be obtained
from aq.agja3; by substituting all permutations of the set of numbers
1, 2, 3 for the set of subscripts <, j, k.

We obtain 1202133, @13022031, 11023432 which represent odd permu-
tations of the second subscripts from the natural order 1, 2, 3, since they
have an odd number of inversions (1 for the first, 3 for the second, 1 for



3-11] GENERAL DEFINITION OF A DETERMINANT 87

the third). Then there are the terms a;3a21032, @12823a31 Which are
even permutations. Finally, we have a;1a22a33 Which is an even permu-
tation (no inversions); this is the identity permutation—the subscripts
are in their natural order.

Hence, six terms can be obtained from the nine elements a;;. It will
also be noted that the above terms are precisely those which appeared
in the definition of a third-order determinant. If these terms are added
together, with a plus sign attached to terms representing even permuta-
tions, and a minus sign to those representing odd permutations, we have
arrived at the expansion of a third-order determinant. This is the key
to the general definition of a determinant.

DETERMINANT: The determinant of an nth-order matriz A = |lasl,
written |Al, is defined to be the number computed from the following sum
involving the n® elements in A:

|Al = Y (*)ayaz;j. . - Gar, (3-80)

the sum being taken over all permutations of the second subscripts. A term
18 assigned a plus sign iof (3,j,...,r) is an even permutatwn of
@,2,...,n), and a minus sign if it ts an odd permutation.

We shall find it convenient to refer to the determinant of an nth-order
matrix as an nth-order or n X n determinant. If we examine our defini-
tions of second- and third-order determinants, we see that they follow
directly from the above definition. The third-order case was worked out in
the preceding example. We have shown that there are n! terms in the
summation. One and only one element from each row and column of A
appears in every term of the summation.

The definition of a determinant implies that only square matrices have
determinants associated with them. Often we shall write |A| as

ayy QGi2-° " Qa1n
Q21 QAzz-° " A2n

Al =|: E (3-81)
Anl QAn2 - " Gan

with straight lines denoting the determinant (instead of brackets). The
notational form of (3-80) was used by early writers, such as Jacobi and
Cauchy. Cayley introduced the notation of (3-81). Originally, deter-
minants were called eliminants. This name indicated more clearly that
they arose on elimination of variables in solving simultaneous linear
equations. Perhaps it should be emphasized again that, while a-matrix
has no numerical value, a determinant is a number. ‘
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3-12 Some properties of determinants. Before turning to the properties
of determinants, we shall find it helpful ‘to establish the fact that a single
transposition of two elements in any permutation will change an odd per-
mutation to an even one, and vice versa. To prove this, consider the set
of numbers ay, g, . . ., a, representing some permutation of 1, 2, . . ., n.
Suppose now that «; and «; are interchanged (j > 7). In doing this, a;
passes Over a;_j, aj_g, ..., a; Or j — ¢ subscripts. On the other hand
a; passes over ajyj,...,oj_y, or j — ¢ — 1 subscripts. Wherever we
pass over any given index, we either introduce an inversion or remove
one. The total number of inversion changes on a single transposition is
then 2(; — ¢) — 1 which is always an odd number. Hence, if the original
permutation was odd, the new permutation is even, and if the original
was even, the new one is odd.

ExamerLe: Consider (1, 3, 2, 6, 4, 5). This permutation is odd and the
inversions are (3, 2), (6, 4), (6, 5). Suppose that we interchange 5 and 1
to yield (5,3, 2, 6,4, 1). This permutation is even, and the inversions
are: (5,3), (5,2), (5,4), (5,1), (3,2), 3, 1), (2,1), (6,4), (6,1), (4,1).

Using the result just obtained, we can immediately show that an in-
terchange of two columns in an nth-order matriz A changes the sign of |Al.
The interchange of two columns interchanges two second subscripts in
each term of (3-80) and changes the sign of each term since in the new
determinant an originally odd permutation becomes an even permutation,
and vice versa.

ExAMPLE:
A = |

If the two columns are interchanged, the new determinant is
2 1

4 3

|B‘ = = 2,

and the sign of the determinant is changed.

Next we would like to show that for a square matriz A, |A| = |A'|;
that 1s, the determinant of the transposed matrix is the same as the determinant
of the matrixz itself. If B = A’, then a typical term in the expansion of
[B| is

blib2j s bpy = A;1Q;52 ¢ * Qry. (3"82)
Hence, for every term in [B| there is precisely the same term in |A|. It

only remains to be shown that the signs are the same. Clearly, the number
of inversions of the second subscripts of the left-hand side of (3-82) is
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the same as the number of inversions of the first subscripts on the right-
hand side. If the elements are rearranged on the right-hand side so that
the first subscripts are in their natural order, then, by symmetry, the
second subscripts have the same number of inversions that the first sub-
scripts had at the outset. Thus the signs of the corresponding terms are
the same, and

[A'] = |A]. (3-83)

ExampLE:

4 3

1 2

IA] = = 5.

=5, M=‘

3 2

Equation (3-83) demonstrates clearly that, since an interchange of two
columns in A changes the sign of |A|, an interchange of two rows in A
must also change the sign of |A|.

The result of the interchange of rows and columns points to another
useful property. If a matrix has two rows or two columns which are
identical, then the value of its determinant is zero. Suppose that ay =
aj (all k) or a;x = aj; (all 7); if we interchange the two rows or columns
which are the same, A remains unchanged. However, the sign of the de-
terminant changes:

A= —Al o |Al+IAl=0.
The only real number for which this equation holds is [A| = 0.

ExXAMPLE:
11

\:o.
2 2

Multiplication of every element of the ¢th row or the jth column of A
by a number X multiplies |A| by \. We only have to keep in mind that an
element from each row and column appears once and only once in each
term of (3-80), so that if, for example, a; is replaced by Aag for a given ¢
and all k, then the whole determinant is multiplied by A. Consequently,
if every element of an nth-order matrix A is multiplied by A, then

|AA| = A"|A] (3-84)

It is important to note that it is not true that AA| = AA|. If A = —1,
then

|—A| = (—1)"|A|. (3-85)

The determinant of a square matrix having a row or column whose ele-
ments are all zero clearly is zero. This follows directly from both the.
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definition and the result of (3-84) if A, the factor multiplyimg a row or
column, is zero.

ExaMPLE:
2 3 4 3
|A|=| |=5, |B|=| '=1o, [B| = 2/Al;
4 2 4
24| = l4 6‘ — 20, |2A] = 4/A|.
2

3-13 Expansion by cofactors. It is not easy to evaluate numerically a
determinant by the definition (3-80) if n is large. The task of finding all the
permutations and assigning the proper sign is a difficult one. Hence, we
shall develop another method of evaluating a determinant, which is of
considerable theoretical importance and simplifies the procedure. How-
ever, it is by no means efficient. A more adequate numerical procedure
is developed in Problem 4-21.

In (3-80) an element from row 7 of A appears in every term of the sum-
mation. If the elements a;; are factored out, the determinant of A can
be written*

Al = Y aidi, (3-86)
=1

where ¢ can be any row. Each 4;; is the sum of (n — 1)! terms involving
the products of n — 1 elements from A, the sum being taken over all
possible permutations of the second subscripts. In addition, there is a
plus or minus sign attached to each term, depending on whether a;; times
that term yields an even or odd permutation of (1, 2, ..., n) as the set of
second subscripts (¢, k, ..., 7). In A;; there are no elements from row
or column j of A since these two subscripts appear in a;;, and only one
element from each row and column of A can occur in any term.

ExamprE: In expanding a third-order determinant in the form of (3-86),
we see from (3-76) that if £ = 1 (row 1),

A1y = @32a33 — a23a32, A1z = —(a218033 — a23a31),

A3 = az1a32 — 022031,

* It is not easy to follow the material in this section in the abstract. We
suggest therefore that the reader simultaneously work through an example
such as Problem 3-18. Note that in discussing the second subscripts, we always
assume that the first subscripts are in their natural order. Also, when the second
subscript j is fixed to position %, then the question whether the permutation of
the second subscripts is odd or even depends only on the positions of the n — 1
second subscripts other than j.
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and Al = a11411 + a12412 + 13413
If ¢ = 3 (row 3), then
A3zl = a12a33 — a13a33, Azs = —(a11823 — @13021),

A3z = a1a32 — @12a91,
and
[A| = a31d31 + azzd3z + azzdss.

The description of the A;; indicates that 4,; can be considered as a
determinant of order » — 1. All elements of A appear in A;; except those
in row ¢ and column j. In fact, except for a possible difference in sign,
A;j is the determinant of the submatrix formed from A by crossing out
row ¢ and column j. If the reader examines the 4;; in our example, he will
see that in the 3 X 3 case this is indeed true.

Let us now determine the sign that should be assigned to the deter-
minant of the submatrix obtained by crossing out row 7 and column j
of A in order to convert it to 4;;. We do this most simply by moving row
i torow 1 by ¢ — 1 interchanges of rows. The other rows, while retaining
their original order, will be moved down one. Then, by j — 1 inter-
changes, column j will be moved to the position of column 1. We shall
call this new matrix B. Then

B| = (—1)*H A = (—1)*H|A] (3-87)

However, the product of the elements on the main diagonal of B have a
plus sign when |B| is written in the form of (3-80). Now b;; = ay;, and
the remaining elements on the main diagonal of B are the same as those
appearing on the main diagonal of the submatrix whose determinant is
Ayj. But, from (3-87), (—1)**7 times this term in the expansion of |A|
must be positive. Therefore, A;;is (—1)**/ times the determinant of the
submatrix formed from A by deleting row ¢ and column j. The number
A is called the cofactor of a;;.

ComqrpR: The cofactor A;; of the element a;; of any square matriz A is
(—1)** times the determinant of the submatriz obtained from A by deleting
row t and column 1.

We have now provided a way to evaluate the A;; in expansion (3-86)
of |A|. This important method of evaluating determinants is called ez-
pansion by cofactors. Thus, for example, expression (3-86) is said to be
an expansion by row ¢ of A. To make (3-86) consistent with (3—-80) for
the case of n = 1, the cofactor of the element in a first-order matrix
must be defined to be 1 since (3-80) requires that |A| = a;; for the
matrix A = (ay;).
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The use of the expansion by cofactors [Eq. (3-86)] reduces the prob-
lem of evaluating an nth-order determinant to that of evaluating n deter-
minants of order » — 1, which are the cofactors 4;; whenj=1,...,n.
Thus, proceeding by steps, we arrive at an evaluation of |A|. Application of
the cofactor-expansion method to the cofactors reduces the task of evaluat-
ing each cofactor of order n — 1 to that of evaluating n — 1 determi-
nants of order n — 2, ete. The expansion by cofactors is not a very
efficient numerical procedure for evaluating determinants of high order.
It is, however, of considerable theoretical value.

We find it useful to give a name to the kth-order determinants,
k=1,...,n — 1, which appear in the step-by-step evaluation of |A|
by cofactor expansion. They will be referred to as minors of A. More
precisely:

MINOR OF ORDER k: For any m X n matriz A consider the kth-order
submatriz R obtained by deleting all but some k rows and k columns of A.
Then |R| is called a kth-order minor of A.

Note: In this definition A is not required to be a square matrix.
Instead of writing |A| in the form (3-86), we could have shown equally
well that

Al = 3 aiAs, (3-88)
i=1

where A;; is again the cofactor of a;;. This is called an expansion of [A|
by column j of A.

Exampres: (1) Let us expand

a1 Q12 G313
Q21 Q22 0a23
az1 azz 033

|A| =

in cofactors by the second row. This expansion should read
|A| = az14321 + a20422 + @234 23,

The cofactor A;; is found by crossing out row ¢ and column j and by
multiplying the resulting determinant by (—1)*/. Hence

Q12 Q13
Ay = (—1) ' = a3aQ13 — 12033,
azz ass
a11 Q13
Agy = ( = 611833 — G13 1,
Gz1 @33
a11 Q2
Agz = (—1) l = 12031 - G11032-

azy ase
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Thus [A] = ag1(as2a13 — a12033) + a22(a11833 — G13031)
+ az3(a12a31 — a11a39).

If the definition of a third-order determinant (3-76) is examined, it will be
seen that the above result is identical with (3-76); hence, the correct
expansion of |A| has been obtained.

(2) The method of expansion by cofactors facilitates the evaluation
of |I,|. We expand by the first row. This gives

Ilnl = (l)lln—l|~
Expanding |I,_1|, etc., in the same way, we finally obtain
Ll = @O@...1) = 1.
Thus the determinant of any identity matrix is 1.
3-14 Additional properties of determinants. Expansion by cofactors

can be used to prove some additional properties of determinants. Ex-
panding by the first column, we can immediately see that

(A1ar1 + A2bir + Nge11) @y - apn a11 @12 Qn

(M@a21 + Nobai + N3c21) @2zt Ggn| = A |agr @szc - @,

(M@n1 + Nabar + N3Cr1) Gnz* " Gnn Qn1 Gp2°°* Qnpn
bi1 @12---@1n C11 G12°°°Q1n

+ g b.‘u ST R a.2n 1+ g 0.21 Q22 - a.2n , (3-89)

R bpi Gn2c - Gnn Cn1 Qn2° °° CGupn
since

22(Mair + Aobir + Nsei) Asp = MXaida + A Tbirdi + A3 el

The same sort of result holds when the ¢th row or jth column of A is written
as a sum of terms.

ExAMPLE:

’

2 B3+3) 2/ _ |3 2
1 4+ 1) 1' ‘4 1
—4=—5+1= —4.

6 2 “+2 @240 _ |4 2
5 1 5 1 ‘ ’5 1
—4=-—6+2=—4

AAN

11

H

R

5 1
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It should be observed that if A, B are nth-order matrices, it is definitely
not true that [A + B| is the same as |A| 4 |B| in all cases.

|A + B| = |A| 4+ |B| (in general). (3-90)

From result (3-89) and the fact that a determinant vanishes if any two
rows or columns are the same, it is easy to see that adding a multiple of
row k to row i (2 £ k) or a multiple of column k to column (i = k) of A
does not change the value of |A|.

This can be easily proved: On expanding by row or column 7 we get |A|
plus a constant times the determinant of a matrix with two identical
rows or two identical columns. This determinant vanishes, and hence
|A] is left unchanged. Consequently, if one column (or row) of a square
matrix A is a linear combination of the other columns (or rows), the value
of |A] is zero.

- ExampLEs:
W |52 =|C+™ '=‘ ‘+>\‘ ‘
11012 * * Q1n (au —+ 5an1) e (aln + 5ann)
(2) |A] = |@21822" * * G2n| = |Q21 cev Qgn
a.ﬂla'n2 e énn dnl e a.‘rm

The fact that a determinant |A| vanishes if any two rows or columns
of A are the same, leads us to a very important result concerning the
expansion by cofactors. We have shown that

Al = D aiidi = a4 (3-91)
7 [

Now consider the expression
Z aijij &k = 7).
i

We are using the cofactors for row ¢ and the elements of row k. This is
exactly the expansion of a determinant where rows ¢ and k are the same;
hence, the above expression vanishes, that is,

DA = D aidp =0, G k). (3-92)
j j

Equations (3-91) and (3-92) can be combined:
z a;jdg; = E ajiAjx = |A| 8k, (3-93)
J j
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where ; is the Kronecker delta defined earlier. We have shown that an
expansion by a row or column ¢ in terms of the cofactors of row or column k
vanishes when i # k, and is equal to |A| when ¢ = k. This result will be
used a number of timés in the future.

ExAMPLE:
a;n Q12 G13
Q22 Q23 G2y Q23
|A] = |aa1 @22 ags) ; Au—' v A= — )
d32 ass3 aszr ass
a31 azz 0as3
G2y Q2
Asa = | 2.
azy asz

We expand by row 2, using the cofactors of row 1, and obtain, as expected:
@21(@22a33 — A23a32) — @22(a21833 — @23a31) + a23(a21a32 — a22a3;) = 0.

It will be noted that (3-93) looks very much like a matrix product. If
we set aif = Aj;, then (3-93) becomes

Z aaf = E aiaj; = |A| 8. . (3-94)
j j

Thus if
Ay A Am

= llafll = [ A1z A22--- Anz|, (3-95)

Aln A2n e Ann
then Eq. (3-94) can be written in matrix form:
AAT = ATA = |A[L. (3-96)

The matrix A7 is called the adjoint of matrix A. In fact, A" is the trans-
pose of the matrix obtained from A by replacing each element a;; by its
cofactor A;;.

*3-15 Laplace expansion. In this section, we shall consider another,
more general, technique of expanding a determinant known as the Laplace
__expansion method, which includes, as a special case, the expansion by co-
factors. Instead of expanding by a single row or column, we now expand
by several rows or columns. The determinant |A| is written as the sum
of terms, each of which is the product of two determinants.

* Starred sections can be omitted without loss of continuity.
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We begin by considering the first m rows (m < n) and columns of A.
If we collect the terms containing a11@22 . . . @Gmm in the expansion of |A[,
and factor out this quantity, we are left with

2 (£D)mg1i@my2; - * Cur, (3-97)

the sum being taken over all permutations of the second subscripts. This
sum, however, represents the determinant of the submatrix formed from A
by crossing out the first m rows and columns. Note that the sum (3-97)
will be obtained also if we collect all terms containing a,402, . . . Gmew
[(u, v, ..., w) represents a permutation of (1,2,...,m)] and factor out
Q1u82y . . . Gmy. The sign will alternate, depending on whether the permu-
tation (u,v,...,w) is even or odd. Thus, the following terms appear
in the expansion of [A|:

Z(il)aluah te ame(d: l)am+liam+2j cc ot Qury (3-98)
where

Z(il)aluam: tc ot Gy

is the determinant of the submatrix formed from the first m rows and
columns of A. Expression (3-98) is thus the product of the determinant
of the submatrix formed from the first m rows and columns and the
determinant of the submatrix formed by crossing out the first m rows and
columns. We have the correct sign, since in the expansion of |A| the term
@11@22 * * * Any has a plus sign.

Next, we shall consider the m X m submatrix formed from rows 7,
g9, ..., %y, and columns jy, jo, . . ., jm- Except for the sign, the expansion
of |A| will contain the product of the determinant of this submatrix and
the determinant of the submatrix formed by crossing out rows 7,7z, . . . , inm
and columns jj, jg,...,Jm. The sign of the product is determined by
the method used in the expansion by cofactors. The m X m submatrix is
moved so that it occupies the first m rows and columns. Let us assume
quite logically that i; < i3 < +++ < im,andj; < j2 < +++ < jm. Then
after (43 — 1) + (¢ — 2) + + -+ + (ém — m) interchanges of rows and
(1 — 1) + (jg — 2) 4+ -+ + (jm — m) interchanges of columns, the
m X m submatrix formed from rows i, ..., tn and columns ji, ..., jm
lies in rows 1, ..., m and columns 1,...,m. Furthermore, the order of
the remaining columns has not been changed. Once this rearrangement
is completed, we are back at the case already considered. The sign de-
pends on

TGt —20+24- 4 m),
k=1

However,

1424 - +m= imm + 1).
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Note: To prove 8 = 1 + 2 + +- - + m = ¥m(m + 1), simply write
S=1+4+2+--+m;
S=m+m—1+---+1;
addition yields 28 = m(m + 1).

Since m(m -+ 1) is always even, the sign to be attached to the product of
the two determinants is

(_ I)Ek_l Gx+ik)
Two definitions will be helpful.

COMPLEMENTARY MINOR: Given the nth-order mairiz A. The determinant
of the (n — m)th-order submatriz P formed by crossing out rows

i1, ..., tm and columns jy, ..., Jm is called the complementary minor of
the mih-order submatriz N formed from rows %y, ...,%m and columns
J1y e vy Jme

COMPLEMENTARY COFACTOR: With N, P as defined above, the determinant

Zhe1 CGktin) ‘

M| = (1) P| (3-99)

is called the complementary cofactor of N in A.
ExampLE: Consider

ai1 a2 @13 Q14 C15
agy G22 G23 G24 Qa25
a3y G3z2 G333 G34 Aa35|°
Q41 Q42 @43 @44 Q45
asy Gs2 053 G54 G55

The determinant of the submatrix N formed from columns 2 and 5 and
rows 1 and 3 is
a a
IN| = |a12 a15| .
32 035

The complementary minor is

az1 Q23 0G24
a41 Q43 Q44|
as1 G533 G54

|P| =

Hence X (ix + ji) = 2+ 5+ 1+ 3 =11, and the complementary co-
factor of N is
M| = —[P|.
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From these results we can immediately derive a new way of expanding
the determinant |A|. Select any m rows of A. From these m rows we can
formn!/m!(n — m)!different mth-order submatrices, where n!/m!(n — m)! "
defines the number of combinations of # columns of A taken 7 at a time.
In choosing these submatrices N, we always keep the order of the columns
in A unchanged. For each submatrix N we find IN| and the corresponding
complimentary cofactor [M[; then we form the product |N| [M|. From
[N|, we obtain m! terms and from |M|, (n — m)! terms. Hence each product
[N| [M| yields, with the correct sign, m!(n — m)! terms of the expansion
of [A. In all, there are n!/m!(n — m)! products |N| M| which yield a
total of

n! ]
— ol — m) = n! i
i — )i (n )! = n! terms in the expansion of |A|.

Thus, we have obtained all terms in |A| since our method of selecting the
mth-order submatrices from the m rows eliminates any possible repetition
of terms. Hence we can write

|Al = z 'N('ll; L] im Ijl, e ;jm)' Ier (3_100)

j1<j2<...<jm

where |[N(Zy, ..., %m|j1,...,Jm)| is the mth-order determinant of the
submatrix formed from rows iy,..., %, and columns Jiy+-+,Jm- The
sum is taken over the n!/m!(n — m)! choices for 7y, ..., .. The nota-
tion j; < j» < --- < j, indicates that the sum is taken over all choices
of the columns such that the column order is maintained. This technique
of expansion is called the Laplace method: We select any m rows from A
(note that they do not need to be adjacent). From these m rows we form
the n!/m!(n — m)! possible mth-order determinants and find their in-
dividual complimentary cofactors. We then multiply the determinant
by its complimentary cofactor and add the n!/m!(n — m)! terms to
obtain [A|. This is an example of expansion by rows 7y, . . . , im.
We can, of course, expand by any m columns and obtain

A] = > NGy -eeyim|iny ... om)| M. (3-101)
11 <%2<... <ty
ExampLE: Let us expand the determinant

ai1 Q@12 Q13 Qa4
G21 Q22 Q23 Q24
agzy Qagz agz asy
Qg1 G42 Q43 Q44

by the first and last rows. There will be 4!/212! = 6 terms. The deter-



3-16] MULTIPLICATION OF DETERMINANTS 99

minants of order 2 which can be formed from rows 1, 4 are

a a a ayz] a a
INy| = ‘ 11 12‘ , INo| = l 11 13! , [Ns| = l 11 14| ,
a4q1 Q42 Q41 Q43 G4q1 Qa4
a a a a a a
[N = I 12 13, , INs| = l 12 14’ , [Ng| = I 13 14' ,
Q42 Q43 Qg2 Q44 a43 Q44

The corresponding complementary cofactors are

M| = Iazs a24| , M| = — lazz au’ , M| = lazz azsl ,
aszsz Qasa azz2 Q34 azz ass

M| = }021 024| , Ms| = — {@21 023‘ , M| = ‘021 022‘ ,
azy1 ass4 a3y 0a3z3 a31 asz

)
IA| = D7 [Ni| M.
k=1

The sign of |M 5|, for example, is found as follows:
> Gk + Jk) (for No) =4+4+1+1+3=09;

hence the minor must be multiplied by (—1), as shown.

*3-16 Multiplication of determinants. There is a simple multiplication
relation for the determinant of the product of square matrices. If A, B
are matrices of order n, then, if C = AB,

ICl = |A] B}, (3-102)

that is, the determinant of the product is the product of the determinants.
To prove (3-102), consider the partitioned matrix of size 2n X 2n,

D — A 0]
—I, B
Applying Laplace’s expansion by the last n rows to the determinant |D|,
we obtain

A 0
|D|=|

’ = (—1)" 2[4 [B] = |A] |B], (3-103)
-I, B

since the complementary minor of any submatrix including one of the
first n columns will have a column of zeros. The determinant is com-
pletely independent of the matrix appearing in the lower left of (3-103).
Matrix —I, was placed there for the following special reason:
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Let us take the columns of B to be b;. Then consider

(o] e
—I, —b;

Equation (3-104) is a linear combination of the first n columns of D. We
can add (3-104) to column n 4 1 of D without changing the value of
its determinant. This yields
Ab,
0

as the new column » + 1. Continuing this process and adding
Alp, = 4P  (3-108)
—I, —b;
to the n + jth column of D, we get

|ID| = (3-106)

A AB|
N
. We expand by the last n rows, using the Laplace expansion, and obtain

ID| = (—1)"'+*"+D|_L,| |AB| = (—1)**"*+D|AB| = |AB|. (3-107)
Thus, from (3-103) we have proved that

|AB| = [A] [B]. (3-108)
ExAMPLE: '
A=23; B=16, C=AB=1118';
1 4 3 2 13 14
Al = 5, [B| = —18, |C| = —80;
[C| = —80 = [A] |B| = 5(—186).

*3-17 Determinant of the product of rectangular matrices. Let A be an
m X n matrix and B an n X m matrix with m < n. If C = AB, |C|
is an mth-order determinant. We shall now show how to express |C| in
terms of the determinants of order m which can be formed from A and B.
Consider the product

R R B
0o Ij|l-I. B —I, B



3-17] DETERMINANT OF THE PRODUCT OF MATRICES 101

Equation (3-108) shows that

L. A
0 I

(3-110)

A OI=IOAB‘
-1, Bl |-L, B

Laplace’s expansion indicates immediately that the first determinant has
the value unity, and hence

‘AO
-1, B

Tt is now necessary to evaluate the determinant of order n + m on
the left. We shall use Laplace’s expansion by the first m rows. First,
note that nonvanishing determinants of order m can be formed only from
the columns of A, since the use of any other columns would introduce a
column of zeros and hence a vanishing determinant. Thus, there are no
more than n!/m!(n — m)! nonvanishing terms in the expansion. The
complementary minor to any determinant A of order m formed from A
will have n — m columns from —I,. This complementary minor of
order n will be of the form

|_—e”1 — Cugy vy —Cup B|, (3-112)

= (—1)""*" |AB. (3-111)

where %y, Ug, . . . , Un_m Tefer to the columns of A not in A. We can im-
mediately expand by cofactors, proceeding from the first column to the
second, etc., . .. to the (n — m) th column. Note that, aside from sign,
this expansion crosses out rows uy, Uz, . . . , Un—m of B so that, in the end,
we obtain a determinant of order m formed from B which contains the same
rows as the corresponding columns chosen from A to be in A.

Next, we shall discuss the sign problem. First, the sign of the comple-

mentary minor is
(— 1)(1/2)m(m+1)+f1 +iz+-+im
’

where jy, . . ., jm are the indices of the columns chosen from A to be in A.
Then, in the expansion of the complementary minor, the minus signs in
the —e,; yield (—1)*~™. Finally there are the signs coming from the
expansion by cofactors. These contribute

(__1)1+u1(_1)1+ug—l . (_1)l+un_,,.—(n—m—l)

— (___ 1)"—"‘+“l+' s Uy gy —( l/2)(n—m—l)(n—m)’ (3_1 13)

since we expand each time by the first column, and the row index is cut
down as a result of preceding expansions. Thus the sign is

(— l)(1/2)m(m+1)—(1/2)(n—m)(n—m—-1)+J‘1+---+J'm+u1+-~-+un_m+2(n—m). (3-114)

i
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Note that since the indices of all columns of A not in j,, . .., j» appear in
Uy, .. ., Un—m, it must be true that

Gt A mtm ottt =142+ 0= fn(n + 1).
(3-115)

Cancellation shows that the sign depends only on (—1)*™*% and not on
the m columns chosen to be in A. Hence (3-111) demonstrates that in
the expansion of |[AB| a plus sign should be associated with each of the
n!/(n — m)! products of two mth-order determinants obtained in the
expansion of the left-hand side of (3-111).

We have proved that if A is m X n and B is n X m (m < n), then |AB|
can be represented as the sum of n!l/m!(n — m)! terms. Each term is the
product of two mth-order determinants formed from A and from B, respectively.
A given mih-order determinant formed from the columns jy,...,jm of A
multiplies the determinant formed from rows jy, . . ., jm of B.

ExXAMPLE:

3
A=t %3, B=|9
2 0 3 .

=N N O

30
=l 45, L= 8], jam= s
2 0 3 9 21

However, |AB| can be expressed as the sum of three terms, each of which
is the product of a 2 X 2 determinant from A and a 2 X 2 determinant
from B. The three pairs of determinants which can be formed from A
and B, respectively, are: From columns 1, 2 of A and rows 1, 2 of B,

1 4 30

Md=‘ ,=~& mﬂ=‘ ‘=&
2 9 2
from columns 1, 3 of A and rows 1, 3 of B,
1 5 3 0
Mﬂ=’ ’=—z mﬂ=‘ ‘=m;
2 3 1 7
from columns 2, 3 of A and rows 2, 3 of B,
&
|Ag| = |4 =12, [By = '9 2| = 61.
0 3 1 7
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Hence,
|AB| = |A;| |B;| + |Az| [B2| + |As| [Bs]
= —8(6) — 7(21) 4+ 12(61) = —48 — 147 + 732 = 537;

the results are indeed identical.

3-18 The matrix inverse. Given any real number a # 0, there is a
number a~! (the inverse or reciprocal of @) such that a™'a = aa™' = L.
We shall now investigate whether matrices possess this inverse property
and, if so, under what circumstances. We ask: For any given matrix A
does there exist a matrix B such that ‘

AB—BA =1I? (3-116)

If such a matrix B does exist, it is called the inverse of A. This inverse
is usually written A~! (it should be noted that A~! does not mean 1/A
or I/A; we have no rules for dividing matrices). A~! is merely the symbol
given to matrix B in (3-116).

First of all, we note that A can have an inverse only if A is a square
matrix, since the products AB and BA cannot both represent the same
identity matrix unless A is square. Hence the inverse will also be square.

MATRIX INVERSE: Given a square matrix A. If there exists a square
matriz A~ which satisfies the relation

ATIA=AA1 =1, (3-117)
then A™" is called the inverse or reciprocal of A.

Next we wish to compute the inverse when it exists. As a matter of fact,
we have already done this at the end of Section 3-14, where we showed
that

AAT = ATA = AL (3-118)
If we define
1
A7 = At 3-119
A] ( )

then this matrix satisfies (3-117) and hence is an inverse of A. The in-
verse can be formed in this way only if |A| # 0.

SINGULAR AND NONSINGULAR MATRICES: The square malriz A is said
to be singular if |A| = 0, nonsingular if |A| #= 0.

We have shown that every nonsingular matrix has an inverse. It is
also true that only nonsingular matrices have inverses. (In other words,
if A is singular, there is no matrix B such that AB = BA = 1) We shall
prove this fact in Chapter 4.
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If A has an inverse, then this inverse is unique. To see this, suppose
that B is a matrix such that AB = BA = I; and that, in addition, there
is another matrix D such that AD = DA = I. Multiplying AB = I
on the left by D, we obtain

DAB = DI = D. (3-120)

However, by assumption, DA = I, and expression (3-120) reduces to
B = D; hence the inverse is unique, and it is permissible to speak of A~!
as the inverse of A [see (3-119)]. Furthermore, if A is nonsingular and a
matrix B is such that AB = I, then B = A™!, and consequently, BA = I
also.* To prove this, we only have to multiply AB = I on the left by
A7! and recall that A~'A = I. In mathematical terminology, the fact
that BA = I if AB = I, and vice versa, indicates that a right inverse
for A is also a left inverse, and vice versa.

ExampLEs: (1) Let us compute the general formula for the inverse of
a 2 X 2 nonsingular matrix A:

A — [au 0112].
az1 Q22
The matrix of the cofactors (in this case, the cofactors are determinants

of first order) is
Az —QG21|
—0ai12 a1

Thus the adjoint (transpose of the above matrix) is
At — Q22 —012 ,
—a21 a1

and

A1 1[ Gz *012]‘

- m —a21 Q11

To prove that this is the inverse A~!, we only need to show that A~1A = I:

-1 1 a2 —aiz|[an aiz
ATA =
|A| —az1 a11||@21 Q22

-1 [[022011 —a12021] 0 ] _ [l 0] -1
1Al 0 l[az2a11 —a;2a24] 01

* In fact, if AB = I for two nth-order matrices A and B, then both are non-
singular and B = A-1, It is not necessary to assume that A is nonsingular since
this follows from AB = I (see proof in Chapter 4).
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A= 1 0f
2 3
Then:

lAl =3, At = 3 0:|, and Al = 1 0 .
-2 1 —2/3 1/3

This is easily proved by computing

A_1A=[ 1 0][1 0}___[1 0]:1.
—2/3 1/3||2 3 01

(3) IfA = (au), then IAl = apj, A+ = (1), and

A—l = (i) ’ a #= 0.

a11

(2) Assume

When a matrix is a single element, the inverse is also a single element, i.e.,
the reciprocal of that in A.

Note: 1t is always possible to determine whether a given matrix is the
inverse of some matrix; we simply multiply the two matrices and see
whether the identity matrix is obtained. (See footnote page 104.)

3-19 Properties of the inverse. We shall discuss now the inverse of
the product of two nonsingular matrices A, B. We shall show that the
product of two nth-order nonsingular matrices is nonsingular, and

(AB)"! = B~!'AL. (3-121)
We prove this by noting that

B~'A'AB = B~IB = B~!B = I,
and ‘
ABB A ' — AIA"!' = AA ' =1

Thus B—1A ™ gatisfies (3-117) ; hence it is the unique inverse. In the same
way, it can be shown that the product of any finite number of nonsingular
matrices is nonsingular and that the inverse is the product of the in-
verses in reverse order. In Problem 3-34 the reader is required to prove
this statement.
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ExaMpLE:

A=[1 0], B=E 5], C=AB=[2 5];
2 3 1 10 13

A_1=[ 1 0]} B_1=[—1/8 5/8],

—2/3 1/3 1/4 —1/4

—— [—13/24 5/24]_
10/24 —2/24]

C!'= @AB)"!=pBA"! = [—1/8 5/8M 1 0 }
1/4 —1/411—2/3 1/3
_ [—13/24 5/24]_
10/24 —2/24
Observe the similarity between the formulas for the inverse and the trans-

pose of a product.
If A is nonsingular, then

(A~H~1 = A, (3-122)

This follows immediately from AA™! = A7'A = I if we consider A~}
to be the given matrix rather than A. Hence, A is the unique inverse of
A~ and (3-122) holds.

The identity matrix is its own inverse, since LI, = I, implies that
' =1,

Next, we shall demonstrate that the inverse of the transpose is the
transpose of the inverse, that is,

AN~ = @A"Yy (3-123)
We start with
AAT'=A"A=1

Taking the transpose and noting I’ = I, we obtain
(A71YA’ =1 = A’/(A™Y)". (3-124)

Thus (A7)’ is the inverse of A’, and (3-123) follows.
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ExXAMPLE:

A=[2 ‘], Al = 1, A“=[ 3 —‘};
5 3 5 2

(A—l)'=[ 3 _—5], A,=[2 5]’ (A,)_1=[ 3 —5].
—1 2 13 —1 2

Hence, as expected, (3-123) holds in this case.

We have previously seen that
AB =0 (3-125)

did not necessarily imply that A = 0 or B = 0. If, however, either A
or B is nonsingular, then the other is a null matrix. Suppose A is non-
singular, and (3-125) holds. We premultiply by A~! and obtain

A7IAB = 0 = IB = B; = 0.

Thus B is a null matrix. The same proof applies to a nonsingular matrix B.
Hence the product of two nonsingular matrices cannot be a null matrix.
If we write a nonsingular matrix B as a row of column vectors,

B = (by,...,b,), (3-126)

and B~ as a column of row vectors,

B! =[g,...,8", (8-127)
then

B~'B = ||g'bj]| = L (3-128)
Consequently, '

gb; = 8;, alli,j. (3-129)

Equation (3-129) shows that row 7 of B™! is orthogonal to every column
of B except column <.

3-20 Computation of the inverse by partitioning. In this section and
in Section 3-21 we shall consider special ways of computing the inverse
of a nonsingular matrix. These methods arc of theoretical interest;
furthermore, variations have been used as numerical procedures for in-
verting matrices on digital computers.
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Suppose we have an n X n nonsingular matrix M. Let M be partitioned
as follows:*
M — ["‘ "] , (3-130)
Y &

where « is an s X s submatrix, 8 an s X m submatrix, ¥ an m X s sub-
matrix, and & an m X m submatrix (n = m + ). M~! exists and will
be partitioned in the same way as M, that is,

M= [A B], (3-131)
¢ D

where Aiss X s,Biss X m,Cism X s, and D ism X m.
Assume that & has an inverse and that 6! is known. Then, since

MM~ = I,
CEAEY e
Y & o I, ’

Four equations are obtained for the four unknown submatrices A, B, D, C:

oA 1 C = 1,, (3-133)
oB -+ 8D = 0, (3-134)
YA + 6C = 0, (3-135)
YB + 86D = I,. (3-136)
From (3-135),
= — & 17A. (3-137)

Substituting this into (3-133), we obtain
aA — B&IYA =1,
or by definition of the inverse,
A= (a—B& )L (3-138)
Using (3-136), we arrive at
D= 6! — 6~ 19B. (3-139)

* I this section we have dropped our convention of using upper-case roman
letters for submatrices.
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From (3-134) and (3-139),
aB+ 86~ —Bs VB =0,
(¢ — BB = —p&7 .

Using (3-138), we get
= —Agé& L, (3-140)

We have obtained four formulas which can be solved sequentially for
A, B, C,D. They are

A= (a—B6'77, (3-141)
B = —AB&7, (3-142)
C = —&6 174, (3-143)
D=sé6"1!—é17B (3-144)

Since M ™! exists, the submatrices A, B, C, D exist. Hence if 67 exists,
all the operations can be carried out, and A, B, C, D can be computed.

Imagine that we wish to invert a matrix by means of the preceding
formulas. If we partition the matrix so that & is of a size which can be
inverted easily, then we shall find it difficult to obtain A according to
(3-141) if the order of M is fairly large. We are able to avoid this difficulty
by partitioning in two or more steps. If dis1 X 1or2 X 2, 871 is easily
computed. If Ais 1 X 1, then it is given by

A= (1/a — B6717).  (See Section 3-18, Example 3.)

It is also easy to find Aif it is a 2 X 2 matrix. For example, if we wish to
obtain the inverse of

myi1 M2 } mi3 Mig Mis
Mgy Moz | Mz Mae Ma2s
| a B
M = | m31 m3z | M3z M34 M35 » (3-145)
mg1 Mgz ! ™Mz Maeg Mys Y &
msy Msz | M5z Mse Mps :

we might start with the above partition. To find 67!, we might parti-
tion & as
mas i My mas] [ g
=Mz | Mga Mys| = : (3-146)
{ msqg mss v ¥

Now (8')! is easily found, and hence 6~' can be obtained. Using R
we compute M1, We have simply applied the partitioning procedure
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in two steps. To invert a large matrix, the same procedure can be re-
peated a number of times.

ExampLE: Let us compute the inverse of

2i1 0
it it
M=|3/0 5|=|" ] M- =|A B
| Y & C D
We begin by partitioning the matrix as shown. Then

5 — [o 5] R [—2/15 1/6}‘
6 4] 1/5 0

=

From (3-141):

Fo77—1

A= [2 — (1,0 [‘2/ 15 1/ 6] 3]] = 30/37.
1/5 o ll7

Using (3-142), we obtain

—2/15 1/6]

1/5 0

= (4/37, —5/37).

B = —(30/37)(1,-0) [

From (3-143):

c— _ [—2/15 1/6] H (30/37) — —23/37].
1/5 o ll7 | —18/37

Using (3-144), we arrive at

D=[—2/15 1/6}_{—2/15 1/6] [3 (4/37, —5/37)
1/5 0 /50 JLil

_ [ —8/37 10/37] _
5/37  3/37

Combining all the results, we see that

30 4 —5
M~!'=1/37|—-23 —8 10|
—18 5 3

This result can be checked by showing that M™'M = I
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As a special case of the general method for inverting a matrix consider
M= [I Q], (3-147)
0 R

where R™! exists and is known, and I is, of course, the identity submatrix.
Using the equations previously determined, we find

A=(I—QR'0O'=1,

B = —IQR™! = —QR7},
C=—-R7I=0,
D=R"!—R70(—QR™?) = R7L

Therefore,

M- = [I _QR—i]- (3-148)
o R

3-21 Product form of the inverse. Let us suppose that we have a
matrix B and know B~!. A single column in B is changed, and we de-
sire to find the inverse of the new matrix. Let us write B as a row of column

vectors,
B = (b, bs,...,b,...,by). (3-149)

The column b, is removed and replaced by column vector a. We wish
to compute the inverse of the new matrix B,, with a replacing b, in columnr:

B, = (bl, b2, ey br_1, a, b,-+1, ey b”) (3‘150)

We shall approach the problem by trying to write a as a linear combina-
tion of the columns of B, that is,

n
a = ) yb; =By,
"=1
(3-151)
y=[yy, .-, 9l
Since B has an inverse, we can premultiply (3-151) by B™! and obtain
y = B7la. (3-152)

Thus, we can indeed express a as a linear combination of the columns of B.
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If y, = 0, then

Y Y2 Yr—1
b=—=b; —£by — .-+ — b,_
d Yr 1 Yr 2 Yr r—1
3-153)
1 Yr+1 Yn (
—a — b — e —Z2 D,
o yr T yr "
Let us define the column vector
"=[_ﬂ,_@,...,_gf;l,lv,_l'ﬁ,...,_gﬁ]. (3-154)
Yr Yr Yr  Yr Yr Yr
With this definition, (3—-153) can be written as the matrix product
b, = Buy. (3-155)

On the right, we have B, and, on the left, one column of matrix B. The
question is: How can we replace b, on the left by B? Obviously, we
must substitute a matrix for the vector n; this matrix must have 5 as its
rth column, and its remaining columns must be such that, when multiplied
by B,, they yield the proper columns of B. Let the other columns in the
matrix replacing n be «;, «s, . .., a,. Then

B = (bl,bz,...,br,...,bn) =Ba(¢!1,¢!2,...,ﬂ,...,an)
= (Bga1, Boay, ..., Ban, . .., Beay).

(3-156)
Consequently,

b; = B.ay, by = Beay, ..., b, = Ban, ..., b, = By, (3-157)

The first column of B, is b;. Hence if a; = e;, then B,e; = b;.
Similarly, the nth column of B, is b, and e, = e,. Thus

a; = €y, Qg = €3,...,Q__1 = €,_1, Qrp] = €rq1,...,0, = €.

Define the matrix

E = (el, €y ...,€_1,M€41,..., e,.). (3‘158)
Equation (3-156) becomes
B = B,E,
or (3-159)
1= B,EBL
Consequently,
B;! = EB~. (3-160)

We see that B! will exist if EB™ or E does. Matrix E will certainly
exist provided y, = 0.
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Consider what happens when y, = 0. It means that the vector a isa
linear combination of the vectors by, bz, ..., br—1, bry1, .., b,. Hence
in B, the rth column can be represented as & linear combination of the
other columns in B,. From' our study of determinants we know that,
in this case, |Bs| = 0, and therefore B, has no inverse. Thus when y, = O,
the new matrix has no inverse.

Let us review the procedure for computing the inverse of a matrix
which differs only in a single column from a matrix whose inverse we know.
A matrix B, is formed by replacing column 7, b,, of B with a. We
know B! and wish to determine B;!. First, we compute

y = B7la. (3-161)
Then we form the column vector

,,=[_lﬂ,_£z,...,_y_r:1,_1_,_y_rﬂ,...,_&].
Yr Yr Yr  Yr Ysr Yr

(3-162)

We replace the rth column of the identity matrix I, with n and obtain E.
Then

—1 — EB~ L (3-163)

The procedure outlined above resembles to a considerable extent the
technique used for inserting a vector into a basis (Section 2-9). It is
exactly that. We can easily see that, when B has an inverse, the columns
of B form a basis for E*. We only need to show that the columns are
linearly independent. Consider the problem of finding A; satisfying

Ab;=0.
In matrix form, this is
BA = 0;
however, since B™! exists,
B BA=B"'0=0=A\ (3-164)

Thus all \; are zero, and the b; are linearly independent. A new vector a
now replaces b,. If y, # 0, then the new set of vectors also forms a basis
since B;! exists. The interesting connection between inverses, bases, etc.,
will be explored more thoroughly in the next chapter. o

The method discussed above can be used to invert any nonsingular
matrix B = (by, . .., by). We start with the identity matrix I,(I,’ 1—1)



114 MATRICES AND DETERMINANTS [cHAP. 3

and, for example, replace the first column of I, by column 1 of B. The
inverse of the new matrix with b, in the first column is

Bi!=EJI=E,. (3-165)

Into column 2 of B; we insert column 2, by, of B and obtain B,. The

new inverse is

B;! = E,B7! = E,E,. (3-166)

We continue to insert one column at a time until we get

B_l = EnEn...l cor E2E1 (3—167)

and

E; = (el;e2:-'~;1’f)'-

) ea), (3-168)

where #; is in the 7th column. Furthermore,

,,.=[_y_1_f,_y_zf,...,_y_f—_u,i
¢ Yii Yii Yis

Yii Yii Yii

¥i = Biib; = E;_,E; ,--- E,Ib;,

(3-169)
7 2 2,‘ Y= b]. (3"170)

When B~ is expressed as the product of E matrices as in (3-167), it is
called a product form of the inverse. Form (3-167) is not unique. Dif-
ferent orders of insertion of the b; may be used and may be required.

ExampLE: Compute the inverse of

© 0 W

4
4
5

5 9

- 00 w

5

’

9
3
9
5

and write a product form of the inverse. We begin with the identity
matrix and insert the first column of B into column 1 of I. Then

Yy = I‘bl = bl = [3: 8; 9) 5]: mm = [1/3: _8/3) —9/3) _5/3])

1/3 0 0 0
—8/3 1 0 0
—9/3 0 1 0
—5/3 0 0 1

E; =

Bil=E,.
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Inserting the second column of B into column 2 of By, we obtain

y2 = Eby = [4/3,/ —20/3, —21/3,7/3],

n2 = [1/5, —3/20, —21/20, 7/20],

1 1/5 00 —1/5 1/5 00
g, —|0 —32000/ Byl — BE, —| 28 —¥200]

0 —21/2010 —1/5 —21/20 1 0

0 7/2001 —13/5 7/2001

Inserting the third column of B into column 3 of B, we get

y3 = B2—1b3 = [1’ 0, —8, 0]; N3 = [1/8, 0, _1/8, 0]7

10 1/80 —9/40 11/160 1/8 0
E, — 01 00 . By! = E;B;' = 2/5 —3/20 0 0f

00 —-1/80 1/40 21/160 —1/8 0

00 01 —13/5 7/20 01

Finally, we insert the last column of B into column 4 of B3 and arrive at

y« = B3'b, = [—111/160, 63/20, —81/160, —347/20],
n = (1/347)[—111/8, 63, —81/8, —20],

347 0 0 -—111/8
B = qpm| 0 ¥ 0 6 |
0 0 347 —81/8

o 0 O —20

thus
—42 19 347/8 —111/8
B~ = By — EB;' = (yan| T T 0 G
- | 5 a2 —sa7/8 818
52 —7 0 —20

A product form of the inverse is

B! = ELE3E;E;.
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The last few sections have amply demonstrated that the computation
of the inverse of a matrix, especially when = is large, is indeed an arduous
task—even for large high-speed digital computers. Computing A™! from
A*t/|A] is usually a rather inefficient procedure since it requires computa-
tion of a large number of determinants.

*3-22 Matrix series and the Leontief inverse. Polynomials of real
numbers can be generalized to infinite power series, that is, to polynomials
containing an infinite number of terms. Such a power series can be written

f_: A", (3-171)

n=0

For a fixed z the series is said to converge to a limit S if

Allim Sy = 8, (3-172)
where
N
Sy = D " (3-173)
n=0

Thus the series converges to a limit S if for any € > 0, however small,
there is an N such that

IS — Sl < ¢ all N > No. (3-174)

When the series (3—171) converges to a limit, then we can write

8= Y M (3-175)

n=0
and S is called the sum of the series. The limit S will, of course, depend

on the value of z. Clearly, the series cannot converge unless

lim A2" = 0, (3-176)

n—o

since (3-174) cannot hold in any other case. However, the validity of

(3-176) does not necessarily imply a convergence of the series. A series
which does not converge is said to diverge.

ExampLg: Consider the geometric series S0 2 2] < 1@
Sy=1+z+-+2",

xSN=x+x2+-~-—{—xN+1.
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Thus
1 — V! . 1
Sy = T— ) ;I_IELSN_I——x’ |x|<1.
Hence, when |z| < 1, the geometric series converges to the sum 8 =

1/(0 — z). If |z| > 1, then limy_,» ¥ = 0, that is, the series diverges.

It is possible to develop a theory of matrix power series in analogy with
series of real numbers. We can work with powers of matrices only when
the matrices are square. Thus, if A is any square matrix, we can consider
the series

3 AT, (3-177)

n=0
where the \, are scalars. It is convenient to use the definition
A’ =1 (3-178)

Any discussion of the convergence of matrix series must be preceded
by a definition of the limit of a matrix sequence. This limit is defined
in terms of the limits of the sequences of the matrix elements. Thus the
sequence A, = [|(a:))n]| will be said to approach a limit A = |la;f] if
and only if

lim (aij)n = G4j, (eaCh %, J)- (3_179) .
Note-that the limit A exists if and only if each matrix element approaches
a unique limit. Thus lim, .« A, = A means that the limit of each of the
n? sequences of real numbers defined by (3-179) must exist and be finite.

Having developed the notion of the limit of a matrix sequence, we can
now state that series (3-177) converges and sums to the matrix S if

, }im Sy = S, (3-180)
where
N
Sy = D MA". (3-181)
n=0

If the series converges, we can write

S= D, MA" (3-182)

n=0

Hence, the series converges to S if

N
i )\,.An — = 0. 3-183
i (g s) (3-183)
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Again, the series cannot converge unless

lim \A" = 0, (3-184)
n—w .
since otherwise (3-183) cannot hold. However, the validity of (3-184)
does not imply the convergence of the series (3-177).

We shall not pursue the subject of matrix series any further. Instead
we shall terminate our discussion by showing how the inverse of I — A
can be written as a power series when A has certain properties (see below).
In economics, a square matrix of the form I — A appears in connection
with the Leontief input-output model discussed in Chapter 1. In a Leon-
tief system, the matrix A can be defined so that it has the following
properties*:

0<a;<1 (all 2, 7); (3-185)
da; <1 (ally). (3-186)
=1

Our example of a geometric series showed that (1 — z)X iz’ = 1,
|z} < 1. This suggests that we can write

@I—A'= fjA"=1+A+A2+---. (3-187)

k=0

This is not true for any arbitrary A, but it holds when A satisfies (3-185)
and (3-186). Note that

Bi=(0—AI+A+A%+ ... + A =1 — A¥
(3-188)

Consider the matrix sequence B;. Then By, tends to the limit Iask — oo if

;im B, —I =0. (3-189)
However, from (3-188):
lim B — I) = %im (—AKY), (3-190)
k—o0 00
Thus if
lim (—A*¥) — o, (3-191)

* This definition requires that the technological coefficients be measured in
monetary rather than physical units.
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then T—a) Y A =1, (3-192)

k=0
and, by definition of the inverse, (3-187) is correct.

It remains to be shown that (3-191) holds when the elements of the
matrix A satisfy (3-185) and (3-186). Since (3-186) is true, we can write

0<> a;;<r<1 (ally). (3-193)
i=1
Con51der any element of A% = [|a{?|, that is,

2)
a(w Z A ikQkj,

and
E a(z) 2 E QikQkj = E Z Qg ) Ckj <r E ak, <
=1 i=1 k=1 i=1 k=1
(3-194)
Hence, @ )
o <r?  (allg),
which implies, since all the elements satisfy (3-185), that
o < (all5 ). (3-195)

Continuing in the same manner, we find that a, that is, any element of
A gatisfies

a® <t
Consequently, as k — oo, each aff — 0, and (3-191) is valid. We have
proved that if (3-185) and (3-193) hold, (3-187) is true also.

Writing (I — A)™!in the form of a power series (3-187) is of advantage,
particularly when I — A is of a high order; in such cases, the standard
numerical methods of inversion can introduce, through rounding off,
rather large errors, implying that (I — A)™! cannot be determined ac-
curately. This problem of rounding off is considerably reduced if
(I — A)~!is evaluated by selecting a finite number of terms in the power
series expansion. The inverse can be computed to any desired degree of
accuracy by taking a sufficient number of terms in the expansion. Un-
fortunately, the series does not always converge rapidly, and a rather
large number of terms must be used to obtain a satisfactory degree of
accuracy. Berger and Saibel [3]* discuss other power series expansions
of (I — A)~! which converge more rapidly.

* Numbers in brackets denote bibliographical references.
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PROBLEMS

3-1. When addition is defined, add A and B in the following cases:
(a)A=345:B=972;

21 6 01 8
4 .
6

(b) A

I

3,2, B

© A = (@11 012]’ B =[bu b12:|;
| a21  a22 b21  b22
o .
(d)A=|5] B=|8];
6 9]
© A = 0 1], B |7 4];
0 6 1 0
(1 0 0 0000
) A=|0 1 0} B=]0 0 0 O]
0 0 1 6000

3-2. Let A = ||ai;]| be an m X n matrix and B = I|bijl] an m X n matrix.
Show by actually writing out the sums that A + B = B+ A.

3-3. Let A, B, C be m X n matrices. Show by actually writing out the sums
that A+ B+ C) = A4+ B)+C.

3-4. Consider the addition of sets of linear equations of the form Ax = b,
Bx = d and show that our definitions of matrix addition and multiplication
by a scalar are consistent with the corresponding operations on sets of simul-
taneous linear equations. In addition, show how the restrictions on the number
of rows and columns are a logical development. Note carefully what addition
means in this context. If x satisfies both Ax = b and Bx = d, then x is a solu-
tionto (A+ B)x = ¢+ d.

3-5. Find the products AB and BA (when they are defined):

() A = [au axz]’ B = [bu b:z]_
az1 422 ba1  be22

(Cont.)
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1
-
(b)A=1245’ B |4
3 1.0 2 81;
9
[1 3 4 10 2 0
() A=]2 07, B=|71 3|;
|5 6 9 4 56
"
0
(d) A = ’ B = (2; 4,9, 6, 5, 0);
7
| 8]
1
0
(e)A= ’ B = (2;4’ 9, 6))
. ,
18]
[3 1
1
MHA=]|2 4], B=[]
|5 6 2

3-6. Show by actual computation that (AB)C = A(BC) when

3 71

2 1 0 3 7
A = ,/B= ]y C=]2 6 1]-
3 4 1 8 9

1 40

3-7. Given the diagonal matrices A = ||a; 8;jl|, B = [|b; 8;;]|, compute AB
and BA. What is true of AB and BA?

3-8. Prove that, when the operations are defined, it is always true that
(A + B)C = AC 4+ BC.

3-9. Given matrices A, B, C, D, and assuming that all operations are defined,
prove from the definition of multiplication that

(A+ B)(C+ D) = A(C+ D) +B(C+ D) = AC+ AD + BC + BD.

Under what conditions are all the operations defined?
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3-10. Given matrices A, B; under what conditions do the following equations
hold?

(8) (A -+ B)2 = A2 4 2AB + B?;
(b) A+ B)(A —B) = (A — B)(A+ B) = AZ — B2

3-11. Given an nth-order diagonal matrix D = ||d; ;;]| and an n X n matrix
A. If AD = DA, what type of matrix is A? Consider a case where all d; are
different, and a case where some d; may be the same. When two or more d; are
equal, assume that they fall in consecutive rows. Sketch the structure of A
when some d; are equal.

3-12. Given two symmetric matrices A, B of order n. When is the product
AB also symmetric?

3-13. For any matrix A show that A’A is defined and is a symmetric matrix.

3-14. Given a symmetric matrix A and a skew-symmetric matrix B, both of
order n. Show that AB is skew-symmetric if A and B commute.

3-15. Given two skew-symmetric matrices A and B of order n. Show that
AB is skew-symmetric if and only if AB = —BA. Matrices for which AB =
_BA are said to anticommute. When is the product of two skew-symmetric
matrices symmetric?

3-16. Given the following matrices:

A = 2 1 , B = 1 7 2 .
3 4 0 6 5
Show by direct computation that AB = (Ab;, Abg, Abz). The b, are, of course,

the column vectors of B.
3-17. Matrices A and B are partitioned as shown:

32i14 17

I
A=|46i5 0| B- |29
7 110 2 12
: 5 1

Prove by direct multiplication and by block multiplication that the same result
AB is obtained either way.

3-18. Write out the expansion of the general fourth-order determinant (use
the basic definition). - Combine terms so that an expansion by the second row
is obtained. Show that the cofactors As; are simply (—1)7+2 times the third-
order determinants which were arrived at by crossing out the second row and
jth column. Verify thus the expansion by cofactors for this special case.

3-19. Evaluate

4 1 2
7 3 5/-
1 6 6

(a) Expand by the first row;
(b) expand by the second column.
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3-20. By actual computation show that |A| = [A’| when
4 1 6
Al = |7 2 9|
3 0 8
3-21. Using cofactor expansion by the first row, show that
1 31
70 7 =0.
6 4 6
3-22. Show by computation that
5 6 1 3
5 2 3 =142 3/4+|1 2 8-
1 5 0 8 5 0 350
3-23. Show by computation that
4 6 0 4 6 0
27 3 =12+23) 7 3|
1 51 1+20) 5

—t

3-24. Show by computation that

1 3 4 4 3 1
73 1| =—11 3 7/-
2 9 4 4 9 2

3-25. Prove by induction that for any positive integer n (when operations
are defined),

(AjAz---A,) = AL ---AzA].

Note: To prove by induction that a relation holds true for all positive integers =,
we show first that the relation is true for n = 1, Then we demonstrate that,
if the relation holds for n — 1, it is also valid for n.

3-26. Prove that the only n X n matrices which commute with all other n X n
matrices are scalar matrices.

3-27. Consider a product of matrices defined as ci; = ai;bi; (suggested in
this chapter and then set aside). What are the conditions under which multi~
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plication is defined? Is the multiplication commutative, associative, and dis-

tributive?
A= 2 1|
3 4

3-28. Let
Evaluate the polynomial A2A% + A1A + Aol when A2 = 2,A\1 = 3,A0 = 5.

3-29. Show that if AB = 0 and B # 0, there is no matrix C such that
CA =1L

3-30. Expand (A 4+ B)* and (A — B)%. Be careful to note that A and B
do not commute in general.

3-31. Prove that the determinant of the scalar matrix N, is A* and that the
determinant of a diagonal matrix is the product of the diagonal elements.

3-32. A triangular matrix is defined as one where all elements below (or
equivalently above) the main diagonal are zero. Such a matrix is square, and
ai; = 0 ( > j). Prove that the determinant of a triangular matrix is the
product of the elements on the main diagonal.

3-33. If two nth-order matrices A and B differ only in their jth column, prove
that

21— |A+ B| = [A] + [Bl.

3-34. Prove by induction that for the product of nonsingular matrices,

(AdAz--- A"t = AT'ATL - AZAT

3-35. Prove that the inverse of a nonsingular symmetric matrix is symmetric.

3-36. Prove that the inverse of a nonsingular skew-symmetric matrix is
skew-symmetric.

3-37. Prove that every skew-symmetric matrix of odd order is singular.

3-38. If A+ is the adjoint of a symmetric matrix A, prove that At is sym-
metric, that is, the cofactor of a;; is the same as the cofactor of aji.

3-39. Show by an example that, in general, :

(A+B)~! = A-1 + B-L

3-40. Using A~! = (1/|A])A+, compute the inverse of the following matrices:

4 1 2
(a)A=[2 l]; M A=|010; <c>A=[5 1]; @ A = @.
3 4 8 4 5 6 3

3-41. Show that the inverse of the scalar matrix S = ANl is 8—1 = (1I/ML

3-42. Show that the inverse of the diagonal matrix D = |A: 845l is D71 =
/a8l

3-43. Show that the inverse of a nonsingular triangular matrix T is triangular
and, by considering T-1T = I, obtain a set of equations which can be solved
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sequentially to yield the elements of T—!. Illustrate this by compufing the

inverse of
ail1 a1z a3

T=|0 @22 a2
0 0 ass

In particular, observe that if a;; is a diagonal element of T, and ;; is the corre-
sponding diagonal element of T—1, then t;; = 1/a;;.

3-44. Show that interchanging rows in a nonsingular matrix A interchanges
the corresponding columns of A1,

3-45. 1f Ais a given matrix and B is a nonsingular matrix (both of nth-order),
prove that there is one and only one matrix X such that A = BX, and only one
matrix Y such that A = YB. In fact,

X =B-lA; Y = AB-l

3-46. Compute the inverse of the partitioned matrix

B - B O
D1
whenBisn X n,Dis1 X n,0isn X 1,1is1 X 1.

3-47. Compute by partitioning the inverse of the following matrix. Also
find a product form of the inverse. .

(4 2 1 8
79 4 3|
105 2
6 6 1 7

3-48. Obtain a product form of the inverse of

[0 1 2
A=1]3 9 7
|2 1 6
3-49. If B is written as a column of row vectors B = [bl, ..., B“], prove that

BC = ]b'C,...,b"C],

when the multiplication is defined.
3-50. Show that if A is the partitioned matrix

A= [Au AIZ], then A/ — [A'u A’Zl].
Az Ag Alz A
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3-51. Consider that the m X n matrix Eny is defined as a matrix all of whose
elements have the value of unity. For example, the 2 X 2 matrix E22 weculd be

11
E2 = .
11
What is the matrix E.,A for any m X r matrix A? What is the matrix AE,,?

*3-52. Consider the matrix
A = 0.1 0.2 )
0.3 0.2

Evaluate I — A)~!. Eliminating the remaining terms in the expansion of the
inverse, compute I + A + A2.

3-53. Consider all operations defined for vectors and matrices and show in
detail that there is a complete equivalence between vectors and matrices of one
row or column.

3-54. How does a symmetric matrix simplify the procedure of computing the
inverse of a matrix by partitioning (discussed'in Section 3-20)? List the simpli-
fications.

3-55. Show that there is a complete correspondence between the scalar
matrices M, and the real numbers A. Consider addition, multiplication, in-
verses, etc. A correspondence of the type NI, — X is called an isomorphism.
The systems represent indeed the same thing, except for notation. For example, '
show that if AiA2 = Ag, then MI,(A2l.) = Asla.

3-56. Consider the 1 X 1 matrices (A) containing the single element A. By
examining all the rules for matrix operations, show that there is no difference
between a 1 X 1 matrix () and the real number \, that is, we can write (\) =

3-57. Show that if A is skew-symmetric, B’AB is also skew-symmetric.

3-58. Find the matrix B whose inverse is

4 36
Bl=1|157
2 91

3-59. In Problem 3-58, we replace the first column of B by the vector‘
a = [2,0,7]. Compute the inverse of the new matrix B,,.
3-60. Given the nonsingular matrix B = (by, ..., bs). Show that
B~lb; = es.

3-61. If B is a nonsingular matrix, column r of B is e,, and row r of B is e},
show that column r of B—1 is e,, and row r of B~1 is e}.

* Starred problems correspond to starred sections in the text.
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*3-62. Suppose that a square matrix A can be written in partitioned form as
Ay 0 ---0
A=]|0 Az---0 |>
0 O ---A,

where the only nonzero submatrices are square and appear on the main diagonal.
Prove that

[A] = |A1] |A2|- - - |Aa].
*3-63. Expand by the Laplace expansion method, using the first and third rows
3415
2 87 6
1 0 5 4 .
9 91 3
*3-64. Show that an nth-order determinant can be written

0 ai2---a1s

a1 422 °°-° a2n
=andnn+ |, .

ail - - Gin

.

Gnl * " Qun
Qnl Qn2° " * Gnn

Each of the submatrices whose determinants yield the cofactors Ai1s,..., A1n
contain the elements agy, ..., @s1 of the first column of A. Denote the co-
factor of a;1 in A1; by A1j41 (this is a determinant of order n — 2). Note that
Aj;j;:1involves the determinant of the submatrix formed from A by crossing out
rows 1, ¢ and columns 1, j, as does also A11;i; which, in turn, is the cofactor
of ai;in A11. Thus A11;s; and A1j41 can differ only in sign. Show that

Ajyi; = —Aija.

Now prove that |A] can be expanded in the form

Al = a1dn — 2, D ajeidi G § = 1),
t i
This is the famous Cauchy expansion of a determinant.
*3-65. Generalize the Cauchy expansion discussed in Problem 3-64 so that
the expansion is made in terms of column A and row k.
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*3_66. By means of the Cauchy method expand in terms of the first row and
column:

1 2 3 4
20 71
59 0 6
6 1 1 2
*3-67. Given:

by b1z bis ]
b21 b2z bas
ayl a2 a3 a4 4is
A = |a1 a22 az3 age az5|: B = | b31 b3z bss

az1 @32 G33 a34 G35 bsr baz bas

| 551 b5z bs3 ]

Write |AB| as a sum of products of 3 X 3 determinants taken from A and B.

*3_68. Consider |AA’|. Using the theorem on the determinant of the product
of rectangular matrices, show what form the expansion of this determinant
takes when Aism X n, m < n.

*3_60. A matrix has no numerical value. On occasions, however (for example,
when treating infinite series of matrices), it is useful to define a real-valued func-
tion of a matrix. This can be done in many ways, e.g.: The modulus of an
m X n matrix A, written M(A), is defined as

M@A) = idls j=1...,np>
A) m?x{2|a| j=1 n‘

i=1
where
|ai;] is the absolute value of as;.

Find M (A) for the following matrices:
2 4 3 0

0
A=|—7 0 2| A=[643], A=|o0 o A=[O ]
s 12 2 15 o 00

*3 70. Referring to Problem 3-69, prove that M(A) satisfies the following
expressions: .

(1) MQ\A) = |A|[M(A) for any scalar A;

@ MDD =1

(3) M(AB) < M(A)M(B);

4) M(A+ B) < M(A) + M(B);

(5) M(A) — M(B) < M(A+ B);

Hint: For (5) write A = (A + B) + (—B) and apply (4) to this equation.

(=]
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*3-71. Given an infinite sequence of matrices A;. Prove that if

lim M(A — Ay) =0,
k—o

then
lim Ak
ko
and
’lim M(Ax)

L]

A,

M(A).

*3-72. Express |A~!|, [A*] in terms of |A|.

*3-73. Consider an m X n matrix A such that every column of A contains
either only zero elements or zero elements throughout except one which has the
value unity. Show that every minor of A either has the value 0 or 1.

3-74. Given AB = AC; does it follow that B = C?

counterexample?

Can you provide a

3-75. If the matrix A of Problem 3-62 is nonsingular, compute A~1.
3-76. Derive the cofactor expansion by column j from the result on the ex-
pansion by row j, using the fact that |A| = |A].

*3-77. In the general expansion of a determinant of order 4, find all the terms
containing ajjaze and ai2a21. Show that, except for sign, the same set of terms
is obtained in each case after ajiazz or aiz2az: is factored out. Show that the
set of terms from which a12a2: is factored out has.the opposite sign from that

. corresponding to aiiaze.

Next, show that the set of terms which multiplies

ayiagz is the determinant obtained from A by crossing out rows and columns
1, 2. Do the same thing for terms containing az,a4, where (u,v) is (1, 2) or
(2, 1). Verify that the sign is obtained according to the rules for the Laplace

expansion.

ProBrLEMS INvoLviING MATRrICEs WiTH CoMPLEX ELEMENTS

3-78. Review the chapter and list the most important results.

Show that

the results remain true for matrices whose elements are complex numbers.

3-79. Compute AB, BA for

A=2-I—1, 4+ 3 1 : B
1—1

7 6+ 9¢

3-80. Compute [A|, A~ for

A= 1474
4 — 67

(8 — 4 5
= 6 —2i
|3+ 2% 445

2
2+ 3i

Show that AA—! = A—1A = I. Note that the definition of the identity matrix
does not need to be changed when the theory is generalized to include matrices

with complex elements.
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3-81. Compute |A], A~ for
3 5 6+ 71
A=|44+20 14+7 3—5
3 2—1 641

3-82. Compute a product form of the inverse for the A of Problem 3-80.

3-83. Given a matrix A = ||a;j]| with complex elements, then the matrix
A* is defined to be A* = ||a¥]||; A* is formed from A by taking the complex con-
jugate of each element in A. Hence A* may be called the conjugate matrix to A.
When the elements of a matrix are complex, symmetric matrices are of less
interest than so-called Hermitian matrices. A Hermitian matrix is a matrix A
such that A = (A*)’. The matrix is equal to its conjugate transpose. Note that
if the elements are rea), a Hermitian matrix is a symmetric. The matrix (A¥)
will be denoted by A. For any matrix A, A& is called the associate matrix of A.
Prove that (ABC)* = A*B*C* and (ABC) = CBA.

3-84. Show that the following is a Hermitian matrix:

2 14+4¢ 34+ 4
A=)1—¢2 4 2—3
3— 4 2+ 3¢ 5
Prove that the diagonal elements of a Hermitian matrix are always real.
3-85. Compute A2 for the matrix A of Problem 3-84. If A is a Hermitian
matrix, what can be said about the elements of A2?

3-86. Prove that the inverse of a nonsingular Hermitian matrix is Hermitian.
Under what conditions is the product of two Hermitian matrices Hermitian?



CHAPTER 4

LINEAR TRANSFORMATIONS,
RANK AND ELEMENTARY TRANSFORMATIONS

Be ye transformed by the renewing of your mind.
Rom. XII-2.

4-1 Definition of linear transformations. Transformations of variables
in which the new variables are linear combinations of the original ones
are often needed in working with linear models. In fact, transformations
of this type were used in the preceding chapter to obtain the general
definition of matrix multiplication. These linear transformations of vari-
ables and matrix theory are closely connected. Furthermore, linear trans-
formations can be given an interesting geometric interpretation which, in
turn, contributes materially to our intuitive understanding of many of the
properties of matrix operations. We shall see also that a more detailed
discussion of linear transformations will allow us to develop some addi-
tional significant concepts in matrix algebra.

An especially simple example of a linear transformation of variables is

Y1 = @117y + @222

I
1

or y (4-1)

Y2 = A21%1 -+ @222

The vector x = [z;, 5] can be viewed as a point in the x,z;-plane.
The change of variables (4-1) serves to transform each point in the z;z4-
plane into a point in the y;ys-plane. A transformation of this kind is
called a mapping of the z,z»-plane into all or part of the y ys-plane. The
vector X is mapped into the vector y. The point y is called the image of x.
The matrix A induces the mapping.

There is no reason at all for considering the y,ys-plane as necessarily
different or distinct from the z,z,-plane. They can be assumed to be
identical, with the y;- and ys-axes being the same as the respective ;-
and zs-axes. Hence, the z;75- and y;y2-planes can be considered to be
simply different names for the same thing; according to this interpreta-
tion, the transformation (4-1) moves a point in the z,r,-plane into an-
other point in the z;z,-plane.

132
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Linear transformations of the type (4-1) have some interesting prop-
erties. If
y1 = Ax;, y2 = Ax,,
then :
y1+ 52 = Ax; + Axp = A(xy + X3). 4-2)

If yi, y2 are the images of X;, Xa, respectively, then y1 + ¥ is the image
of x; + X, that is, the operation of addition is preserved under the
transformation. Similarly, if y; is the image of xy, then Ay, is the image
of Ax; since A(\X;) = Mx;. Multiplying x by a scalar also multiplies the
image of x by the same scalar. The transformation preserves multiplica-
tion by a scalar.

If, in (4-1), A, the matrix of the coefficients, is nonsingular, we can
write x = A~ly. This means that one and only one point in the z1zs-
plane corresponds to each point in the y;ys-plane, just as according to
Eq. (4-1), one and only one point in the yiys-plane corresponds to each
point in the z,z2-plane. Such a transformation is called a one-to-one (1-1)
transformation since only one y corresponds to a given x and only one X
to a given y. A transformation can be single-valued (that is, only one y
corresponds to a given x) without being 1-1, since there may be two or
more points X which are transformed into the same y. If A™! exists, then
every point y has a corresponding unique X. Consequently, A maps the
z1z2-plane into all of the y;y2-plane. Assuming that the z;z2-plane and
the y1ye-plane are identical, we see that a nonsingular linear transforma-
tion maps E? onto EZ (all of EZ, not just a part of E?) in a 1-1 manner.

The ideas developed above carry over to the transformation y = Ax
when A is m X n. In this case, each point of E" is transformed or mapped
into a point in E™. (Of course, if m # n, then y, x cannot be considered
to be points in the same space.) Again, addition and multiplication by a
scalar are preserved under the transformation. Mathematicians prefer
to define the concept of a linear transformation abstractly in terms of the
properties of preserving addition and multiplication by a scalar:

Linear TRANSFORMATION: A linear transformation T on the space E*
is a correspondence which maps each vector X of E™ into a vector T(x) of
E™ (m can be >, =, < n) such that for all veclors Xy, X2 in"E™ and all
scalars Ny, Az,

T(xy + AaXa) = MT(xy) + N T(x2). (4-3)

Equation (4-3) expresses the preservation of both addition and multipli-
cation by a scalar. If weset Ay = A2 = 1, (4-3) becomes

T(xy + X2) = T(xy) + T(x2);
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'i.e., the transformation preserves addition. If we take A\, = 0, (4-3)
becomes
T(\xy) = MT(xy);

i.e., the transformation preserves multiplication by a scalar, which is often
referred to as the homogeneity property of linear transformations.

Any matrix transformation is a linear transformation since the rules
for matrix operations establish that

A(\ix; + NoX2) = MAX; + \AX,.

In fact, the algebra of matrices is often called the algebra of linear trans-
formations. We shall always identify linear transformations with matrix
transformations. The general definition might give the impression that
there could exist linear transformations on vector spaces other than
matrix transformations. This is not so. In Problem 4-25 you will be
required to prove that every linear transformation on a vector space is
equivalent to, and can be represented by, a matrix transformation. We
shall never have any direct use for the abstract definition (4-3) of a linear
transformation. However, (4-3) does indeed provide the general defini-
tion of linearity and can be used to define linear differential or difference
equations, linear servomechanisms, etc. In general, a physical or economic

~model can be cast into the form 7(x) = y. This simply means that a set
of variables, described by the vector x, is related to another set of variables
or known parameters by the transformation T. The model is linear if
(4-3) holds. We often refer to T as an operator which transforms x into y.
The operator T may involve also other variables, such as time (when
T(x) = y is a set of differential equations and x is to be determined as a
function of time), etc.

Exampres: (1) The transformation y = ax is linear. To prove this,
we only need to show that (4-3) holds. In this case, T(z) = az. Thus,

T(\zy + Agxs) = a(Aizy + Aawe) = Ai(azy) + Ma(azy)
= MT(z1) + NT(x3).

(2) The transformation y = ar? is not linear, since

T(\z1 + Na2) = a(\izy + Aa22)? = a(\yz1)? + a(Aaw2)? + 20N\ o712 o
# )\I.T(xl) + XgT(Iz) = ahx'f -+ a)\g.’l?g.

(3) The transformation y = a;x + ag, az #= 0, is not linear, since

T()\lil -+ )\2.?32) = al()\lxl + )\2x2) + Qg = al)\lxl + al)\gJJz + az
# MT(z1) + AT (z2) = M(arzy + az) + Aa(a1zy + ag)
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for all Ay, A2. The constant ay spoils the linearity of the transformation.
It should be recalled that no such constants appear in the general matrix
transformation y = Ax. For a transformation to be linear, every con-
stant must multiply a variable.

4-2 Properties of linear transformations.

DoMAIN AND RANGE: The domain of a transformation is defined to be
the set of elements which undergo transformation. The range of a trans-
formation is the set of elements which is formed by the transformation
operating on the elements in the domain.

The range is often called the image of the domain under the trans-
formation. In Eq. (4-1), the domain is the whole z,z;-plane, and the
range is the set of points in the y;y»-plane which is the image of the
z,z2-plane. When A is a nonsingular, the range is the whole y,ys-plane.

The range of a linear transformation on E is a subspace of E™ or, ex-
pressed in terms of a matrix transformation: If A is an m X n matrix, then
the set of points y = Ax (for all x in E™) is a subspace of E™. In general,
for any linear transformation 7, we must demonstrate that if T'(x) is in
the range, so is AT'(x) for any scalar X. This can be shown, since AT'(x) =
T(Ax) and T(Ax) is the image of Ax and is in the range. Similarly, it must
be true that if T(x;), T(xz) are in the range, the sum T'(x;) + T(xp) is
in the range also. Since T'(x;) + T(x3) = T(x, + X3) is the image of
X; + X, it is in the range. It may happen, of course, that the subspace
of E™ is E™ itself. A simple example will illustrate the implications of this
theorem: Suppose A is 3 X 3. Then the set of points y = Ax for all x in
E3 must be either the origin, a line through the origin, a plane through
the origin, or all of E3. In addition, this proof shows that a linear trans-
formation which takes points in E™ into points in E™ also takes a sub-
space of E” into a subspace of E™.

Any m X n matrix A can be written as a row of column vectors,
A = (ay,...,a,). Thus, when a matrix A maps all of E” into E™, we have

y=Ax=Ilal+"’+xnam (4—4)

where the z; can take on all possible values. The range of the transformation,
that is, the subspace generated by the ¥, is then the subspace of E™ spanned
by the columns of A. We know from Section 2-13 that the dimension of
this subspace is the maximum number of linearly independent columns
in A. Thus the dimension of the range is the maximum number of linearly
independent columns in A.
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ExampLes: (1) The transformation induced on E* by

1 5 2 4
A=|0 0 3 6
001 2
can be written
1 5 2 4
y=2x,|0]+22|0|+x3{3|+ 24|86
0 0 1 2
’ 1 2
= (ry + 522) | O | + (x5 + 224) | 3
0 1

The range of the transformation is the two-dimensional subspace of E3

spanned by [1,0,0] and [2, 3, 1]; that is, the range consists of all the

vectors y lying in the plane through the origin and [1, 0, 0], [2, 3, 1] in E3,
(2) The transformation represented by the matrix

At oo
010

takes the point [z, xg, 23] into a point [z, 5] in the z;zo-plane. The
transformation then projects a point in E2 on the x,zs-plane. The trans-
formation is not 1-1, since every point with the first two components
xy, T2 goes into [z}, 5] regardless of what x3 happens to be. Thus A takes
E3 into all of E2.

(3) The transformation represented by the matrix

10
A=]01
01

takes any point [z, 2] of E? into [zq, 24, xo] of E® (see Fig. 4-1). In
the process, the transformation only rotates the z;x.-plane about the x;-
axis through a 45°angle. The range is a plane and represents a two-
dimensional subspace of E3.

It is important to note that a transformation which takes every point
of E™ into a space of higher dimension E™(m > n) can never have a range
of dimension m. We understand intuitively that all of E™ cannot be
filled from a space of lower dimension. The dimension of the subspace
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1

[3:1, 9‘:2]

2

Ficure 4-1

of E™, representing the range of the transformation, cannot be greater
than n. The dimension of the subspace is the maximum number of linearly
independent columns in A, and A has only n columns.

Let Ty be a linear transformation which takes E™ into a subspace of E”,
and T, a linear transformation which takes E” into a subspace of E™.
The product T3 = T2T; of the two linear transformations T}, T, is
defined as follows:

T3(x) = TofT1(x)]; (4-5)

that is, we obtain T'3(x) by computing 7';(x) = y and applying 7'z to y.
The product of two linear transformations is also a linear transformation
since
T3(MXg + AoXp) = ToAT1(x1) + A2T1(X2)]
= MTT1(x1)] + A2T2[T1(x2)] (4-6)
= MT3(x1) + N2T3(x2).

If T, takes a point in E™ into a point in E", and T'; takes a point in E”
into a point in E™, then T3 = T,T takes a point in E™ into a point in E™.

Given any two linear transformations T, T2, with T'; taking points in
E™ into points in E”, and T’y taking points in E° into points in E™, the
product T27T'; can be defined if and only if r = s. If matrices A;, A,
represent T, T's, respectively, then T3 is represented by matrix Az =
A,A,. This statement will have to be proved in Problem 4-29. Thus, a
product of matrices can be viewed as a sequence of linear transformations.
At this point, we wish to note that the product of two linear transforma-
tions defines the rules for matrix multiplication. Indeed, in Section 3-3,
matrix multiplication has been defined in terms of the product of two linear
transformations.
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4-3 Rank. The dimension of the range of a linear transformation repre-
sented by A is the maximum number of linearly independent columns
in A; as such, it tells us quite a bit about the linear transformation and
the matrix A. We shall call the number of linearly independent columns
in A the rank of A, '

Rank: The rank (or more precisely the column rank) of an m X n matriz
A, written r(A), is the maximum number of linearly independent columns
i A.

We shall see that, for many purposes, one of the most important aspects
of a matrix is its rank. Introduction of this concept enables us to tie up
a number of loose ends in matrix theory and to develop some basic ideas
in greater detail.

ExampLe: The rank of an nth-order identity matrix is n since I =
(e, ..., e,), and the e; are linearly independent.

We are frequently faced with the problem of determining the rank
of the matrix C = AB from the given ranks of the matrices A, B. In
general, the rank of C is not uniquely determined by the ranks of A, B;
however, the following inequality holds:

7(AB) < min [r(A), r(B)]; &7

that is, the rank of the product AB of two matrices cannot be greater than the
smaller of the ranks of A, B.

The truth of (4-7) becomes evident if we think of A, B as representing
linear transformations. Let us suppose that A is m X r and Bis r X =.
The product AB can be viewed as a single linear transformation taking
E™ into a subspace of E™, and also as two linear transformations applied
sequentially. First, B takes E™ into a subspace of E”, then A takes this
subspace of E” into a subspace of E™. From a geometrical point of view,
it is clear that the dimension of the subspace of E™ cannot be greater
than the smaller of the dimensions of: (1) the subspace of E" obtained
by B transforming E™, (2) the subspace of E™ that would result if A
transformed all of E".

Let us now prove Eq. (4-7) analytically. We write

z = Bx. - (4-8)
Then
y= ABx = Az = Z 285, (4_9)
i—1 '

Thus all vectors y in the subspace of E™ are linear combinations of the
columns of A. Hence r(AB) cannot be greater than r(A), for otherwise it

H
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would be impossible to- express every vector y as a linear combination of
the columns of A.

Next, we note that every z can be written as a linear combination of
#(B) = k columns from B. Let the set of & linearly independent columns
 be denoted by by, . .., be. Hence

z= ij a:b; . (4-10)
=1

for every z in the subspace of E. Using Eq. (4-10), we can write every y
in the subspace of E™ as

k
y = ), oAb, (4-11)

=1

that is, every y is a linear combination of k vectors. Although we assumed
that the b; were linearly independent, this is not necessarily true for the
Ab;. Hence r(AB) < r(B), and Eq. (4-7) is proved.

The problems at the end of the chapter will show that in some cases
the strict equality and in others the strict inequality sign will hold in
Eq. (4-7). However:

If a matriz of rank k is multiplied in either order by a nonsingular mairiz,
the rank of the product is k. This can be proved easily from Eq. (4-7).
Let r(AB) = R; assume that matrix A is nonsingular and that r(B) = k.
From (4-7)

R <k (4-12)
But
B = AT !(AB). (4-13)

Applying (4-7) to (4-13), we obtain

kE L R. (4-14)
Comparison of (4-12) and (4-14) yields

k= R. (4-15)

If B is nonsingular and r(A) = k, the proof can be established in exactly
the same way.

From the preceding result we immediately see that all nth-order non-
singular matrices have the same rank. Let A, B be two nth-order non-
singular matrices, and 7(A) = k;, r(B) = k2. From (4-15)

r(AB) = ky, r(AB) = kg;
hence
ki = k. (4-16)
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4-4 Rank and determinants. An interesting relation exists between
the rank of a matrix A and the order of its nonvanishing minors, which is
of considerable theoretical importance and, in addition, provides a means
for computing the rank of a matrix.

The rank of an m X n matrix A is k if and only if every minor in A of
order k + 1 vanishes, while there is at least one minor of order k which does
not vanish. To prove the necessity, assume that r(A) = k. Then any
k + 1 columns of A are linearly dependent, and any column in A can be
expressed as a linear combination of some set of k¥ columns. Hence, the
columns of any submatrix of order k + 1 can be expressed as linear
combinations of k¥ columns from A. Each of the determinants obtained
by expanding the determinant of this submatrix vanishes because its
associated matrix has two identical columns, and hence the determinant
of the submatrix vanishes. This holds true for every submatrix of order
k + 1, that is, all minors of order k + 1 vanish.

Next, we must show that there is at least one minor of order & which
does not vanish. Assume that the opposite holds, that is, that all de-
terminants of order k vanish. Select k columns from A which are linearly
independent. Without loss of generality, we can consider them to be the
first & columns. Assume that all determinants of order k in the first k
columns and, in particular, the determinant of the submatrix formed from

- rows 1,..., k, vanish. Thus, expanding in cofactors by row k, we find
Z ar;Ari = 0. (4-17)
The same cofactors are obtained if we form a k X k submatrix from the
first kK — 1 rows and any other row j, j = k4 1,...,m, and expand
by row j. This implies that
Za,-;Ak;=0, j=k—|—1,...,m. (4“18)
i
Furthermore,
dajidri=0, j=1,...,k—1, (4-19)

since we are expanding by one row and are using the cofactors of another.
Combining (4-17), (4-18), and (4-19), we obtain

Z Aga; = 0. (4—20)
=z

This implies that columns ay, ..., a; are linearly dependent if the Ag;
are not all zero. In fact, if there were any minor of order ¥ — 1 in the first
k columns, which did not vanish, we could rearrange the rows and columns
so that at least one Aj; in (4-20) would be different from zero. If all
determinants of order ¥ — 1 formed from the first & columns of A were
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zero, we could repeat the same procedure with ¥ — 1 columns and show
that the k — 1 columns are linearly dependent if the determinants of
order k& — 2 do not vanish.

Conceivably, we may in this way arrive at a point where all deter-
minants of order 2 vanish. Now we have reduced the problem to showing
that any set of two columns is linearly dependent. This linear dependence
would follow even if all determinants of order 1 vanished, since then the
columns would be composed of zeros only. Thus, using the above pro-
cedure, we have contradicted our assumption that the k columns were
linearly independent. Hence, there must be at least one nonvanishing
determinant of order k in any set of k linearly independent columns.
Thus we have proved that if r(A) = k, then all determinants of order
%k -+ 1 in A vanish, and that there is at least one determinant of order k
which does not vanish. To prove the sufficiency, let us assume that all
determinants of order k -+ 1 vanish and that there is one determinant of
order k which does not vanish. The proof of the necessity showed that any
k -+ 1 columns whose determinants of order k + 1 all vanish are linearly
dependent. Hence 7(A) < k. Now let us consider the columns associated
with any determinant of order k which does not vanish. These columns
cannot be linearly dependent or, as shown in the necessity, all deter-
minants of order k formed from them would vanish. Hence r(A) = k.

Note: If all determinants of order k + 1 in A vanish, all determinants .
of order k -~ r also vanish (r > 1). Cofactor expansion immediately
demonstrates the correctness of this statement.

The above result gives us a means for computing the rank of any mairiz:
We look for the largest nonvanishing determinant in A; the order of this
determinant is the rank of A. To find nonvanishing determinants, it is not
necessary to consider only adjacent rows or columns. Any rows and
columns can be chosen to form the determinant.

We have now a way of testing whether any given set of m vectors is
linearly independent. A matrix is formed with the vectors as columns.
The rank of this matrix is found by the method just described (or by any
other method). If the rank is m, then the vectors are linearly independent.
If therank is k < m, the vectors are not linearly independent; in addition,
we have determined the maximum number of linearly independent vectors
in the set.

EXAMPLES:

1 3
# 0.

1 3
1) A= has rank 2 since
4 2 4

2 3 2
2) A= [1 ) 5] has rank 1 since ) = 0, but there are deter-

minants of order 1, let us say |2(, which do not vanish.
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00
3) A= (O 0 ] has rank 0 because all elements of A vanish.
[2 0 7
@A=|3 3 has rank 2 since |A| = 0, but there are some deter-
- minants of order 2 which do not vanish.
(2 2 4

The rank of a matrix has been defined as the number of linearly inde-
pendent columns of A. Strictly speaking, this is a definition of the column
rank, since we may equally well speak of a row rank of A and define it as
the maximum number of linearly independent rows in A. The reader may
feel that we should have been more meticulous, that is, used the term
“column rank” whenever we referred to the “rank” of a matrix,. We
shall now prove that the row rank of A is equal to the column rank and hence
the maximum number of linearly independent columns is equal fo the maxi-
mum number of linearly independent rows. The rank of a matriz is thus a
unique number which can be found by computing the maximum number of
linearly independent rows or columns. For this reason, it was not neces-
sary to distinguish between the two types of rank.

To prove this equality, let us suppose that the column rank of A is k
- and the row rank of A is k. But the row rank of A is equal to the column
rank of A’. Since, by assumption, the column rank of A’ is k’, all minors
of order k¥’ 4 1 in A’, and hence in A, vanish. Thus ¥’ > k. However,
there is at least one minor of order &’ from A’, and hence from A, which
does not vanish. Thus k¥ > &’ and, therefore, k¥’ = k. We have proved
that the row rank of A is equal to its column rank.

Let us summarize the results of our study of the concept of rank: If
r(A) = k, then at least one set of k columns and rows of A is linearly inde-
pendent (there may be, of course, a number of sets of k rows and columns
in A which contain linearly independent vectors), and no k + 1 rows or
columns are linearly independent. Furthermore, there is at least one de-
terminant of order k¥ in A which does not vanish. All determinants of
order k + 1 do vanish.

A particularly interesting case is presented by an nth-order matrix A.
If A is nonsingular, |[A| > 0. Hence, the columns (or rows) of A are
linearly independent and form a basis for E®, and r(A) = n. Conversely,
if we have = linearly independent vectors from E™, we can form a matrix
A with the vectors as its columns. This matrix A will have rank n, and thus
|A| > 0; A is nonsingular and has an inverse.

The results of this section and of Section 4-3 can be used to clear up one
question left unanswered in Chapter 3. There we stated, but did not
prove, the fact that only nonsingular matrices have inverses; that is,
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if A is an nth-order matrix and there exists an nth-order matrix B such
that AB = I, then A is nonsingular. In the preceding section, we have
shown that r(I,) = =, so that if AB = I,,, then r(A) = n, and r(B) = n.
In this section, we have seen that if r(A) = =, |A| ¢ 0, and hence A is
nonsingular. Thus we have proved that only nonsingular matrices have
inverses. We have also demonstrated that if the product of any two
nth-order matrices yields the identity matrix, both matrices are non-
singular. It then follows from this result and the proofs furnished in
Chapter 3 that if two nth-order matrices A, B satisfy AB = I,, then
(D)BA=1I,;2 A '=B,B~1 = A;(3) |A| =0, B|] 0.

It is now clear how to express any n-component vector b as a linear
combination of n linearly independent vectors a;, ..., a, which form a
basis for E*. We wish to find the y; such that

b= 2 Y. (4-21)
i=1

We define

A= (al: sy an)) y= [yl’ ceey yﬂ] (4_22)
Then

= Ay,

or

y = A~lb. (4-23)

The vector y is found by premultiplying b by A~2.
ExampLE: Write b as a linear combination of a;, a; when

b=1[32, a=[41], a;=I[25];

4 2 - 1 —2
A=(a1,a2)=[ ]’ Al‘—'ﬁ[ 5 :';
—1 4

y = A7b = 11_8[ 5 —2][3] = T1§ [ll]; hence y; = %’ Y2 = %
—1 4]L2 5
This result is easily verified:

- Gl B

The method outlined above for expressing a vector in terms of a set of
basis vectors is especially convenient if A™! is available.

In the following two sections, we shall develop a more efficient procedure
for computing the rank of a matrix and, in addition, gain some interesting
theoretical information.



144 . LINEAR TRANSFORMATIONS [cHaP. 4

4-5 Elementary transformations. There are simple operations which
can be performed on the rows and columns of a matrix without changing
its rank. By performing such operations, it is possible to convert a matrix
into one whose rank can be read off by simply looking at the matrix.
These operations then provide another way to compute the rank of a
matrix; as a matter of fact, they yield a rather efficient numerical pro-
cedure. In addition, they lead to some interesting theoretical results.

Three types of operations on the rows of a matrix (called elementary
row operations) are of importance; they are:

(1) Interchange of two rows;

(2) Multiplication of a row by any scalar A = 0;

(3) Addition to the 7th row of A times the jth row (A any scalar, and
J # ). .

These elementary row operations have one especially interesting prop-
erty: They can be performed on the matrix A by premultiplication of A
by a matrix E; that is, if B is obtained from A by some elementary row
operation on A, then there exists a matrix E such that B = EA.

Examrres: (1) Exchange the first and third rows in A,

2 1
A= |3 4]|;
(5 6
consider
[0 0 1 0 0 1][2 1 5 6
E= 1 0f; EA=|0 1 0||3 4|=|3 4
(1 0 0 1 0 0f[5 6 2 1

Premultiplication of A by E interchanges the first and third rows in A.
(2) Multiply the second row of A by 5. If

1 00 2 1
E=|0 5 0}; EA =115 20
0 0 1 5 6

Premultiplication of A by E multiplies the second row of A by 5.
(3) Add twice the second row to the third row. When

1 00 2 1
E=|01 0}; EA=| 3 4
0 21 11 14
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Premultiplication of A by E adds twice the second row of A to the third row.
Careful study of the E matrices will reveal that they can be obtained
from the identity matrix by performing on it the appropriate elementary
operation.

Our simple examples have shown that the elementary operations can
be performed on A through premultiplication by a matrix E; next, we shall
demonstrate the general applicability of this procedure. ~First, if E is to
perform an elementary operation on A, then EA must have the same
number of rows and columns as A; hence E must be square. Let us suppose
that we wish to interchange rows ¢ and j of the m X n matrix A. If e}
is the transpose of e;, then

e/A = a’  (a'isthe ith row of A). (4-24)

If, in the identity matrix I,,, rows 7 and j are interchanged, then ] appears
as row j and €] as row 1. For the other rows, e; appears as row k. Assum-
ing E to be the identity matrix with rows 7 and j interchanged, we see
that EA does indeed merely interchange rows 7 and j in A. In general, we
see that the matrix E which, when postmultiplied by A, interchanges the
ith and jth rows in A, is the matrix obtained by interchanging the sth
and jth row in I. The matrix which induces an interchange of rows ¢ and j
in A will be denoted by E;;.

If we wish to multiply the 7th row of A by A # 0, it is immediately
obvious that the operative matrix E is the identity matrix whose ith row
is multiplied by \; that is, €/ is replaced by Aei. The matrix which, when
postmultiplied by A, multiplies the 7th row of A by A\ will be denoted by
E:(\). Again E;(2) is found by performing the appropriate elementary
operation on the identity matrix.

Finally, consider the addition of A times row j of A to row ¢ (j # 9).
Observe that

(€} + Ae)A = a’ + Na'. (4-25)

The matrix E which performs the required operation is simply the
identity matrix with row ¢ replaced by e; 4+ Aej. Once again, E is found
by applying the proper elementary transformation to the identity matrix.
The matrix E which, when postmultiplied by A, adds \ times row j of A to .
row 7 will be denoted by E;(A|j).

The preceding paragraphs have shown that any elementary row opera-
tion can be performed on a matrix simply through multiplication by a
matrix E which, in turn, is obtained by applying the appropriate operation
to the identity matrix. The matrices E;;, E;(A), EQA|j) are called ele-
mentary matrices.

The elementary matrices E;;, E;(\), E;(A|j) are nonsingular and inverses
may be easily obtained as follows: If we interchange rows 7 and j in E;,
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an identity matrix results. Hence
E;E;;j=1 or Ej' =E,; (4-26)

When the 7th row of E;(A) is multiplied by 1/A, the identity matrix is
obtained:

E; (%) E)) =1 or E7'(0) =E; (%) (4-27)

If X times row j is subtracted from the ¢th row of E;(\|j), the identity
matrix results. Hence,

E{(—MNHE:\j) =1 or  E7'(Aj) = Ei(—Nj). (4-28)
The inverse of an elementary matrix is an elementary matrix.

ExampLes: Suppose that:

1 00
(1) Ez3 =10 0 1};
010
according to (4-26),
Ez = Eqy,
since
1 0 0|1 0 O 1 00
0 0 1|0 0 1|=1{0 1 0
01 0f|0 10 0 01
A00
(2) Ex0) =)0 1 0};
0 01
according to (4-27),
Ao
ET') =(0 1 )
0
since
At o o][x 00 1
0 1 0f{0 1 O] =
0 0 1}]10 0 1
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1 40
@) Ex@)2) = [0 1 0];
0 01

according to (4-28),

ET'4)2) =

0 1 0|0 1
0 0 1fj0 O

the rule gives the proper ET1(4(2).

—4 0]
0
1
0

1
0
0
1 —4 0][1 4 0 100
ol={0 1 of;
1 001

Elementary column operations on a matrix can be defined in the same
way as row operations, that is, they are: (1) interchange of two columns;
(2) multiplication of column Z by a scalar X # 0; (3) addition of A times
column j to column ¢ ( # 7). These operations can be performed on any
matrix A through postmultiplying A by a matrix F. The matrix F is found
by performing the required elementary operations on the columns of the
identity matrix. F;; will denote the elementary matrix which, when pre-
multiplied by A, interchanges columns ¢, j of A. The symbol F;(\) will be
used to denote the elementary matrix which, when premultiplied by A,
multiplies the 7th column of A by A. The elementary matrix which, when
premultiplied by A, adds A times column j to column 7 of A, will be de-
noted by Fi(A|j). The elementary row matrices are nonsingular; so are
the elementary column matrices F;;, Fi(A), F;(A\[7).

ExampLE: Find the matrix F which, when premultiplied by A, inter-
changes columns 1 and 3 and multiplies column 2 by 2:

A— 3 2 1],
1 5 4
Matrix F;3 which interchanges columns 1, 3 is obtained by interchanging
columns 1 and 3 in the identity matrix:
0 01

Fig=10 10
1 00
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Matrix F3(2) which multiplies column 2 of A by 2 is found by multiply-
ing column 2 of I by 2:

100
F2(2) = |0 2 0
00 1

Hence the required matrix F is F;3F2(2), or

00 1][1 0 o 00 1
F=F,F2 =[010[lo 2 ol=]0 2 o;
1 0 o0Jlo o1 100
00 1
AF=[321]020=[1 43]‘
15 4ff, 4 o la 101

The matrix F does indeed perform the desired elementary column opera-
tions; it is obtained by applying the elementary column operations to the
identity matrix.

4-6 Echelon matrices and rank. By means of a series of elementary
row operations, any m X n matrix A can be reduced to a so-called echelon
matrix which has the following structure:

(1) The first k rows, k > 0, are nonzero (that is, one or more elements
in the row are not zero) and all the elements of the remaining m — k
rOWS are zero. '

(2) In the ith row, 1= 1,...,%k (if ¥ > 1), the first nonzero element
(reading from left to right) equals unity. The symbol ¢; will denote the
column in which the element unity occurs.

(3) Then the arrangement of the rows is such thatc, < ¢z < -+ < ¢

0 1 hyz his his his
H=]0 00 1 e hsw is a typical example (4-29)
0 0 0 0 1 h3e of an echelon matrix.

000 O O O

We shall furnish constructive proof that any matrix can be converted
into an echelon matrix by elementary row operations. The term “con-
structive,” as applied here, means that the proof will actually describe
in detail how this reduction is effected. Starting with matrix A, we move
to the first column, let us say j, which has at least one element different
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from zero. If a nonzero element does not occur in the first row, we inter-
change the first row and any other row where a nonzero element appears.
This element, whose value will be denoted by a, can be converted to unity
by performing the elementary operation of dividing row 1 by a. If there
are other nonzero elements in column j, they can be reduced to zero by
subtracting 8 times the first row from the row where the nonzero element
occurs (B represents the value of the nonzero element). Columns 1 to j
and row 1 are now taken care of.

Starting from column j, we move to the next column, k, where at least
one nonzero element appears below the first row. If the element in row 2
is zero, we interchange row 2 and any row (w1th an index >2) having a
nonzero element. The nonzero element in the new row 2, column h, is
converted to unity by dividing row 2 by the value of this element. Any
other nonzero elements in column k (with row index >2) can be con-
verted to zero by subtracting from that row a constant times row 2.
Continuing in this way, we ultimately obtain an echelon matrix.

In the actual process of reducing any matrix A to an echelon matrix, it
is not necessary to find the elementary matrices and carry out the matrix
multiplication. The elementary operations can be performed directly.
It is very important, however, to know that the reduction can be carried
out by premultiplying A by a matrix E which is the product of elementary
matrices. Furthermore, E is nonsingular. We can write, therefore,

H = EA, (4-30)

where H is an echelon matrix. Since E is nonsingular, r(H) = r(A) (see
Section 4-3). This result is interesting because the rank of H can now be
read off at a glance. The rank of H is simply the number of nonzero rows
in H.

To prove that r(H) is k, the number of nonzero rows in H, observe first
that r(H) cannot be greater than k. Now it is only necessary to establish

the linear independence of the k nonzero rows. Let h!,...., h* denote
the nonzero rows of H. We try to determine A; such that
Yk = 0. (4-31)

Row h! has an element unity in column ¢;, while all other rows h* have
zeros in this column. Thus, A\; = 0. In the same way, Ao = Az = - - =
M = 0. Therefore, the first k rows are linearly independent and r(H) = k.

The reduction of a matrix to an echelon matrix is a fairly efficient nu-
merical procedure for computing the rank of a matrix. It is usually much
more efficient than the process of finding the largest nonvanishing de-
terminant in A, especially if A is large. However, the task of determining
the rank of a large matrix is almost always difficult, irrespective of the
technique applied to the problem.
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ExampLE: By converting A to an echelon matrix determine the rank of

00 2 9
0
A=|0

1
46
3 1
03009

0057 3 1]

Column 2 is the first one to have a nonzero element. Either row 3 or row 4
can be interchanged with row 1. Let us interchange rows 1 and 3. Now a
2 is the first nonzero element in the new row 1. This 2 is reduced to a 1
by dividing the new row 1 by 2. To convert the 3 (row 4, column 2) to
a 0, 3 times the final version of row 1 is subtracted from row 4. After
all these operations are performed, the following matrix is obtained:

(0 1 15 05 2 35]
0 4 6 5 3
0 1 2 8 9
0 —45 75 —3 —35
00 5 7 3 1

The third column consists entirely of nonzero elements. We divide row
2 by 4 and subtract this new row 2 from row 3; then we subtract —4.5
times row 2 from row 4, and 5 times row 2 from row 5, and arrive at

[0 1 1.5 05 2 3.5
0 01 1.5 1.25 0.75
000 0.5 6.75 8.25
000 1425 2625 —0.125
000 —05 —32 —275 |

W & v

3
71
7

S W N O

oS © o

Moving next to the fourth column and third row, we obtain, after divid-
ing row 3 by 0.5 and making the appropriate subtractions from rows 4 and 5,

0 1 1.5 05 2 35 |

001 15 1.25 0.75

000 1 13.50 16.50 | -

0 00 0 —18).75 —235.25 .
(0 00 O 3.50 5.50 |
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Continuing in this manner, we carry out the last two steps and obtain

15 05 2 3.5
1 15 125 075
0 1 1350 16.50
0o 0 1 1.238
0 0 0 1|

o O O o O
O O O O -

Consequently, the rank of this matrix, and hence of the original matrix,
is 5. The preceding computations will have given the reader some aware-
ness of the difficulty of determining the rank of a matrix. He may also
feel that it would have been easier to find the largest nonvanishing de-
terminant. In our example, the amount of work required is about the
same, whatever our choice of procedure. For larger matrices, however, the
systematic reduction of a matrix to its echelon form is vastly preferable.

To determine the rank of a matrix, it is only necessary to reduce it
to an echelon matrix. However, by applying elementary column opera-
tions to the echelon matrix, we can carry the reduction even further. If
the leading unity element appears in column j of row 1, then all the ele-
ments of row 1 in the columns following 7 can be reduced to zero by sub-
tracting from any given column r with index r > j the appropriate multi-
ple of column j. Since the only nonzero element of column j appears in
row 1, this operation does not affect any nonzero elements in column r
with row index >1. If the leading unity element of row 2 occurs in column
g, ¢ > j, the same procedure can be used to reduce all nonzero elements
of row 2 in the columns following ¢ to zero. Note that, because of the
transformations on'row 1, the only nonzero element of column ¢ occurs
in row 2. The same reduction is then carried out for the remaining rows.
The resulting matrix is such that each of the first k¥ rows has only one
nonzero element, and this element is unity. The remaining m — k rows
are composed entirely of zeros. Furthermore, no column can contain
more than a single nonzero entry. Precisely & columns will be unit vectors
and the remaining n — k columns will be composed entirely of zeros.
Finally, we can interchange the columns so that the unity element appears
in row 7 and column %, ¢ = 1,...,k. By a series of elementary column
operations (characterized by the matrix F) we have reduced the echelon
matrix H to the unique form

HF — [1,, 0]- (4-32)
0 0

But H = EA; thus, by a series of elementary row and column operations
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characterized by the nonsingular matrices E, F, any matrix A can be
converted to the form

EAF — | ¢ 0], (4-33)
0 o

if 7(A) = k. Depending on the size of A, some or all of the 0 submatrices
in the right-hand side of (4-33) may not appear. If A is an nth-order non-
singular matrix, EAF = I,.

EQUIVALENCE TRANSFORMATION: A transformation of the type
B = EAF, (4-34)
where E, F are nonsingular matrices, is called an equivalence transformation
on A,
Matrix B is said to be equivalent to A.
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PRrROBLEMS

4~1. Show whether the following transformations are linear:

x

[

3z1 + 2z2.

Wy=2+3  (®y=hs © ¥
(d) y = sinz, () Iny = alnz, #) y

4~2. Illustrate geometrically the effect of the linear transformation

A= [3 1]
2 5
on the square whose vertices are [0, 0], [1, 0}, [1, 1], [0, 1].
4-3. Interpret geometrically the meaning of the linear transformation on E2,
y = 211 + 3z2.
Hint: Consider a line normal to the lines which are given by
y = 2z1 + 3z2.
4-4. Interpret geometrically the transformation produced on E? by
10
A=1}101
1 0

What is the rank of the transformation? What is the dimension of the range?
4-5. Find the rank of the following matrices:

@A=@1, ®A-=|> 4], (c)A=[3 2], (d)A=[0],

1 2 11 0
3 2 1 321
(e)A=[2], MmA=|462, @a=|321
1 0 0 0 000

4-6. Find the rank of A, B, C where C = AB.

(a)A=[2 l:l» B 1]; (b)A=[2 I:Ir B
4 2 1 4 2

(c)A=[3 1], B = 2]; (d)A=[1 4], B
2 1 3 1 00

W

]
wenmrel
w
-
o

A~ N

i
|
-
o o
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4-7. Find the rank of the following matrix by reducing it to an echelon matrix:

2 1 4 0 6 7 10]
3 5 9 1 0 4 3

4 2 —20 2 4 —20 —24]

456 —2
a-|270 s
313 6
321 5

(2) Find the matrix which, when postmultiplied by A, interchanges rows 1
and 3, and 2 and 4. Carry out the multiplication to show that the required inter-
change is actually accomplished.

(b) Find the matrix which adds 6 times the third row to the first, multiplies
the second row by 10, and then interchanges the second and third rows. Carry
. out the multiplication to show that the required transformations are obtained.

4-9. Given the matrix of Problem 4-8.

(a) Find the matrix which, when premultiplied by A, interchanges columns 1
and 3 and multiplies columns 2 and 4 by 8. Carry out the multiplication.

(b) Find the matrix which adds 2 times the third column plus 4 times the
second column to the first column. Carry out the multiplication to demonstrate
that the correct result has been obtained.

4-10. Find the matrices E, F such that I3 = EAF:

4 1 —2
A=|25 1
3 2 0

4-11. Show that any matrix A with r(A) = r can be written

A=Ry|" 0 Ro.
0 0
What are R; and Ra2?

4-12, If A, B are m X n matrices with the same rank, show that there exist
nonsingular matrices Rj, Rz such that

B = RjAR;.
What are Ry, Ra?
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4-13. Which of the matrices representing elementary row transformations
commute and which do not?

4-14. Evaluate the determinant of each of the matrices representing ele-
mentary row and column operations. Note that the values of the determinants
are independent of the order of the matrices.

4-15. If E, F are elementary matrices and A is a square matrix, prove that

|EA| = |E||A],  |AF| = |A]|F|.

4-16. Prove that the determinant of the product of two or more elementary
matrices is the product of the determinants.

4-17. Prove that if A is a nonsingular matrix, it can be written as the product
of elementary matrices. Hint: see Problem 4-11.

4-18. Prove that if A, B are nth-order matrices,

|AB| = [A] [B].

Hint: First, assume that A, B are nonsingular and use the results of Problems
4-16 and 4-17. What is true if either A, or B, or both happen to be singular?

4-19. We have seen that, by a sequence of elementary row operations, any
matrix A could be reduced to an echelon matrix. Show that, by additional
elementary row transformations, a nonsingular matrix A can be reduced to an
identity matrix; that is, prove that if A is an nth-order nonsingular matrix, then
there exists a nonsingular matrix E such that

I. = EA.

4-20. Using the result of Problem 4-19, find a matrix E such that I; = EA
when

279
A=1301
4 6 5

What is E?

4-21. In Chapter 3, several methods were presented for evaluating de-
terminants. None of the expansions, however, yielded a very efficient numerical
procedure. The use of elementary transformations provides the key to a reason-
ably efficient technique. Note that.if some row or column of a determinant
has only one element which differs from zero, we can immediately expand by
that row or column and reduce the determinant to one whose order is one less
than that of the original. Let us choose any nonzero element in the determinant,
for example, a13. Divide the first row or column by a11. Reduce the a; iG#1
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to zero by adding a suitable multiple of column 1. Thus

a2 A1n
ailr a12- - - aia 1T —--.— 1 o ---0
aii arl
az1 a2 az. a1 agzz- - - a2, az1 dap2- - - ak,
= a1l = 011
Arl QAn2°** Qnn Anl Qa2 * Qan Gnl aﬁ.z e a;m
az2 a2n
. : . r ayj
= Qi1 | - . B Gij = Qi5 — — Qil.
ai
a:z2 *** Qnn
]
abz - - a2

The same procedure is repeated with | :

s ’
Qn2 " Qan

This technique is called pivotal condensation. The element reduced to unity
at any stage is the pivot. In this case, the element a11 was the initial pivot.
It is often advisable to choose as pivot the largest element in absolute value
Why? Apply the pivotal condensation method to the evaluation of the deter-

* minant
4 5 —1 3 —2
8 9 o 7 6
—4 3 2 8 —7
5 1 1 —6 2
3 10 1 —1 9

4-22. If we wish to reduce A to an echelon matrix and, at the same time,
find matrix E which carries out the reduction, reduce columns 1 through » of
matrix (A, I) to an echelon matrix. After reduction, E is found in the columns
originally occupied by I since

EQA D = (H,E).
Reduce
1 2 3

4 5 6
789

to an echelon matrix and, at the same time, find ‘the matrix E which, when
postmultiplied by A, yields the echelon matrix.



PROBLEMS 157

4-23. The results of Problem 4-22 can be used to develop a numerical pro-
cedure for finding the inverse of a nonsingular matrix. Problem 4-19 shows that
there exists a nonsingular matrix E such that I = EA, and hence E = AL
Thus, if we form (A, I) and reduce the first n columns to an identity matrix by
elementary row operations, the last n columns will contain A—l. Using this
method, compute the inverse of

4 1 —2
A=1|2 6 1
3 2 0

4-24. Express the vector b = [2, 7] in terms of the following bases:
(a') a; = [31 4]; az = [2: 5]) (b) a; = [11 1]’ az = [0; 1]1
(C) a; = [7: 2]) az = [3; 1]: (d) ay = [21 1]: az = [37 5]'

4-25. Prove that every linear transformation of E* into a subspace of E™ is
equivalent to, and can be represented by, a matrix transformation. Hint: The
linear transformation 7T is completely characterized by the way it transfers the
unit vectors, since

T(X) = i:ij(e,-).

i=1

However, T(e;) is an element of E™ and can be written

T(e) = D aiei,

i=1

where the €; are the unit vectors for E™. Does the matrix A = ||a;;|| characterize
the linear transformation? Show that if y = T(x), then y = Ax. Using the
preceding results, prove that, for fixed bases in E”, E™, the matrix which char-
acterizes the linear transformation is unique.

4-26. Consider the linear transformation of E3 into E3 described by

T(e1) = 8e1 + 6ez + e3, T(e2) = 2e1 -+ 5es3, T(e3) = €1+ 2eq,

where the €; are also unit vectors. What is the matrix A which represents this
transformation in such a way that y = Ax? If, instead of using the unit vectors
el, ez, e3, we use the vectors vi = [6,1,1], vo = [3,7, 5], v3 = [0, 1, 6] for a
basis, what is the matrix which characterizes the linear transformation?

4-27. A linear transformation takes the vector a; = [3, 4] into b1 = [—5, 6]
and the vector ag = [—1, 2] into bg = [4,1]. What matrix represents this
linear transformation when the unit vectors are used as a basis?

4-28. A linear transformation 7 takes [1, 1] into [0, 1, 2] and [—1, 1] into
{2, 1,0]. What matrix A represents T relative to the basis [1, 1], [—1, 1] in E2
and ey, €2, €3, the unit vectors, in E37.
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4-29. Let T; be a linear transformation which takes E™ into a subspace of
E7 and let B characterize this transformation for fixed bases in E® and E'.
Furthermore, assume that T’z is a linear transformation which takes E” into a
subspace of E™ and that A characterizes this transformation for fixed bases in
E7 and E™ TUnder what conditions does AB characterize the product T2T4?
Carry out the details to show that if appropriate assumptions are made, AB
does represent T'2T;.

4-30. Consider the elementary operation of multiplying a row or column of a
matrix by a scalar A\; why do we require that A = 0?

4-31. Show that if columns ¢ and j are interchanged in a nonsingular matrix B,
the inverse of the new matrix can be found by interchanging rows ¢ and j in B—1.
Hint: The new matrix can be written BF.

4-32. Let A be a matrix obtained from a nonsingular matrix B by a given
series of elementary operations. Discuss how A~ can be found from B—1.
Consider individually each type of elementary operation and the sequence in
which they are performed.

4-33. A set of basis vectors by, ..., b, for E™ is said to be triangular if, for
b; = [b1j, . - ., bajl, bij = 0 (+ > 7). This means that the matrixB = (by ..., bs)
is triangular (see Problem 3-32). Show how a triangular basis may be obtained
for E™ from any set of basis vectors.

4-34. Given a triangular basis for E*, by, ..., b,; show that if any other
vector x is expressed as a linear combination of the b;, x = Y_\;b;, the \;
can be computed sequentially and the inverse of B = (by, ..., b,) need not
be found. Hint: Only b, has an nth component different from zero. Thus
M = Zn/ban. What is N,—1, ete?

4-35. An nth-order matrix A is called decomposable if by mterchangmg some
rows and the corresponding columns it is possible to obtain & null matrix in the
lower left-hand corner so that A can be written (A11, A2 square)

A1 A
A = |An Awzf
0 A
By analogy, A is called indecomposable if it is not possible to obtain the required
single zero element in the lower left position. Note that if rows ¢, j are inter-
changed, then columns i, j are interchanged also. It may turn out that A1,

Az in the foregoing expression are also decomposable. Any decomposable matrix
can then be reduced to the triangular form

A; Bi2---Buk
Ao 0 A ---Bax ’
o o -..Ak

where Ay, ..., A; are indecomposable. Show that the following matrix is de-
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composable and write it in triangular form:

10000
4 46 8 1
90120
30040
1 3 5 7 0]

4-36. Prove that the square decomposable matrix A can be decomposed by
the equivalence transformation EAF with F = E’, E being the product of the
elementary matrices E;;.

4-37. Show that reducing a decomposable matrix to the triangular form dis-
cussed in Problem 4-35 does not change the value of the determinant of A.

4-38. Is the sequence of elementary row and column operations, i.e., the
matrices E, F which reduce A to the form of Eq. (4-33), unique? Can you pro-
vide an example where they are not unique?

4-39. Devise a matrix B such that if the same row and column operations
which reduce A to the form of Eq. (4-33) are performed on B, then E and F
can be found in B also.

4-40. Express the vector b = [2, 7] in terms of the following triangular bases:

(a) a1 = [3,4], a2 =1[20]; (b) a1 = [1,1], a2 =[0,1];
(C) ay = [7) 2]1 az = [3, 0]) (d) ay = [2; 1]: az = [37 0]'
4-41. Consider the matrices

2 0
A=[312]; B=|-3 2
211 -1 —1

Show that AB = In. Why do we not want to call B the inverse of A? Interpret
this geometrically.

4-42. Consider the process of reducing a matrix A to row echelon form. If
r(A) = k, this can be considered to be a k-stage process. At stage s,
s = 1,...,k, the first nonzero element in row s is converted to unity. If this
element lies in column 7, all elements in column r with row index >s are reduced
to zero. Denote the elements in the matrix at the beginning of stage s by wu;;.
Show that the elements 4;; of the matrix at the end of stage s are given by

Bij = uij, t<s; Uy =

Usj . Usj . .
u‘:) allj; Qi = uiy; — u—: Uir, 1> 8, allj.
The matrix at the beginning of stage s will be the same as the matrix at the end
of stage s — 1 unless it is necessary to interchange rows so that the first non-
zero element of row s will have as low a column index as possible.
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4-43. It is desirable to have some sort of automatic check on the numerical
work necessary in reducing a matrix to row echelon form or in finding the in-
verse of a matrix by means of the technique discussed in Problem 4-23. A very
simple check, called a sum check, can be used. This check requires only a slight
amount of additional effort. Suppose that we wish to reduce A to row echelon
form. Let t; be the sum of the elements in the 5th row of A, that is, ¢; = > ai,
orift = [t1,...,tm], thent = 3 7_; a;. Consider the matrix B = (A, t) which
has the same number of rows as A, but one additional column t. We then reduce
B to row echelon form. The check is as follows: At each stage, the element
in column n + 1 of row s should be the sum of the elements in the first n columns
of row s. Thus after each stage, we sum the first n elements in row 8; the result
should be the number which appears as element n -+ 1 of row s. This is done
for every row s. Prove that this is true. Hint: See Problem 4-42.

4-44. By means of the sum check show that the numerical computations in
the example of Section 4-6 are correct.

4-45. Discuss in detail the way the sum check is used in inverting a matrix
by the technique of Problem 4-23. Illustrate this by adding a sum check column
when computing the inverse of A in that problem.

ProsrLEms INvoLvING CoMPLEX NUMBERS

4-46. List the important results of this chapter and show that they all hold
if the elements of the matrices are complex numbers. Demonstrate that even
" geometrical interpretations can be given a meaning in Va(c), that is, in the
n-dimensional vector space of all n-tuples with complex components,

4-47. Find the rank of the following matrix A by reducing it to row echelon
form:

24+1 3 — 4 5 6 + 2¢
7 3 —1 2t 9 — 3
—617 8 7+ 61 4 — 8
5 — 3 2t 6+7 1—1

4-48. Invert the following matrix A, using the technique suggested in
Problem 4-23:

44 3¢ 2 6 — 1
A=|-5+7 9—2 3
4 —6 8+41

4-49. Find nonsingular matrices E, F such that B = EAF, where

A @ 5], B=[3 61 ]
6 —7 2+ 3i 1—i 4+2
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4-50. Find the matrix E which, when postmultiplied by A, interchanges rows
1, 3, multiplies row 2 by 7 — %, and subtracts —2 -+ 3¢ times row 4 from row 5.
Show by actual multiplication that E does indeed perform these operations.

(4 — 4 2 ]
% —4—2
=|8+2 50
5—6i 7-2
| T 8 —1i |

4-51. Let A, B, C be matrices with real or complex elements such that C =
AB. Assume that Aism X rand Bisr X n. If 7(C) = m, show that r(A) = m.
What restriction does this place on r? What can be said about the rank of B?
What restriction does this place on n? If m = n, show that r(A) r(B) = m.
What restriction is thereby placed on r?



CHAPTER 5
SIMULTANEOUS LINEAR EQUATIONS

“Wavering between the profit and the loss
In this brief transit where the dreams cross”

T. 8. Eliot.

5-1 Introduction. Sets of simultaneous linear equations appear in most
linear models. Frequently, the number of equations will be equal to the
number of variables (as in the Leontief economic and the statistical re-
gression models of Chapter 1); in such cases, as is to be expected, we are
usually able to solve for unique values of the variables. If there are more
variables than equations (the constraints of linear programming problems
may provide such an example), we expect, in general, to obtain an infinite
number of solutions. Sometimes, we have more equations than variables.
Thus for the d-¢ circuit (Chapter 1), it is possible to write down many
more equations than there are variables. However, not all of these equa-
tions are independent since some of them can be obtained from the others.
Under such circumstances, it is desirable to find enough independent equa-
tions to be able to solve for all the variables.

This chapter deals with the theory of simultaneous linear equations.
We shall be concerned with deriving criteria for the existence and unique-
ness of solutions and with the properties of solutions. We shall begin by
discussing a fairly efficient numerical technique for solving simultaneous
equations.

5-2 Gaussian elimination. In the real world, it is normally expected
that n equations (linear or not) relating n variables can be solved to yield
a set of numerical values for the n variables. Frequently, physical intui-
tion leads us to assume also that the solution will be unique. Let us sup-
pose that we have n linear equations relating n variables. They can be
written:

a1121 + ¢+ A1y = by,

: (5-1)
n1%1 +  * * + OGpnn = by,
or
Ax=1b (5-2)
when Eq. (5-1) is written in matrix form.  We wish to solve this system
of equations, that is, find the values r,, ..., z, which will satisfy the
equations.

162
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A procedure which immediately suggests itself is that of successive
elimination of the variables. Without any loss in generality, we can
assume a;; # 0 since the equations can be rearranged and the variables
renamed to conform with our premise. Then we solve explicitly for x4
and obtain

aig A1n by
a1 a1 T+ a1 (5-3)

Dividing the first equation by a;; to reduce the coeflicient of z; to unity,
and using Eq. (5-3) to eliminate z; in the remaining n — 1 equations,
we have

a3 Gin by
z b LYy e g, = —
l+au 2+ an " a3
a a b
[022 — az ;2)],;2 +---+ [a2n — as (“1—")]% = by — ag1 —>
a1 a1 a
' a a )
[af.z — Gy (—‘—2)]12 +--- +[ann — any (ﬁ)]xn = bp — Gn1 —>
apy a1 Q11
(5-4)
or
x1 + dhora + - - -+ alaTa = b,
%%z + - -+ + abnTn = b3, (5-5)
Aoty + - - + anaty = by
If at least one of the aj; (¢,j = 2,...,n) differs from zero, we can

assume, without loss of generality, that aj, # 0. The reduction process
is continued by dividing the second equation of (5-5) by a}, and by using
this equation to eliminate x, in equations 3, ...,n. Then, as expected,
z3 is eliminated from equations 4,...,7n until, finally, we obtain the
system i
131 + h]2-’02 + v hlnxn = g1,
x2+"‘+h2nx‘n= g2,
e (5-6)
Tn—1 + Pp—1nTn = gn—1,
Tn = Gn.

We obtain immediately x, = g,.. This value of z, is then substituted into
the preceding n — 1 equations. Thus

Tn_1 = Pn—1 — hu_10n.
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This result is also substituted into the remaining n — 2 equations, etc.
By continuing this process of back substitution, we obtain all the z;
values. This procedure is called gaussian reduction or gaussian elimination.

We can now make an interesting observation: Since the final set of
equations can be written in the form of

1 hig - hin||2: g1
0 1 ---hopt]xe g2
. . =11 (5-7)
00 ---1 Zn On
or as
Hx = g, (5_8)

it becomes clear that H represents the echelon matrix that would be ob-
tained from A, following the rules of Section 4-6.* We only have to recall
the result of the operations performed on the elements of A in order to see
that the gaussian reduction scheme does indeed convert A into an echelon
matrix H. If matrix E represents the combination of elementary row
operations which takes A into H, then

H = EA, g = Eb. (5-9)

This observation supplies us with some useful information. We know
that (5-1) will reduce to the form of (5-6) if and only if the rank of A
is n. If rank A is less than n, the method fails for one of two reasons:
Either we shall not be able to determine the values of all the variables or
there will be an apparent inconsistency evidenced by the fact that all
h;; vanish in some row, while g; does not vanish. At present, we are not
sure what this failure implies. This will become clear later. However, we
know that the method will work if 7(A) = n.

Instead of eliminating z; only in equations k + 1,...,n, we could
equally well eliminate xz; in equations 1,...,%k — 1 also, so that
would appear only in the kth equation. Now, back substitution is not
needed. This modification of gaussian elimination is called the Gauss-
Jordan method. Both reduction schemes are iterative procedures, and
we would think of them first in attempting to solve a set of linear equa-
tions. Interestingly enough, they are fairly efficient numerical procedures,
and modifications of them are among the methods used for solving systems
of linear equations either by hand or on high-speed computers. The

* At this point, it should be obvious that the definition of elementary opera-
tions on matrices follows logically from the manipulations of simultaneous
linear equations.
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following example will illustrate both the Gauss and the Gauss-Jordan
methods in a simple case.

. ExaMpLE: Solve the following set of linear equations:

2%y -+ xo + 4x3 = 16,
3111 -+ 23’;2 + T3z = 10,
z1 + 3x2 + 323 = 16.

(a) Gauss reduction: We use the first equation to solve for z, and sub-
stitute this into the second and third equations. This yields

Ty + %xz + 2373 = 8,
1z, — bxy = —14,
33 + z3 = 8.

Using the second equation from this new set, we eliminate z in the third
equation. The first equation remains unchanged. Thus

zy + 3x2 + 223 = 8,

Tg — 10133 == —28,
From the third equation x3 = 3. Substituting this into the first two
equations, we find

Iy + %xg = 2,

Ty = 2.
Hence
x1=1, 132=2, :l'3=3.

(b) Gauss-Jordan reduction: The first step is the same as under (a):
z1 + $xp + 223 = 8,
12‘.”02 - 5.’83 = —14,
szy + 3 = 8.

Using the second equation, we solve for z;. The result is now substituted
into both the first and third equations. This gives

% + Tz = 22,
Tog — 10]33 = —‘28,

On obtaining r3 = 3, we immediately find vy = 1,22 = 2.
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5-3 Cramer’s rule. Let us again consider the system of n simultaneous
linear equations in n unknowns (5-1). Repeating the matrix form, we have

Ax = b, (5-10)
where
A= ”alJ”) x=[zy,... » Tnl, b= [bl, <o, bl

Now assume r(A) = n so that A is nonsingular. This means that |A] #~ 0
and A™! exists. Premultiplying (5-10) by A~ 1 we arrive at

A7'Ax = Ix = x = A~ b, (5-11)

Hence, when A is nonsingular, we obtain a unique solution x = A~1b
to the set of equations (5-1). The solution is unique since the inverse is
unique. Thus, in Eq. (5-11), we have arrived at an explicit solution to the
set of equations through the use of the inverse matrix. We are, however,
no closer to a numerical solution than we were at the outset unless we
happen to know A~'. Nevertheless, because of its explicit character the
solution of (5-11) is of great use in theoretical work. The value of the
originally unknown vector is expressed as x = A~'b, and A~'b can be
computed from the known quantities A, b.

Equation (5-11) can be cast into a more interesting form. We recall
from Section 3-18 that the inverse is given by

A~ = |A|7'AY, (5-12)
A1 Am

At = N (5-13)
Aln e Ann

where A ; is the cofactor of element a.;in A. Thus we can write Eq. (5-11)
in component form as

= |A|™? Z Ajb; = |A[T! E biAjs. (5-14)

j=1

However, we remember that
n
2 aidsi
i=1
is the expansion of [A| by column 7. On comparison, we see that
n
D bidj
i=1

is the expansion of the determinant formed from A by removing the sth
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column and replacing it with column b. This yields what is called Cramer’s
rule: To obtain the value of x;, we divide by |A| the determinant of the matrix
formed from A by replacing the ith column with b. Hence

bi aiz---am Ay Qi1 b1
1 jby agz---a 1 |@g1---aGgn_1 b
o = |72 922 Y P — . 2 a1 b2| (5 g
Al |Al] - :
bn Gna- - @Gan @n1* " Gun—1 On

This, of course, is the method learned in elementary algebra for solving
equations by determinants. Cramer’s rule is singularly inefficient for
solving a set of equations numerically. The evaluation of the n 41
determinants involves too much work, especially, when n is fairly large.
The gaussian reduction method is considerably more efficient. However,
Cramer’s rule is very useful in theoretical studies, as is x = A™'b, because
it allows an explicit expression for the solution.

ExampLE: Solve

3x1+2:132=7,
4z, + 22 = 1;

Al =2 2= 50
4 1

Thus a unique solution exists and is given by

7 2

1 1
3 7

1 1

This solution may be easily verified by substituting the above values into
the original equations.

S-4 Rules of rank. In the preceding two sections, we have examined
wayk of solving a set of n simultaneous linear equations in n unknowns.
We now wish to investigate the conditions which determine whether solu-
tions do or do not exist. We have seen that a set of n equations in n
unknowns has a unique solution if r(A) = n. We have also noted that
difficulties arose if r(A) < 7 (although this case was not considered in
any detail). To be completely general, let us consider a set of m simul-
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taneous linear equations in n unknowns. No restriction will be made as
to whether m > n, m = n, m < n. This set can be written

1171 + * +* + G1a%p = by,

2171 + -+ + ATy, = b21 (5—16)

Wn1Z1 + ¢ 0+ ATy = bny,
or

Ax = b,

where A is an m X 7 matrix.
Next we shall define a new m X (n -+ 1) matrix Ay which contains A
in the first n columns and b in column » + 1, that is,

ayy - @, by

Ab — (A, b) — a.21 *rtQ2q b.2 . (5_17)

Qm1** * Qmn bm

Matrix Ay is a very important quantity; its rank as well as the rank of
A determine whether the set of equations (5-16) has a solution. A is
* called the augmented matrix of the system.

Since every determinant in A also occurs in A, the rank of A cannot
exceed that of A,. Hence two possibilities exist: (a) r(A) < r(Ay),
(b) 7(A) = r(A;). It should be noted that r(A;) cannot be greater than
r(A) + 1. The following paragraph will demonstrate that the cases
(a) and (b) play a crucial role in determining whether Eq. (5-16) has a
solution.

If (a) holds, that is, if r(A) < r(A;), then there do not exist any z;
satisfying (5-16). The largest nonvanishing determinant in A, must
contain the column b, since 7(A) < r(A;). Hence b is linearly independent
of the columns of A, and thus there are no z; such that

n
Z za; = b,

j=1

where the a; represent the columns of A; that is, there do not exist any z;
satisfying (5-16). Hence, there is no solution, and the equations are
inconsistent.

However, if (b) holds, that is, r(A) = r(A;) = k, then there is always
at least one solution. Since r(A) = k and r(A;) = k, every column of
A; can be expressed as a linear combination of k linearly independent
columns of A. (Without loss of generality, we can assume that they are



5-4] RULES OF RANK 169

the first k& columns of A.) Since b is a column of A, there must exist
numbers z; such that
k
D ziaj=b;
j=1

hence, there is at least one solution to the system of equations (5-16).
Thus, we have proved that: If r(A) < r(As), the equaiions (5-16) are in-
consistent and there is no solution. Conversely, if r(A) = r(Ayp), there is al-
ways at least one solution to the set (5-16).

It is important to note that the existence of a solution does not depend
on r(A) = minimum (m, n). Conceivably, we could have 100 equations
and 1000 variables with r(A) = r(A;) = 1; from the preceding discussion
we know that there would be at least one solution.

ExaMpPLES:
(1) Is there a soluiion to
3r; + 4z =17,
2.25%, + 3z, = 5.257

A=3 4, r(A) = 1, Ab=3 ¢ 7 ) r(Ap) = 1.
225 3 225 3 5.25

Thus, the set of equations has a solution. In fact, there are an infinite
number of solutions. These are given by
Ty =3 3%
for any zs, since the second equation is just § times the first. Note that
geometrically the two equations represent the same straight line.
(2) Does a solution exist for the set

31:1 + 41:2 = 7,
rA) =1, A=|2 * 7, ran=-2
1225 3 1

No solution exists. If the first equation is multiplied by %, the left-hand
side becomes the left-hand side of the second equation. However, the
right-hand side of the first equation does not become the right-hand side
of the second equation. The equations are clearly inconsistent. Illustrate
this graphically (two parallel lines which do not intersect).
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(3) Is there a solution to
3z + 225 + 23 =17,
z; + 0.5z — z3 = 4,
z; + 0.75z5 + 23 = 5?

3 2 1 3 2 17
A=|1 05 —1|, Ap=|1 05 —1 4|, |A|=0, r@A) =2
1 075 1 1 075 1 5

However, r(As) = 3. There is no solution. If the second equation is
added to twice the third, we obtain

3z1 + 2z9 + 23 = 14;

this is inconsistent with the first equation. What is the geometrical
interpretation?

5-5 Further properties. We have noted in one of the preceding ex-
amples that if a system of linear equations has a solution, this solution
need not be unique. If the system Ax = b has two distinct solutions x;

“and xj, then Ax; + (1 — M\)x; is also a solution for any number A. To
prove this, assume that

Ax, = b, Ax, = b. (5-18)
Then
Mx; = AQAx;) = Ab,
' ' | (5-19)
Adding the two equations, we obtain

Hence, Ax; + (1 — \)x is a solution if X;, X, are solutions. This result
illustrates immediately that if a system Ax = b has two distinct solutions,
then there exists an infinite number of solutions. This follows since in (5-20)
X can take on any value.
Let us suppose that we are given the system Ax = b, with Aanm X n
matrix and
r(A) = r(Ap) = k < m. (5-21)

The rows of A, will be denoted by (a%, b;). If we choose k rows of A which
are linearly independent, then the same k rows of A, are also linearly in-
dependent. Let us assume that these are the first k rows of A,. Then,
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according to Eq. (5-21), any other row in A; is a linear combination of
the first k& rows, that is,

k .
@,b) = D> Ao(@,b), r=k+1,...,m; (5-22)

=1

or, separating out b,, we obtain

k .
a’ = Z xira"; (5_23)
i=1
3
b= ) Nishs. (5-24)
=1
If x satisfies the first k equations of Ax = b, thatis,a’x =b;, 1=1,...,k,

then from Egs. (5-23) and (5-24),

k . k
a'x = E ria'x = E Aerbs = by, r=k+4+1,...,m. (5-25)

i=1 =1

Thus: Any x which satisfies k equations a’x = b; for which the correspond-
ing rows &' in A are linearly independent satisfies all m equations. In
other words, all but & equations can be ignored when seeking the solutions
to Ax = b.

Let us imagine that k equations have been selected for which the corre-
sponding rows of A are linearly independent. This assumption implies that
there must be at least k variables, that is, n > k. If n = k, then the
matrix of the coefficients of this set of ¥ equations must be nonsingular,
and, according to Cramer’s rule, there is a unique solution. If n > £k, the
k equations can be written

Ax, + Rx; = b* (5-26)

where A; is a k X k nonsingular matrix, and R is a £ X (n — k) matrix.
Furthermore, x, = [z, ..., %], X8 = [¥x41, ..., Ta), and b* contains
the & components of b corresponding to the k equations selected. We
have named the variables so that the first & variables have associated with
them a nonsingular matrix. Then "

x, = A7'b* — AT'Rx;. (5-27)

Hence, given any X3, we can solve uniquely for x, in terms of xs. Therefore,
arbitrary values can be assigned to the n — k variables in Xs; values for
the remaining k variables in x can be found by Eq. (5-27), so that x =
[Xa, X5] is a solution to Ax = b. All solutions to the set of equations
can be generated by assigning all possible values to the set of variables
in Xg.
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Summing up the discussion of the preceding paragraph, we see that, in
a system of m stmultaneous linear equations in n unknowns, if r(A) =
r(Ap) = k < m, then any X which satisfies k of the equations for which the
corresponding rows of A are linearly independent satisfies all equations of
the set. Furthermore, if k < n, n — k of the variables can be assigned arbi-
trary values, and the remaining k variables can be solved for provided the
columns of* A associated with the k variables are linearly independent. An
explicit form of the general solution is given by Eq. (5-27). The reader
should now be able to see why the Gauss reduction procedure discussed
in Section 5-2 might not lead to a unique solution of a set of n equations
in n unknowns. If 7(A) < r(Aj), there is no solution; then a nonzero g;
appears in the reduction, while all k;; in that row vanish. When 7(A) =
r(Ap) = k < n, arbitrary values can be assigned to n — k of the vari-
ables. This can be clearly seen in the Gauss reduction since one or more
rows of h;; will be composed entirely of zeros, and the corresponding
g: = 0. Hence, back substitution will not eliminate all variables. It is
important to note that both the Gauss and the Gauss-Jordan methods
are equally useful in solving numerically sets of m simultaneous linear
equations in » unknowns. Problem 5-24 illustrates this point.

The preceding discussion shows: (1) Whenever 7(A) = r(A;) < n (the
number of variables), an infinite number of solutions will satisfy the
- equations since in this case some variables, with arbitrary values assigned
to them, can always be transferred to the right-hand side. (2) There
will be a unique solution if and only if r(A) = r(A;) = n. Thus for a
system of simultaneous linear equations, there is either a unique solution,
an tnfinile number of solutions, or no solution at all.

If r(A) = r(Ay) = k < m, m — k of the equations are linear combina-
tions of the remaining k equations. These m — k equations are called
redundant since they do not place any additional constraints on the
variables; they could be dropped from the set without any effect on the
solutions. When formulating a system of equations, we try to avoid re-
dundant equations. However, a large system involving many variables
and equations may make it extremely difficult to determine whether any
new equation is linearly independent of the others.

ExampLE: Find a solution to the system
2zy + Tz3 = 4,
3r; + 3z5 + 623 = 3,
2z + 2x5 + 423 = 2.

First, let us check whether r(A) = r(A;) to make sure that a solution does
exist. We note that r(A) = r(A;) = 2. Thus there is a solution. However,



5-6] HOMOGENEOUS LINEAR EQUATIONS 173

since r(A) # 3, the solution will not be unique; there exists an infinite
number of solutions to the system. The determinant of order 2 in the upper
left-hand corner of A does not vanish. Hence, we shall use the first two
equations to solve for z; and z, by Cramer’s rule, setting z3 to any arbi-
trary value. Let us suppose that z3 = 2. Then we must solve

o

hence
1 ’—10 OI 12 —10' 9
xl == = = — xZ = = = .
6] 9 3 ’ 6l3 —9
Thus one solution to the system has the values: z; = —5, 2, = 2,

z3 = 2. We can check this result by substituting these values into all
three equations. We see that:

Equation 1: —10 + 14 = 4.
Equation 2: —15 4+ 6 + 12 = 3.
Equation 3: —10 + 4 + 8 = 2.

The second or third equation can be considered redundant since the
second equation is 3/2 of the third.

5-6 Homogeneous linear equations. We shall now examine the special
case of b = 0, that is, the right-hand side of Eq. (5-16) vanishes. A sys-
tem of linear equations of this type is called homogeneous. It can be
written:

anzy + -+ ants = 0,
: (5-28)
Am1T1 + * A+ QT = 0,
or, in matrix form,
Ax = 0. (5-29)

We see tmmediately that a set of homogeneous linear equations always has
a solution since, with b = 0, it must be true that

r(A) = r(Ap).

We note also that x = 0 s always a solution (called a trivial solution).
It is of interest to determine when solutions other than x = 0 exist.
From Section 5-5, we know that if r(A) = k < n, arbitrary values can
be assigned to n — k of the variables, and hence a nontrivial solution al-
ways exists. Thus we can prove the following important theorem: A
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necessary and sufficient condition for a system of homogeneous linear equa-
tions Ax = 0 tn n variables to have a solution other than x = 0 s that
r(A) < n. If r(A) < n, then it follows from the above argument that
there is a solution which is not trivial. If r(A) = n, then from Eq. (5-27)
X, = X, and

x=A7'0=0.

Thus there is only one solution and it is trivial. This result has two use-
ful corollaries: (1) If there are fewer equations than unknowns, the system
(5-28) always has a nontrivial solution. (2) If the number of equations is
equal to the number of unknowns, a necessary and sufficient condition for a
nonirivial solution ts that the determinant of the coeffictents vanish, that is,
|A] = 0. We are familiar with this fact from elementary algebra. If we
have a set of n homogeneous linear equations in » unknowns, there is no
solution other than x = 0 if |A| # 0. This result can, of course, also be
obtained directly from (5-11), for

x=A"l0o=o0.

However, if |JA| = 0, then there exists a solution different from x = 0.
Let us consider any solution x > 0 to Ax = 0. Since for any scalar ),

Mx = AAx = )0 = 0, (5-30)

it follows that if x is a solution to the set of equations, so is Ax. Hence,
the appearance of one nontrivial solution automatically implies the ex-
istence of an infinite number of nontrivial solutions. If n = 2 and x
is a nontrivial solution, then, geometrically speaking, the fact that Ax
is a solution means that any point on the line through x and the origin is
also a solution.

The arguments in the preceding paragraph can be pursued further.
In general, we are considering a homogeneous system of m equations in n
unknowns. The vector x satisfying Ax = 0 is a point in E®. We have
already shown that x = 0 is a solution to Ax = 0, and that if x is a solu-
tion, so is Ax. Furthermore, if x; and x, are distinct solutions, then
X3 = X; + X3 is also a solution. This follows since

Axl = 0, AX2 = 0,
adding the two expressions, we obtain
Ax, + Ax, = A(X; 4+ x3) = Ax3 = 0.

Thus we have proved (see definition of a subspace) that the set of all solu-
tions to Ax = 0 forms a subspace of E*. We shall now show that g,
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the dimension of this subspace, is n — k where n, as usual, denotes the
number of columns in A and k is the rank of A. To prove this, let x4, . .., X,
be g vectors which span the g-dimensional subspace. According to Sec-
tion 2-10, this set of vectors can be extended to form a basis for E".
Let ¥i,...,¥a_q be the n — g additional vectors which, along with
X1, .. ., Xg form a basis for E*. Then any vector z in E™ can be written
as a linear combination of the basis vectors, that is, :

n—q
z = Z o:y: + i BiX;.
=1 j=1
However,

n—q n
Az = Y oAy = ) 25, (5-31)
=1 J=1

since by definition
Ax; = 0.

Equation (5-31) indicates that the n — g vectors, Ay;, span the sub-
space of E™ which is generated by the columns of A (see Section 4-2).
Let us show that the vectors Ay; are linearly independent. We shall
assume that there exist A\; not all zero such that

TNAy; = 0 = A[XM\y] = 0.

This expression implies that Y_\:y; is an element of the subspace spanned
by xi, . . . , Xq, that is,

n—q q n—q
DSONFi= D Vx, or D AYi— f: 7;x; = 0.
=1

i=1 j=1 j=1

This result contradicts the original assumption that the y; and x;
form a basis for E®. Hence, the vectors Ay; are linearly independent
and form a basis for the subspace of E™ generated by the columns of A.
Since there are n — ¢ vectors, the rank of Aisn — ¢ = k. Thus we have
proved that .

g=n —k. (5-32)

Consequently, the dimension of the subspace of E™ generated by the
solutions to Ax = 0 is n — k. We could have guessed this intuitively
since arbitrary values can be assigned to the n — k of the variables.

We shall now examine equation Ax = 0 in a slightly different way. Let
us note that A maps E" into a subspace of E™. The set of vectors x
in E™ which are taken into the origin of E™ is the set of solutions to
Ax = 0; we have shown that this set of vectors is a subspace of E™.
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This collection of vectors is sometimes called the null space of A. The dimen-
ston of this subspace of E™ which depends only on A s called the nullity of A.
We have proved that the nullity of A plus the rank of A is equal to the num-
ber of columns in A, that s, ¢ + k = n. The study of homogeneous linear
equations reveals thus another property of matrices and linear transforma-
tions.

Let us again view Ax = 0 as a set of homogeneous equations. A set
of basts vectors spanning the subspace of E™ generated by the solutions to
Ax = 0 s called a fundamental system for Ax = 0. Since the dimension
of the subspace is n — k, we have n — k vectors in a fundamental sys-
tem; and since the number of bases is infinite, an infinite number of
different fundamental systems can be generated.

Exampre: Illustrate geometrically the subspace formed by the solutions
to

3z; 4+ 429 = 0,
225.’2?1 + 3.’172 = 0.

Since |[A| = 0 and r(A) = 1, there are nontrivial solutions. The second
equation is  times the first, and hence the general solution is

— 3
Ty = —37%;.

The value of x; can be chosen arbitrarily. The dimension of the subspace
formed by the solutions is thus 1; it is a line through the origin with slope
—32 (see Fig. 5-1). A single vector forms a basis for this subspace. If
T3 = 4, then x5 = —3; hence ¥ = [4, —3] is a basis vector, and X is a
fundamental system for the set of equations.

X9

)

w(4 —3)
X

Ficure 5-1
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5-7 Geometric interpretation. We have already seen that the solutions
to a system of m homogeneous linear equations in n unknowns generate a
subspace of E™. This is true even if the only solution is x = 0; the single
vector 0 yields a zero-dimensional subspace of E”. If n = 3, then the
subspace spanned by the solutions to Ax = 0 is either a plane through
the origin, a line through the origin, or the origin itself. (In the com-
pletely degenerate case, when A = 0, the subspace is all of E3)

ExampLes: (1) The solutions to
2$1 + 33:2 + 4373 =0

lie on a plane through the origin.
(2) The solutions to
21?1 + 3232 + 4333 - 0,

x1+2x2+2x3=0

lie on a line through the origin (the intersection of two planes which pass
through the origin).
(3) The solution of
z1 + 2x3 = 0,

1+ 22 =0,
x1—2x2=0

is unique and trivial, that is, x = 0 is the only solution (the intersection
of three planes which pass through the origin).

Let us consider the geometric interpretation of the solutions to Ax =
b # 0. In this case, x = 0 is not a solution; hence we are sure that the
set of solutions does not form a subspace of E®. However, if we are given
one solution x; to Ax = b, then any other solution X can be written

X=X +X— X =X1+y, Y=3X%—Xj (5-33)
and
Ay — Ax, — Ax; = b — b = 0. (5-34)

Equations (5-33) and (5-34) show that if we know one solution x; to
Ax = b, any other solution x; can be written X, = x; + y, where y isa
. solution to the homogeneous set of equations Ay = 0. In other words, all
solutions to Ax = b can be generated by knowing a single solution to
Ax — b and all solutions to the homogeneous system Ay = 0.

The preceding results illustrate that the solutions to Ax = b will
generate a space having the same dimension as the subspace spanned by
the solutions of Ax = 0. The space spanned by the solutions of Ax = b
is not a subspace since 0 is not a solution. The solutions are of the form
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z3 3

/
[0) -4! 6] I/

Figure 5-2 F1GURE 5-3

X = X; + ¥, and x, translates the space away from the origin.* If n = 3,
then the solutions to Ax = b lie on a plane, on a line, or, when the solu-
tion is unique, it is represented by a point, that is, a space of zero dimen-
sion. In general, the dimension of the space generated by the solutions
of Ax = b is the nullity of A.

ExampLES: (1) The solutions to
22?1 + 3132 + 413 = 12

lie on the plane shown in Fig. 5-2.
(2) The solutions to

22; + 3z + dxy = 12,
x1—|—2z2+2a:3= 4

lie on the line shown in Fig. 5-3 (the intersection of two planes).

5-8 Basic solutions. We now wish to study the solutions to a set of
m equations Ax = b in n > m unknowns, which have as many of the
variables equal to zero as possible. From Section 5-5, we know that if
r(A) = k and we select any k linearly imdependent columns from A, we
can assign arbitrary values to the n — k variables not associated with
these columns. The remaining k variables will be uniquely determined in °
terms of the n — k variables. Thus for such a system, we can set n — k

* The set of solutions to Ax = b is often referred to as an affine subspace of
En. Tt has the same dimension as the subspace generated by the solutions to
Ax = 0, the only difference being that the affine subspace is translated away
from the origin.
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variables to zero; the other k variables will, in general, be different from
zero since the equations must be satisfied (in certain cases, however, one
or more of these k variables will be zero). To be specific, we shall assume
that for our set of equations,

r(A) = r(Ay) = m. (5-35)

This implies that none of the equations is redundant (if there were re-
dundant equations in the original set, we assume that they have been
dropped).

Then the columns of matrix A can be named so that A can be written

A = (B,R), (5-36)

where B is an m X m nonsingular matrix [this follows since r(A) = m]
and R is an m X (n — m) matrix. The vector x can be partitioned as
follows:

X = [xBy XR], Xp = [xlr T2, ..., xm]: Xp = [xm+l) sy xﬂ]'
(5-37)
Thus
Ax = Bxp + Rxz = b. (5-38)

All the solutions to this set of equations can be generated by assigning
arbitrary values to xg. Let us now set xg = 0. Since B has an inverse,
we obtain

x5 = B~ 'b. (5-39)

This type of solution to the system of equations is called a basic solution.

Basic sOLUTION: Given a system of m simullaneous linear equations in n
unknowns, AX =b (m < n) and r(A) = m: If any m X m nonsingular
malriz is chosen from A, and if all the n — m variables not associated with
the columns of this matriz are set equal o zero, the solution to the resulting
system of equations s called a basic solution.

A basic solution has no more than m nonzero variables. It can be writ-
ten X = [xpg, 0], with xp given by Eq. (5-39). The m variables which can
be different from zero are called basic variables. Hence, in a basic solution
n — m variables are set equal to zero, and the remaining m variables are
uniquely determined since, by assumption, the matrix of their coefficients
is nonsingular.

The term “basic solution” refers to the fact that the columns of B form
a basis for E™. Basic solutions are of great importance in linear program-
ming.
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How many basic solutions are possible in a system of m equations and
n unknowns? This question is analogous to asking how many combinations
of n variables there are when taken m at a time (the order of the variables
in any basic solution is, of course, irrelevant). This number N is the stand-
ard formula for combinations, that is,
n!
N —

ml(n — m)! ; (5-40)

it represents the maximum number of possible basic solutions. However,
the columns of A associated with the m basic variables must be linearly
independent so that an inverse exists. Since any m columns from A will
not necessarily be linearly independent, we shall not always obtain the
maximum number of possible basic solutions.

It is of interest to know whether any z; in the vector x3 is zero. If this
is the case, more than n — m variables will be zero in the solution. When
this happens, we say that the basic solution is degenerate.

DEGENERACY: A basic solution to Ax = b is degenerate if one or more
of the basic variables vanishes.

A necessary and sufficient condition for the existence and nondegeneracy of
all possible basic solutions of Ax = b s the linear independence of every set
of m columns from the augmented matriz A, = (A, b). To prove the
necessity let us suppose that all basic solutions exist and that none is

degenerate. Then for any set of m columns, say a;, ..., a, of A,
m
> za;=b, (5-41)
=1

and no z; = 0. Since we assumed the existence of all basic solutions, every
set of m columns from A must be linearly independent. In Section 2-9
we made the point that any vector in a basis can be replaced by a given
vector b if the coefficient of the vector to be replaced does not vanish in
the expression of b as a linear combination of the basis vectors. According
to Eq. (5—41), b can replace any a; in the basis. Hence b and any m — 1
columns from A are linearly independent. The necessity is proved.

To prove the sufficiency let us suppose that any m columns from A,
are linearly independent. This immediately tells us that all basic solu-
tions exist. When b is expressed as a linear combination of a,, ..., ay,
we arrive at Eq. (5—41). However, since ag, . . ., a,,, b are linearly inde-
pendent, the coefficient z; of a; cannot vanish, because b can replace a;,
and a basis is maintained. Similarly, since a,, a3, ..., an, b are linearly
independent, the coefficient z5 of a; cannot vanish. Thus we see that none
of the z; can vanish for any basic solution. Hence all basic solutions exist
and are nondegenerate.
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The preceding theorem has a corollary: A necessary and sufficient con-
dition for any given basic solution xg = B™'b fo be nondegenerate is the
linear independence of b and every m — 1 columns from B. If a solution is
nondegenerate, b can replace any column of B and still maintain a basis
since z; # 0. Hence any m — 1 columns of B and b are linearly inde-
pendent. Conversely, if b and any m — 1 columns of B are linearly inde-
pendent, b can replace any column of B and still maintain a basis. Hence
no z; can vanish,

Since the condition for the nondegeneracy of a basic solution is quite
stringent, we may expect to find cases where the condition is violated and
degeneracy occurs. This is quite true. The possibility of degeneracy
complicates somewhat the theory of linear programming.

ExampLEs: (1) When m = 2, a basic solution has all but two x; equal
to zero. Degeneracy will occur if the b vector lies along the same line as
any column a; from A. Not all possible basic solutions will exist if two
columns from A are collinear. Let us consider Fig. 5-4. The system

Ax = (al} ag, a3, a5)x =b,

will be degenerate for any basic solution including ag since b, is collinear
with ag, that is, vector b; can be expressed in terms of az alone; hence the
x; corresponding to the other vector in the basis will vanish. However, all .
basic solutions exist. For the system

Ax = (ay, as, a3, a5)X = by,

Ficure 54
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all basic solutions exist and are nondegenerate. The system
Ax = (a), a3, a3, 24)X = b,

does not have a basic solution involving a,, a4 since they lie on the same
line and do not form a basis. All existing basic solutions, however, are
nondegenerate. In this case, one part of our theorem is violated, namely
the part concerning the existence of all basic solutions.

(2) Find the basic solutions to

Ty + 225 + 23 = 4,
2x1+x2+5x3=5.

The possible number of basic solutions is

3!

m=3.

First, we set z3 = 0 and solve for z; and z,. This yields

i e IR S

Then we set 2 = 0 and solve for z; and z5:

e e W R I W

Finally we set z; = 0 and solve for x; and z3, that is:

I Y I o N W R
= or = - =

1 5ilzs] |5 zs] 91—-1  2ll5] |23

In this example, all basic solutions exist and none is degenerate. Hence
any two vectors in the augmented matrix are linearly independent. The
situation can be changed simply by replacing the 5 in the b vector with

an 8. Thus if z3 = 0, then z; = 4, 23 = 0; if 25 = 0, then r; = 4,
z3 = 0. Finally, if z; = 0,

T2 1[ 5 —1)[4] 4/3]'

zs] -1 2f[8] 43
In this case all three basic solutions exist, but two are degenerate (illus-
trate this graphically).
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PROBLEMS

Solve Problems 5-1 through 5-3 by (a) gaussian reduction, (b) Gauss-Jordan
reduction, (¢) Cramer’s rule.

5-1. 3z1 + 2x2 -+ 423 = 7, 5-2. z1-+ 2z2+ 373+ 474 = 5,
2z1 + 22 + 23 = 4, 221+ 12+ 423+ 24 = 2,
z1+ 322 + 513 = 2. 3z1 + 4x2 + 23 + 524 = 6,
2z1 + 3z2 + 5x3 4+ 224 = 3.
53. 41+ 222+ 5x3+ Tza + 25 = 8§,
z1-F 42 + 23+ x4+ 525 = 4,
2z1 + 3z2 + 4z3 + 524+ 625 = 3,
3z1 + 922 + 7z3 + 74 + 825 = 16,
7zt 22+ 23+ 624+ 25 = 9.

5-4. Discuss in detail what happens if the gaussian elimination method is
used for solving a system of n equations in » unknowns where (a) there is no
solution, (b) the solution is not unique.

5-5. Derive Cramer’s rule for solving the system

a1121 + + ** + a1.x. = by,

an1%1 + - - *+ BuaTn = ba

without use of matrix theory. Hint: Multiply the ith equation by A, the co-
factor of a;1, and add the equations.
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5-6. Using the fact that A, can be transformed to an echelon matrix, prove
that there is at least one solution to Ax = b if r(A) = r(A;), and no solution if
r(A) < r(Ay).

5-7. Show that a collection of n-component vectors of the form x =
(x1, x2) = (Bxgz, X2), with x; = Bxy, generates a subspace of E* whose dimen-
sion is the number of components in X2 (it is assumed that no restriction is
placed on the values the components of x2 may assume). Use this result to
prove that the nullity of A = n — k provided that r(A) = kand Aisanm X n
matrix.

5-8. Show that a necessary and sufficient condition for a set of m vectors

X1, ..., X, to be linearly dependent is that the Gram determinant of these
vectors vanish. The Gram determinant |G/ is defined as:
xllx]. vt x’lxm
IG| =
XpX] 0 XX

*5-9. Consider the set of m homogeneous equations in n unknowns Ax = 0.
Let a ( = 1,...,m) be the rows of A. Then the set of equations can be
written a’x = 0 (j = 1,...,m), that is, a solution x is orthogonal to every
row of A. Using this expression and the concept of an orthogonal basis, show
that if »(A) = n, then x = 0 is the only solution.

*5-10. Prove that a necessary and sufficient condition for the existence of a
solution to Ax = b is that b lie in the subspace spanned by the columns of A.
Show that a necessary condition for the existence of a solution to Ax = b is
that y'b = O for all y such that A’y = 0. Can you prove that this condition
is also sufficient?

In Problems 5-11 through 5-16, determinc whether a solution exists. If there
is a solution, is it unique? Find a solution to every set for which solutions
(a solution) exist:

5-11. 3z + 222 = 7, 5-12. z1+ 2z + x3 = 1,
21422 = 7. 2z + 4z2 + 5z3 = 3.
5-13. 2x; + 8z2 -+ 7x3 = 0, 5-14. 2z + 8z2 + Txs = 1,
21+ 222 + 423 = 0, z1 -+ 222 + 423 = 0,
2xy + 4x2 + 623 = 17. 2z1 + 429 + 623 = 0.
5-15. 3r1 + 7z2 + 423 = 0, 5-16. 2x1+ 322 = 17,
z1 -+ 222 + 3 = O. 4z; + 622 = 3,
1+ 1722 = 0.
In Problems 5-17 through 5-19, find a fundamental system of solutions:
5-17. z1+ 22+ 23+ 74 =0, 5-18. 71+ 222+ 23+ 424 = 0,
2z1 + 322 + z3 + 524 = 0. z1 + x2 + 5x3 + 24 = 0,
2z, + 222+ 23+ 24 = 0.

* Starred problems require use of starred material in previous chapters or
material with which all readers may not be familiar.
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519. x1-+z2 =0,
2z1 + 322 = 0,
z1+ 7z2 = 0.

In Problems 5-20 through 5-22, find all existing basic solutions. Do all
possible basic solutions actually exist?

5-20. z1 + 222 + 323 + 424 = 7,
2z1 + 22 + 73 + 224 = 3.

5-21. 8z1 -+ 6z2 + 1373 + z4 + 25
9z; + 22 + 223 + 624 + 10zs5

5-22. 221 + 3x2 + 413 + x4
z1+ x2 4 Tz3 + 24
3z1 + 2z2 + z3 -+ 54

5-23. Consider the vectors:
1 3 —3 —1 —1 1
aiy = y a2 = y a4z = y a4 = y a5 = y &g = )
[0] [4] [—4] [ 2] [—4] [4]
b; = 9 y be = 2 y by = 1 .
6 —4 4

Plot these vectors. Do all possible basic solutions exist to the following sets of
equations? How many do exist? Are they nondegenerate?

6,
11.

I
% o1

’

(az, a3, a4, ag)x = by,  (az, a4, a5, 86)x = by,

(a2, a4, ag)x = bg, (a1, a2, a4, as)x = by.

5-24. Show that the Gauss-Jordan reduction scheme may be usefully applied
to systems Ax = b, where A is m X n and m < n. Illustrate this for equations

31 + 2z2 + 23 + 474 + 625 = 2,
4z1 + z2 + z3 + 524 + Tx5 = 10,
z1+ 922+ 3z3+ 24+ 25 = 7.

*5-25. Recall that any solution x of the set of inhomogeneous linear equations
Ax = b can be written x = x; -} y, where y is a solution to the homogeneous
set of equations Ay = 0 and x; is any solution to Ax = b. Furthermore, we
can write y = 2_c:y; if the y; form a basis for the null space of A. Compare
this with the corresponding results for inhomogeneous linear differential equa-
tions of nth order.

5-26. Consider a set of m simultaneous linear equations in n unknowns,
Ax = b, with r(A) = m. Suppose that a solution to this set of equations has
exactly m nonzero variables. Furthermore, assume that when all variables
other than these m variables are set to zero, the resulting set of equations
uniquely determines the m variables. Show that the solution is a basic solution,
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that is, the columns of A corresponding to the m nonzero variables are linearly
independent.

5-27. Consider a set of linearly independent vectors xy, ..., x,in E* ¢ < n.
Suppose that the vector yi is linearly independent of the set of vectors x;;
furthermore, the vectors y2 through y, are linearly independent of the x;.
Assume in addition that the y; are linearly independent of each other. Prove
that x3,...,Xg ¥1,. .., ¥m do not necessarily form a linearly independent set.
Give a counterexample and illustrate it geometrically. This is equivalent to
showing that 3_T_; \;y; is not necessarily linearly independent of the x;, although
each y; is linearly independent of the x; and the y; form a linearly independent
set.

5-28. Show how to routinize the gaussian reduction technique for solving a
set of equations Ax = b. In particular, demonstrate that it is never necessary
to use the variables explicitly. The reduction can be carried out by using only the
augmented matrix A, = (A, b), that is, A, is reduced to row echelon form. If
the row echelon matrix is (H, g), express the value of the variables in terms of
the elements of this matrix. Discuss the use of the sum check, introduced in
Problem 4-43, for the purpose of avoiding mistakes in solving equations by the
gaussian reduction method.

5-29. Show that the Gauss-Jordan method for solving a set of equations
Ax = b can be used by making appropriate transformations on the matrix
A, = (A, b); it is never necessary to introduce the variables explicitly. Sketch
the structure of the matrix obtained after stages 1, 2, and 3. Demonstrate that if
the elements of the matrix at the start of stage s are denoted by wui;, then the
elements 4;; at the end of stage s are given by

Boj = 22, allj; By o= wg — gy, alli < s allj.
uu un
Show that a sum check can be used to guard against numerical mistakes. Solve
Problem 5-2, using the technique suggested in the present problem.

*5-30. We know that a set of m-vectors xi, . . ., X, from E*, m < n, will be
linearly dependent if the rank of X = (xi1,...,X,) is less than m, that is, if
there is no minor of order m in X, which is different from 0. Problem 5-8 showed
that the vectors are linearly dependent if their Gram determinant vanishes.
What is the connection between these two conditions? Hint: G = X’X. Use
the theorem on expanding the determinant of the product of two rectangular
matrices.

ProBLEMs INvoLviNg CoMPLEX NUMBERS

5-31. List the important results obtained in this chapter. Show that all
these results hold when, in the system of equations Ax = b, the elements of
A, = (A, b) are complex numbers.

5-32. Solve the following set of equations by Cramer’s rule:

(—5+ 2t)x1 — 3wz - 423 = 7 — 3,
24Dz + @4 — 3Dz + (9 — )3 = 2,
7izy + 5z2 + (1 4+ 20)z3 = 4+ 61.
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5-33. Solve the following set of equations by the Gauss-Jordan method

@+ D1+ @2 — Dzg 4 (74 4)zz = 24,
521+ 3+ 5t)z2 + (8 — 9)z3 = 6 — 4,
3iz1 + (9 — Ti)z2 + (2 + t)zs = 8.
5-34. Find all basic solutions to the set of equations:

(5 — 60)z1 + 2iz2 + 5x3 + (4 + 3i)zs
(3 + 20)x1 + (6 — 49)z2 + (—3 + 20)23 + (8

— t)zg = 41.
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CHAPTER 6
CONVEX SETS AND n-DIMENSIONAL GEOMETRY

“We can make several things clearer, but we cannot make anything clear.”
Frank P. Ramsey.

6-1 Sets. In the preceding chapters, we have on various occasions
used the notion of a set, for example: a set of n component vectors. The
notion of a set is so basic that it is somewhat difficult to define it in terms
of more fundamental ideas. The following expressions are synonymous:
(1) a set of elements, (2) a collection of objects, (3) a nunber of things.
A set consists of a finite or infinite number of elements. The concept of a
set is clearly one of great generality; it is also very useful. Set theory was
first introduced into mathematics by the German mathematician Georg
Cantor at the end of the 19th century. Since then it has developed into a
most important branch of mathematics.

The main topic of this chapter is convex set theory. For many years,
only a handful of men working in the field of pure mathematics were
" interested in convex sets. Recently, however, the theory has found im-
portant applications in economics, linear programming, game theory, and
statistical decision theory. This has stimulated interest in the subject,
and within the last fifteen years a great deal of work has been done in
developing the theory and applications of convex sets. Before turning to
the theory of convex sets, we shall first study briefly some general topics
of set theory and then develop the fundamentals of point sets.

Sets will be denoted by capital letters, for example, A, B. The elements
of the set will be denoted by a;, b;, etc. Braces { } enclose the elements
belonging to a set. Thus, the set A can be written

A = {a}. (6-1)

Equavity: Two sets A, B are equal, A = B, if they contain the same
elements, that is, if every element of A s also an element of B, and con-
versely.

The notation a; € A indicates that a; is an element of A; b; € A means
that b; is not an element of A.

SusseT: A subset B of a set A is a set all of whose elements are in A.
However, not all elements of A need to be in subset B. B is a proper subset
of A if A contains at least one element which is not in B.

188
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The notation B C 4 or A O B indicates that B is a subset of A.

INTERSECTION: The intersection of sets A, B, written A N B, is the set
C = {c;} containing all elements common to A, B, that is, ¢; € 4, ¢; € B.

If there are m sets Ay, ..., Am, then A; N A2 N ... N Ay is the set
of elements C' common to A,, ..., An. We can write C as
¢ =) 4. (6-2)
i=1

ExampLE: If 4 = {1,2,3,5,8,15,21} and B = {4, 2, 5, 15, 37, 52},

then
C = AnNnB= {2515},

since these elements are common to A and B.

UnioN: The union of two sets, written A U B, is the set C = {c;} con-
taining all elements in either A, or B, or both.

If there are m sets Ay, ..., Am, then 4, U A2...U A, is the set of

elements C in at least one of Ay, ..., As. C can be written as
¢c=\ 4. (6-3)
i=1

The symbols N, U are sometimes read “cap” and “cup,” respectively.

6-2 Point sets. Point sets are sets whose elements are points or vectors
in E™. Since we shall approach our subject from a-geometrical standpoint,
n-tuples will frequently be referred to as points in E™ rather than vectors
in E"; recall, though, that there is no difference between a point and a
vector.* Point sets may contain either a finite or an infinite number of
points. However, the point sets to be considered here will usually contain
an infinite number of points.

Point sets are often defined by some property or properties which the
set of points satisfy. In EZ, for example, let us consider the set of points X
lying inside a circle of unit radius with center at the origin, that is, the
set of points satisfying the inequality

:cf + x% < 1.
A convenient representation for the set X is
X = {[zy, z2)|2? + x5 < 1}

* However, here we prefer to continue to use the term “component” rather
than “coordinate” for any element in an n-tuple.
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In general, the notation
: X = {x[P(x)} (6-4)

will indicate that the set of points X = {x} has the property (or proper-
ties) P(x). In the above example the property P is the inequality
22 a2 < 1.

If there are no points with the property P, then the set (6—4) contains
no elements and is called empty or vacuous. An empty set will be denoted
by 0. When discussing the properties of sets, we shall always assume
that there is at least one element in the set unless otherwise stated.

Exameres: (1) X = {[xy, 2]lx} + 25 < 1} is the set of points lying
inside and on the circumference of the circle of radius unity with its
center at the origin (compare with the preceding example).

(2) X = {[x1, z2]|22y + 3x2 = 4} is the set consisting of all points
on the line 2z, + 3z = 4.

(3) X = {[xy, z5llxy > 0,22 > 0,21 < 1,25 < 1} is the set of points
inside the square with corners [0, 0], [1, 0], [1, 1], [0, 1).

4) X = {[xy, zo)|x2 + 22 > 1,22 + 22 < 4} is the set of points in-
side the annulus with its center at the origin, an outer radius of 2, and an
inner radius of 1.

The notion of a point set enables us to illustrate geometrically the con-
cepts of the union and intersection of sets. Let us define two sets A

and B by
A = {[zy, x|z} + 2§ < 1},
and

B = {lzy, zal|(x1 — 1 + 2} < 1}.

A N B is the shaded region shown in Fig. 6-1; A U B is the shaded region
shown in Fig. 6-2. A4, of course, is the set of points inside and on the
circle of radius unity with center at the origin; B is the set of points in-
side and on the circle of radius unity with center at z; = 1, x, = 0.

T2 Zy

AnB

Figure 6-1 FIGURE 6-2
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According to Section 26, the distance between two points x, a is given
by
lx —a| = [(z1 — a)® + -+ + (@ — a)}"/% (6-5)

If a is a fixed. point and x a variable point, then
X ={x||x —a| =¢ (6-6)

is the set of points x which are at a given distance € from a. In E? X
becomes

(@1 —a)?®+ (@2 — a2)?1"? =€ or (21 — @) + (22 — a2)? = €

this is the equation of a circle of radius € with its center at [a;, a2]. Any
points on the circle are a distance € from the center. In E3, Eq. (6-6)
represents the points on a sphere. In E®, the relation [x — a| = € defines
a hypersphere.

HYPERSPHERE: A hypersphere in E™ with center at a and radius € > 0
18 defined as the set of points

X=(x|jx—a=¢. 6-7)
Hence, the equation of a hypersphere in E” is

lx - al =€
or

an (x: — a))® = €& (6-8)
=1

In the preceding paragraph, we generalized the concept of a circle in E?
and a sphere in E® to what we called a hypersphere in E*. Note that if
the equations for a circle in E? or a sphere in E? are written in vector no-
tation, they both become [x — a| = ¢, which is also the vector form of a
hypersphere in E™*. This gives us a key to a very useful procedure for
generalizing ideas applicable for E2 and E® to E*: The vector form ob-
tained for relations in E? and E2 will be a suitable definition in E™.

We shall frequently be interested in points which are “close” to point a,
that is, which can be considered to be “inside” some hypersphere with its
center at a. In E% E3, the inside of a circle or sphere can be represented
in vector form by the inequality [x — a| < e. This immediately suggests
an appropriate definition for E™.

InsiDE: The inside of a hypersphere with center at a and radius € > 0
ts the set of points
X = {x||x — a] < €}. (6-9)
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€ NEIGHBORHOOD: An € neighborhood about the point a is defined as the
set of points expressed by (6-9), that s, the set of points inside the hyper-
sphere with center at a and radius € > 0.

When discussing € neighborhoods, we shall often assume that € is small.
In general, however, € can be any positive number whatever.

In two and three dimensions, the meaning of the terms “interior” and
“boundary” point of a set is intuitively clear. This intuition fails us in
E™, and therefore we need analytic definitions to determine for any given
point whether it can be considered an interior or a boundary point of a
set. The following definitions are obvious generalizations from E? and E®.

INTERIOR POINT: A point a ts an interior point of the set A if there exists
an € neighborhood about a which contains only points of the set A.

It may be true that for the neighborhood to contain only points in the set,
€ will have to be very small. However, it is immaterial how small € is, as
long as € > 0. An interior point a must be an element of the set because
every € neighborhood of a contains a.

BounDARY POINT: A point a 1s a boundary point of the set A if every €
neighborhood about a (regardless of how small € > 0 may be) contains
points which are in the set and points which are not in the set.

Note that a boundary point does not have to be an element of the set 4.
In Fig. 6-3, a; is an interior point and a, is a boundary point of A.

The concepts of interior and boundary points lead to the notion of open
and closed sets, since the boundary points may or may not be elements of
the set.

OPEN SET: A set A is an open set if it contains only interior points.
CLOSED SET: A set A is a closed set if it contains all its boundary points.
ExampLis: (1) The set

X = {[z1, zsllaf + 23 < 1}

is open because points on the circumference of the circle are not included.
For any point [z, z2] in the set, it is possible to find an € such that all
points [z}, z}] given by (z; — z1)% + (23 — z2)® < €® are in the set.
A suitable value for € is one-half the distance from [z,, z3] to the point on
the circumference lying on a radial line through [z,, z2]. Hence, every
point is an interior point and the set is open.

(2) The set .
X = {[zy, zall2f + 23 < 1}

is closed since every point on the circumference is a boundary point,
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and all boundary points are included in the set. For any point on the cir-
cumference, all neighborhoods about the point contain points which are
in the set and points which are not.

It should be noted that open and closed sets are not mutually exclusive
or collectively exhaustive concepts. There are sets which are neither
open nor closed, such as for example:

X = {[xl,x2]|xf 4+ 22 < 1forzp > 0; 22 4+ 2% < 1 for z; < 0}.
Below the x;-axis, the circumference of the circle is not included; above
the z;-axis, it is. Thus, not all the boundary points are in the set, and it
is not closed. However, not every point is an interior point since some
boundary points are in the set, and hence the set is not open.

Some sets can be considered to be both open and closed. For example,
the set containing every point in E” is open since an € neighborhood about
any point contains only points of E”. However, E® has no boundary
points, and therefore the set contains all its boundary points and is closed.

CoMPLEMENT: The complement of any set A in E", written A, is the set
of all points in E™ not tn A.

Note that A U A = E", A n 4 = 0; furthermore, if a is a boundary
point of 4, it is a boundary point of A, and vice versa. Hence, if A is
closed, A is open, and conversely.

ExampLE: The complement of the set
X = {lz1, zall2} + 23 < 1}
is
X = {[z,, xz]le—*- z3 > 1}.
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Some sets have the property of being “bounded,” that is, the com-
ponents of the points in the set cannot become arbitrarily large or small.
We shall define three forms of boundedness:

STRICTLY BOUNDED: A set A is strictly bounded if there exists a positive
number r such that for everya € A, |a| < r.

A strictly bounded set lies inside a hypersphere of radius r with its center
at the origin.

BOUNDED FROM ABOVE: The set A is bounded from above if there exists
an r with each component finite such that for alla € A

a<r

A set which is bounded from above has an upper limit on each component
of every point in the set.

BouNDED FROM BELOW: The set A ts bounded from below if there exists
an r, with each component fintte, such that for each a € A

r < a.

A set which is bounded from below has a lower limit on each component of
. every point in the set.

Exampres: (1) The set X = {[xy, zo) [(x; — 3)2 + (22 — 4)2 < 4} is
strictly bounded, since every point in the set lies inside the circle of radius
10 with center at the origin.

(2) The set X = {[zy, 2] |x1 > z9, 21 > 0,22 > 0} is bounded from

below by the origin. It is not strictly bounded, however, because z;, z,
can become arbitrarily large positive numbers.

6-3 Lines and hyperplanes. We shall find considerable use for the
notion of a line in E™. A suitable definition will be, as usual, the vector
form obtained by formulating the equation for a line in E? and E?® in
vector terms. In Fig. 64, consider the two points x,, xo and the line
passing through them. The vector X, — X; is parallel to the line passing
through x;, x,. Any point x on the line passing through x;, x; can be

written
Xx=X;+Mxz — X1) = Mz + (1 — Nx; (6-10)

for some scalar N\ (parallelogram law for addition of vectors). Thus
Eq. (6-10) is the vector form for the line through x;, x5 in E2. A similar
analysis shows that (6-10) represents a line in E3. If Eq. (6-10) is written
in component form, the ordinary parametric equations for a line are ob-
tained. Thus, Eq. (6-10) is used to define a line in E™.
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Ling: The line passing through points x,, X3 (X; ¥ Xg) tn E™ is defined
to be the set of points

X = {x[x = Axz + (1 — N)xy, all real A}, (6-11)

The vector equation (6-10) traces a line in E™ as A takes on all possible .
values.

From Fig. 64 we see that any point on the line segment joining x;,
X2 can'be written

X=X +ANxz — X)) =M+ (1 —Nx, 0<AL1 (6-12)

Thus we make the following general definition:

LiNE SEGMENT: The line segment joining poinls Xy, Xg in E™ is defined
to be the set of points

X = {xlx = M3+ (1 — Nx;,0 <\ <L 1. (6-13)

Many sets have the property of being “connected”; that is, their ele-
ments do not exist in groups which are completely isolated from other
points in the set by points not belonging to the set. For example, the set
defined by

X = {lzy, 2|2} + 23 < Lor (z, — 5)® + (z2 — 6)® < 1}

is not connected. Some points of the set are inside the circle of radius
unity with center at the origin, and others inside the circle with radius
unity and center [5, 6]. These two circles are isolated from each other.
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There is no path leading from one circle to the other while remaining
entirely within the set.

CONNECTED SET: An open set is connected if any two poinis in the set
can be joined by a polygonal path lying entirely within the set.

A polygonal path joining x;, x; can be defined as follows: Choose any
R points y; = Xy, ¥2,..-,YR—1, YR = X2. Form the line segments
joining y; and y3, y2 and y3, . . ., Yr.1 and yg. The set of points defined
by these B — 1 line segments is a polygonal path. Intuitively, a polygonal
path is merely a broken line. A connected set and a typical polygonal path
are shown in Fig. 6-5. The simplest polygonal path connecting two points
is the line segment joining these points.

A set does not need to be open to be connected. However, with closed
sets, using the polygonal path as the criterion of our definition may land
us in difficulties. For example: From the preceding discussion we would
assume that the set of points on the circle 2 4 zZ = 1 represents a
connected set. This set is closed (every point is a boundary point), and
there is no polygonal path lying entirely within the set which connects
two different points on the circle. Hence, for this closed set, we must
generalize the notion of the allowed path connecting any two points.
The path must be what we think of in two and three dimensions as
an arbitrary continuous curve. We shall not make this generalization.
For many closed connected sets, it is possible to find a polygonal path
connecting any two points and therefore to demonstrate that the set is
connected.

REGION: A region in E™ is a connected set of points in E™.

A region may or may not contain some or all boundary points of the set. -
In E?, ciz; + cars = 2 (c1, €3, 2z constant) represents a straight line;
in E3, ¢,x; + cory + c3x3 = 2z is the equation for a plane. If, in E?,
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we write ¢ = (c1, ¢2), X = [21, Z5]; and, in E® ¢ = (c1, ¢y, C3), X =
[x1, Z2, z3), then the line in EZ or the plane in E* can be written as the
scalar product p— (6-14)

The equivalent in E* of a plane in E® or a line in E? is a hyperplane;
it will be defined by Eq. (6-14).

HyprERPLANE: A hyperplane in E™ is defined to be the set of points
X = {x|ex = 2}, (6-15)
with ¢ ¥ 0 being a given n-component row vector and z a given scalar.
If the equation for a hyperplane is written out, we obtain
CX = €121 + 3% + ¢+ + Cutn = 2, (6-16)

and any x satisfying (6-16) lies on the hyperplane.
A hyperplane passes through the origin if and only if 2 = 0. When
z = 0, Eq. (6-16) becomes
cx = 0; ' (6-17)

we see that ¢ is orthogonal to every vector x on the hyperplane, and hence
we can say that ¢ is normal to the hyperplane. If z = 0, and x,, x are
any two distinet points lying on the hyperplane, then

Xy —CXg =¢C(X; — X3) =2 —2=0,

and c¢ is orthogonal to every vector x; — Xs(X;, X2 being on the hyper-
plane). In E? and E3, vector x; — X, is parallel to the line or plane,
respectively. Thus, even with z = 0, we can say that ¢ is normal to the
hyperplane.

If ¢x = z is multiplied by the scalar A > 0, we have (A\¢)x = Mz. The
same hyperplane is defined by either Ac and Az or ¢, 2. Hence if ¢ is
normal to a hyperplane, so is Ac. Let us suppose that A = 1/|c|. Then if

n——“—ir b=—§-:
le]

lc]
nx = b, (6-18)

and [n| = 1. The vector n is called a unit normal to the hyperplane.
There are two unit normals to any hyperplane; the other is given by n =
—c/|c|. The above discussion can be summarized in the following defini-
tion for E™:

(6-16) becomes

NormaLs: Given the hyperplane cx = z in E"(c # 0), then ¢ s a vecior
normal to the hyperplane. Any vector Ac is also normal to the hyperplane
(A % 0). The two vectors of unit length c/|c|, —c/|c| are the unit normals
to the hyperplane.
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In E? and E3, the concept of a normal to a hyperplane can be clearly
illustrated (see Fig. 6-6): Let n be a vector of unit length lying along the
line normal to ¢;x; + cax2 = 2. Since n points towards the line, moving
the line ¢cx = z parallel to itself in the direction of n increases its distance
from the origin. It will be noted that for any x on the line ¢x = 2,
b = |x]| cos 6 or

nx = b = |x| cos 6; (6-19)

this is the equation of the line. If we multiply Eq. (6-19) by a A such
that z = A\b, we see that A = ¢, and A = =|c|. Hence c is normal to
the line. The same reasoning applies to a plane in E2. This discussion
also demonstrates that, in E? or E®, b is the distance of the line or plane
from the origin. Simalarly, in E, |2|/|c| (|2| is the absolute value of 2) is
the distance of the hyperplane from the origin.

If we move any line in E? parallel to itself in the direction of n (see
Fig. 6-6), b and the distance of the line from the origin increase. Let us
consider the line ¢cx = z: If z > 0, then ¢ points in the same direction
asn; hence, moving the line parallel to itself in the direction of ¢ increases 2.
However, if z < 0, ¢ points in the direction opposite to n; moving the
line parallel to itself in the direction of ¢ decreases the absolute value of z
(moves the line closer to the origin), but increases its algebraic value.

" Thus both alternatives result in an algebraic increase of z.

Exampre: Consider 2z; + 3z, = —6 in Fig. 6-7. A normal vector
to the line is ¢ = (2, 8). Line 2z; + 3z2 = 0, obtained by moving the
first line parallel to itself in the direction of ¢, has indeed a greater algebraic
value of z. The slope is, of course, the same for both lines.

The intuitive concept of moving a line or plane parallel to itself in order
to increase the algebraic value of z can easily be generalized to E®. First,
Z9 T2

N\ ‘ c=(23)

C1%y + Ca%p = 2
b 0 -
< . 2; + 3z, = —6 2oy + 32, =0
6 X
0 \ - I \

FiGUure 6-6 F1GURE 6-7
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we define the notion of two parallel hyperplanés by direct extension from
E? and E3.

PARALLEL HYPERPLANES: Two hyperplanes are parallel if they have the
same unit normal.

Thus the hyperplanes ¢,x = 23, ¢2X = 25 are parallel if ¢; = Acg, A = 0.

To understand the concept of moving a hyperplane parallel to itself let
us consider the hyperplane with normal ¢ passing through x,, that is,
¢X = 2o where ¢xy = zo. Let us find the value of z for a hyperplane with
normal ¢ passing through the point x; = x¢ + A¢/, A > 0 (we use ¢’
since ¢ is assumed to be a row vector). When x; = x¢ + M/, A > 0,
we can say that in going from x, to x;, we move in the direction of ¢
(illustrate this geometrically). The hyperplane through x; is cx = z;,
where ¢x; = 2z;. But

cx; = c(Xo 4 ') = zo + A¢|2
Therefore,
2; = 29 + Ac|?, (6—20)
and '
21 > 2q, since A > 0, [¢|] = 0.

Hence z; is algebraically greater than zo. Furthermore, if x, is any point -
on the hyperplane cx = 2z, then x; = x( + Ac¢’ lies on the hyperplane
cx = z;. Thus we say the hyperplane cx = z, has been moved parallel
to itself in the direction of ¢ to yield ¢cx = 2z,. Points lying on the hyper-
plane ¢cx = 2, satisfy the inequality

cx > 2o, (6-21)

that is, moving a hyperplane parallel to itself in the direction of ¢ moves
it in the “greater than” direction.

Note: In linear programming the function to be optimized, z = 3_c;z;,
is a hyperplane for a given value of z. Since the ¢; are constants, the hyper-
planes corresponding to different values of z have the same normal and are
therefore parallel. Hence, to maximize 2, we move this hyperplane parallel
to itself over the region representing the feasible solutions until z is made
algebraically as large as possible. If z is positive, we move the hyperplane
in the direction of ¢ until it is as far away from the origin as possible. If z
is negative, then the hyperplane is moved as close to the origin as possible.

We have noted previously that any two different points in E™ can be
used to define a line in E®. In order to determine a hyperplane, it is
necessary to specify the n components of ¢ and z, that is, n + 1 parameters.
These are determined only up to a multiplicative constant, however;
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that is, A\e; 6 =1, ..., n), Az yield the same hyperplane as the ¢; and .
Thus, there are only n independent parameters, and hence » points in E®
will be needed to determine a hyperplane; however, not any arbitrary set
of n points will provide a unique definition. Only a set of n points

Xy, ..., X, which can be numbered so that the n — 1 vectors x; — x,,
X3 — Xn,...,Xn_1 — X, are linearly independent, will describe a unique
hyperplane. (The n points x4, . . ., X, may or may not form a set of n

linearly independent vectors; it is the set of differences x; — x,, etc.,
which is of importance.)
To prove this let us consider the set of equations

cx; —z2=0, t=1,...,n (6-22)

This expression represents a set of n homogeneous linear equations in
n + 1 unknowns, the ¢; and 2. If the nth equation is used to eliminate z,
we obtain a new set of » — 1 homogeneous equations in n» unknowns,

the ¢;: c(x; — x,) = 0, i=1,...,n — 1. (6-23)

If the vectors x; — x, are linearly independent, the matrix of the co-
efficients ||z;; — x;,||’ has rank n — 1 and nullity 1. Thus, there is a solu-
tion to (6-23) with not all ¢; = 0, and with only one degree of freedom,
that is, the ¢; are determined up to a multiplicative constant. Then
the nth equation of (6-22) uniquely determines z for any ¢. We have
proved that » points in E® for which the vectorsx; — x,, ..., X,y — X,
are linearly independent uniquely define a hyperplane in E*. If the rank
of ||zji — xjn|| ism — k, then, according to Section 5-6, we can determine
k linearly independent vectors ¢ which satisfy (6-23); in this case the
chosen points lie in the intersection of k hyperplanes. Furthermore, the
k hyperplanes are not unique if k¥ > 2; there exists an infinite number of
sets of k hyperplanes whose intersection contains the n points.

Let us consider any point x in E” such that x — x, can be written as a
linear combination of the m — 1 linearly independent vectors x; —
Xn,.-.;Xn—1 — X,. Then x lies on the hyperplane determined by the
points x4, . . ., X, since, by Eq. (6-23), ¢(x — x,) = 0 or cx = ¢x, = 2.
Furthermore, any point x on the hyperplane has the property that x — x,
can be written as a linear combination of x; — x,,...,%,_; — x,,. If
this were not true, x — x, would be linearly independent of x, — x,, . . .,
Xnp—1 — Xu; then if the equation ¢(x — x,) = 0 were annexed to (6-23),
the rank of the matrix of the coefficients would be 7, and the only solution
would be ¢ = 0. Hence, if we choose any n points on a hyperplane with

the property that x; — X,, ..., X,_1 — X, are linearly independent, then
any other point x on the hyperplane is such that x — x, can be written as
a linear combination of x; — X,,...,X,_1 — X, or, equivalently, x can

be expressed as a linear combination of x,, . .., x,.
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We can choose x,, = O for a hyperplane through the origin. Then any

n — 1 linearly independent points xq,...,X,_; on the hyperplane can
be used to determine ¢, and every other point on the hyperplane can be
written as a linear combination of x;, ..., X,_;.

A hyperplane ¢x = z in E* divides all of E™ into three mutually exclu-
sive and collectively exhaustive sets. These are

1) X; = {x|ex < 2}, (6—24a)
(2) X, = {x|]ex = 2}, (6-24b)
B3) X3 = {x|ex > z}. (6—24¢)

OPEN HALF-SPACES: The sets X; = {x|cx < 2z} and X3 = {x|cx > 2z}
are called open half-spaces.

In E?, E® a half-space is all of EZ or E3 lying on one side of a line or plane,
respectively.

CLOSED HALF-SPACES: The sets X4 = {x|cx < z} and X5 = {x|cx > 2z}
are called closed half-spaces.

Note: X4 N X5 = X, that is, if x is on ¢x = 2, it is in both closed half-
spaces. However, no point can be in more than one of the sets X, X, X3,
and every point is in one of these sets.  Furthermore X; N X3 = 0.

It is easy to see that hyperplanes are closed sets. Choose any point x,
on the hyperplane ¢x = 2. Form an € neighborhood about the point xq
and consider the point x; = x4 + (¢/2)(c’/|c]). The point x; is in the
€ neighborhood since [x; — xo| = €/2 < e. However,

cXx; = CX()+§|C| = Zo+‘§|0| > 2o,

- \
and x, is not on the hyperplane. This holds true for every € > 0. There-
fore, every point on a hyperplane is a boundary point. A hyperplane has’
no interior points. Furthermore, there are no boundary points for a
hyperplane which are not on the hyperplane. A point in either open
half-space cannot be a boundary point for the hyperplane since it is always -
possible to find an e neighborhood about such a point, with all points in
the neighborhood being in the open half-space. To show this explicitly,
let us suppose ¢x; = z; < 2. Take € = (z — 2;)/2|c|. For any point
X in this € neighborhood of x;,

cx = ¢x; + ¢(x — x3) < 23 + Je(x — x3)|,

and by the Schwarz inequality,

z— 2 21+ 2
1=l <

chzl—i—chx—xllSz1+|c]e=z1+ 2 5

z.
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Hence every point in this € neighborhood of x; is in the half-space and x,
cannot be a boundary point of the hyperplane. Consequently, a hyper-
plane contains all its boundary points and is a closed set.

A closed half-space is also a closed set. The boundary points of the half-
space X4 or X5 are all the points in the set X, = {x|cx = 2}, because
every € neighborhood of any point on ¢x = z contains points in both
closed half-spaces, that is, every point on ¢x = z is a boundary point of
either closed half-space. The preceding discussion has also demonstrated
that for any point in an open half-space there exists an € neighborhood
which contains only points in the open half-space. Hence, no such point
can be a boundary point of the closed half-space. However, a closed half-
space contains all the points cx = z, that is, all its boundary points, and
is a closed set.

6—4 Convex sets.

Convex SET: A set X 1s convex if for any points X1, X5 in the set, the line
segment joining these points is also in the set.

This definition implies that if x;, X € X, then every point
X = AX; + (1 — A)xy, 0<2<1,

must also be in the set. It is immediately obvious that a convex set is
connected because the polygonal path joining the points is the line join-
ing the points. Hence, a convex set is a region. By convention, we say
that any set containing only one point is convex.

The expression (1 — A)x; + Ax;, 0 < N\ < 1, is often referred to as a
convex combination of x;, X, (for a given A). A set is convex if every
convex combination of any two points in the set is also in the set.

Intuitively, a convex set cannot have any “holes” in it, that is, it is
“solid,” and not “re-entrant,” i.e., its boundaries are always “flat” or “bent
away” from the set. These intuitive ideas, of course, are all rigorously
expressed in the definition of a convex set.

EXTREME POINT: A point x € X is an extreme point of the convex set X
if and only if there do not exist points X1, Xo(X; # X5) tn the sel such that

x = (1 — A)x; + Ax,, 0<A<1 (6-25)

Note that strict inequalities are imposed on A. The definition stipulates
that an extreme point cannot be “between” any other two points of the
set, that is, it cannot be on the line segment joining the points
(0 < A < 1). Clearly, an extreme point is a boundary point of the set.
To prove this, let us suppose that x, is any interior point of X. Then there
is an € > 0 such that every point in this € neighborhood of x, is in the set.
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Let x; # Xq be a point in the € neighborhood. Consider the point (illus-
trate this geometrically)

Xy = —X1 + 2X, [xg — Xo| = [x1 — Xo;
then x; is in the € neighborhood. Furthermore,
xo = 3(x1 + X3),

and hence x, is not an extreme point.

Not all boundary points of a convex set are necessarily extreme points.
Some boundary points may lie between two other boundary points.

If a convex set contains only a single point, this point will be considered
an extreme point.

ExampLes: (1) A triangle and its interior form a convex set. The
vertices of the triangle are its only extreme points, since they do not lie be-
tween any other two points of the set. The other points on the sides of
the triangle are not extreme points because they lie between the vertices.

(2) The set
X = {[z1, zo]|2] + 23 < 1}

is convex. Every point on the circumference is an extreme point.
- (3) The set in Fig. 6-8 is not convex, since the line joining x; and x;
does not lie entirely within the set. The set is re-entrant.
(4) The four sets in Fig. 6-9 are convex, and the extreme points are
the vertices. Point x; is not an extreme point because it can be repre-
sented as a convex combination of X3, x3 with0 < XA < 1.

A hyperplane is a conver set: If x;, X5 are on the hyperplane, that is,
¢x; = z and ¢x; = 2, then x = Ax; + (I — A)X; is on the hyperplane,
since
ex = ¢cAxz + (1 — Nx;] = Aexz + (1 — Nexy = A2 4 (1 — Mz = 2.

Z9 X3

FiGURE 6-8 FIGURE 6-9
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Similarly, a closed half-space is also a conver sef. Suppose xj, X5 are in
the closed half-space cx < z; if x = Axps 4+ (1 — N\)x; (0 < A < 1), then

ex = Acxg+ (1 — Nexy S A2+ (1 — Nz = 2,

and x is in the half-space. The same arguments will prove that an open
half-space is a convex set.

The intersection of two convex sets is also a convex set. Given the convex
sets Xy, X, let x;, X5 be any two points in X3 = X; N X, (if there is
only one point in X, then X3 is automatically convex). Thus,

)\X2+(1—>\)XIEX1 for OSXSI,
AX2+(1—‘>\)XIEX2 for 0 <A< 1.

Hence
AX, + (1 — )\)xl eXinNX, = X3,

and X3 is convex. In Problem 6-15 the reader will be required to show
that if X;(z = 1,...,m) are convex, then X = N7 X, is also convex.

If Xy, X5 are closed sets, then X3 = X1 N X5 is also closed. We see
immediately that an interior point of both X; and X, will also be an in-
terior point of X5. Similarly, a point which is not in X; and/or not in X,
cannot be a boundary point of X3. Therefore, every boundary point of
* X3 is a boundary point of X; or X,. However, X;, X5, and hence X3
- contain all their boundary points; thus X3 is closed. The same is true for
the intersection of any finite number of closed sets (proof to be furnished
in Problem 6-16).

We have shown that hyperplanes and half-spaces are convex sets.
Since the intersection of any finite number of convex sets is also convex,
the intersection of a finite number of hyperplanes, or half-spaces, or of both
8 also a convex set. Furthermore, the intersection of a finite number of hyper-
planes, or closed half-spaces, or of both is a closed convex set.

This has immediate application to linear programming. In Section 1-4,
we saw that the constraints on a linear programming problem can be
written .

Z ai]'xj{s = Z}biy t=1...,m, (6-26)

j=1

where one of the >, =, < signs holds for each 7. In addition, there are

= y —

the non-negativity restrictions
2,20, gJ=1,...,r. (6-27)
If we define the row vector by

a’ = (a1, ..., ¢, (6-28)
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Eq. (6-26) becomes
a'x{< = >}; i=1,...,m (6-29)

Each one of the constraints requires that the allowable x be in some given
closed half-space in E”, or, if the strict equality holds, lie on some given
hyperplane.

The non-negativity restrictions can also be written in the form of (6-29).
If we write

m+j

at = ¢}, (6-30)

then z; > 0 becomes
a"tix =ex >0, j=1,...,n (6-31)

Each of the non-negativity restrictions also requires that the allowable x
be in some closed half-space. The region of E™ defined by z; > 0,
j = 1,...,n, is called the non-negative orthant of E™.

Now we can see that any feasible solution x must simultaneously be an
element of each of the following sets [(6-29) and (6-31)]:

X, = {xla’x(£ = 2}, i=1...,m+r (6-32)

where b; = 0,7 = m + 1, ..., m + r. This is equivalent to saying that
the set of feasible solutions X is the intersection of the sets X;:
m-r
X = n X, (6-33)
i=1

Therefore, the set of feasible solutions to a linear programming problem (if
a feasible solution exists) is a closed conver set.

The preceding analysis also shows that the set of solutions to a system
of m linear equations in n unknowns, Ax = b, is a closed convex set. To
see this, note that the set of equations can be written

a'x=">b;, i=1,...,m, (6-34)

where a‘ is the ith row of A. The set of points which satisfies the ith equa-
tion comprises the hyperplane a’x = b;. The set of points which simul-
taneously satisfies all m equations is the intersection of the m hyperplanes
(6-34); it is therefore a closed convex set provided that a solution exists.
Furthermore, the set of non-negative solutions to Ax = b, that is, the
set of solutions with x > 0, is also a closed convex set.

We have already defined a convex combination of two points Xi, X2
to be AXxs + (1 — M)xy, 0 < X\ < 1. This definition can easily be gen-
eralized to the concept of a convex combination of m points.
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CONVEX COMBINATION: A convex combination of a finite number of points
X1y ..., Xm 18 defined as a point

m

x=i”’ixi'y B 20, 1:=l7"'7m) Z“i=1- (6_35)

=1 =1

A convex combination of m points can be interpreted physically. Suppose
that we associate a mass m; with the point x;. The center of mass of the
m points is then given by :

m m
X = % Z mX;, M = Z m;. (6—36)
i=1 t=1

If p; = mi/M, the center of mass is obtained from (6-35). Hence a
convex combination of m points can be thought of as the center of mass
of the points, with the mass assigned to x; being a fraction u; of the total
mass.

The set of all convexr combinations of a finite number of points x4, . . . , Xy
8 a convex sel, that is, the set

m m
X = [xlx = Y uiX; allp; > 0, D= 1' (6-37)
=1

=1

is convex. To prove this, let v, w be any points such that

m
V=D ME, Wi 20, D=1,
=1

m

W=D wix, w20, = 1.

=1

The set will be convex if Aw 4 (1 — \)v is also in the set for any
AO < A<L1). Now

W (L= Y = 3D+ (L — Nl (6-38)

t=1

But
A+ (1 — MNs >0,
and

i=l

S - = AT A=) D=1

Thus Aw + (1 — A)v is also a convex combination of the x;, and the set
is convex.
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I

Figure 6-10

Exampur: Figure 6-10 shows the set of all convex combinations of the
points x;, . . ., x7. In E? we find the set of all convex combinations of m
points by connecting all the points with straight lines. The resulting
polygon and its interior is the desired set.

6-5 The convex hull. Given any set A which is not convex, it is possible
to imbed A in another set X which is convex such that every point in A
is also in X.* We often wish to find the “smallest” convex set containing
A. This smallest convex set which contains A is called the conver hull of A.

Exawmpies: (1) The convex hull of the set 4 = {[z}, z5]|z? + 2% = 1}
is X = {[z1, z2l|lz? + 22 < 1}. The convex hull of the points on the
circumference of a circle is the circumference plus the interior of the
circle. This is the smallest convex set containing the circumference.

(2) The convex hull of two points X1, X, is the set of all convex combina~
tions of these points X = {x|x = Axy + (1 — M)x;, all A, 0 < A < 1},
This is the smallest convex set containing x;, x,.

So far we have not defined clearly the meaning of the term “smallest”
in E*. To avoid intuitive interpretations, mathematicians define the con-
vex hull as follows:

Convex HULL: The convex hull of a set A is the intersection of all convex
sets which contain A.

The intersection of all convex sets containing A must be the smallest
convex set which contains A. Hence, our definition is merely a more
rigorous and elegant formulation of the intuitive idea of “smallest.” It
should be recalled that the intersection of convex sets is also convex.

* Note that E” is a convex set and hence X always exists.
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The convex hull of a finite number of points X3, . . ., X, s the set of all
convex combinations of Xy, ..., Xn. This theorem states that the convex
hull of x4, ..., x,, is the set

m m
X = {xlx = Z piX;, all uy > 0, Z M = 1}- (6-39)
i=1 i=1
In the preceding section we have shown that X is convex. The proof will
be made by induction on the number of points, that is, on m. We must
show that every convex set containing x;,...,X, also contains X.
Clearly the theorem is true for m = 1 since there is only one point and
u1 = 1. We have already defined a set with one point as convex. The
theorem is equally obvious for m = 2, but we need not make use of this
directly. Now let us suppose that the theorem is true for m — 1, that is,

the convex hull of x4, . .., X,_1 is the set
m—1 m—1
X, = ‘X[X = Z Bixi,allf; >0, ) B = 1}' (6-40)
i=1 i=1
Then, consider the convex hull X of x4, ..., X,. Obviously, x,, must be
an element of the convex hull. Similarly, every point in X; must be an
element of X because X, is by assumption the convex hull of x4, . . . , Xp—1.

In addition, X must contain all points on the line segments joining points
in X, to x,, that is, all points

m—1
x=A> Bxi+(1—Nxs, 0N L (6-41)
=1

If ,
l“'i:)\ﬂi: 7'=1)"~7m_1) [l,m-‘—'(l—)\),

then all u; > 0 and

m m—1
D= M+ A =N=r2+01—-N=1
i=1 i=1

Furthermore, since each 8; and A can vary between 0 and 1, each u; can
assume any value between 0 and 1, the only restriction being > u; = 1.
Hence, the set defined by (6—41) is the set of all convex combinations of
Xi,...,X%n and represents the convex hull of x;,..., %, if X, is the
convex hull of x;, . .., Xn_; since it is the smallest convex set containing
X, and x,,. By induction, the convex hull of m points is the set of all
convex combinations of the m points.

Note that the convex hull of m points is also a closed set. In Prob-
lem 6-31, the reader will be asked to provide the argument in detail.

We shall find it convenient to denote convex hulls of m points by a
special name. The following definition is a direct generalization from EZ,
E3, where the convex hull of m points is a polyhedron.



6-5] THE CONVEX HULL 209

FiGUure 6-11

CONVEX POLYHEDRON: The convex hull of a finite number of points s
called the convex polyhedron spanned by these points.

It is obvious that the convex polyhedron spanned by m points cannot
have more than m extreme points since it is the set of all convex combina-

tions of the m points. All elements of the set, except Xi, ..., X,, lie
between other points of the set. Thus only x;,..., X, can be extreme
points. Each point x4, . . ., X,, will not necessarily be an extreme point.

One or more of these points may be interior points of the convex poly-
hedron (see Fig. 6-10).

This discussion suggests that any point in a convex polyhedron can be
represented as a convex combination of the extreme points of the poly-
hedron, i.e., any x can be written

x = ux¥, w20, =1, (6—42)

where the x¥ are extreme points. We shall prove this statement later.
However, not every convex set with a finite number of extreme points
has the property that any point in the set can be represented as a convex
combination of the extreme points. For example: It is not true that any
point in the convex set shown in Fig. 6-11 can be represented as a convex
combination of the extreme points 1, 2, 3. Intuitively, we can see the
reason for this: The set is unbounded. We shall prove in one of the follow-
ing sections that any strictly bounded closed convex set with a finite
number of extreme points is the convex hull of the extreme points.

SmMrLEX: The convex hull of any set of n + 1 points from E™ which do
not lte on a hyperplane in E™ is called a simplex.

A simplex is a special case of a convex polyhedron. Since the n 4 1
points do not lie on a hyperplane, » points must be linearly independent,
for otherwise all the points would lie on a hyperplane passing through
the origin. In EZ? a triangle and its interior form a simplex. The three
points which generate the simplex are the vertices of the triangle.
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*6-6 Theorems on separating hyperplanes. In this and the follow-
ing two sections, four important theorems are proved which are of sig-
nificance for a wide range of problems in linear programming, decision
theory, and game theory.

THuEOREM I: Given any closed convexr set X, a point y either belongs to
‘the set X or there exists a hyperplane which contains y such that all of X
18 contained in one open half-space produced by that hyperplane.

This is the theorem of the separating hyperplanes. Before considering
the proof, note that the two parts of the theorem are mutually exclusive.
If y belongs to the hyperplane, then it does not belong to the open half-
space.

We shall begin proving the theorem by assuming that y does not be-
long to X. We then find the point w in X such that for all u in X

lw — y| = min |u — y|. (6-43)

The point w is the point in X closest to y (“closest” means “shortest dis-
tance”). Since the set is closed, we know that the minimum distance is
actually assumedf for some w. There can be only one such point w,
for if there were two, the point halfway between them would be in X
and also closer? to y.

Next, let us consider any u € X. Then the point

(1 — Nw 4 Ay, 0< 2L,

* The results of Sections 6-6, 6-7, and 6-8 are important. The theorems are
geometrically quite obvious, but the proofs are rather tedious. It is sufficient
to read the theorems and to study their geometrical interpretation. If desired,
the material in the starred sections may be omitted entirely without loss of
continuity.

f We have not proved that the distance will actually assume its minimum
value for a point in the set. This proof (which exceeds the scope of this text)
could be based on the theorem of Weierstrass, which states that a continuous
function defined over a closed bounded set (X need not be bounded, but only a
part of X “near” to y must be considered) actually takes on its minimum at some
point in the set. Intuitively, however, the result is fairly obvious.

1 Suppose that there are two points wi, w2 both of which have the same
minimum distance from y. Then, by the triangle inequality, we obtain

[4w1 + w2) — y| = #(w1 — y) + (w2 — y)| < ¥(w1 — 3|+ [w2 — y]).

The strict inequality holds if wi — y # A(W2 — y); this is the case here, since
|wi — y| = |w2 — yl, and w1 # we. Therefore,

[4(w1 + w2) — y| < |w1 — ¥
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is in X. But by (6—43)

A —MNw+rx—y2>|w—y, 0<A<L1 (644

or
(W —3) +xu—w)?>|w—y

Expanding the preceding expression, we arrive at

w — 3> + 2aw — y)’(u — w) + Nu — w|* > |w — y|?,
or
2A(w — y)'(u — w) + A%u — w|Z2 > 0. (6—45)

Take A > 0. Dividing (6—45) by A yields
2w — y)'(u — w) + ANu — w|Z2 > 0.

Let X tend to zero. In the limit we have

W —y)'(u—w >0 (6-46)
however, .
Uu—w=u—y— (w—y. (6-47)
Substituting (6—47) into (6-46), we have

w—y)(—y 2 w—y?

But [w — y|> > Obecausew € X and y € X. Therefore,

w—y)(u—y >0, (6-48)
or
W —y)u>(w—yYy. (6—49)
Define
c=WwW-—y), z=WwW-—yy=cy (6-50)

Consider the hyperplane cx = 2. Since ¢y = 2, y is on the hyperpla,ne
However, according to (6—49), any u € X satisfies

cu > z. (6-51)

Thus any point in X is in the half-space* ¢cx > 2. The theorem is proved.
The geometrical interpretation of the theorem in E2, E3 is very simple.
Examination of Fig. 6-12 shows that when y is not in X, we take for the

* The direction of the inequality in cx > z is immaterial. If both sides
are multiplied by (—1), we obtain (—c)x < —z. The hyperplane (—¢)x = —z
also contains y.
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Figure 6-12

hyperplane of the theorem the line through y perpendicular to the line
representing the shortest distance from y to X. Thus for E? and E3, the
validity of the theorem is obvious. For E™ we have proved it rigorously
by algebraic methods.

Theorem I states that for any y € X (regardless of how close y is to
the set X), there is a hyperplane ¢x = z containing y such that cu > 2
for all u € X. This fact suggests that if w is any boundary point of X,
there is a hyperplane cx = z containing w such that cu > zforallu € X.
This is true, as we shall prove shortly.- The hyperplane containing the
boundary point is called a supporting hyperplane to the convex set X.

SUPPORTING HYPERPLANE: Given a boundary point w of a convex set X;
then ¢cx = z 1s called a supporting hyperplane at w if cw = z and f
all of X lies in one closed half-space produced by the hyperplane, that is,
cu > zforallue Xorcu < zforallu e X.

TuaeoreM II: If w is a boundary point of a closed convex set, then there
s at least one supporting hyperplane at w.

Theorem I did not actually show that the point w closest to y was a
boundary point of X. Clearly, this has to be the case; otherwise there
would exist an s € X on the line joining w, y, with

s=xw+ (1 — Ny, 0 <A<,
such that
s —yl =Aw —y| <|w—y]

and w would not be closest to y. Thus w is a boundary point of X.
Using (6-50) in (6—46), we have

cu—w) >0,
or
cu > cw. (6-52)
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If we consider the hyperplane
CX = CW = 2, (6-53)

then w is on this hyperplane, and by (6-52), cu > z for all u € X. Thus,
boundary point w has a supporting hyperplane. This fact, however, does
not prove Theorem II since in Theorem I, w was not an arbitrary boundary
point but was determined by the choice of y. Theorem II could be proved
if, for any given boundary point w, we could find a point y € X such
that w was the closest point in the set to y. It is clear how to do this geo-
metrically in E2 and E3.

We construct a normal to the set at w, and any point on this normal,
but outside the set, will satisfy the condition. Such an approach cannot
be easily generalized to E® (in fact it is difficult to formalize in E* and E®)
and hence we shall proceed in a slightly different way.

Select any boundary point w of X. Consider an € neighborhood about w.
Forany ¢ > 0, however small, there are points inside the hypersphere which
are not in X. Choose a given € (€;) and select from the neighborhood a
¥+ which is not in X. Then a boundary point w; of X will be the closest
point in X to yx. We have chown that there is a supporting hyperplane
kX = CWyi = 2 at wi. Next, we choose a sequence of ¢ such that
€ — 0as k — oo. By the triangle inequality,

Wi —w| = Wi — Y& + 37 — W| < [we — yiul + |yx — W], (6-54)

The choice of yi requires that [yx — w| < e, and therefore [y — w| — 0
as k — oo. Since |w; — yi| is the shortest distance between yx and X,
W — x| < |y — w|, and hence |yx — wi| — 0 as k — 0. We con-
clude that

[We —w| —0 as k— o, or wi—w.

For each wy there is a supporting hyperplane ¢xx = z;. Dividing by
[ck], we obtain

mx = b, m;=c/lck|, b= a/lckl, (6-55)
and |[ng| = 1. By the Schwarz inequality (Section 2-6),
brl < |ni|[Wi|] = [wil, (6-56)

because wi is on the hyperplane (6-55). For sufficiently large & there
exists an r > 0 such that |wi| < r independent of k. This follows since

Wl = |wx — W+ w| < || + [wi — W,

and |w; — w| — 0. An r which satisfies the above requirement is
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r = 2|w|. Equation (6-56) can then be written in the form of
—r < —|wi| S b < W <. (6-57)

Hence the b; form a bounded infinite sequence. Similarly, the components
of n; form bounded infinite sequences because |nx| = 1. One theorem on
sequences states that bounded infinile sequences possess at least one limit
point. Hence, there is a subsequence of points yj for which ny — n, and
br — b as w; — w. Furthermore, for every k, n,w;, — by = 0, and in
the limit, nw = b. Thus we have shown that for w there is a hyperplane
nx = b for which

aw = b, nu > b, allu e X;
and this is a supporting hyperplane. Theorem II has been proved.

T2
4

Ficure 6-13

Unfortunately, in proving the theorem, we had to use the ideas of limits
and bounded sequences. We have not discussed these subjects, which
may be unfamiliar to the reader. However, these concepts had to be in-
troduced since we are not sure that ni, by approach unique values when
we chose the sequence of points yi in some specific way. For arbitrary
sequences Yy, it is not always true that ng, bx approach unique values.
The theorem on bounded sequences assures us that there is a sequence
of yi for which n; and b; do approach unique limits. However, the sup-
porting hyperplane at w need not be unique. Figure 6-13 illustrates that
any one of the hyperplanes 1, 2, 3 is a supporting hyperplane at w. Hence,
an arbitrary sequence of points yi could not be used to obtain unique
values.

It should be clear to the reader that Theorem II holds even if X is not
closed, i.e., there is at least one supporting hyperplane at a boundary point

w, regardless of whether or not w € X.
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*6-7 A basic result in linear programming. We have already shown that
the set of feasible solutions to a linear programming problem is a closed
convex set, and that the function to be optimized is a hyperplane. This
hyperplane is moved parallel to itself over the convex set of feasible
solutions until 2z is made as large as possible (if z is being maximized)
while still having at least one point x on the hyperplane in the convex set
of feasible solutions.

Hence, if a given hyperplane corresponds to the optimal value of 2,
“then no point on the hyperplane can be an interior point of the convex
setT of feasible solutions X. To see this, let us suppose that z = cx is an
optimal hyperplane and that one of its points X, is an interior point of the
set. We select an € > 0 such that every point in this € neighborhood of x, is
in X. The point x; = x4 + (€¢/2)(c’/|c|) isin X, and cx; = z + (¢/2)[c|> .
This contradicts the fact that z is the maximum value. Hence every
point of X on the optimal hyperplane must be a boundary point. There-
fore, if Xo is an optimal solution to the linear programming problem,
then z = ¢Xg and cu < z for all u € X (we assume, of course, that z is
being maximized). Thus, an optimal hyperplane is a supporting hyper-
plane to the convex set of feasible solutions at an optimal solution x,.

TuroreM III: A closed convex set which is bounded from below has ex-
treme points in every supporting hyperplane.

The convex set of feasible solutions to a linear programming problem is
closed and bounded from below by 0 because z; > 0 for all j. Hence,
the theorem states that if there is an optimal solution, at least one of the
extreme points of the convex set of feasible solutions will be an optimal
solution. In E™ as in E2, E3, the convex set of feasible solutions will have
only a finite number of extreme points.{ Hence, if we had the means of
selecting the extreme points of the convex set of feasible solutions, only a
finite number of points would have to be examined to find an optimal
solution to the problem. And indeed, it is possible to determine analyti-
cally the extreme points. This is the basis of the simplex method. We
move from one extreme point to a new one (having a value of z at least as
large as the preceding one) until an optimal solution is found.

We shall now prove Theorem III. The hyperplane ¢x = z will be
assumed to be a supporting hyperplane at x, to the closed convex set X
which is bounded from below. Th(:,, intersection of X and the set

1 It may turn out that there is no maximum value of 2, that is, z can be made
arbitrarily large. Then this result does not hold. However, when we speak of
an optimal solution to a linear programming problem, we shall imply that z
has a finite maximum or finite minimum.

1 In Problem 6-33 the reader will be asked to prove the theorem for E”.
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S = {x|cx = #} will be denoted by T. The intersection is not empty
because xy € T'; furthermore, since X and S are closed convex sets, so
is T; T is also bounded from below since X is.

We shall show that any extreme point of 7' is also an extreme point of X.
If t is any point in 7, and if

t= x4+ (1 — N)xy, 0 <A<,
where xy, x; € X, then x, x, € T. This follows from the fact that
ct = Aex3 + (1 — Nexy = 2, (6-58)

and ¢x; > 2z, cX; > 2z because cx = z is a supporting hyperplane. Noting
that A, (1 — A) > 0, we see that (6-58) will hold if and only if cx; = 2,
¢X; = 2, that is, if and only if x;, X, € T. Thus an extreme point of T
cannot be represented as a convex combination of any two points in X
with 0 < X < 1. Hence an extreme point of T is an extreme point of X.

We still have to prove that T actually has an extreme point; this will
be accomplished by finding an extreme point. Out of all the points in T,
choose the one with the smallest (algebraic) first component. There is at
least one such point since T is closed and bounded from below.

If there is more than one point with a smallest first component, choose
© the point or points with the smallest first and second components. If
again there is more than one point with the smallest first and second com-
ponents, find the point or points with the smallest first, second, and third
components, ete. Finally, a unique point will be obtained since only one
point can have all its components of minimum algebraic value.

The unique point t* determined by the above process is an extreme
point. If t* were not an extreme point, we could write

=AMy (1 —Nts, O0<A<1, ti=t,el. (659

Suppose the unique t* was determined on minimizing the jth component.
If ¢, tj2 are the jth components of ty, tg, then the jth component of (6-59)
is

g =M1+ 0 — Mz, 0<A<ZI1 (6-60)
Furthermore (why?)
t?=ti1=ti2 (7'=1y1.7——1)

But then (6-60) requires that &f = ¢j; = t;j3, for otherwise & >
min [¢;,, ¢;,]. However, this result contradicts the fact that there is only
one point with this ¢{f when all components 1,...,5 — 1 are at their
minimum values. Consequently, t* cannot be represented as a convex
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combination of any two other points in 7 (0 < A\ < 1). Hence t* is an
extreme point and the theorem is proved.f The above proof also demon-
strates that a strictly bounded convex set has extreme points in every
supporting hyperplane.

*6—8 Convex hull of extreme points.

THaeOREM IV: If a closed, strictly bounded convex set X has a finite num-
ber of extreme points, any point in the set can be writien as a convex com-
bination of the extreme points, that is, set X is the convex hull of its extreme
points.

We were led to suspect in Section 6-5 that a result of this sort might
be true. We are now able to prove it.

Take the extreme points of X to be yy, ..., ¥m; S will be defined as
the convex hull of the extreme points,

8 = {yly =Y pyoallp; >0, = 1]- (6-61)

1=1

Suppose that there is a point vo € X and vy & S. Then by Theorem I
(on separating hyperplanes) there is a hyperplane cx = 2 containing vy
such that cy > z for all y € S. In addition, there is a w € S which is
closest to vo (S is closed). Furthermore, we can write ¢’ = w — Vo
Consider a set of points x; not necessarily in X such that

X = Vo — M(W —vo); N 2> 0. (6-62)
Then

W — x| = 1+ M)W — vo| > lw — vq.

The hyperplane with normal ¢ which passes through x; may be written
X = zg, and

CX = X = ¢V — Mlc|? = 2z — M| = 2 < 2.

For any y € S, ¢y > 2, and hence cy > z;. Increase A; to the largest
possible value for which the hyperplane cx = 2 will contain a point of X.
There will be a largest A; since X is closed and strictly bounded. Call z*
the z; for this hyperplane. Hence a v* € X exists such that cv* = FAR
and cv > z*forallv € X. It follows that cx = z*isa supporting hyper-
plane to X. However, it contains no extreme points of X, since they are
all in §, and every point y € S satisfies cy > z* This contradicts the

t The same line of reasoning will reveal that if a linear programming problem
has a feasible solution, at least one feasible solution will be a boundary point,
and there will be at least one extreme point (see Problem 6-23).
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0

Figure 6-14 FIGURE 6-15

fact that there are extreme points in every supporting hyperplane. Hence
every point of X must be in S, and X is the convex hull of its extreme
points.

Figure 6-14 interprets our procedure geometrically. We assume that
the points y;, y2, y3 are the only extreme points of the convex set X.
They generate the convex hull S. Point vg is not in S. A hyperplane (a)
is passed through v so that all of S lies in one half-space produced by the
hyperplane. Then the hyperplane is moved parallel to itself until (b)
is reached; if it were moved any further, no point of X would be on the
hyperplane. Hence (b) is a supporting hyperplane which presumably
contains no extreme points of X. This is obviously not true (see Fig. 6-14).
The contradiction is, of course, a result of our forgetfulness: We did not
count extreme point y4 in our original determination of the extreme points
of X.

ExamprLE: Suppose that we wish to write any point w inside a triangle
as a convex combination of the vertices (extreme points):

3
W=mei, i =0, E#i=1-

i=1

The situation is illustrated in Fig. 6-15: First, draw a line from x, through
w. It will intersect the opposite side of the triangle at v. Then

w=)\1x2+(1—)\1)v, OS)\ISI,
but
v = Aax; + (1 — Ag)x3, 0<N\<1;

thus
W= MXs + (I — M)AeXp + (1 — A)(1 — Ag)xs.
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Let p1=Xa(1 — A1), we=2A;, pz=(1— )1 — Ap).

Clearly, u; > 0 and

Brtpetuz =20 —N)+ M+ T —=N)— 0 —A)rs = 1.

The desired expression for wis w = > &, u:x,.

From the definition of a convex polyhedron and from Theorem IV it
follows that every closed, strictly bounded convex set with a finite number
of extreme points is a convex polyhedron.

Convex sets with only a finite number of extreme points are essentially
convex polyhedrons. However, they may be of the type shown in Fig. 6-11,
that is, they may not be strictly bounded. For convex sets with a finite
number of extreme points, it is useful to introduce the concepts of an edge
and of adjacent extreme points.

Epce: Let x7j, x}, be distinct extreme points of the convex set X. The line
segment joining them is called an edge of the convex set if it is the inter-
section of X with a supporting hyperplane. If x3 isan extreme point of X,
and if there exists another point X in X such that x = x} + AE — xl) 8
in X for every X > 0, and if, in addition, the set L = {x|x = x; +AME—x}),
all A > 0} s the intersection of X with a supporting hyperplane, then
the set L is said to be an edge of X which extends to infinity.

ADJACENT EXTREME POINTS: Two distinct extreme points x§, x5 of the
convex set X are called adjacent if the line segment joining them is an edge
of the conver set.

These definitions conform to our conception of an edge and of adjacent
extreme points in E?, E3. In Fig. 6-13, the line segment joining the
extreme points W, x, is the intersection of X with hyperplane 1, and hence
is an edge of the set. Since the line joining them is an edge of the set,
W, X, are adjacent extreme points.

6-9 Introduction to convex cones. In the preceding sections, we have
examined some of the properties of a special class of convex sets, the
convex polyhedrons. Now another class of convex sets, i.e., convex cones,
will be studied which are useful in the theory of linear programming
and in linear economic models.

ConE: A cone C is a set of points with the following property: If x is in
the set, so is pxX for all u > 0.

The cone “generated” by a set of points X = {x} is the set
C = {yly = px,allp > 0 and all x € X}. (6-63)
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Note that a cone is never a strictly bounded set (except in the trivial case
where 0 is the only element in the cone). However, a cone may be bounded
from above or from below. In E? and E3, a cone as “a set of points” is
often identical with the usual geometrical concept of a cone.

VERTEX: The point 0 is an element of any cone and s called the vertex
of the cone.

ExampLE: Figure 6-16 shows a cone in E3 generated by the set of
points
X = {[zy, @g, 23]J2? + 22 < 1, 23 = 1}.

NEGATIVE: The negative C~ of a cone C = {u} is the set of points C~ =
{—u}.

C~ is clearly a cone if C is.

Sum: The sum of two cones Cy = {u}, Cy; = {v}, written Cy + C,,
1s the set of all pointsu + v,u € C, v € Cy.

The sum C; + C5 is a cone because u(u + v) = pu 4+ uv, and pu € C,
ifuedl, uwe C, if v €y so that u(u + v) €C; + Cy for all p > 0.

Porar coNe: If C = {u} is a cone, then C™, the cone polar to C, is the
collection of points {v} such that v'u > 0 for each v in the set and all
uecd. '

Obviously, C* is a cone since if v'u > 0 for all u € C, then uv'u > 0
for all x > 0. Intuitively, a polar cone is the collection of all vectors
which form a nonobtuse angle with all the vectors in C. Note that each

v € Ct must form a nonobtuse angle with every vector in C.

F1cGUre 6-16 Ficure 6-17



6-9] INTRODUCTION TO CONVEX CONES 221

ExampLEs: (1) Figure 6-17 shows the given cones Cy, Cs as well as
03 = Cl + Cg and Cl—

(2) Figure 6-18 shows C*, the cone polar to the given cone C.

We can easily prove that for any cones C';, Cs,

€1+ C)* =cCf ncd, (6-64)

and if C; C C3, then C;" C Cf. The details of the proofs are to be sup-
plied in Problems 6-38 and 6-39.

CoNVEX CONE: A cone is a convex cone if it is a convex sel.

All the cones in our examples have been convex cones. The cone in
Fig. 6-19 is not convex since it consists of two separate parts.

A set of points is a convex cone if and only if the sum v, + Vv, is in the
set when vy, Vo are, and if uv is in the set when v is for any u > 0. To
see that the conditions are necessary, note that if C' is a convex cone, then
rv(u > 0) € Cif v € C by the definition of a cone. To see that v; + v,
must be in C if v, v, € C, note that since C is a cone, we can write

Vi = Aoy, 0<x<1], w; €C, Vo = (1—)\)0)2, we € C.

However, because C is convex, Aw; + (I — MNws € C, and thus v; + v,
must be in C. To see that the conditions are sufficient, let us suppose that
the sum v; + v, is in the set if v,, v, are, and uv is in the set if v is for
all 4 > 0. The second condition indicates clearly that the set is a cone.
The cone will be convex if Aw; + (I — Mws, 0 < A < 1, is in the set
when w;, w; are in the set. The definitions v; = Awj, vo = (1 — Nw,
and the fact that v; 4 v, is in the set, determine that the set is convex
and therefore a convex cone.

Iy

FiGUuRe 6-18 Figure 6-19
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This set of conditions for convex cones looks very similar to those used
for defining a subspace of E”. The only difference is that, for convex cones,
the scalar u > 0. Because of this restriction, a convex cone is not, in
general, a subspace of E*, although it can be a subspace in certain cases.

The sum Cy + C2 of two convex cones ts also convex. Let x;, X5 be any
two points in Cy 4 C,. By definition of the sum,

X =u; + vy, X =Uup+Vz u,upely, v,vyECs
Then for any point x which is a convex combination of x;, x5, we obtain
x=N;+ (1 —Nxz =My + (1 — Nug +Avy + (1 — Nvs.

But A\u, + (1 — X)U2 e Cl, Avy + (1 — )\)Vz € C,. Hencex C:+ Cz,
and C; -+ C3is a convex cone. In Problem 640 the reader will be required
to show that if C; (¢ = 1, ..., m) are convex, )7, C; is convex too.

The cone generated by a convexr set is.a convex cone. Given the convex
set X = {x}, we wish to prove that C = {yly = ux, u > 0, all x € X}
is a convex cone. Clearly, C is a cone. To show that C is convex, we must
demonstrate that if y;, y» € C, then any convex combination of y;,
y: € C. Note that Y1 = p1Xy, Y2 = M2Xy, Xy, X € X. Thus we wish to
show that any point y,

y=Mux; + (1 — Npxo€C, 0 AL,

is in the set. Write
$ = M+ (1 — M.
Hence if ,
y=¢floax; + (1 —a)xg], ¢ 50,
then

=M. g<a<i1

y

¢

However, because X is convex, X = ax; + (1 — a)x; € X, and y =
txeC. If t =0,y =0, and 0 €C. Therefore C is a convex cone.

The simplest convex cones are generated by a convex set containing
a single element (a set containing a single element is convex by definition).
If the single element x > 0, then the convex cone is a line segment be-
ginning at the origin, that is, the set of all multiples ux, p > 0. Such
simple cones generated by a single point are called half-lines.

HavLF-LINE: Given a single point a # 0, a half-line or ray is defined as
the set
L = {yly = pa, allu > 0}. (6-65).

The symbol L will always refer to a half-line.



6-9] INTRODUCTION TO CONVEX CONES 223

The polar cone H of a half-line L is a closed half-space containing 0
on its bounding hyperplane because H is the set

H = {v|a'v > 0}. (6-66)

This follows because H is the collection of points v with v’y > 0 for all
y € L. However, any y can be written pa, p > Oand uv'a > 0if v'a > 0.
Thus H is the collection of points v for which v'a = a’v > 0, which is
a closed half-space.

CONTAINING HALF-SPACE: Given a coneC. Leta = 0 be an element of Ct.
Then the set
H, = {x|a’x > 0} (6-67)

18 a containing half-space for C.
Any containing half-space includes all of cone C. The boundary hyper-
plane P, of any containing half-space passes through the origin:
P, = {x|a’x = 0}. (6-68)
ExampLE: A cone C and a typical containing half-space are illustrated '
in Fig. 6-20.

ORTHOGONAL CONE: Given a cone C in E™. The cone C+ which is the set
of all vectors u in E™, such that each u is orthogonal to every vector v € C,
that s, the set

Ct = {ulu'v=0,allv €C} (6-69)

s called the orthogonal cone to C.

3

CJ.

Z2

£

Ficure 6-20 Ficure 6-21
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C* is a cone since if u'v = 0, then pu'v = 0 forall g > 0. C is not only
a cone, it is also a subspace of E™. This follows because if u € C, u’v = 0
and wuu'v = 0 for all u; therefore uu is in C* for any u. Furthermore, if
u;, up €CL, then u; 4 u; € C* since ujv = 0 and ujv = 0 imply that
(u; 4 uz)’v = 0. In some cases, the set C* will contain only the element 0.
For example in E3, u = 0 is the only vector for which u’'v = 0 when the
v are the elements of the cone shown in Fig. 6-16.

ExamrpLE: In E3 (see Fig. 6-21), cone C*+ (orthogonal to C) is all of the
a3-axis.

Given any half-line L, the orthogonal cone P to this half-line is a hyper-
plane. If a O generates the half-line, P is the set

P = {x|a’x = 0}, (6-70)

which is a hyperplane through the origin.

DIMENSION OF A CONE: The dimension of a cone C' is defined as the mazx-
imum number of linearly independent vectors in C.

The dimension of C is the dimension of the “smallest subspace of E™”
which contains C, that is, the dimension of the intersection of all subspaces
containing C.

It is easy to prove that the smallest subspace containing a convexr cone
C is C 4+ C~. The details of the proof will have to be supplied in Prob-
lem 6—41.

ExampLE: The dimension of the cone (Fig. 6-22) is 2 because there
are two linearly independent vectors in the cone. Thus the smallest
subspace of E? containing the cone is E? itself.

6-10 Convex polyhedral cones.

CONVEX POLYHEDRAL CONE: A convex polyhedral cone C is the sum of a
Jinite number of half-lines,

¢ = }_:I L (6-71)

In this definition the term “sum” is used in the sense of sums of cones.
The cone C defined by (6-71) is convex because the sum of convex cones
is a convex cone and half-lines are convex cones.

If the point a; ¢ 0 generates the half-line L;, then from (6-71) C is the
collection of points

y= D> ma, allp;>0, i=1,...,r (6-72)
1=1
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ExamrLE: Figure 6-23 shows the convex polyhedral cone generated
by the half-lines 1, 2, 3. Note that any cross section of the polyhedral cone
is a convex polyhedron.

The cone C generated by a convex polyhedron is a convex polyhedral cone.
Let the set X be a convex polyhedron. Then any point x in X can be
written as a convex combination of the extreme points x¥ (assumed
to be r in number):

r
X = me}‘, ui >0, Zm= 1.

i=1
Cone C is the collection of points ox, all @ > 0 and all x € X. However,
r r
ax = Z piox} = Z XY, pa= N2> 0. (6-73)
=1 i=1
Each extreme point x§ generates a half-line L;; we see by (6-72) and (6~73)
that ,
C = Z Li;
i=1

thus C is a convex polyhedral cone.

If Aisann X r matrix A = (a,, ..., a,), then the set of points
r
y=Ax = Z za; allx > 0, (6-74)
=1

is a convex polyhedral cone in E*. This follows immediately from (6-72).
The columns a; of A generate the half-lines whose sum yields the poly-
hedral cone. The fact that C = {y}, with y given by (6-74), is a poly-

T2

Figure 6-22 FiGURe 6-23
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hedral cone indicates that there is a non-negative solution x > 0 to the
set of simultaneous linear equations

Ax =D

if and only if b is an element of the convex polyhedral cone generated by
the columns of A.

Any given finite number of points ay, . . ., a, from E™ can be thought of
as generating a convex polyhedral cone C. Each a; generates a half-line,
and the cone C is the sum of these r half-lines. Similarly, we can imagine
that any convex polyhedral cone in E™ has been generated by a finite
number of points ay, ..., a, from E*. We only need to choose one non-
zero point on each half-line whose sum yields the cone. If r > n, and
if in addition there are n points in the set a,, . .., a, which are linearly
independent, then the points ay, ..., a, generate a cone of dimension =,
that is, no subspace of E” containing C has dimension < n. The cone
shown in Fig. 6-23, for example, has dimension 3, the dimension of E3;
it is generated by three linearly independent points.

Suppose that we have in E® an n-dimensional cone C generated by
aj, ...,a, Out of the set ay, ..., a, let us choose any n — 1 linearly
independent points by, . .., b,_;. These points determine a unique hyper-
plane c¢x = 0 through the origin in E" because ¢cb; = 0,...,¢b,_; = 0
- form a set of n — 1 homogeneous linear equations in the n unknowns, the
¢;. Furthermore, since by, ..., b,_; are linearly independent, there is a
nonvanishing determinant of order n — 1 in the matrix (by,...,b,_;);
hence the ¢; are determined up to a common multiplicative constant.
Thus the hyperplane is uniquely determined. It may or may not be. true
that all of the cone C will lie in one of the closed half-spaces ¢cx > 0 or
cx < 0. If C does lie in one closed half-space produced by ¢cx = 0, we
make the following definitions:

EXTREME SUPPORTING HALF-SPACE: The set of points from E™,
Hp = {vlev > 0}, (6-75)

is an exireme supporting half-space for the n-dimensional convexr poly-
hedral cone C generated by the poinis a,, . . ., a, if C lies in the half-space
Hp and n — 1 linearly independent points from the set ay, . . ., a, lie on
the hyperplane cv = 0.

EXTREME SUPPORTING HYPERPLANE: The hyperplane cv = 0 which forms
the boundary of the extreme supporting half-spact is called an extreme
supporting hyperplane for the convex polyhedral cone C.

The reader should be careful to note the difference between an extreme
supporting hyperplane for a convex polyhedral cone and a supporting
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hyperplane for any convex set as defined earlier. An extreme supporting
hyperplane must have n — 1 linearly independent points of the cone lying
on it, while a supporting hyperplane need not have more than a single
point in common with the cone.

It is clear that the intersection F of an extreme supporting hyperplane
cv = 0 and the polyhedral cone C yield a collection of points which are
boundary points of C; that is, every point of C on the extreme supporting
hyperplane cv = 0 is a boundary point of C since C lies in the half-space
cv > 0. TFurthermore, the intersection F is itself a convex polyhedral
cone generated by the points from aj, ..., a, which lie on the hyper-
plane cv = 0. This proof is trivial, and the details will have to be worked
out in Problem 6-43. Since the set F is a subset of C and a convex poly-
hedral cone, we call F a subcone of C. The subcone F lies in the hyper-
plane cv = 0. Since there are precisely n — 1 linearly independent points
in F, F has dimension n — 1. In Fig. 6-23 any two of the vectors ay, a,,
as uniquely determine a plane through the origin such that the cone C
is contained in one half-space produced by the plane. Iurthermore, any
two points from a,, a5, a3 are linearly independent, and hence the resulting
hyperplane is an extreme supporting hyperplane. The intersection of C
with any one of the three extreme supporting hyperplanes yields a face
of the cone C. This face is a cone—the cone F discussed above. In gen-
eral, we call the (n — 1)-dimensional convex polyhedral cone F which is the
intersection of an n-dimensional polyhedral cone C in E™ with an extreme
supporting hyperplane a facet or face of the cone C.

An n-dimensional convex polyhedral cone in E” generated by a;, . .., a,
can have only a finite number of extreme supporting hyperplanes since
there are at most r!/(n — 1)!(r — n + 1)! sets of n — 1 linearly inde-
pendent points in the set a;,...,a, Not every n-dimensional convex
polyhedral cone in E® needs to have an extreme supporting hyperplane.
The convex polyhedral cone may be all of E® and thus cannot lie in any
half-space of E". For example, in E2? the convex polyhedral cone generated
by the -points (0, 1), (1, 0), (0, —1), (—1, 0) is all of E2 and hence does
not have an extreme supporting half-space. An n-dimensional conver poly-
hedral cone which contains every point of E™ is called solid.

If an n-dimensional convex polyhedral cone is not all of E™, that is, if
it is not solid, then it does have an extreme supporting hyperplane

6-11 Linear transformations of regions. Consider a linear transforma-
tion represented by the m X n matrix A which takes E™ into a subspace
of E™. Frequently, we wish to know how the transformation affects
some region in E™, that is, what image the region will assume in E™.

One of the most important properties of a linear transformation is that
it always takes lines into lines or a line into a point. It also takes hyper-



228 CONVEX SETS AND 7n~-DIMENSIONAL GEOMETRY [cHAP. 6

planes in E" into hyperplanes in E™, or a hyperplane in E” into the inter-
section of two or more hyperplanes in E™, or a hyperplane in E" into all
of E™. We have noted previously that a line in E™ is the set of points

X = NX; + (1 — )\)Xz, all )\, X # Xs. (6—76)
The set of points y = Ax for x given by (6-76) is
¥y = Mx; + (1 — NAx; = \y; 4 (1 — Nys, (6-77)

where y; = Ax,, y, = Ax,. If y; # y;, we obtain a line in E™. When
Y1 = Y2, the line in E™ is transformed into a point in E™. If A is a non-
singular nth-order matrix, y; will differ from y, (when x; # x,) so that
a nonsingular transformation takes a line in E™ into another line in E™.

To determine the effects of a linear transformation on a hyperplane
¢x = z in E™, we choose n points X, . . ., X, on the hyperplane such that
the vectors x; — X,,...,X,_; — X, are linearly independent. Then the
hyperplane is the set of all points x for which we can write

n—1

X — X, = Z Ni(x; — x). (6-78)
=1
If we set y = Ax, y; = Ax;, ¢ = 1,..., n, then the set of points in E™
which is the image of the hyperplane can be written
n—1
Y — Vo= D N(§i —Fn)- (6-79)
i=1

If m of the y; — y,. are linearly independent, the image of the hyper-
plane is all of E™. When m — 1 of the y; — y, are linearly independent,
the image of the hyperplane in E is a hyperplane in E™. If less thanm — 1
of the y; — y, are linearly independent, the image of the hyperplane
in E™ lies in the intersection of two or more hyperplanes in E™. In the
event that A is an nth-order nonsingular matrix, the transformation takes
a hyperplane in E” into another hyperplane in E*. If x = A~ ly, then
cx = z becomes cA™'y = z. This hyperplane has a normal cA~!, whereas
the original hyperplane had a normal c.

The linear transformation represented by the m X n matrix A takes a
cone in E™ into a cone in E™ because if C = {x}, then when y = Ax,
it follows that uy = uAx = A(ux), ¢ > 0, is an element of the image
of C since ux € C. Thus if .y is in the image of C, so is uy for u > 0.
Hence the image of C is alsola cone. In general, a linear transformation
takes any convex set into a convex set. (To be proved in Problem 6-18.)
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FiGUurRe 6-24 Ficure 6-25

ExampLE: Let us study what the linear transformation

=0 ]

does to the rectangular region of the x,zs-plane shown in Fig. 6-24.
Because the transformation is nonsingular, lines will be taken into lines.
Hence it is only necessary to examine what happens to the corners of the
region. Once the images of the corners have been determined, the image
of the rectangular region is found by joining the images of the corners
with straight lines. The origin goes into the origin and hence this corner

remains unchanged. Corner x = [0, 2] becomes y = [1,2], x = [1,2]

becomes y = [2, 2], and x = [1, 0] becomes y = [1,0]. Thus Fig. 6-25
shows the image of the rectangular region shown in Fig. 6—24. The region
has been sheared by the linear transformation.

All linear transformations of E™ into a subspace of E™ take the origin
of E™ into the origin of E™ since y = A0 = 0. This is equivalent to the
statement that a linear transformation will never translate a region. A
more general transformation of the form y = Ax 4+ b, b = 0, takes the
origin of E™ into the point b of E™. It performs a so-called affine trans-
formation. Affine transformations are not linear. (What is the relation
b?tween affine transformations and affine subspaces defined in Section 5-77)
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PROBLEMS

6-1. Show graphically the regions represented by the following point sets:

(a) X = {[z1, 2222 + 2% > 1};
(b) X = {[z1, z2)|z + 32% < 6};
(©) X = {[z1, z2ljz1 2 2,22 < 4.

6-2. Show graphically A N B and A U B in the following cases:

(@) A = {[z1, z2lz1 > 2}, B = {[x1, z2]|z1 < 3};

(b) A = {[z1, z2l|ef 423 < 4}, B = {[z1, z2]|z? + 22 < 1};
(¢) A = {[z1, z2lz1 = 0,22 > 0,21 < 1,22 < 1},
B = {[z1, z2)|(z1 — )2+ 2% < 1}.

6-3. Illustrate graphically A; N A2 N A3, A; U A2 U As:

A1 = {[z1, z2l|lz1 — 22 > 0},
Az = {[z1, z2]|z172 < 1},
Az = {[11,272”311 + 222 > 0}.

6—4. Show that a line in E* is a closed set.
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6-5. Give the complements of the following sets and indicate whether the
complements are open or closed sets (or neither).

(a) cx < z; (b) [x —a] < ¢
(© |x —a =¢ (d) E~

6-6. Draw the line 621 + 3z2 = 4 and a vector normal to it. Find the line
passing through (2, 2) with the same normal. Can this line be obtained from
6z1 + 3z2 = 4 by moving it parallel to itself in the direction of the normal?

6-7. Express the point (0.5, 1) as a convex combination of (2, 0), (0, %).

6-8. Let x be a point on the line joining x; and xg; if x is a fraction u of the
distance from x; to x2, write x as a convex combination of x;, x2.

6-9. Given three points x;, X2, x3 in E*, how can we quickly ascertain whether
they lie on the same line? How can we decide whether x3 lies between x1, x2?
Hint: Consider x;y — x2 and x; — x3.

6-10. Given the hyperplane 3z1 4+ 2z2 -+ 423 + 624 = 7. In which half-
space is the point x = [6, 1, 7, 2]?

6-11. Consider the hyperplane cx = 0 in E*. Prove that this hyperplane is
a subspace of dimension n — 1. Conversely, prove that any subspace of dimen-
sion n — 1 in E™is a hyperplane through the origin.

6-12. Prove that E™ and any subspace of E* are convex sets.

6-13. Is a set convex if, given any two points xi, X2 in the set, the point x =
3(x1 + x2), i.e., the point halfway between these points, is also in the set?
. Can you give a counterexample?

6-14. Which of the following sets are convex?

(a) X = {[z1, 221|323 + 222 < 6};

(b) X = {[z1, z2llz1 = 2,21 < 3};

(©) X = {[z1, z2)|z1ze < 1,71 > 0,22 > 0};

(d) X = {[z1, z2llzz — 3 > —a} 21 > 0,22 > 0].

6-15. Prove that if X3, ..., X, are convex sets, then N%_; X; is a convex
set. Is UL.1 X; convex? If not, give a counterexample.

6-16. If X3, ..., X, in Problem 6-15 are closed, prove that N?—; X is closed
also.

6-17. Sketch the convex polyhedra generated by the following sets of points:

(® 0,0), (1,0, (0,1), (1,1);
() 3,4, (5,6), (0,0), (2,2), (1,0), (2,5), (4, 7);
(C) (_‘11 2); (3! _—4)r (4; 4)) (Oy 0)’ (6; 5); (7; 1)'

6-18. Prove that a linear transformation of E* into a subspace of E™ will
take a convex set into a convex set.

6-19. Show that a nonsingular linear transformation takes an extreme point
of a convex set into an extreme point. Give an example illustrating that a
singular linear transformation can take an extreme point into an interior point.
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6—20. Prove that the convex polyhedron generated by a finite number of
points Xy, . . ., X, is strictly bounded if each x; is of finite length.

6-21. Prove that a closed convex set which is bounded from above has an
extreme point in every supporting hyperplane.

6-22. Prove that a strictly bounded, closed convex set has an extreme point
in every supporting hyperplane by showing that the point in the intersection of
the hyperplane and the convex set which is farthest removed from the origin is
an extreme point.

6-23. Show that any nonempty closed convex set which is bounded from below
contains at least one extreme point. If a set contains only one point, this point
will be considered an extreme point.

6-24. Prove that a strictly bounded, closed convex set with two points in any
supporting hyperplane has at least two extreme points. Hint: According to
Problem 6-22, t*, the point in the intersection of the hyperplane and the convex
sct farthest from the origin, was an extreme point. Consider the point in the
intersection farthest from t*.

6-25. Consider the intersection of the following half-spaces or hyperplanes:

aix(< = >b, i=1,...,m.

Find the set of points which is a subset of the above set and includes all its
boundary points.

6-26. Show that the boundary of the intersection of m half-spaces is connected.

6-27. Show that every point in the intersection of m hyperplanes in E™ is a
boundary point of this set and hence that the set is closed.

6-28. Prove that the intersection of m hyperplanes has no extreme points
when the variables are unrestricted in sign, unless there is only a single point in
the intersection. Hint: Let x;, X2 be any two points in the intersection. Then
X3 = X3 + A(X2 — Xj) is also in the intersection for any real A. Is x; ever an
extreme point?

6-29. What happens to the theorem of the separating hyperplanes when the
convex set is open? Is the theorem true if the set is not closed? Hint: Consider
a set which contains some but not all of its boundary points.

6-30. Given the convex set X = {[x1, z2]|z? + 22 < 1}. Find the equa-
tion for the supporting hyperplane at any boundary point (£, 5), and the equa-
tion for the supporting hyperplane at [v'2/2, v/2/2].

6-31. Prove that the convex hull of a finite number of points is a closed set.

6-32. Consider the triangle with vertices (0, 0), (2,0), (1,1). Express the
point (0.5, 0.5) as a convex combination of the extreme points. Do the same
for point (0.3, 0.2).

6-33. Show that the intersection of a finite number of closed half-spaces
(and perhaps some hyperplanes) can have only a finite number of extreme
points in E». Prove that if the number m of half-spaces is less than n, there is
no extreme point at all.

6-34. Prove that the set of solutions to Ax = b is a convex set by showing
that if x;, x2 are solutions, so is Ax; + (1 — AM)xz, 0 < A < 1. Demonstrate
by the same method that the set of solutions with x > 0 is a convex set.
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6-35. Prove that a strictly bounded intersection of m closed half-spaces is
a convex polyhedron. Hint: It is only necessary to show that there are a finite
number of extreme points.

6-36. What difficulties would be involved in solving a linear programming
problem if the constraints were open (i.e., have a “>” or “<” sign) rather than
closed half-spaces. Would the absolute maximum or minimum actually be
taken on by a point in the set of feasible solutions?

6-37. Sketch the half-lines generated by the points a1 = [2, 1], a2z = {1, 3],
az = [—1,2]. Sketch the cone C which is the sum of these three half-lines.
Sketch C+, ¢~ CL.

6-38. If C1, C2 are cones and C; C Cq, prove that C C Cf.

6-39. If C1, C2 are cones, prove that (C1+ C2)* = Cf N CF. Generalize
this result and show that

Hint: If uy € C1, uz € C2, then any vector v satisfying v/(u; + uz) > 0 must
also satisfy v'u1 > 0, v'uz > 0, and hence (C1 + C2)* C Cf N Cf.

6-40. Let Ci, 7 = 1,..., m be cones. Show thatC = }_7, C; is'also a cone.
If the C; are convex cones, show that C is also convex.

6-41. Prove that C + C~ is the intersection of all subspaces containing the
convex cone C, that is, C 4 C~ is the smallest subspace containing C. Is this
true if C is not convex? Can you supply a counterexample? .

6-42. Sketch the convex polyhedral cone generated by the points (1, 0, 0),
(1,1,1),(0,1,0).

6-43. Prove that the intersection of an n-dimensional convex polyhedral cone

C (generated by ai, ..., a,) in E™ with an extreme supporting hyperplane is a
polyhedral cone F of dimension n — 1. Prove that F is the polyhedral cone
generated by the points from the set ay, . . ., a, lying on the extreme supporting
hyperplane.

6-44. Prove that the intersection of £ hyperplanes ¢'x = 0 in E” (the cf are
linearly independent) is a subspace of dimension » — k. Show that any sub-
space of dimension n — k can be represented as the intersection of k& hyper-
planes. Is this representation unique? Hint: Review Section 5-6.

6-45. The lineality of a cone C is the dimension of the subspace which is
the convex hull of all subspaces in C; hence it is the dimension of the smallest
subspace containing all the subspaces in C. This space is the lineality space of C.
Prove that if C is convex, the lineality space of C is contained in C. A convex
cone with zero lineality is called pointed. Illustrate this geometrically.

6-46. Show that the non-negative orthant of E" is a convex polyhedral cone.

6-47. Prove: If a convex polyhedral cone C in E* contains no vector x < 0,
then C'* contains a vector y > 0, y > 0. Hint: If P is the non-negative orthant,
then C + P does not contain P~ and therefore ¢ + P is not all of E*. Conse-
quently, there is a vector w £ 0 in (C4- P)*. But (C+ P)* = C+n P+,
and P+ = P, since ey, ..., e, are in P; if wu > O for each u € P, then each
component of w is non-negative.
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6-48. Referring to Problem 647, consider the hyperplane yx = 0. Show that
C is contained in yx > 0 and P~ in yx < 0. Thus the hyperplane yx = 0
separates C and P—.

6-49. If A is an n X r matrix, show that the following sentence is a state-
ment of Problem 6-47 in matrix language: If Ax > 0 for all x > 0, then there
exists w > 0 in £” such that w/A > 0.

6-50. Given an n X r matrix A, demonstrate that there exists either a vector
x>0, 2% 2; = 1, such that Ax < 0, or a vector w > 0, >_.%_; w; = 1, such
that w'/A > 0. Prove the result by showing that such an x exists if 0 is in the
convex polyhedron spanned by the columns of A and the unit vectors. If 0 is
not in the convex polyhedron, demonstrate, by means of the theorem on separat-
ing hyperplanes, that there is a hyperplane through 0 such that each point
of the convex polyhedron is in one open half-space. Show that w is thus a normal
to this hyperplane. Can this problem be solved immediately using the results of
Problem 6-49? (Von Neumann and Morgenstern call this the theorem of
alternatives for matrices.)

6-51. Show that the two alternatives mentioned in Problem 6-50 are mutually
exclusive, that is, vectors X, w cannot both exist. Hint: Assume x and w exist
and consider w'Ax.

6-52. Prove that a convex polyhedral cone is a closed set.

6-53. Interpret the solutions to Ax = b, with A being an m X n matrix, as
the intersection of m hyperplanes in E*. What is the geometrical interpretation
of inconsistent equations? What is the geometrical interpretation of redundant
equations?

6-54. Consider the convex set of solutions to Ax = b, x > 0, that is, the set
of non-negative solutions to Ax = b. Show that every extreme point of the con-
vex set is a basic solution to Ax = b with x5 > 0. Also show that every basic
solution to Ax = b with xp > 0 is an extreme point of the convex set. Hint:
Let x = [x5, 0] > O be a non-negative basic solution to Ax = b. Do there exist
any other non-negative solutions xi, Xz such that x = Ax; + (1 — N)xz,
0 < A < 1? Consider the last » — m components of this relation. To show
that an extreme point is a basic non-negative solution, let x* be an extreme point.
Now show that the columns of A associated with positive variables are linearly
independent. To do this assume that the positive variables appear in the first k
components of x*. Next assume that 2_%_; A\;ja, = 0 and at least one A\; > 0.
Let N be the n-component vector [A1,..., A 0,...,0]. Choose an € so small
that x; = x* 4+ eA > 0 and x2 = x* — eA > 0. How is this done? Then
x* = i(x; + x2).

6-55. Show that the general linear programming problem, as defined by
Eqgs. (1-12), (1-13), can be converted into an equivalent linear programming
problem Ax = b, x > 0, max or min z = cx, where “equivalent” means that
both problems have the same set of optimal solutions. Note that in the new
form the constraints are a set of simultaneous linear equations. Hint: For any
inequality in Eq. (1-13) of the form > 51 aijz; < b;, define a new non-negative
variable z,4: (called a slack variable) by z,4: = b; — 2_7—1 aijz;, What is
the physical interpretation of a slack variable? For any inequality in Eq. (1-13)
of the form 251 aijz; > b;, define a new non-negative variable z,4; (called a
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surplus variable) by Z,4; = X %=1 aijz; — b;. What is the physical interpreta-
tion of a surplus variable? What prices should be assigned to slack and surplus
variables?

6-56. Show that if the linear programming problem Ax = b, x > 0, max
z = cx has an optimal solution, then at least one of the basic feasible solutions
will be optimal.



CHAPTER 7

CHARACTERISTIC VALUE PROBLEMS
AND QUADRATIC FORMS*

“Stftings on siftings in oblivion,
T+l change hath broken down
All things . ..”"

Ezra Pound-Hugh Selwyn Mauberley.

7-1 Characteristic value problems. A problem which arises frequently
in applications of linear algebra is that of finding values of a scalar pa-
rameter A for which there exist vectors x # 0 satisfying

Ax = )x, (7-1)

where A is a given nth-order matrix. Such a problem is called a character-
istic value (eigenvalue, or proper value) problem. If x # 0 satisfies (7-1)
for a given A, then A operating on x yields a vector which is a scalar multi-
ple of x.

Clearly, x = 0 is one solution of (7-1) for any A; however, this trivial
solution is not of interest. We are looking for vectors x » 0 which satisfy
(7-1). Now (7-1) can be written

Ax = )\Ix,
or
(A —ADx = 0. (7-2)

If we choose a given A, then any x which satisfies (7-1) must satisfy the set
of n homogeneous linear equations in #n unknowns (7-2). There will be
a solution x # 0 to (7-2) if and only if

A — | = 0, (7-3)
that is, if and only if
11 — N @12 GQin
as: Gzg — N-:*  G2p —0 (74)
a;tl Gnz  *°* Qan - A

* This chapter is based on the assumption that the reader has studied Sec-
tions 2-11, 2-12, and Section 3-16 or Problem 4-18.
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Obviously, this determinant is a polynomial in A. The highest-order term
in A comes from the product of the diagonal elements. Thus (—\)" is
the highest-order term and |A — Al| is an nth-degree polynomial. We
can write

fO) = A — M| = (=N" + bac1 (=071 + -+ - + bi(—=N) + bo.
(7-5)

Equation (7-4) is called the characteristic, or secular, equation® for the matrix
A, and f()) is called the characteristic polynomial for A.

From the fundamental theorem of algebra we know that the nth-de-
gree equation f(A) = 0 has n roots. Not all these roots need to be different,
but if a root is counted a number of times equal to its multiplicity, there
are n roots, which may be either real or complex numbers. It follows
that there cannot be more than n different values of A for which
|[A — M| = 0. For values of A different from the roots of f(A\) = 0,
the only solution to (7-1) is x = 0. If A is set equal to one of the roots
A;, then |JA — M| = 0, and there is at least one x > 0 which satisfies
(7-1). The maximum number of linearly independent vectors x which
satisfy (7-1) when A = A, will be the nullity of A — NI. The roots of the
characteristic equation, which will be denoted by N\, ¢ = 1,...,n, are
called the characteristic values, eigenvalues, proper values, or latent roots of
the matriz A. The vectors X = 0 which satisfy (7-1) are called characteristic
vectors or eigenvectors of the matrix A.

We can write the polynomial f(A) in factored form, using the roots of
f(\) = 0, that is,

fO) = A — N2 =N -+ — ). (7-6)

Comparison of (7-6) and (7-5) yields the well-known relations between
the roots and coefficients of a polynomial (see Problem 7-1 for details):

baci = 2 A= M+tA+ -+

t=1
Baz = D AN = MAg+ - Mda o+ Aadg o Aaha
i>i
+ - Mida, (7-7
boyr = Z LV VD ¥ (each term is a product of r of the A;),
k> >i>d

bo = MA2Az- - M.

* The name “secular equation” arose because Eq. (7-4) appears in the theory
of secular perturbations in astronomy.
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There are also relations between the b; and the elements of A; in par-
ticular, if we set A = 0 in (7-5), we see that by = |A|. The derivation of
the other b; in terms of the a;; is to be supplied in Problem 7-2.

To obtain numerical values for the eigenvalues of A, it is necessary to
solve the characteristic equation f(A\) = 0. This can be a difficult under-
taking, especially if the equation is of high degree (say 3 or higher). In
fact, a great deal of work is involved even in computing the coefficients
b; of f(\) [see Eq. (7-5)] from the a;; of A. We shall not concentrate on
numerical methods for finding the eigenvalues of a matrix; instead we shall
emphasize the theoretical development of the subject.

Exampre: The characteristic polynomial for a second-order matrix
A = |lasl is
a;; — A a
oy = ™ 12 = (a11 — N(@22 — N) — @1209;
az; az2 — A

= (—N? + (@11 + 622)(—N) + a11a22 — 61202,
= (—N)2 + by(—N) + bo;

hence

by = a1y + @23,  bo = 11022 — ay0az; = |A|.
The two roots of f(A) = 0 are

A = 3{(a11 + a22) = [(a11 + az2)® — 4[A[]V2}.
If Ay, N2 denote these roots, then

MA2 = |A] = by, A1 + A2 = a1 + a2 = by.

For most characteristic value problems of physical interest which have
matrices A whose elements are real numbers, it turns out that A is also a
symmetric matrix. The theory of eigenvalue problems involving sym-
metric matrices A is thus very important. Interestingly enough, the
theory is much simpler in this case than in that of a nonsymmetric matrix
A. However, prior to discussing topics related to characteristic value
problems for symmetric matrices, we shall introduce the notion of the
similarity of matrices, which will be needed in the following sections.

7-2 Similarity. Suppose that x is an eigenvector of A corresponding to
the eigenvalue A and that P is an nth-order nonsingular matrix. Then
the vector y = Px will not, in general, be an eigenvector of A correspond-
ing to the eigenvalue A since on multiplying the left-hand side of (7-1)
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by P, we obtain
PAx = \Px, (7-8)

which is not the same as APx = APx. However, x = P~'Px. Substitut-
ing this into (7-8), we obtain

PAP 1Px = \Px, (7-9)
or
PAP ly = ay.

Thus y is an eigenvector of the matrix PAP™!, corresponding to the
eigenvalue \. We have shown that if A is an eigenvalue of A, then X is
also an eigenvalue of PAP™! for any nth-order nonsingular matrix P. If
B = PAP~!, then A = P7'BP, and x = P~'y. This demonstrates that
any eigenvalue of B must also be an eigenvalue of A. Hence the matrices
A, B have identical sets of eigenvalues and are called similar matrices.

SiMiLARITY: If there exists a nonsingular matriz P such that B = PAP™!,
the square mairices A and B are said to be similar.

If B = PAP™!, we say that B is obtained by a similarity transformation*
on A. A similarity transformation is a special case of an equivalence trans-
formation, defined in Section 4-6. If B is similar to A, B is also equivalent
to A.

Since similar matrices have the same set of eigenvalues and the char-
acteristic polynomial of a matrix can be written in the form (7-6), it fol-
lows that similar matrices have the same characteristic polynomial, that
is, for any value of A, f4(A\) = fa(\), where f4(A) and fp(2) are the char-
acteristic polynomials for A, B, respectively.

7-3 Characteristic value problems for symmetric matrices. In general,
the eigenvalues of a matrix A need not be real numbers—they may be
complex.f We have been assuming that the elements of A are real num-
bers. It does not follow that the roots of (7—4) will be real numbers since
the roots of a polynomial equation with real coefficients may be complex.

* Note that if B = PAP—1, then B = R—IAR, where R = P~1. Thus
either PAP-! or P—1AP represents a similarity transformation on A. We shall
call B similar to A if B = PAP~! for some P or B = R~!AR for some R. The
definitions are equivalent since the substitution R = P—1 converts one form
into the other.

1 If an eigenvalue is complex, the components of any eigenvector correspond-
ing to this eigenvalue cannot all be real. The reader should note that everything
that was stated in Sections 7-1 and 7-2 is still true since the general theory
developed in Chapters 2 through 5 also applies to matrices with complex elements.



240 CHARACTERISTIC VALUES; QUADRATIC FORMS [cHaP. 7

However, if A in (7-1) is a symmetric matriz, then we can easily show that
the etgenvalues of A are real.

To carry out the proof, it is necessary to use several simple properties
of complex numbers. (We suggest that the reader refresh his memory by
examining the problems on complex numbers at the end of Chapters 2
and 3.) Assume that X is a real or complex eigenvalue of the symmetric
matrix A. Then there will be at least one eigenvector (which may have
complex components) such that

Ax = \x. (7-10)

Taking the complex conjugate of (7-10) and recalling that the elements
of A are real, we obtain

Ax* = M*x*, (7-11)

where * denotes the complex conjugate, and x* = [z}, ..., z}]. Multi-
plying (7-10) by (x*)’, (7-11) by x’, and subtracting, we have

(x*)’Ax — xX’Ax* = (A — A¥)x'x¥ (7-12)

since (x*)'x = x’x*. Recall that A’ = A. Furthermore, x’Ax* is a num-
ber, and the transpose of a number (matrix of a single element) is itself
the number. Thus

rAx* = (XAx*) = (x*)Ax.

In addition, x'x* = Y}, z;z} is real and positive since x ¢ 0. Con-
sequently, A\ = A\* and Aisreal; thatis, if A\ = a + b, then \* = a — b3,
and A = A* implies b = 0.

Each eigenvalue of a symmetric matrix is real; hence the components
of the eigenvectors will also be real because a set of homogeneous linear
equations with real coefficients yields solutions x whose components are
real. It is interesting to note that we did not have to use the character-
istic equation in order to prove that its roots were real.

When A is symmelric, another important result follows: The etgenvectors
corresponding to different eigenvalues are orthogonal; i.e., if x; is an eigen-
vector corresponding to eigenvalue A;, and x; is an eigenvector correspond-
ing to eigenvalue Aj (A\; # \;), then x;x; = 0. To prove this, we observe
first that, by assumption,

Ax,- = A\X; and AXj = ijj.
Thus
X'J'AX,' = )\ix’,-xi and fox,- = )\,-xjxi. (7—13)
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Subtracting and noting that x}Ax; = x{Ax;, we have

i — N)xx; = 0, (7-14)
or
xx; = 0, since A; 3 Aj.

If x > 0 is an eigenvector of A, then any scalar multiple of x is also
an eigenvector of A, corresponding to the same eigenvalue. In general,
the length of an eigenvector is not of interest. For convenience, we shall
always assume that the eigenvectors of a symmetric matrix are of unit
length; they will be denoted by u;. When the eigenvectors are of unit
length, they are said to have been normalized. A set of two or more
" normalized eigenvectors u; corresponding to different eigenvalues of A
satisfies the equation u;u; = 8;;. Any set of vectors satisfying such an
equation is said to be orthonormal.

Exampre: Find the eigenvalues and eigenvectors of
A= [ 2 V2],
V2 1

The characteristic equation is

2—)\\/5__2

A — N| = =2 — 3\ =0,
V2 1—2

whence the eigenvalues are
)\1 = 0, X2 = 3

To determine the eigenvectors corresponding to \;, we must solve the set
of homogeneous equations (A — AI)x = 0. Let us take Ay = 0O first;
then the set of equations becomes
2z, + V2, = 0,
V2, + 12=0,

or

Ty = — —— 3.

V2

If we wish to find an eigenvector of unit length, we must require that
z2 + 23 = 1. Thus (3/2)z3 = 1; choosing the positive square root, we
obtain

x Jé’ x _1
2 = - 1 = — ’
3 V3
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and the eigenvector of unit length corresponding to A, is

u; = [ 1 3 2]
===, /%]
V3 N3
Note that u; is not completely specified by the requirement of Juy| = 1.

The vector —u,; is also an eigenvector of length 1. However, u; and
—u; are not linearly independent. Only one linearly independent eigen-
vector corresponds to A;.

For Ay = 3, the set of equations becomes

—x1+\/§x2=0, '\/5131—2]32:0,
ry = \/5:1:2.

If 23 + 22 = 1, then 3z2 = 1; taking the positive square root, we have

or

To = —=—» Xy = 57

and

Again, there is only one linearly independent eigenvector which corre-
sponds to Ao. It can be easily checked that uju; = 0, in agreement with
the theory.

7-4 Additional properties of the eigenvectors of a symmetric matrix.
Suppose that all the eigenvalues of an nth-order symmetric matrix are
different. Then there exists a set of n vectors u; (one for each eigen-
value A;) such that

wu; = b (allz,j = 1,...,n), (7-15)

where §;; is the Kronecker delta. This follows because eigenvectors
corresponding to different eigenvalues are orthogonal. Thus the
u; (1 = 1,...,n) form an orthonormal basis for E*. Hence, when the
eigenvalues are all different, no more than one linearly independent eigen-
vector can correspond to a given eigenvalue. If there were two linearly

independent eigenvectors corresponding to a given eigenvalue, both would

have to be orthogonal to » — 1 orthonormal eigenvectors belonging to
the other eigenvalues. However, we know from Section 2-11 that if two
nonzero vectors from E® are orthogonal to an orthonormal set of n — 1
vectors, then one is a scalar multiple of the other, and they are not linearly
independent. Thus a contradiction is obtained.
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Let us now consider the case where the eigenvalues of A are not all dis-
tinect. We shall show: (1) If an eigenvalue A; of the nth-order symmetric
matrix A has multiplicity k¥ > 2, there exist k orthonormal (and linearly
independent) eigenvectors with eigenvalue A;. In fact, there exist an
infinite number of sets of k orthonormal eigenvectors corresponding to
Aj. (2) There cannot be more than k linearly independent eigenvectors
with the same eigenvalue \;; hence, if an eigenvalue has multiplicity k, the
eigenvectors with eigenvalue A\; span a subspace of E” of dimension k.
Then if the sets of eigenvectors corresponding to all the different eigen-
values are combined, it is possible to obtain an orthonormal basis for E™.

To prove that there exist k linearly independent eigenvectors corre-
sponding to an eigenvalue A; of multiplicity &, we must show that the
nullity of A — A, is greater than, or equal to, k. To do this, we begin by
noting that there will be at least one eigenvector with eigenvalue )
say uj. From Section 2-11 we know that there exist n — 1 vectors
Vi, ..., Va_; such that the set uj, vy, ..., v,_; is an orthonormal basis
for E*. Consider the matrix

Q1= (U, vy, ..., Vao1); (7-16)
then

AQ; = (Auj, Avy,...,Av,_;) = (A\juj, Avy, ..., Av,_,), (7-17) _
and
Aj wAv, .- ujAv,_,

Ajviu; viAv; --- ViAv,_,

1AQ; = (7-18)

AjVn_1Uj Vo_1AVy - -V 1AV,
However,
viu; =0 ¢t=1...,n—1)
and
u/Av; = (W/Av,))’' = viAu; = \jviu; =0 G=1,...,n—1).
Therefore, if
aiy = VAV, (Gs=1,...,n—1) and a = |eaill,

then

A, = QiAQ, =[*" °], (7-19)
0 «

and « is a symmetric matrix of order n — 1.
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Now observe that
Q=1 o Qr'=Qy (7-20)
that is, the inverse of Q, is equal to its transpose. Hence A, is similar to
A, and A;, A have the same set of eigenvalues. From (7-19)
|Ar — M| = (\j — N]ee — A,_,]. (7-21)

Thus if A; is an eigenvalue of A with multiplicity ¥ > 2, it must be true
that |« — A;I,_;| = 0. Hence all minors of

A, — AL = [0 0 (7-22)
0 a— )\jIn—‘l

of order n — 1 vanish, and the nullity of A; — A1 is > 2. Since
r(A — \I) = r(A, — M), the nullity of A — A1 is > 2. Consequently,
there exists an eigenvector @; of A with eigenvalue A\; which is linearly
independent of, and orthogonal to, u;.

If the multiplicity ¥ = 2, our development is completed. If k& > 3, the

above procedure is repeated: There exist n — 2 vectors ¥y, ..., ¥,_» such
that u;, 4, ¥;,...,%,_2 is an orthonormal basis for E*. If Q, =
(uj, 45, V1, ..., ¥p_g), then
7= Q5 (7-23)
and
A 00O
A =Q%AQ2= 10 X; 0> (7-24)
0 0 B
where 8 = [|¥{A¥,|| is a symmetric matrix of order n — 2. Then

A2 — M| = (A\; — N)?|B — M,_3|, and since k > 3, [8 — A\I,_3] = 0,
and all minors of A; — A of order n — 2 vanish. Hence the nullity of
A — )\jlis >3, and there exists an eigenvector with eigenvalue A; which
is orthogonal to uj, i;. In this way one shows that if the multiplicity of
A;j is k, there exist at least k orthonormal eigenvectors with eigenvalue \;.

Now it is also true that there cannot be more than k orthonormal
eigenvectors with eigenvalue A; if A\; has multiplicity k. This follows be-
cause each eigenvector corresponding to \; is orthogonal to every other
eigenvector corresponding to an eigenvalue different from A;. The fore-
going results have shown that if we sum over all different eigenvalues, we
obtain an orthonormal set containing at least n vectors. However, there
cannot be more than 7 orthonormal vectors in E”, and hence the eigen-
vectors of an eigenvalue of multiplicity k span a k-dimensional subspace
of E™,
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In summary, we have proved:

(1) The eigenvectors of an nth-order symmetric matrix A span E".

(2) There exists at least one orthonormal set of eigenvectors of A which
span E™.

(3) If an eigenvalue A; has multiplicity k, there will be exactly k
eigenvectors with eigenvalue A; in any set of n orthonormal eigenvectors
of A.

(4) If an eigenvalue A\; has multiplicity k, the eigenvectors correspond-
ing to \; span a subspace of E®, of dimension k.

(5) If one or more eigenvalues have multiplicity k > 2, there will be
an infinite number of different sets of orthonormal eigenvectors of A
which span E", corresponding to the different ways of selecting ortho-
normal sets to span the subspaces with dimension & > 2.

ExampLE: Find a set of three orthonormal eigenvectors for the sym-
metric matrix

0
4

>
I
o o w

0
V3
V3 6

The characteristic polynomial is
) = 3 = N[ — N6 — N — 3l = (3 — NA* — 10 +21),
and the eigenvalues are
A= 3 (twice), 7.

The eigenvalue 3 has multiplicity 2. Write A\; = 7, Ao = 3.
There will be only one linearly independent eigenvector with eigen-
value 7; it is a solution to (A — 7I)x = 0, that is,

—4101 = 0,
—3z2 + \/§x3 = 0,
\/§x2 — x3 = 0,
whence
1
ry = 0, T = % x3.

If Y22 = 1, then (4/3)z% = 1; choosing the positive square root, we
obtain

3 1
x3=—2—! $2=§'
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Thus

1 3
=[]

is an eigenvector of unit length with eigenvalue 7. The only other eigen-
vector of unit length with eigenvalue 7 is —u;.

Since Ay = 3 has multiplicity 2, there should be two orthonormal eigen-
vectors with eigenvalue A;. In fact, there should exist an infinite number
of sets of two orthonormal eigenvectors with eigenvalue 3. Any eigenvec-
tor corresponding to A; must satisfy the set of equations (A — 3I)x = 0,
that is,

z2 + V3z3 = 0, V32 + 313 = 0,
or
Ty = —V3uz3, z; arbitrary. (7-25)

If 327 = 1, then 22 4 423 = 1.
Let us choose r; = 0: Then, taking the positive square root, we obtain

hence

31
“2=[°’—%’§]

-

is an eigenvector with eigenvalue Aj.
We now wish to find another eigenvector with eigenvalue A; which is
orthogonal to us. We can do this by annexing

utx = — ? Zs + lxg =0 (7-26)
2
to the above set of equations. This procedure will automatically ensure
that the new solution is orthogonal to us. Equation (7-26) requires that
22 = (1/4/3)xs which, together with (7-25), implies that z, = z3 = 0.
However, we want Y 22 = 1, and thus z; = 1. Selecting the positive
value, we see that
i = [1,0,0]

is an eigenvector with eigenvalue A, which is orthogonal to uz. Note that
both u, and i, are automatically orthogonal to u;; hence u,, us, G2 form
an orthonormal basis for E3 (illustrate geometrially).
It is easy to find a different set of orthonormal eigenvectors for A
which span E™. If we set z; = % in (7-25), then
V3 3

T3 = 1 ’ :c2=——z;
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and
1 343
uat = [é’ ‘z’%]
is an eigenvector with eigenvalue A,. Now we annex
’ 1 3 3 ;
U2*X = '2-:51 —_ sz + 1/4-: T3 = 0 (7‘27)

to (7-25) in order to obtain another eigenvector orthogonal to ugs. Sub-
stituting £, = —+/3 z3 into (7-27), we obtain

%311 + \/5.’1?3 =0 or Ty = —2\/§x3.

Since >#? = 1, 1622 = 1; choosing the positive square root, we obtain

1
x3=z, .’L‘2='—4: x1=——2,

whence

is an eigenvector with eigenvalue A, which is orthogonal to ug«; thus the
set u;, Uos, G2+ is an orthonormal basis (different from u,, u,, G,) for E™.

7-5 Diagonalization of symmetric matrices. Let the n eigenvalues of
the nth-order symmetric matrix A be Ay, . .., A,. In this listing, an eigen-
value is repeated a number of times equal to its multiplicity. Thus if one
eigenvalue has multiplicity &, there will be & eigenvalues A; with the same
numerical value. In the last section, we saw that each \; has a correspond-
ing eigenvector u; such that the set uy, . . ., u, is an orthonormal basis for
E". There is at least one such set of u;, and there may be an infinite num-
ber of different sets. Since these eigenvectors u; are orthonormal,

uwiu; = &;  (alld,j). (7-28)

Next, let us consider the matrix Q = (uy, ..., u,) whose columns
are an orthonormal set of eigenvectors for A. Matrix Q has the following
property:

Q'Q = |l = [|3;]| = 1, (7-29)

Qe '=120, (7-30)

i.e., the inverse of Q is the transpose of Q.

whence

ORTHOGONAL MATRIX: A mairiz Q is called orthogonal if its inverse is
its transpose, that is, Q™! = Q’.
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Now
Q'AQ = [[wiAuy|| = [Nwiyl| = |IN; 84 (7-31)

Thus Q’AQ is a diagonal matrix whose diagonal elements are the eigen-
values of A. If we write
D = []A; 8;l, (7-32)
then
Q7'AQ = Q'AQ =D, (7-33)

and A is similar to D. We say that D is obtained by performing an ortho-
gonal similarity transformation on A, and that the similarity transforma-
tion diagonalizes A.

We have just proved the important result that any symmetric matriz
A can be diagonalized by an orthogonal similarity transformation. Further-
more, the matrix Q which is used to diagonalize A has as its columns an
orthonormal set of eigenvectors for A. The resulting diagonal ‘matriz has as
its diagonal elements the eigenvalues of A.

ExampLes: (1) For the matrix
a2 V2
V2 o1

Q= (u,uy) =

] (see example p. 241),

-, ﬁ]
[v2 1

Q,AQ=1[—1 \@][2 \/5}'—1 \/i]
3lvg 1 ]lve 1llve 1

i R PN
3Ive 1 ]lo 3 0 3 0 X

(2) For the symmetric matrix

&=

and

3 0 0
A=|0 4 V3 (see example p. 245),
0 V3 6
0 0 1
1 3
Q=(u1;u2;ﬁ2)= 'Q _‘§ 0],
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1 V3]0 I ]

(0 3 o f[3 0 o 0 0 1

V3 1 1 V3

A — —_ = —_ e e

QAQ = |0 5 204»/52 5 0

V3 1

L1 0 0__0\/5 6—_—2— 3 o_
[7 0 0
=10 3 0
0 0 3

We leave it for the reader to show that a.similarity transformation involv-
ing the matrix Q; = (uy, usy, fio+) also diagonalizes A.

7-6 Characteristic value problems for nonsymmetric matrices. We
shall not discuss in any great detail the theory of characteristic value prob-
lems for nonsymmetric matrices. The theory for nonsymmetric matrices
is not nearly so simple as that for symmetric matrices. Let us first list the
main points of difference between eigenvalue problems of symmetric and
nonsymmetric matrices. If the nth-order matrix is not symmetric, then:

(1) It is not necessarily true that all the eigenvalues of A are real.

(2) It isnot necessarily true that eigenvectors corresponding to different
eigenvalues are orthogonal.

(3) Even if all eigenvalues are real, the eigenvectors of A may not
span E™.

(4) If eigenvalue A; has multiplicity k, the nullity of A — A is not
necessarily k.

(5) There may not exist any similarity transformation which diagonal-
izes A.

Some of the problems will deal with these differences between symmetric
and nonsymmetric matrices.

Although eigenvectors corresponding to different eigenvalues of a non-
symmetric matriz need not be orthogonal, they are linearly independent. In
fact, any set of etgenvectors for the square matriz A, no two of which corre-
spond to the same eigenvalue, is linearly independent.* The proof is made
by assuming that such a set is linearly dependent and by obtaining a
contradiction. Let x4, ..., X, be a set of eigenvectors for A such that x;
has eigenvalue Aj;, and no two A; are equal. Suppose that the set of x; is
linearly dependent, and that the matrix X = (x;,..., X,) hasrank r < s.

* It should be noted that this proof and the next are valid even if the eigen-
values are complex.
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Number the eigenvectors so that Xy, ..., X, are linearly independent.
Any x; (j =r+ 1,...,s) can be written
r
X; = Z aX;, (7-34)
i=1

and at least one a; = O since x; # 0. Then

r

ij = Z aiAxiy
=1
or
AX = D, ahiXi (7-35)
T=1

Maultiply (7-34) by \; and subtract the result from (7-35) to obtain

0= 2 a;(N; — Nj)X;. (7-36)

=1

However, A\; — A; ¥ 0 for j =r 4 1,...,s, and at least one a; # 0.
Thus Eq. (7-36) indicates that xy, . .., X, are linearly dependent, which
contradicts our original assumption. Therefore the set x;, ..., X, cannot
be linearly dependent.

Next we shall show that if an nth-order matrix A has n linearly inde-
pendent eigenvectors, then there exists a similarity transformation which
diagonalizes A. In fact, if X = (xy, ..., X,) is a matrix whose columns are
a set of n linearly independent eigenvectors, X~'AX is a diagonal matrix
whose diagonal elements are the eigenvalues of A.

To prove this, let x; be an eigenvector with eigenvalue X; (not all \;
are necessarily different). Also write D = ||A; &;5|. Then

XD = ()\IXel, )\2X€2, . )\nXe,.) = ()\1x1, )\2X2, Loy )\,,x,,),

(7-37)
and
AX = (Axl, [ Axn) = ()\lxl, ceey ann).
Hence
AX = XD, (7-38)
or
D = X !AX.

Thus A is similar to the diagonal matrix D whose diagonal elements are
the eigenvalues of A. If A is not symmetric, the matrix X is not in general
an orthogonal matrix.
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The above result shows that if the eigenvalues of A are all different, A
can always be diagonalized by a similarity transformation. If the eigen-
values of A are not all different, A can be diagonalized if it has n linearly
independent eigenvectors. If A does not have 7 linearly independent eigen-
vectors, A cannot be diagonalized by a similarity transformation (proof?).
However, by a similarity transformation, any square matrix A can always
be converted into a matrix with the following properties:

(1) All elements below the main diagonal vanish.

(2) The elements on the main diagonal are the eigenvalues of A, and
equal eigenvalues appear in adjacent positions on the diagonal.

(3) The only elements above the main diagonal which do not vanish
are those whose column index j is equal to 7 + 1, where 7 is the row index.
Any such nonvanishing element has the value unity. However, it can
have the value unity only if the diagonal elements in positions 7 and 7 + 1
are equal. Thus a 5th-order nonsymmetric matrix with \; = A, = A,
Ay = A3, Ag # A3 could be reduced to the unique form

[\, 81 0 0 O
0 A B2 0O O
0 0 X3 0 0]
0 0 0 X\ Bs
0 0 0 0 s

L

where the value of the g; is either 0 or 1. This is called the Jordan canoni-
cal form for the matrix A. We shall not attempt to prove the existence of
a similarity transformation which will reduce a matrix to its Jordan
canonical form.

7-7 Quadratic forms. The techniques of linear algebra are often useful
in dealing with nonlinear expressions, such as, e.g., quadratic forms.

A quadratic form in n variables z;, . . ., z,, is an expression
n n
F = Z AT = a11%1%1 + G12T1%2 + © - - + G1aT1Ty

i=1 j=1
+ A23172T) + .- + Q2nT2Tn + -+ (1721 + -+ ApnTnTn

(7-39)

which is a numerical function of the n variables. Equation (7-39) de-
termines a unique value of F for any set of z;. It is called a “quadratic”
form because each term a;;r;x; contains either the square of a variable
or the product of two different variables. Quadratic forms are important
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in (1) deriving sufficient conditions for maxima and minima in analysis;
(2) quadratic programming; (3) approximating functions of n variables in
the neighborhood of some point (this technique is used in statistics, for
example, in response-surface analysis).

If we write x = [y, ..., Za), A = [laij|l, Eq. (7-39) can be expressed
in the form of

F=3 2> aip= Y a(Ax); —xAx; (7-40)
i=1

j=1 =1

i.e., if we use matrix notation, a quadratic form can be written x’Ax,
and A is said to be the matrix associated with the form.

It should be noted that a;;, aj; [Eq. (7-39)] are both coefficients of z.x;
when 7 # j (since z;x; = z;z;), that is, the coefficient of zwx; is ai; +
aj; (i # 7). If a;j # aji, we can uniquely define new coefficients

by = b =BG g, (7-41)
so that b;; + bj; = ai; + aji, and B = ||b;;|| = B’; hence B is a sym-
metric matrix. This redefinition of the coefficients does not change the
value F for any x. Thus we can always assume that the matrix A associ-
ated with the quadratic form x’Ax [Eq. (7—40)] is symmetric; if it is not,
(7-41) can be used to convert it into a symmetric matrix. Note that the
element a;; of A is the coefficient of z;z; in (7-39), so that if any a;; = 0,
the corresponding product of the variables z;z; does not appear in the
quadratic form.

ExampLEs: (1) A quadratic form in one variable is the expression ax}.
(2) The most general quadratic form in two variables is

2 2,
a1127 + 2e197122 + a2222;

in matrix form, this can be written

aip aiz{|
(1, x2) .
a2 Q22(|%2

L

associated with the quadratic form

(3) The matrix

422 + 27,23 + 4257, + 623 = 4a? + 62,22 + 623
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is not symmetric. However, without changing the value of the form, we
can write @12 = ag; = 3 and obtain the symmetric matrix

4 3|
3 6
7-8 Change of variables. It is often possible to simplify a quadratic
form x’Ax by a change of variables x = Ry or y = R™!x, where R is, of
course, a nonsingular matrix. We shall restrict ourselves to nonsingular
transformations because these alone are one-to-one transformations; that
is, a given x determines a unique y, and a given y determines a unique x.

Such transformations are invertible, and we can go from x to y or from
y to x. Substitution of x = Ry into F = x’Ax gives

F = (Ry)’ARy = y'R’ARy = y'By, (7-42)

where B = R’AR. In terms of the new variables y, the form x’Ax be-
comes y'By, and B = R’AR. Note that if A is a symmetric matrix, B
is also symmetric.

CoNGRUENCE: 4 square matrix B s said to be congruent to the square
malrix A if there exists a nonsingular matrix R such that B = R’AR.

If B is congruent to A, then we say that B can be obtained by a congruence
transformation® on A. A congruence transformation is a special case of
an equivalence transformation; i.e., if B is congruent to A, B is equivalent
to A. The matrix B of the quadratic form y’By obtained by the non-
singular transformation of the variables x = Ry in the form x’Ax is
congruent to A.

The determinant |A| is called the discriminant of the quadratic form
x’Ax. If B = R’AR is congruent to A, then the discriminant of the form
y'By is

Bl = [R'[ |A| IR] = |R|*|A[;

that is, under a nonsingular change of the variables x = Ry, the dis-
criminant of the new quadratic form assumes a magnitude of |R|? times
that of the original form. The determinant |R| is sometimes called the
modulus of the transformation x = Ry. Note that the modulus of the -
transformation y = R™x is the reciprocal of that of x = Ry since
RR™! = I, and hence [R™}| = 1/|R|.

* Note that if B = R’AR, then B = SAS’, where S = R’. Thus either
R’AR or RAR’ can be used to define congruence and a congruence transforma-
tion.
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If we allow x to vary over all of E”, then the set of values taken on by
F = x'Ax is called the range of the quadratic form. Under a nonsingular
transformation of variables, the range of a quadratic form remains unchanged.
To prove this statement, let us suppose that we have the form x’Ax and
make the change of variables x = Ry or y = R7'x to obtain the new
form y'R’ARy = y'By. Now it is only necessary to note that for any x
there is a unique y (and, similarly, for any y there is a unique x) such that

F = x’Ax = y'By. (7-43)

Hence x’Ax and y’By must have the same range. In general, this property
will not hold if the matrix R is singular. For example, if R = 0, the range
of y'By contains only the single number 0.

7-9 Definite quadratic forms. Some quadratic forms have the property
x’Ax > 0 for all x except X = 0; some are negative for all x except x = 0;
and some can assume both positive and negative values. We introduce
the following definitions:

POSITIVE DEFINITE QUADRATIC FORM: The quadratic form x’Ax s said
to be positive definite if it is positive (>0) for every X except x = 0.

POSITIVE SEMIDEFINITE QUADRATIC FORM: The quadratic form x'Ax ts
satd to be positive semidefinite if it is non-negative (>0) for every x, and
there exist points X # 0 for which X’Ax = 0.

Negative definite and semidefinite forms are defined by interchanging the
words “negative” and “positive” in the above definitions. If x’Ax is posi-
tive definite (semidefinite), then x’(—A)x is negative definite (semi-
definite).

INDEFINITE FORMS: A quadratic form x’Ax is said to be indefinite if the
form is positive for some points X and negative for others.

A symmetric matrix A is often said to be positive definite, positive semi-
definite, negative definite, etc., if the respective quadratic form x'Ax is
positive definite, positive semidefinite, negative definite, etc.

Exampres: (1) F = 322 + 523, F = 222 + 32} + 2%, F = a% are
positive definite forms in two, three, and one variable, respectively.

() F = 422 4 2} — 4zy2, + 322 = (2z; — 22)% + 32} is positive
semidefinite since it is never negative and vanishes if zo = 2z, 23 = 0.

B) F = —222 — 22, F = —22 — 22, F = —2? are negative definite
forms in two, two, and one variable, respectively.

(4) F = 42? — 322 is indefinite since it is positive when r; = 1,
z2 = 1 and negative when z; = 0, x5 = 1.
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A positive (negative) definite form remains positive (negative) definile
when expressed in terms of a new set of variables provided the transformation
of the variables is nonsingular. Thus if X’Ax is positive (negative) definite
and R is nonsingular, then yR’ARy = y’By (x = Ry) is positive (nega-
tive) definite. The proof is simple: Since we know that the range of y'By
is the same as that of x’Ax, it is only necessary to show that y = 0 is the
only y for which yYBy = 0. Now the form x’Ax = 0 only if x = 0.
However, y = R™!x and hence y = 0 is the only value of y for which
x = 0. Of course, semidefinite and indefinite forms remain semidefinite
and indefinite, respectively, under a nonsingular transformation of vari-
ables.

7-10 Diagonalization of quadratic forms. Given a quadratic form x’Ax,
let us consider the nonsingular transformation of variables x = Qy,
where the columns of matrix Q are an orthonormal set of eigenvectors
for A. The matrix Q is therefore an orthogonal matrix, and the trans-
formation of variables is called an orthogonal transformation. In terms of
the variables y, the quadratic form becomes

¥y'Q'AQy = y'Dy,

and D = ||A; §;5]| is a diagonal matrix whose diagonal elements are the
eigenvalues of A, in agreement with Section 7-5, where we showed* that -
D = Q’AQ. Thus

YDy = > Myi. (7-44)

j=1

Only the squares of the variables appear; there are no cross products
yiy; (G # ).

A quadratic form containing only the squares of the variables is said to
be in diagonal form. Furthermore, we say that the transformation of
variables x = Qy has diagonalized the quadratic form x’Ax. A quadratic
form will be in diagonal form if the matrix associated with the form is a
diagonal matrix. We have proved that by an orthogonal transformation of
variables every quadratic form x'Ax may be reduced to a diagonal form (7-44).
Furthermore, tn the transformation of variables x = Qy, the matrix Q has
as tts columns a set of orthonormal eigenvectors of A which span E™. In the
diagonal form (7-44), the coefficient of y? is the eigenvalue \; of A. It should
be noted at this point that it does not automatically follow that if a
quadratic form x’Ax has been reduced to diagonal form by a change of

* If Q is an orthogonal matrix, a similarity transformation Q 1AQ is also a
congruence transformation Q’AQ.
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variables x = Ry, the coefficients of the y? are the eigenvalues of A.
Later a transformation of variables in which R is not orthogonal will be
introduced which will diagonalize the form; however, the coefficients of
the ¢? will not, in general, be the eigenvalues of A.

If we know the eigenvalues of A, we can immediately determine whether
the form x’Ax is positive definite, indefinite, etc. We can do this because:
(a) the range of a form is unchanged under a nonsingular transformation
of variables; (b) a positive or negative definite form remains positive or
negative definite under a nonsingular transformation of variables; (c) the
transformation x = Qy discussed above reduces x’Ax to the diagonal
form (7-44).

If each eigenvalue of A is positive (negative), then the only value of y
for which (7—44) vanishes is y = 0. Hence (7—44) is positive (negative)
definite and by (b) x’Ax is positive or negative definite. Suppose that all
the eigenvalues of A are non-negative (nonpositive), but one or more of
the eigenvalues are zero, say A, = 0. Then (7—44) will always be non-
negative (nonpositive). However, if we set y; = ya = -+ - = y,_; = 0,
Eq. (7-44) vanishes for any value of y,; hence there exist y # 0 for which
(7-44) is zero. For any y # 0, there is an x = Qy # 0 such that
x’Ax = 0, and by (a) the form x’Ax is positive (negative) semidefinite.
If A has both positive and negative eigenvalues, (7-44) is indefinite and
- by (a) x’Ax is indefinite. These results show that:

(1) x’Ax s positive (negative) definite if and only if every eigenvalue of A
18 positive (negative).

(2) x’Ax s positive (negative) semidefinite if and only if all eigenvalues of
A are non-negative (nonpositive), and at least one of the eigenvalues vanishes.

(3) x’Ax ds indefinite <f and only if A has both positive and negative
eigenvalues.

ExampLi: Consider the quadratic form

F = 223 + 2/2 z125 + 2% = x'Ax; (7-45)
the symmetric matrix A is then
a2 \/ﬁ]
v2 o1

To diagonalize the form, we use the transformation of variables x = Qy,
where the columns of Q are the orthonormal eigenvectors of A. The
eigenvectors of A (Section 7-3, p. 242) are

“1“—“[—%:\/—2] and u2=[\/§,%].
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Thus
Q= 1 [-1 V2 ,
V3lve 1
and the transformation of variables is
T = % (—y1 + V2y2), Y1 = % (—z1 + V2 z5),
1 1 (7-46)
Ty = 73 (V2y1 + y2), Yo = 73 (V2 z + z9).

Note that Q—! = Q’; hence it is very easy to find the inverse transforma-
tion for an orthogonal transformation of variables. Since the eigenvalues
of A are \; = 0, A\, = 3, the form F becomes F = 3yZ under this trans-
formation of variables. The form is therefore positive semidefinite. The
point y = (2, 0] causes the form to vanish. The x corresponding to
thisyis x = [—2/4/3, 2v/], and of course, (7—45) vanishes for this vaiue
of x. It is suggested that the reader introduce the new variables into
(7-45) by direct substitution, and show that F reduces to F = 3y3.

7-11 Diagonalization by completion of the square. Another procedure
for diagonalizing quadratic forms is a generalization of the familiar tech-
nique of completing the square, learned in elementary algebra. Consider
the quadratic form in two variables

F = ay127 + 20197125 + a2973. (747)

If either a;; or ags is not zero, we can assume without loss of generality
that ay; is not zero. Then (7-47) can be written

' 2 2
2 | 2a12 a1z 2 ais 2 , Q22 2
F=a11[x1+——x1x2+(——— 2z —\-—/—) 22+ — =2
a1i a11

a11 a1

2 2
as azz a2 2
= —= =2 — == . 7-48
11 I(xl t ax :52> + [011 (au) ]ml ( )
If we introduce the transformation of variables,

ay2
%12 P
Y1 1 + a1 T2 or y = Sx = [ aXI:| X, (7—49)
0

Y2

T2,

(7-48) becomes

2
F = auyi+ [022 — gﬁ] 3, (7-50)
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and the form (7—47) has been diagonalized. The transformation of vari-
ables is nonsingular (|S| = 1), but it is not orthogonal. The coefficients
of 42, y2 in (7-50) are not, in general, the eigenvalues of A.

In the event that a;;, ass both vanish, the above procedure will not
work. When a;; = ajs = 0, (7—47) becomes

F = 20,121?1272. (7"‘51)

Now make the transformation

n=y1tys . |1 ly.
T2 = Y1 — Yo 1 —1

This is a nonsingular transformation which reduces (7-51) to

F = 2a15(y} — v3).

Hence in this case also the form has been diagonalized. The procedure
just outlined can be generalized to diagonalize any quadratic form.

In the text, we shall discuss only reductions for positive definite and
negative definite forms, while the generalization to arbitrary forms will
be the subject of some of the problems. Let

F = xAx = ) a;z:; (7-52)

KY)
be a positive definite quadratic form. The terms in (7-52) involving z;
are
a1123 + 22122122 + -+ + 28122 1%n. (7-53)

Since the form is positive definite, it must be positive when z, =
Tg = +++ =2, = 0 and 2, ¥ 0. Then F = a,;2?, and a;; must be
positive. Hence (7-53) can be written

Q

2 n 2
= 011[x1+22—x1xk+<z ai’: xk) — (Z Z—i—'fn)]

k=2 k=2

o + Z Yk f:‘ awe (7-54)
1 “ll o ary *

and the following transformation of variables suggests itself:

n
Qik
vy = 21 + Z —= Iy, V2 = Ty, ..., Un = Tn, (7-55)
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or v = S;x, where
a a
| %1z O

a1 a1
Sl = ? L. (3’ and |Sl] = 1.
0O 0 ---1

Thus a nonsingular transformation of variables has reduced F to

F = aipi+ ), bipw;, (7-56)

7,5=2

and a;; > 0. Furthermore, (7-56) is positive definite.

This procedure is now repeated. Since (7-56) is positive definite,
bas > 0. We complete the square for the variable vy, define another
transformation of variables,

n
b
w; = vy, U)2=1)2+Zblk'vk, W3 = V3, ..., Wy = Uy,
i=s D22
(7-57)
or w = Syv, |S;| = 1, and obtain the form
. n
F = aywi + boowi + D ciwanj, (7-58)

4,j=3
with ay;, bae > 0. Repeating this process n — 1 times, we arrive at

F = ayy} + basy3 + cazyl + - -+ + 2any2; (7-59)

the coefficient of each y7? is positive. The last step yields two square terms,
and all cross products disappear. The nonsingular transformation y = Sx
which reduces (7-52) to (7-59) is

S = Sn_1Sa_z- -+ S:S;, (7-60)

and |S| = 1 since each |S;| = 1.

The same procedure can be used to diagonalize a negative definite form.
It should be noted that S is a triangular matrix, i.e., all elements below
the main diagonal vanish; hence S is not orthogonal. The elements a1,
bag, ete., in (7-59) are not, in general, the eigenvalues of A.

7-12 Another set of necessary and sufficient conditions for positive
and negative definite forms. Since we often wish to establish whether a
quadratic form x’Ax is positive definite without determining the eigen-
values of A, we shall now develop another set of conditions that will en-



260 CHARACTERISTIC VALUES; QUADRATIC FORMS [cHAP. 7

able us to make such a decision. If the order n of A is large, these condi-
tions are not easily applicable to practical problems, but they are useful
in theoretical work.

A set of necessary and sufficient conditions for the form x’Ax to be posttive
definite is
Q11 Q12 013
Q21 Q22 Qa23

ay; > 0; )au 012’ > 0;
) ’
azy azz 0az3

>0; ...; |[A]>0.
a1 Q22

(7-61)

If these » minors of A are positive, X’Ax is positive definite; and x’Ax is
positive definite only if these minors are positive.

To prove the necessity, assume that x’Ax is positive definite. Then
there exists a nonsingular transformation (see Section 7-11) y = Sx or
x = Ry, S = R™! with modulus unity which reduces the form to

yDy = >dg? @i>0, i=1,...,n). (7-62)

=1

However, D = R’AR, and since |[R| = 1/|S| = 1,

D] = dids - - dn = [RI?/A| = JAJ; (7-63)
thus [A] > 0.

Next we set z, = 0. The resulting form in » — 1 variables is also posi-
tive definite. The matrix of its coefficients is obtained by crossing off the
last row and column of A. If this form is diagonalized by the method
described in Section 7-11, we obtain Y 7= d;y?, where the d; are, in fact,
the same as in (7-62), the only difference being that the term d,y2 does
not appear. Thus

@1y **01,n—1

= d1d2 L dn—l > 0 (7—64)

An_1,1""°An—1,n—1

If we now set z, = z,_; = 0in the original form, then y, = y,—; = 0
in (7-62); hence

a11 crrQrn—2
= dydy---dy_s > 0. (7-65)

Qn_2,1°° " Qn_2,n—2

Continuing in this way, we see that if x’Ax is pesitive definite, Eq. (7-61)
holds.
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To prove the sufficiency, let us suppose that (7-61) holds for the form
x’Ax. We wish to show that x’Ax is positive definite. Since a;; > 0,
we can perform a nonsingular transformation x = R,;v with unit modulus,
of the type discussed in Section 7-11, and obtain

n
auvf + Z bijviv,-. (7—66)

1,j=2

To demonstrate that bee > 0, we begin by noting that the coefficients b;;
are independent of the values of the variables v; (or z;). Thus, if we set
z;=v,=0(@=3,...,n), (7-66) becomes a form in two variables
whose discriminant is a;1b2s. When the above variables are set to zero,
the original form x’Ax reduces to a form in two variables whose discrimi-

nant is
a a
’ 11 12’ > 0.
G2y Qg2

The discriminants are equal since the modulus of the transformation is
unity. Thus a,,b22 > 0, and bz > 0 since ay; > 0.

Another nonsingular transformation with unit modulus reduces the
form (7-66) to

n
anwi + beawi + Y ciwan;. (7-67)
i,j=3
Setting w; = v; = z; = 0 ({ = 4, ..., n), we can see that cs3 is positive.

Thus

a1 Q12 a3
d21 Q22 @23
@31 Qagz 0433

a11bgacss = >0,

and ¢33 > O since a;q, bos > 0. This process can be continued until we
obtain

n
Ydy? @di>0, i=1,...,n). (7-68)

=1

This form is clearly positive definite. Hence the original form is also posi-
tive definite because it may be obtained from (7-68) by a nonsingular
transformation of variables.

Equation (7-61) represents only one set of necessary and sufficient
conditions for a positive definite form. The variables do not have any
specific property that made us call z; the first variable (it could have been
z or any other variable); that is, we can renumber the variables in any
way we choose. Thus the determinants formed by permutations of the
subscripts will also serve as a set of necessary and sufficient conditions.
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In general,

Gk Qi Agk  Qkj  Oks
axx > 0; @i a'J. > 0; ajx aj; aji| > 0; ..., |Al >0,
mn ax @i Qi (7-69)
where (k,j,7...) is any permutation of the set of integers (1,2, ..., n),

represents a set of necessary and sufficient conditions ensuring that
x’Ax will be positive definite. Note that the permutation of subscripts
never affects the sign of |A| since both rows and columns of A are inter-
changed in the process. ,

The determinants in (7-61) are found from A as follows:

Q11 @12 | G13) " * O1n
o !
@21 022 | G231 G2n

]
a31 Qaz2z G331 aA3n|

__________ -

Ani QGr2 Qp3**° Qun

These determinants are called the naturally ordered principal minors of A.
A necessary and sufficient condition for the form x’Ax or the symmetric
mairiz A to be posttive definite is that the naturaily ordered principal minors
of A are all positive. It should be observed that if A is positive definite,
|A] > 0, and hence A is nonsingular.

Using the criteria for positive definite forms, we can easily derive a set
of necessary and sufficient conditions ensuring that a form x’Ax or the
symmetric matrix A will be negative definite. If x’Ax is negative definite,
then x/(—A)x is positive definite; furthermore, we recall that |—A| =
(—1)"|A|. A set of necessary and sufficient conditions for x’Ax to be
negative definite, or equivalently, for x’(—A)x to be positive definite then
follows immediately from (7-61), i.e.,

@11 a1z a13
a21 Q22 Q23
@31 azz (33

a1 a
a;; < 0; la;: a;:’ > 0; <0; ...; (—D"A] >0,

(7-70)
where the a;; are the elements of A (not —A).

ExampLE: The form 3z% + 4x,22 + 222, which can be written

(1, x2) [3 2][151]’
2 2 T2

is positive definite since
'3 2

2 2

ayy Qie
a;; = 3 > 0,

‘—_—2>0.

@21 Q22
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If we introduce the transformation of variables (see Section 7-11),

Y1 =21+ 812, y2 = 22 or 1= Y1 — §ys2, T2 = Yo,

the form becomes

31 — $y2)® + 4(y1 — Fy2)y2 + 2u3
= 3y} — dy1y: + 3 + iy — $u3 + 243
= 3y + %3

The form has been reduced to a sum of squares whose coefficients are all
positive.

7-13 Simultaneous diagonalization of two quadratic forms. The analysis
of certain problems in mechanics and economics can be considerably
simplified by introducing a nonsingular transformation of variables which
will simultaneously diagonalize two quadratic forms. In general, one of
the two forms will be positive definite (or negative definite), and for these
two cases it is indeed possible to find such a nonsingular transformation
of variables. We shall now show how this can be done.

Let F; = x’Ax be a positive definite quadratic form in n variables,
and F; = x’Bx any other quadratic form in n variables. We wish to find
a nonsingular transformation x = Ry which simultaneously diagonalizes
both forms. Let Q; be an orthogonal matrix whose columns are an ortho-
normal set of eigenvectors for A. Introducing the transformation of
variables x = Q;w, we find

Fi = wQIAQw = wDw = > \w}, (7-71)

i=1

F, = wQ BQ,w = wBw, (7-72)

where D = ||; 8;j|| (the A; being the eigenvalues of A) and B = Q}BQ;.
Since F, is positive definite, each A; > 0.

Next we introduce the nonsingular (but not orthogonal) transformation
of variables

w; = |\j|7"%; or w=Hz, where H = ||\]7V25;]. (7-73)
Then (7-71) and (7-72) become
F,=2HDHz = z'Iz = ) 2}, (7-74)
j=1

F, = zH'BHz = 2'Cz, where C = H'BH. = (7-75)
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Finally, we construct an orthogonal matrix Q; whose columns are an
orthonormal set of eigenvectors for C and introduce the transformation of
variables z = Q,y. In terms of the variables y, (7-74) and (7-75) become

Fi=yQilQay = yQiQy =yIy = >y (Q:Q2=1) (7-76)
=1
and '

Fy = yQ5CQqy = y'Dy, where D = |};5;1; (7-77)

the A; are the eigenvalues of C. Thus both forms have been diagonalized
by the nonsingular transformation of variables x = Ry, where

R = Q,HQ.. (7-78)

This transformation is not orthogonal, and hence the congruence trans-
formation which diagonalizes A, B is not a similarity transformation.
This transformation which diagonalizes both matrices reduces A to the
identity matrix, not to a matrix with the eigenvalues of A as the diagonal
elements.

If A were negative definite instead of positive definite, the same trans-
formation of variables would reduce A to —I. It is important to note why
_ a transformation which simultaneously diagonalizes both forms can always
be found only if one of the forms is positive (negative) definite. The key to
a simultaneous diagonalization is to find a congruence transformation
which will reduce A to an identity matrix. If, after introducing the trans-
formation x = Q;w, we were to perform the transformation w = Qjy,
where Q3 contained an orthonormal set of eigenvectors for B, F; may not
be in diagonal form because Q;DQ; may not be a diagonal matrix. If A
is not positive (negative) definite, we cannot make a transformation of
the type (7-73), which reduces A to the identity matrix. For example,
if A is indefinite and each \; ¥ 0, the transformation (7-73) reduces A
to a diagonal matrix G with diagonal elements =1, and with at least
one element being —1. However, Q;GQ2 may not be diagonal. If a); = 0,
we cannot make the transformation (7-73) for w;. Again, it will be im-
possible to convert A to an identity matrix; hence if the transformation
diagonalizing F is introduced, F; will not remain diagonal.

7-14 Geometric interpretation; coordinates and bases. Sections 7-14
through 7-16 will be devoted to the geometric interpretation of a number
of concepts discussed in the present chapter. We shall begin by extending
the notion of generalized coordinate systems, introduced in Chapter 2.
We noted there that any set of basis vectors for E® can be thought of as
defining a coordinate system for E*. If a,, ..., a, is a basis for E*, then
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any vector X in E™ can be written as a linear combination of the basis
vectors

X =) aja, (7-79)
Jj=1

and the «; are called the coordinates of x with respect to the coordinate
system defined by the basis vectors ay, ..., a,. If the a; are mutually
orthogonal, they define an orthogonal coordinate system.

Let us consider another basis, by, ..., b,, for E*. This basis also
defines a coordinate system for E*, and any x in E” can be written

x= Y Bb; (7-80)
i=1

where the 8; are the coordinates of x with respect to the coordinate system
defined by the basis vectors b;. Now it is possible to write any b; of the
second basis as a linear combination of a;, . . ., a,, that is,

bf = Z $ij84 (.7 =1,..., n); (7—81)
1=1
and if
A= (al,...,a,.), B = (bl,...,bn), S = ”8,']’” = (Sl,...,Sn), '

(7-82)
then
B = AS = (Asy, ..., As,). (7-83)

Equation (7-83) tells us how the two sets of basis vectors are related.
Next we wish to relate the coordinates 8; of x relative to the coordinate
system defined by the b; to the coordinates a; of the coordinate system
defined by the a;. We write
a=[aly'~'1an]; ﬂ=[gl,"'yﬁﬂ]'

Then
x = Ax = Bg; . (7-84)

using (7-83), we obtain
x = Aa = ASg,

or, since A and S are nonsingular (why?),
g = S la. (7-85)

Equation (7-85) gives the relation between the coordinates in the two
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coordinate systems, and (7-83) expresses the relation between the basis
vectors for the two systems. If we write (7-83) as

B = S'A, (7-86)

it follows that (7-86) can be obtained from (7-85) by replacing 8 by B’,
S~ !by S/, and a by A’. Because of the relation between (7-85) and (7-86)
it is often stated that the matrix giving the transformation of the coordi-
nates is the reciprocal transpose of that giving the transformation of the
basis vectors. Thus we have developed the general equations describing
the change from one coordinate system to another in £”. In terms of the
notation of Chapter 2, we would write X, = a, X, = B since « can be
thought of as the representation of x in the coordinate system defined by
the aj, etc., for 8.

Equation (7-85) suggests that for any nth-order nonsingular matrix R,
the transformation y = Rx can be imagined to relate the coordinates of a
given vector in two different coordinate systems for E*. In one coordinate
system, the vector can be represented by x (for example, in the orthogonal
coordinate system defined by the unit vectors e;), and in the other co-
ordinate system, the vector is represented by y. If A contains as columns
the basis vectors for the coordinate system where the vector is repre-
sented by x, then the matrix B whose columns are the basis vectors for
the coordinate system where the vector is represented by y is given by
B = AR™L

This interpretation of y = Rx differs from that in Section 4-1. There
we suggested that y and x could be considered to be different points in E*
referred to the same coordinate system; that is, the coordinate system re-
mains fixed but the vectors change. Thus y = Rx has a dual interpreta-
tion: It can be thought of as relating the coordinates of the same point

2 a

Fman 7-1
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(vector) in two different coordinate systems or as moving the point x
into another point y, both points being referred to the same coordinate
system. The change of coordinate interpretation is called the alias in-
terpretation, while the interpretation of having the point move else-
where is called the alib:.

ExawmrLE: The unit vectors e; = [1, 0], ez = [0, 1] define an orthogonal
coordinate system in E? with coordinates x;, ;. Any vector x can be
written x = z,e; + z2e;. The set of basis vectors a; = [1, 3, a; = [}, 2]
also defines a coordinate system for E? (see Fig. 7-1) which is not orthog-
onal since a; and a, are not orthogonal. Such a coordinate system is
often called oblique.

Let a4, as be the coordinates for x in the coordinate system defined by
a,42, that is, x = a,a; 4 a282. The matrix whose columns are e;, e, is
the identity matrix I. If A = (a,, a3), then the matrix S which relates
the two sets of basis vectors is

S=A=[1 i],
A

since A = IS = S. The matrix relating &« = [a;, a3] and x = [z;, 2]
is S71, that is, « = S~1x. Thus

N P B e
a -3 1 ||z, ay = —1kr; + ks

Consider the vector x whose representation in the system defined by
€1, €3 is x = [1, 1]. The coordinates of x in the system defined by a;, a,
are [from (7-87)] a; = 14/15, az = 4/15. Note that since a, does not have
unit length, «; is not the distance measured along the «;-axis from the
origin to the point where a line drawn through x parallel to a, intersects
the aj-axis. This distance is |e;a;| which is «;]a;|, because in our
example, «; is positive. Since |a;| = (1/2)/5, the distance" is

(14/15)[(1/2)v/3] = (7/15)V/5.

7-15 Equivalence and similarity. Let us consider a linear transforma-
tion T which maps points x in E" into points y in E™ so that y = T'(x).
The problems of Chapter 4 show that for fixed bases (i.e., given coordi-
nate systems) in E” and E™, there exists a unique m X n matrix A such
that y = Ax. The matrix A is the representation of the linear transforma-
tion T with respect to the given coordinate systems.*

* Here x, y refer not only to points in E* and E™, respectively, but also to
the representation of these points in the coordinate systems for which the
representation of T is A.
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Now, suppose that we introduce new coordinate systems into E” and
E™. Let the new coordinates, &, in E™ be related to the original ones, x,
by x = F%, and the new coordinates, §, in E™ to the original ones, y, by
y = G§. Then in terms of the new coordinates, the transformation
y = Ax becomes

Gy = AFR or § = G 'AF% = Bg, (7-88)

where B = G!AF. The matrix B is the representation of the linear
transformation 7T in the new coordinate systems and is equivalent to the
matrix A.

The preceding discussion shows that equivalent matrices can be thought
of as representing the same linear transformation in various coordinate
systems. In fact, if A represents the linear transformation T for given co-
ordinate systems in E” and E™, and if B is any other matrix equivalent to
A then there exist a coordinate system in E” and a coordinate system in
E™ such that B is the representation of T for these coordinate systems.

Next let us concentrate our attention on the special case where m = n,
so that T maps points x in E™ into points y in E”. Assume that the points
x, y are referred to the same coordinate system in E”. Then for this co-
ordinate system, there exists a unique matrix A such that y = Ax. If a
new coordinate system is introduced into E™ and the new coordinates,
8, ¥, are related to the old ones by x = S&,y = S§ (note that the same S
* appears in both equations, since both sets of vectors are referred to the
same coordinate system), then y = Ax becomes

S§ — AS§ or § = ST!AS2 = Bx. (7-89)

Thus the matrix B = S™'AS which represents T in the new coordinate
system is similar to the matrix A which represented T in the old coordinate
system. If T “looked like” A in the original coordinate system, it “looks
like” ST1AS in the new coordinate system.

Note: Similarity transformations are of frequent occurrence in physics.
Consider an anisotropic dielectric (nonconducting) material. If an electric
field is imposed on this material, there is a separation of charge, and the
material becomes polarized. The electric field f and the polarization p
are both vector quantities. Because the material is not isotropic, the direc-
tion of the polarization vector will not, in general, lie along the same line
as the electric field vector. The vector p will be related to f by an equation
of the form p = Ef, where E is a third-order symmetric matrix, called the
dielectric tensor. The matrix E depends on the coordinate system to which
the vectors p, f are referred. Suppose that p = Ef when p, f are referred
to a coordinate system with coordinates z1, z3, £3. Now a transformation
is made to a new coordinate system with coordinates y1, ¥2, ¥3, and x =
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Sy. Then in terms of this new coordinate system, the dielectric tensor is
E = STIES, and p = Ef when p, f are referred to the y-coordinate
system.

7-16 Rotation of coordinates; orthogonal transformations. Orthogonal
coordinate systems are probably used more frequently in practice than
any other type. By “rotating” such an orthogonal coordinate system it
is often possible to simplify the equations of interest. Let us study the
rotation of orthogonal coordinates in E2. Consider Fig. 7-2. Imagine
that we begin with the z,zs-coordinate system. Another y;ys-coordinate
system is obtained by rotating the z;zs-system through the angle 6, as
shown. The matrix relating the y,ys-coordinates to the z;zs-coordinates
will now be found. The vectors which define the z;xs-coordinate system
are e; = [1,0], e = [0, 1]. The orthonormal vectors defining the y;y2-
coordinate system will be denoted by €;, e2. Any vector v can be written

v = 181 + T2€2 = Y1€1 + Y2€3.

The component of z,e; along the y;-axis is z; cos §, and the com-
ponent of z,e, along the y;-axis is 25 sin 8. The sum of these components
must be y;. Hence

. Y1 = %y cos 0 + zosin 6.
Similarly,
Y2 = —x1 8in 6 + x5 cos 6.

The transformation of coordinates in matrix form can be written y = Qx,
where
Q= cos 0 sin @] (7-90)
—sin 0 cos @
The matrix Q is orthogonal since Q’Q = 1 (recall that sinZ § + cos? 6 =1).

T2
Y2

Yae€2

Figure 7-2
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The basis vectors €;, €5 for the rotated coordinate system are related
to €1, €3 by (e1, €2) = (€1, €2)Q’ because Q™' = Q’. Thus (e, €2) = Q’
or €; = [cos 0, sin 8], e = [—sin 6, cos 4].

The notion of rotating orthogonal coordinates can be generalized to E™.
First, however, we shall develop a few more properties of orthogonal
matrices: An orthogonal matrix has been defined as one whose inverse is
its transpose; that is, Q is orthogonal if Q~! = Q’. If we denote the
columns of Q by q;, then since Q’Q = I, it follows that

qiq; = 95 (7-91)

and the columns of Q form an orthonormal basis for E*. If the rows of Q
are denoted by ¢*, then since QQ’ = I,

g (¢°y = 8y, (7-92)

and the rows of Q also form an orthonormal basis for E*. Any matrix

whose columns are an orthonormal set of vectors is an orthogonal matrix,

and we have just shown that the rows therefore are also an orthonormal

set of vectors. Note that if Q is orthogonal, Q’ and Q! are also orthogonal.
From Q'Q = I, it follows that

Q= [Q1IQl=1Q*=1 or [Q =l (7-93)

The determinant of an orthogonal matrix can have only the values 1.
If Q; and Q5 are nth-order orthogonal matrices, then Q;Q is also an
orthogonal matrix since

(Q:1Q2)Q:1Q: = Q5Q1Q:Q2 = Q:IQ: = Q4Q: =1, (7-94)

and hence

(Q1Q2) 7! = (Q:1Q2)".

It will be noted that for the Q of (7-90), |Q| = 1. This Q provided the
transformation of coordinates on rotation of axes through an angle 8 in EZ.
An interesting geometrical interpretation can also be given to orthogonal
matrices with |Q] = —1. Consider the orthogonal coordinate system
defined by e;, €5, with coordinates z;, z». We introduce a transformation
of coordinates y = Qx, where

1 0
Q= :
0 —1
Q is orthogonal and |Q| = —1. Thus y; = z;, and y2 = —z3. The
new basis vectors €, €; are €; = €;, 2 = —ez. The coordinate systems
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zy

y
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0 PY 1

ye

Y2

Ficure 7-3

are shown in Fig. 7-3. We cannot obtain the new coordinate system by
rotating the coordinate system defined by ey, es; instead we reflect the
xp-axis in the origin, that is, we replace x5 by y2 = —z5. Problem 7-57 will
ask the reader to show that any second-order orthogonal matrix can be
written as (7-90) or as
Q= [1 0 ][ cos 8 sin 0]’
0 —1j|{—sinb cosé

so that if |Q| = 1, y = Qx can be interpreted as a rotation of axes, and
if |Q] = —1, y = Qx can be interpreted as a rotation plus a reflection.
The latter is sometimes referred to as an improper rotation.

Consider the transformation 8 = Qe in E™, where Q is an orthogonal
matrix. This can be interpreted as a change of coordinates. If the « are
coordinates relative to an orthonormal basis a;,...,a, then A =
(ai, ..., a,) is an orthogonal matrix. The basis vectors for the system
whose coordinates are g will be denoted by by,...,b,. Then if B =
(b1, ..., b,), B = AQ’, and B is an orthogonal matrix since the product
of orthogonal matrices is an orthogonal matrix. Thus by, ..., b, form
an orthonormal set and define an orthogonal coordinate system. In the
coordinate system defined by the a;, the length of any vector x = Y a.a;
is the square root of x'x = Y a;ajala; = Y71 o = o’a. In the coordi-
nate system defined by the b, the length x = 3°7_, 8,b; is then the square
root of X7, 82 = #’8. Thus

—_—

8= iﬂ?-ﬁ Za?= o',
J=1

j=1
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This relation also follows directly from 8 = Qe since
B8 = ¢'QQa = a'la = da. (7-95)

The above discussion suggests that any transformation 8 = Q& (Q
orthogonal) can be considered to give the transformation of coordinates
on rotation of an orthogonal coordinate system in E™. The rotation will
be either proper or improper, depending on whether |Q| = lor [Q| = —1.

We have seen that any quadratic form x’Ax can be diagonalized by a
transformation of variables x = Qy ory = Q’x, where Q is an orthogonal
matrix whose columns are an orthonormal set of eigenvectors for A.
This transformation of variables can be interpreted geometrically as a
rotation of axes. The points x may be thought of as being referred to the

orthogonal coordinate system defined by the unit vectors ey, ..., en.
The orthonormal basis vectors uy, . . ., u, which define the coordinate sys-
tem for the coordinates y are obtained from (uy,...,u,) = IQ = Q.

Hence the u; are the set of orthonormal eigenvectors for A. A set of ortho-
normal eigenvectors for A defines a coordinate system in which x’Ax is
diagonal. The u; are said to define the principal axes for the quadratic
form.
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ProBLEMS
7-1. Consider the polynomial

FO) = (=N)"+ bac1 (=N """+ - - -+ bi(—N) + bo.

By induction or by some different method, prove that

ot = DN = M+ A4+,

=1

bz = DN = Mdz+ - F MAat A2hs 4+ A2ha oA Aaciha,

>3

by = Z L) YRR ¥4 (each term a product of 7 of the \;)
E>eee>i>0

bo = MA2-c- Nacida,

where the \; are the n roots of fA) = 0.
7-2. Consider the equation

[A — M| = (—A)"+ ba1(—N)*"1 4 -+ - 4 by(—N) + bo.

By induction or some different method prove that

n
bpy = Zaii = aj1 + azz + -+ 4+ Qna,

i=1

bn—Z = Z

i>i

Qi; Q5
’
aji  Qjj

principal minors of rth order which
preserve the natural column order,

ba—r sum of n!/rl(n — r)! =

bo = |Al

7-3. Find the eigenvalues and a set of orthonormal eigenvectors for the matrix

[
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7-4. Find the eigenvalues and two different orthonormal sets of eigenvectors
for the matrix _ _
700

A=]0 30
0 0 3]
7-5. Find the eigenvalues and a set of orthonormal eigenvectors for
3 0 0]
A=|0 2 5
[0 5 4]

7-6. For the matrix of Problem 7-5, form the matrix Q whose columns are
a set of orthonormal eigenvectors for A. Show that Q’AQ is a diagonal matrix
whose diagonal elements are the eigenvalues of A.

7-7. Prove that if all eigenvalues of an nth-order symmetric matrix A are
different from zero, the rank of A is n. Prove that if 0 is an eigenvalue of A of
multiplicity &k, then 7(A) = n — k.

7-8. Show that it is impossible for any 2 X 2 symmetric matrix of the form

A=[‘“ "] ® = 0)
) b a2

to have two identical eigenvalues.

7-9. In Problem 2-18 it was shown that if we have two subspaces S;, Sy of
E» having dimensions d’, d”, respectively, and if S; N 87 = {0}, then d, the
dimension of 8+ 87, is given by d = d’ 4+ d”. Show that under these assump-
tions, any vector a in S; -+ S can be written uniquely as a = u; + uz,
u1, € 84, uz € 8. Then uy, uz are called the projections of a on the subspaces
8., 8., respectively, and S, + SY is called the direct sum of S, and 8. Illustrate
this geometrically when S is the subspace generated by [1, 2], and S;’ the sub-
space generated by [—1, 3]. What is the projection of [3, 3] on S and on Sw?

More generally, if we have k subspaces of E*, 8%, ..., 8, and S, N 87 =
{0}, where S, is any partial sum of the S, and 8/ is any partial sum of the
89 containing & set of S different from those in S, then S, = X5, 89 is
called the direct sum of the S°. This condition requires that 0 is the only vector
common to any different partial sums of the S$. In particular, this condition
requires that 89 N 8P = {0}, i # j, SO+ 8P N 8P = {0}, ¢ = j = k, ete.

Show that if a is any vector in S,, it can be written uniquely asa = Z?sl uj,
u; € 8Y; u; is called the projection of a on the subspace S. The notion of a
direct sum is a generalization of the basis concept. Give a geometrical illustra-
tion of a direct sum in E2.

Let S be the subspace generated by the eigenvectors for the nth-order sym-
metric matrix A corresponding to the eigenvalue \;. Show that E" is the direct
sum of these subspaces.
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7-10. Prove that if Qy, ..., Q, are orthogonal, then

Qi 0 ---0
o - o Qz'“(.)
0 0 ---Q,

is also orthogonal.

7-11. Compute the number of independent elements in an nth-order orthog-
onal matrix.

7-12. Consider the nth-order symmetric matrix A. Let A1 be an eigenvalue
of A, and u; an eigenvector with eigenvalue N1. Show that there exist vectors
Vi, ..., Vpe-1such that Q1 = (u1, vy, ..., vs—1) is an orthogonal matrix. Then

show that
1AQ; = MO ,
0 A

where A is 2 symmetric matrix of order n — 1. Show that the remaining n — 1
eigenvalues of A are the n — 1 eigenvalues of A;. Let A2 be any eigenvalue of
A; (and hence of A). Assume that @2 is an eigenvector of A; with eigenvalue A2.
Consider P = (g, ¥1,..., ¥,_2), where €, ..., ¥,_2 are chosen such that P

is orthogonal. Prove that
PAP = |:)‘2 0 },

0 A

where A2 is a symmetric matrix of order n — 2. Now form the matrix

Q2 = 1 0].
0P

Show that Q2 is orthogonal and that

MO0 O
Q&[M °]Q2= 0 X 0
0 A 0 0 A

Next prove by induction or some different method that there exists an orthog-
onal matrix Q such that Q’AQ is a diagonal matrix with the eigenvalues of A
as its diagonal elements. Many texts use this method of proving that A is
similar to a diagonal matrix. Does this method of proof demonstrate that (1) Q
contains an orthonormal set of eigenvectors for A; (2) if an eigenvalue has
multiplicity &, then the eigenvectors of A span a k-dimensional subspace of A?
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7-13. Prove that if A is a symmetric matrix and Q an orthogonal matrix
such that D = Q’AQ is diagonal, then Q must have as its columns a set of
orthonormal eigenvectors of A. Prove also that the diagonal elements of D must
be the eigenvalues of A.

7-14. Prove that two commuting nth-order symmetric matrices A, B are
simultaneously diagonizable by an orthogonal similarity transformation, that
is, there exists an orthogonal matrix Q such that Q’AQ and Q'BQ are diagonal.
Hint: Let Ay, ..., A, denote the different eigenvalues of A and assume that A;
has multiplicity mj. Then there exists an orthogonal matrix Q1 such that

M 0 --- 0

0 x Im N 0
D; = Q}AQ; = 2hma

0 0 - N,

Show that D; commutes with Q{BQ; and prove that QiBQ; must have the
form (see Problem 3-11)

B; 0---0
Bo---0
QiBQu = | 7 BT

Show that each B; is symmetric. Let P; be an orthogonal matrix such that
P/B.P; is diagonal. Then consider the matrix

P, 0---0

0 Ps- 0
Q: = 2

0o 0---P,

Show that Q = Q;Q2 is orthogonal and simultancously diagonalizes A and B.
7-15. Consider the matrices

3 400 1 0 0 0
A=4200: B=01 00
0 010 00 —3 2
0 0 01 0 0 2 5
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Show that A, B commute. Find the matrix Q such that Q’AQ, Q'BQ are diagonal.

7-16. Let A be an nth-order nonsingular symmetric matrix and u an eigen-
vector of A with eigenvalue A\. Show that u is an eigenveetor of A—! with eigen-
value 1/A, ie., if A is an eigenvalue of A, then 1/\ is an eigenvalue of A~L.
Furthermore A, A—! have the same set of eigenvectors. Can A have an eigen-
value 0?

7-17. Show that the eigenvalues of the transpose of the square (not neces-
sarily symmetric) matrix A are the same as those of A. Are the eigenvectors of A’
the same as those of A?

7-18. Demonstrate that if x satisfies Ax = Ax, then A®x = A™x, so that if
\ is an eigenvalue of A, then A" is an eigenvalue of A"; furthermore, A, A" have
the same set of eigenvectors. Show directly that if Q’AQ = D is diagonal, then
Q’A"Q = D™

7-19. Prove that if x satisfies Ax = Ax and P(A) is a matrix polynomial in
A, then P(A)x = P(\)x.

7-20. Show that if x is an eigenvector of A with eigenvalue A; and y. is an
eigenvector of A’ with eigenvalue M\;(A; = \;), then yx = 0. Note that A does

not need to be symmetric.
a3 2]
4 7

7-21. Consider the matrix
Find the eigenvalues of A and a set of eigenvectors for A and A’. Show that
in this special case the results of Problem 7-20 hold. ‘
7-22. If A1 is the largest eigenvalue of the symmetric matrix A, prove that

x’Ax
A1 = max —;
x XX
when x is allowed to range over all of E». Hint: Express x as a linear combina-
tion of the eigenvectors of A.

7-23. Consider the symmetric matrix A. Let xo be any vector in E*. Com-
pute X; = Axg, X2 = Axj, etc., X, = AX,—1. If |\i] is the “largest” eigenvalue
of A and has multiplicity 1 (is not repeated), then show that as n — =, x,
becomes proportional to Afui, where u; is the eigenvector of A with eigenvalue
A1, provided that xo is not orthogonal to ui. How can this result be used to com-
pute numerically the largest eigenvalue of A and its corresponding eigenvector?
Hint: Write xo as a linear combination of the eigenvectors of A.

7-24. In Problem 7-23, show that if the multiplicity of A1 is greater than
unity, the process can lead to one eigenvector with eigenvalue A.

7-25. Compute the exact value for the largest eigenvalue of

[}

and its eigenvector. Using the technique described in Problem 7-23, try to
determine approximately the eigenvalue and eigenvector; start with xo = [1, 0].
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7-26. Consider the inhomogeneous eigenvalue problem

Ax - M =D (A symmetric, b = 0).

Show that there is a solution x provided that A is not one of the eigenvalues A;
of A. Show that any solution x can be written

ENETAY
,_;;(M_Q.,,,

where the u; form an orthonormal set of eigenvectors of A. Hint: Write x = 2_a,u;
and evaluate the a;. The problem is called inhomogeneous because ax is not a
solution if x is for all scalars a.

7-27. In Problem 7-26, let

)

Write x as a function of A.
7-28. Find the eigenvalues and eigenvectors of unit length for

a2 4]
3 1
Show that the eigenvectors are linearly independent, but not orthogonal.
7-29. For the matrix A of Problem 7-28, find a matrix P such that P—1AP
is a diagonal matrix whose diagonal elements are the eigenvalues of A. Carry

out the multiplication to show that P—!AP is diagonal.
7-30. Find the eigenvalues and eigenvectors of

A ]2 1.
1 0
In this case, the two eigenvalues are equal, but there is only a single linearly

independent eigenvector. The nullity of A — Al is not the multiplicity of the
eigenvalue A.

7-31. By working directly with |[A — AI|, prove that similar matrices A, B
have the same characteristic polynomial.

7-32. Show that the symmetric matrix A is positive definite if and only if
there exists a nonsingular matrix P such that A = P’P. What is P? Hint: See
Section 7-13.

7-33. Write the following matrix in the form A = P'P:

[ ]

7-34. Show that if the symmetric matrix A is positive (negative) semidefinite,
then |A| = 0, and A is singular.
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7-35. Write the following quadratic forms in simplified matrix notation
x’Ax, with A being a symmetric matrix: ’

(a) 323 + 2x1z2 + 423;
(b) 323 + 23 + 523 + 4z172 + 22123 + 62273;
(c) 4% + 323.

Check to determine whether each of the forms is positive definite.

7-36. Prove that a nonsingular transformation of variables can reduce any
quadratic form x’Ax not identically zero to a form with the leading coefficient
ay1 # 0. Hint: Examine the two-variable case in Section 7-11.

7-37. Using the results of Problem 7-36, prove that a nonsingular trans-
formation of variables can reduce any quadratic form x’Ax to Y.7jy% where
each 7; can be positive, negative, or zero.

7-38. Prove in detail that the nonsingular transformation introduced in
Section 7-11 to diagonalize positive definite forms is such that S is a triangular
matrix.

7-39. Find a triangular matrix R which diagonalizes

F = 9:0% + 2z122 + 2:::5.

Determine the resulting diagonal form of F.
7-40. Find an orthogonal transformation of variables which diagonalizes F
of Problem 7-39. Determine the diagonal form of F under this transformation.
7-41. Find the transformation of variables which diagonalizes

F = 41:% — 2:6% + x§ — 22122 + 47123 — Bx2%3,

using the technique of completing the square developed in Problem 7-37.
What is the diagonal form of F?

7-42. Prove that if x’Ax is positive definite and A—1! exists, then X’A~!x is
also positive definite. Hint: Consider the transformation x = A-ly.

7-43. Given the form F = a2} + 22122122 -+ a2223. For what values of
a1, ai2, a2z, and F does this form describe a circle, ellipse, hyperbola, & pair of
lines, a point, or all of E2?

7-44. According to Section 7-11, there exists a nonsingular, nonorthogonal
transformation of variables which reduces a positive definite form x’Ax to a
sum of squares Y_a;y?. By induction or by any other method prove that -

aix G112 @13
Iau alzl azi az2 a3
_ . _ _la21 a22] | _ _laz1 azz as3l | .
ap = aii; a2 = Qg 3 = —rg Gl a12| ; e
az1 a2
o Y
" azi st a1,m—1

Gn-1,1°"*"* Gp—1,n—1
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7-45. Show that if any quadratic form x’Ax is diagonalized to 37,47 by a
nonsingular transformation of variables, the number of positive and negative 7;
is uniquely determined and is independent of the particular transformation
which diagonalized the form. This result is called Sylvester’s law of inertia.
Hint: Assume the contrary! Suppose that there exist two nonsingular trans-
formations x = Ry, x = Rgz such that we obtain

i+ -+ s — dpyyprr — - —ayi (e > 0forallj)
and
2 2 2 2 ,
B1z1 + - - - + Bozqg — Ba+12g4+1 — + - — Bi2r (8: > 0 forallz).
(Why can we assume that r is the same in both cases?). Assume that ¢ < p.
Setz;=0@G=1,...,90andy; =0(j=p+1,...,n). Theng+n —

p < mn homogeneous linear equations restrict the values of the z;. There exists
a solution x # 0. However, the first form must be > 0, and the second < 0.
Hence the form x’Ax must vanish from any such x, and ayy? 4 + -+ + a,,yf, = 0.
This implies y = 0, which in turn implies x = R;y = 0, and this contradicts
the fact that there was a solution x » 0. Fill in the details. Note that accord-
ing to this theorem all congruence transformations P’AP (P nonsingular) which
diagonalize the symmetric matrix A give the same number of positive and
negative diagonal elements.

7-46. Find a nonsingular transformation of variables which simultaneously

diagonalizes
A - 2 1 , B = —5 —6]
1 3 —6 4

Give the diagonal form of A and B.

7-47. Show that the eigenvalues of the matrix C in Eq. 7-75 are the roots of
[B —AA| = 0.

7-48. A bilinear form in the variables y1, ...,y and zi1, ..., z, is defined
to be the expression :

n n

Z aiyz; = YAx.

i=1 j=1
Show that it no longer follows that A can be assumed to be symmetric.
Furthermore, show that by the nonsingular transformation of variablesy = Ryv,
x = Rou, the bilinear form can be reduced to v'u if A is nonsingular. What hap-

pens when A is singular?
7-49. A nonhomogeneous quadratic function of n variables zj,...,z, is
defined to be the expression

F= ii“ﬁ“‘zi‘i‘ ibixj-F ¢ =xAx+bx+og,
i=1 j=1 j=1

where A = |lai], b = (b1, ..., bs). Consider a change of variablesx = y 1,
where r = [ry, ..., r,], that is, a translation. Express the form F in terms of
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the variables y and show that the translation leaves the matrix A unchanged.
Why is the function called nonhomogeneous?

7-50. For the nonhomogeneous function defined in Problem 7-49, show that
by an affine transformation of variables, x = Qy -+ r, with Q orthogonal, F
can be reduced to one of the following forms:

F=MNyi+ - +rZ+hyen (>0

or
F=Myi4 -+ 2?4y

where the \; are the eigenvalues of A, and each \; > 0 (the eigenvalues are
numbered in such a way that the nonzero values appear first). Hint: Apply
x = Qiz to diagonalize x’Ax, and complete the square to eliminate the linear
terms for nonzero \;. Next take care of the remaining linear terms. Note that 2
is needed to make the final transformation orthogonal. If we wish to obtain an
orthogonal transformation of variables x = Qy which will take fx into dy:
(d > 0), then fQy = dy;. What is the vector fQ? What is d? Does this yield
the first column of Q? How can we obtain the remaining columns of Q?

7-51. Reduce the following inhomogeneous quadratic function to one of the
forms discussed in Problem 7-50:

F = 222 — 4zy70 — 525 + 321 + 422 + 7.

7-52. If F1 is a positive definite quadratic form in the variables 1, ..., 7
and Fg is a positive definite quadratic form in the variables Zii1,..., T,
consider the quadratic form F = F; + Fa. If Aj, Ag are the matrices associated
with F, Fg, respectively, what is the matrix A associated with F? Prove that
F is positive definite.

7-53. Given any square matrix A, show that if |ai| > 3Zjx=i |ay] for each 3,
then A is nonsingular. Thus show that if A is any eigenvalue of A, then
[@:i — N < ;i |aij| for one or more i. Thus, bounds on the eigenvalues of A
can be found. Use this procedure to determine bounds on the eigenvalues of

3 15
A=]1 —2 4
5 4 9

Hint: To prove the first part of the problem, assume that Ax = 0 has a solution
x # 0. Let z; be the largest component of x in absolute value. Consider the ith
equation. Is a contradiction obtained?

7-54. A linear transformation T which takes vectors x in E™ into vectors y
in E», y = T(x), is called orthogonal if the scalar product is preserved, that is,
§'y = &’'x. Show that the matrix Q representing T is orthogonal if y, x are re-
ferred to orthonormal bases (orthogonal coordinates) in E™.
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7-55. It was shown in the text that y = Qx, where
cosf sin @
Q =
—sin 8 cos @
can be interpreted as a rotation of an orthogonal coordinate system through an
angle 6. Give the alibi interpretation of y = Qx and show that it rotates
vectors through the angle —6.
7-56. Show that for some 6, any orthogonal matrix Q of order 2 with |Q] = 1
can be written in the form given in Problem 7-55.

7-57. Show that any orthogonal matrix Q of order 2 with |Q] = —1 can
be written

Q1 = [1 0][ cos § sin 0] or Qs = [—1- 0“: cosf sin @ '
0 —1jl—sin@ cosb 0 1||—sin8® cos@
What is the geometrical interpretation of Q1 and Q2? Note that if in Qg, 8 is
replaced by 6 + 7, Q1 is obtained. Thus Q2 does not really differ from Q;.
Illustrate this graphically.
7-58. Consider the oblique coordinate system for E2? determined by the basis
vectors a1, a2, where 7 is the angle between aj, a2, and assume that this co-

. ordinate system is rotated through the angle §. Denote the new coordinates
by B1, B2. Show that

[al] 1 [sin (Y —8) —sin ][51].
az] ™7 |sing sin (v + 6) ]| 82
Is the matrix representing this transformation an orthogonal matrix?

7-59. Suppose that we begin with an orthogonal coordinate system whose
coordinates are zj, x2, z3. Now we shall perform three counterclockwise rota-
tions: (1) through an angle 8 about the z3-axis to yield a new set of coordinates
y1, ¥2, ¥y3 = x3; (2) through an angle ¢ about the y;-axis to yield the set of co-
ordinates z1 = yi1, 22, 23; and (3) through an angle { about the z3-axis to yield
the set of coordinates v1, v2, v3 = 23. Find the matrix which relates the co-
ordinates v1, v2, v3 to x1, z2, z3, and show that it is orthogonal. The angles
0, ¢, ¢ are called eulerian angles; they are of considerable use in rigid body
mechanics.

7-60. Consider a rectangular coordinate system with coordinates z1, x2, 3.
A counterclockwise rotation through an angle @ about the z3-axis yields a new
set of coordinates yi, y2, y3 = 3. The new coordinates are related to the
original set by the matrix Q;. Find Q. Next, a counterclockwise rotation
through an angle ¢ about the ys-axis gives the coordinates 21, z2 = y2, 23.
The z-coordinates are related to the y-coordinates by the matrix Q2. Find Q2.
Show that Q1Q2 # Q2Q;. What does this mean geometrically?



PROBLEMS 283

7-61. A dyadic @ of nth order is defined as the generalized quadratic form

® = i bijeiej,

1,=1

where the e; are the unit vectors for E». The combination e;e; does not denote
a scalar product. The two unit vectors are merely written side-by-side, and the
notation e;e; does not imply any additional significance. However, it is not
true that e;e; = eje;, that is, the order of the subscripts is important. For this
reason, the matrix B = ||b;j]| can no longer be assumed to be a symmetric
matrix. The left scalar product of a column vector v and the dyadic @ is defined
as

n n
v.-®B = Z b,~,~(v’e.~)e,~ = E b;,v;ej,
ij=1 id=1
where (v'e;) is the scalar product of v and e;. Thus the scalar product v - ®
is a vector. The right scalar product is defined to be

B -v= i: bije,-(e;v) = i: b,-,ﬂ,e;.

i.j=1 i,i=1

Under what conditions is v:- ® = ®-v? Show that v1 - ® - vz is uniquely de-
fined. Whatisx-® -x? Evaluatee; ®,B-e;, e;-B-v,e;-B-¢e;, v-®-ej.
7-62. Show that there is a complete equivalence between dyadics and matrices
for the operations defined in Problem 7-61. That is, show that ® is completely
described by B and that '

v-@—vB o @®:-v—oBv, or v:-®:-v— VBv.

7-63. Plot F = 32% + 22122 + 422 for several different values of F. Find
the principal axes for this quadratic form and illustrate geometrically.

ProBLEMS INvoLvING CoMPLEX NUMBERS

7-64. Show that if A is an nth-order matrix with real elements, there does
not exist a matrix P (with real or complex elements) such that P—1AP is diagonal
unless A has 7 linearly independent eigenvectors.

7-65. Find the eigenvectors and eigenvalues of the matrix

12

7-66. Show that if A is an nth-order matrix with real elements and there
exists a matrix P such that D = P~!AP is diagonal, then P contains as columns
a set of n linearly independent eigenvectors of A, and the diagonal elements of
D are the eigenvalues of A.
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7-67. Let Q be an orthogonal matrix with real elements. Show that if A is
an eigenvalue of Q, so is 1/A.

7-68. The eigenvalues of an orthogonal matrix with real elements can be
complex. Show that the absolute value of any eigenvalue is unity, that is,
A*\ = 1, and demonstrate that there exists a real @ such that A = ¢* =
cos @ 4+ ¢sin 6. Hint: Qx = Ax and (x*)'Q’ = N*(x*).

7-69. If \ is an eigenvalue of the square matrix A with real elements, show that
A* is also an eigenvalue of A. What is the relation between the corresponding
eigenvectors?

7-70. If Q is a real 3 X 3 orthogonal matrix (|Q| = 1), show that one of its
eigenvalues is A = 1. This result has an important implication for the theory
of mechanics. It means that in any arbitrary combination of rotations of a
rigid body with one point fixed in space, one vector remains unaltered. We
can then accomplish all rotations by a single rotation, using the unchanged vec-
tor as the axis of rotation. This is known as Euler’s theorem.

7-71. Prove that the eigenvalues of a Hermitian matrix are real (see Problem
3-83 for the definition of a Hermitian matrix).

7-72. Prove that the eigenvectors corresponding to different eigenvalues of a
Hermitian matrix are orthogonal in the sense that the Hermitian scalar product
vanishes.

7-73. Prove that if H is a Hermitian matrix, then there exists at least one set
of n eigenvectors u; which satisfies

du; = 0 (all ¢, 7).

Show that if U = (ui1, ..., u,), then D = U~IHU is a diagonal matrix, its di-
agonal elements being the eigenvalues of H. Show that U = U~1, Such a matrix
is called a unitary matrix. Thus any Hermitian matrix can be diagonalized by a
unitary similarity transformation. For matrices with complex elements, unitary
matrices play a role similar to that played by orthogonal matrices for matrices
whose elements are real.

7-74. Find the eigenvalues and an orthogonal set of eigenvectors of unit

length for
H - 2 4+
4 — 1 3

Let U be a matrix whose columns are the eigenvectors of H. Show that D =
U-1HU is diagonal, and that the diagonal elements of D are the eigenvalues of H.
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