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PREFACE.
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GEO. SALMON.

TRINITY COLLEGE, DUBLIN,
May, 1885,






CONTENTS.

LESSON I

DETERMINANTS.—~PRELIMINARY ILLUSTRATIONS AND DEFINITIONS.

Rule of signs . . . . . .
Sylvester’'s umbral notation . Y. . . .

LESSON IL
REDUCTION AND CALCULATION OF DRTERMINANTS,
Minors [called by Jacobi partial determinants] . .
Examples of reduction . .
Product of differences of n quantmu expreued as s determmmt
Reduction of bordered Hessians . . . .
Continuants . . . . . .

LESSON III.
MULTIPLICATION OF DETERMINANTS,

The theorem stated as one of linear transformation . . .
Extension of the theorem . . . .
Examples of multiplication of determmanfp . . .

Product of squares of differences of n quantities . .

Radius of sphere circumscribing a tetrahedron .

Relation connecting mutual distances of points on a circle or sphere

Of five points in space .
Sylvester's proof that equation of secular methhes h.u all roots real
LESSON IV.
MINOR AND RECIPROCAL DETERMINANTS.
Relations connecting products of determinants . . .
Solution of a system of linear equations . . .
Reciprocal systems . «

Minors of reciprocal system expressed in terms of those of the ongmd
Minors of a determinant which vanishes . . .
Forms for expanding a determinant of the fourth order .

LESSON V.
SYMMETRICAL AND SKEW SYMMETRICAL DETERMINANTS,
Differentials of a determinant with respect to its constituents .
If a symmetrio determinant vanishes, the same bordered is a perfect square
Skew symmetric determinants of odd degree vanish . .
Of even degree are perfect squares .

Nature of the square root [see Jacobi, C’rcllc, 1I. 354 XXIX. 236]

Orthogonal substitutions . . . .
Number of terms in a symmetrical determmmt .

PAGE

10
18
14
17
18

29
29
80
30
32
82

87
87
38
89
41
45



X CONTENTS.

LESSON VI
DISCRIMINATING BYMMETRICAL DETERMINANTS.

New proof that equation of secular inequalities has all its roots real .
Sylvester’s expressions for Sturm’s functions in terms of the roots . .
Borchardt’s proof . . .

. . ]

LESSON VII.
BYMMETRIO FUNCTIONS,
Newton’s formulse for sums of powers of roots . . .
Improvethent of this process . . . . .
Determinant expression for sums of powers . . .
Rules for weight and order of a symmetric function . . .
Formula for sum of powers of differences of roots . . .
Differential equation of functions of differences . . .
Symmetric functions of homogeneous equations . . .
Differential equation when binomial coefficients are used . .
Berret's notation . . . . . .

LESSON VIIL
ORDER AND WEIGHT OF ELIMINANTS
Eliminants defined . . . . .
Elimination by symmetric functmnn . . . .
Order and weight of resultant of two equations . . .
Symmetric functions of common values for a system of two equations .
Extension of principles to any number of equations . . .

LESSON IX.
EXPRESSION OF ELIMINANTS AS DETERMINANTS,
Elimination by procees for greatest common measure . . .
Euler's method . .
Conditions that two equmons alwnld have two common hwon . .
Sylvester’s dialytic method . . . . .
Bezout's method . . . . . B .
Cayley's statement of it . . . . . .
Jacobians defined . .
Jacobian and derived equshons satmﬁed by common sysbem whwh satisfies
equations of same degree .

Expression by determinants, in particular caees, of resultant of three equa.hom
Cayley’s method of expressing resultants as quotients of ‘determinants .

LESSON X.
DETERMINATION OF COMMON ROOTS,

Expression of roots common to a system of equations by the differentials of
the resultant . .
Equations connecting these dliferentmls when the mnltant vanmhes .

Expressions by the minors of Bezout's matrix

General expression for differentials of resultant with respect bo any qnmtmes
entering into the equations . . . .

General conditions that a system may have l:wo common roots B

PrAGR

(3]

agg2zgsss

aNex

76

333

81

KRR Y



CONTENTS. xi
LESSON XI.
] DISCRIMINANTS,

: raon
Order and weight of discriminants . . . . . 99
Discriminant expressed in terms of the roots . . . 101
Discriminant of prodiict of two or more functions B . . 101
Discriminant is of form a,¢ + a2y . . 102
Formation of discriminants by the dxﬁere.ntml eqnahon . . . 108
Method of finding the equal roots when the discriminant vanishes . 104
Extension to any number of variables . . . © 106
Discriminant of a quadratic function . . . . 107

LESSON XII.
LINBAR TRANSFORMATIONS,
Invariance of discriminants . . . . . 108
Number of independent invariants . . . . . 110
Invariants of systems of quantics . . . . . - 12
Covariants . . . . . . 114
Every invariant of a oova.m.nt is an invariant of the original . . 114
Invariants of emanants are covariants . . . . 116
Contravariants . . . 117, 120
Differential symbols are eontmgredlent to vanables . . . 119
«f + yn + &c. absolutely unaltered by transformation . . . 120
Mixed concomitants . . . . . B 121
Evectants . . 122
Evectant of dmcnmmnnt of a qunntu: whou dmcnmmlnt vnmahel . 128
LESSON XIII
FORMATION OF INVARIANTS AND COVARIANTS.

Method by symmetric functions . . . . 124
Concomitants which vanish when two or more roote are eqnal . 125
Method of mutual differentiation of covariants and contravariants . . 126
Differential coefficients substituted for the variables in a contravariant give

covariants . . . . . . 127
For binary quantics, covariants and contravariants not essentially distinet . 127
Invariants and covariants of second order in coefficients . . 129
Cubinvariant of a quartic . . . 129
Every quantic of odd degree has an mvnmmt of the 46 order . . 129
Cubicovariant of cubic . . . . . . 130
Method of the differential equation . . . . 130
‘Weight of an invariant of given order . . 130
Binary quantics of .odd degree cannot have mvarumts of odd order . 130
Coefficients of covariants determined by the differential equation . 131
Bkew invariants . 131
Investigation of number of mdependent mvarumts by the dlﬁerentml equation 132
Bource of product of two covariants is product of their sources = . . 134
Cayley’s definition of covariants . . . . . 135
Extension to any number of variables . . . . 186



Xii CONTENTS.

LESSON XIV.
SYMBOLICAL REPRESENTATION OF CONCOMITANTS.
PasR
Method of formation by derivative symbols . . . 137
Order of derivative in coefficients and in the variables . . . 140
Table of invariants of the third order . . . . 141
Hermite’s law of reciprocity . . . . . 142
Derivative symbols for ternary quantics . . . . 144
Symbols for evectants . . . . . . 6
Method of Aronhold and Clebsch . . . . 147
LESSON XV.
CANONICAL FORMS.
Generality of a form examined by its number of constants . . 160
Reduction of a qnmira.txc function. to a sum of squares ’ 1561
Principle that the number of negative squares is unaffected by ma.l subshtuhon 151
Reduction of cnbic to its canonical form . . . 152
Discriminant of a cubic and of its Hessian differ only in ulgn . 158
Greneral reduction of quanticof odd degree . B . 168
Methods of forming canonizant . 154, 166
Condition that a quantic of order 2n be reducxble to a sum of u, 2nth powm . 1566
Canonical forms for quantics of even order . . . 167
Canonical forms for sextic and octavic . . . . 159

For ternary and quaternary cubics . . . 160

LESSON XVIL

SYSTEMS OF QUANTICS,

Combinants defined, differential equation satisfied by them . . 161
Number of double points in an involution , . . . 162
Geometrical interpretation of Jacobian . . . . 162
Factor common to two quantics is square factor in Jacobian . . 162
Order of condition that  + kv may have cubic factor . . . 168
Nature of discriminant of Jacobian . . . . 164
Discriminant of discriminant of u + kv . . . . 166
Proof that resultant is a combinant . . 166
Discriminant with respect to z, y, of a functlon of u, v . . . 167
Discriminant of discriminant of w+ kv for ternary quantws . . 169
Tact-invariant of two curves . . . 169
Tact-invariant of complex curves . . . . 170
Osculants . . " 171
Covariants of a binary system oonnected with those of a temary . 172

LESSON XVII.

APPLICATIONS TO BINARY QUANTICS.

Invariants when said to be distinct . . .- . . 17
Number of independent covariants . . . . 176
Cayley’s method of forming a eon.plete system . .1
THE QUADRIC L. . . 178

Resultant of two quadncs . . . . . . 180



CONTENTS.

ver

xu
PAGE
SYSTEM OF THRER OR MORRE QUADRICS . 181
Extension to quantics in general of theorems concemmg qudnes . 182
THE OUBIO . . . . . . 183
Geometric meaning of covariant cubic . . 184
Square of this cubic expressed in terms of the other oovanantl . 186, 192
Solution of cubic . . . . . . . 186
SYSTEM -OF CUBIC AND QUADRIC . . . . 187,225
Geometrical illustrations . . . . . . 189
THE QUARTIC , . . . . . . 189
Catalecticants . . . . . . . 190
Discriminant of a quartic 190
Relation of covariants of cubic denved from thnt of mvana.nts of a qlmrtw . 191
Sextic covariant geometrical meaning of . . . . 198
Relations connecting quadratic factors of . . . . 194
Reduction of quartic to its canonical form . . . 194
Relation connecting covariants of quartic . . . . 195
Symmetrical solution of quartic . . . . . 196
Criteria for real and imaginary roots . . 197
The quartic can be brought to its canonical form by real snbsmtumona . 197
Conditions that a quartic should have two square factors . . 198
Cayley’s proof that the system of invariants and covariants is complete . 199
Application of Burnside’s method . . . . . 200
Covariants of system of quartic and its Hessian . 201
Hessian of Hessian of any quantic . . . . . 202
SYSTEM OF QUADRIC AND QUARTIC . . . . 202, 267
SYSTEM OF TWO CUBICS . . . . . . 204
Resultant of the system . . . 2056
Condition that 4 + Av may be a perfect cube . . 205
Mode of dealing with equations which contain a anperﬂuous vanable . 207
Jacobian and simplest linear covariants . 209
Any two cubics may beregarded as differential coeﬂiclents of same quartxc . 210
Invariants of invariants of u+ Av are combinants . 211
- Process of obtaining concomitant of system from concomitant of smgle quantlc 212
Complete list of covariants of system . . . . 213
Plane geometrical illustration of system of two cubica . . . 214
SYSTEM OF FOUR CUBICS . . . . . 215
Ilustration of twisted cubics . . . . . 216
SYSTEM OF QUARTIC AND CUBIC . A . . 218,226
SYSTEM OF TWO QUARTICS . . . . . 219
Their resultant . ’ . . . 220
Condition that u + Av should be perfect squm . . 220
Condition that 4 + Av should have cubic factor . . . 221
Special form when both quartics are sums of two fourth powers . 223
Three quadrics derived functions of a single quartic . . . 224
‘Three quadrics quadric covariants of two cubics . . . 22
LESSON XVIII.

APPLICATIONS TO HIGHER BINARY QUANTICS,
THR QUINTIC . . . . . . . 227
Canonical form of quintic . . 14
Condition that two quartics be first dxﬁereutmls of the same qumtlc . 228



xiv CONTENTS.

()
Discriminant of quintic . . . . v . ’2‘2;
Fundamental invariants of quintic . . . . 232
Conditions for two pairs of equal roots . . 238 -
All invariants of aqumhcvmmhxfmomthanhﬂflumohbealleqnd . 233
Hermite’s canonical form . . . . . . 233
Hermite'’s skew invariant . . . . . 233,282
Its geometrical meaning . . . . . 234
Covariants of quintic for canonical form . . . . 285
Cayley’s arrangement of these forms . . . . 287
Cayley’s canonical form 239
Bign of discriminant of any quantlc determines whether it has an odd or even
number of pairs of imaginary roots . . . . 29
Criteria furnished by Sturm’s theorem for a quintic . . . 240
If roots all real, canonizant has imaginary factors . . .ol
Invariant expression of criteria for real roots . . . 241
Sylvester’s criteria . Ce . . 45
Conditions involving variation within oertam hmts of a oonstant . 246
Cayley’s modification of Sylvester's method . . . . 248
Hermite’s forme-type . . . . . . 249
The Tschirnhaunsen transformation B . . . . 250
Modified by Hermite and Cayley o . . . 261
Applied to quartic . . . . . . . 262
Applied to quintic . . . . . . 264
Sextic resolvent of a quintic . . . . . 27
Harley's and Cockle’s resolvent . . . . . 267
Expression of invariants in terms of roots . . . . 258
‘THE SEXTIC—its invariants and simplest covariants . . 260
Conditions for cubic factor or for two square factors . . . 268
The discriminant . . . . . 268
Bimplest quartic oovuiant . . . . . . 268
Quadric covariants . . . 268
The skew invariant expmsed in termu of other invammts . . 269
Functions likely to afford criteria for real roots . . . 271
SYSTEM OF TWO QUARTICS . . . .. m
Jacobian identified with any sextic by means of a qumtw . . 278
Functional determinant of three quartics . . . . 4
Can be similarly identified . . . . . 278
New canonical forms of sextic by Brill . . . . 276
Also by Stephanos . . . . . . 27
Factors of discriminant of Jacobian . . . . . 278
Sextic covariant of third order in coefficients . . . 279
Canonical form referred to ternary system . . . . 281
Condltlon for sextic to be sextic-covariant of quartic . . 282
to be Hessian of quintic . . . . 282
LESSON XIX.
ON THE ORDER OF RESTRICTED SYSTEMS OF EQUATIONS.
Order and weight of systems defined . . . . 284
Restricted systems . . . . . 285
Determinant systems, £ rows, Ic +1 columns . . . 287
Order and weight of conditions that two equations have two common roots . 201



CONTENTS. ) b4 4

PaoR

System of conditions that three equations should have a common root .
Systems of conditions that equation have cubic factor or double aquare factor 294
Intersection of quantics having common curves . . . . 29
Case of distinct common curves . 297
Number of quadrics passing through five pomts and tondnng four phnu . 298
Rank of curve represented by a system of £ rows, £ + 1 columns . 289
System of conditions that two equations should have three common roots . 800
System of quantics having a snrface common . . . . 80
Having common surface and curve . . . . 308
Having common two surfaces 806
System of conditions that three ternary tha lmve two common pomts 306, 309
Raule when the constants in systems of equations are connected by relations 807
Number of carve triplets having two common points . . 310
Mr. 8. Roberts’ method . . . . . . 3810

LESSON XX,
APPLICATIONS OF SYMBOLICAL METHODS.

Symbolical expression for invariant or covariant . . . 314
Clebsch’s proof that every covariant can be 8o expressed . . 316
Formule of transformation . . . . . 316
Reduction to standard forms . . . . . 88
" Transvection . . . 320
Symbolical expmalon for denvntwe of denvahve . 821
Forms of any order obtained by transvection from forms of lower order 828
Gordan and Clebsch’s proof that the number of irreducible covarianta is finite 824
Every invariant symbol has (ab)? as a factor, where p is at least half » - 326

Symbulical expression for resultant of quadratic and any equation . 826
Investigation of equation of inflexional tangents to cubic . . 330
Application of symbolical forms to theory of double tangents to plane curves . = 338
386
887

Typical exposition of an even binary quantic . . .
' of a quantic of order 3p . . . .
NOTES.

History of determinants . . . . . . 888
Commutants . . . . B . 33
On rational functional determma.nh . . . . 340
Hessians . . . . . . . 81
Symmetric functions . . . . . . 842
Elimination . . . . . . . 342
Discriminanta . . . . . . U2
Besoutiants . . . . . o . 348
Linear transformations . . . - . . M8
Canonical forms . . . . . ., . 346
Combinants . . . . . . 346
Applications to binary qumhu . . . . . 3846
Table of transvectants . . . . 846
M. Roberts’ table of sums of powers of dxﬁermoes . . . 847
Table of resultants . . . . 3848
Hirsch and Cayley’s tables of aymmetnc fnnetaons . . . 350
Index . . . . . . . 857



fmtv— el

NE . s met—— b o iss o

ERRATA.
PAGE
40, line 1 after first determinant, insert “ conjugate” defore “ imaginary.”
68, Art. 62 line 4, and p. 64 line 2, write for A, Ay : also in third line following for A, Az
135, last sentence of Art. 148, interchange “ order in the coefficients”
with ¢ degree in the variables.”
139, line 4 from end of Art. 1563, read “coefficient ”.
196, line 12, add after * thus” “ the squares of the factors of U are the values of ”: als
in Ex. 8 and p. 201 Ex. 2 read * the squares of the factors.”
216, line 5, after H, put a semicolon.
226, Ex. 10, for Art. “216” read “2195.”
236, line 10 from bottom, add “of T and U.”
243, line 2 begins, “ k¢’ (a) + ¢/ (a).”
247, line 2, read “+ } JD.”, as on p. 260.

269, Add as footnote to Art. 260, on E as given in the second Edition,

“where the following corrections should be made
p. 259, col. 8 line 6, coefficient — 96 should be + 24,
P. 265’ » 8y 13, » —-360 , o + 20300.”

279, Ex. 8, at end add “of Art. 266.”

279, Ex. 4, the third determinant form forj should have — before it.
280, Ex. 5, line 2, read “( Art. 267).”

800, Art, 280, lines 1 and 8, for “the last article” read “Axt, 272.”



LESSONS ON HIGHER ALGEBRA.

LESSON I

DETERMINANTS.—PRELIMINARY ILLUSTRATIONS.

1. Ir we are given n homogeneous equations of the first
degree between n variables, we can eliminate the variables, and
obtain a result involving the coefficients only, which is called the
determinant of those equations. 'We shall, in what follows,
give rules for the formation of these determinants, and shall
state some of their principal properties; but we think that the
general theory will be better understood if we first give
illustrations of its application to the simplest examples.

Let us commence, then, with two equations between two
variables

a,z+by=0, az+dby=0.
Adding the first equation multiplied by 5, to the second—
multiplied by — b,, we get ¢, —ab, =0, the left-hand member
of which is the determinant required. The ordinary notation
for this determinant is
] Gy bl

a, b

1) s
We shall, however, often, for brevity, write (a,) to express
this determinant, leaving the reader to supply the term with
the negative sign; and in this notation. it is obvious that
(@) =—(ab,). The coefficients a,, b,, &c., which enter into
the expression of a determinant, are called the constituents of
that determinant, and the products a,, &c., are called the
elements of the determinant.
B



2 RS DETERMINANTS.

2. It can be verified at once that we should have obtained
the same. result if we had eliminated the variables between
the e‘lj’ugi’ions

- ex+ay=0, br+dby=0.
In other words ) )

: al, bl
Ay bz

a,a

b b

17 72

b}
or the value of the determinant is not altered if we write the
horizontal rows vertically, and vice versd.

3. If we are g'lveil two homogeneous equations between

three variables,
ax+ay+az=0, br+dby+bz=0;
these equations are sufficient to determine the mutual ratios of
«, ¥, 2. Thus, by eliminating ¥ and z alternately, we can
express z and y in terms of z, when we find
(alb!) = (asbs) ) (a‘b,) y= (dsbl) 2.
In other words, @, y, z are proportional respectively to (a3,),
(ad,), (ad,). Substituting these values in the original equations,
we obtain the identical relations
al (asba) + a’ (asbl) + as (alb!) = 0’ bl (aﬁba) + b’ (asbl) + b‘ (albﬂ) =0;
relations which are verified at once by writing them at full
length, as for instance
a, (ab, —ab,) +a, (ap,—ab,) + a,(ab,—ad)=0.

ay as’ ab

b, b, b

The notation

(where the number of columns is greater than the number of
rows) is used to express the three determinants which can be
obtained by suppressing in turn each one of the columns, viz.
the three determinants of which we have been speaking, (a,),

(@), (a,5,)-

4. Let us now proceed to a system of three equations
az+by+cz=0, ax+dby+cz=0, ax+by+cz=0.
Then, if we multiply the first by (a,3,), the second by (a.3,), the
third by (a,5,), and add, the coefficients of = and y will vanish
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in virtue of the identical relations of Art. 3, and the deter-
minant required is

cl (aﬁbs) + c’ (aﬂbl) + cs (alb?) ;
or, writing at full length,

cab —cab +cab —cab +cadb, —cab.

It may also be written in either of the forms

a, (bica) + a, (bscl) + aa (blc‘l)’ bl (c,‘a.) + b| (csa!) + ba (cla:)‘
This determinant is expressed by the notation

aﬂ bl’ '0‘
a&'? ban G,,,

) by ¢,

b
though we shall often use for it the abbreviation (a,b,c,).
1t is useful to observe that

(abye,) = (abgc,), but (abgc)=-(abec,).

For, by analogy of notation,
(a,b,0,) = a, (b,¢,) +a,(5,6,) +a, (byc,), which is the same as (a,0,c,),

v

while
(a,b,c,)=a, (b,e,) + a,(b,c,) + a,(b,c,), which is the same as — (a,b,c,).
5. We should have obtained the same result of elimination
if we had eliminated between the three equations
ax+ay+az=0, bx+by+bz=0, cx+cy+cz=0.
For if, proceeding on the same system as before, we multiply the
first equation by (4,c,), the second by (c,a,), and the third by
(ab,), and add, then the coefficients of y and z vanish, and the
determinant is obtained in the form
e, (bica) + bl (caas) +¢ (aubs)’
which, expanded, is found to be identical with (ab,c,). Hence

an bn cl an a ] as
an bs’ ce = bu) bs) ba
as’ ba’ cs cn G,, )

" or the determinant is not altered by writing the horizontal rows
vertically, and wice versd; a property which will be pgoved to
be true of every determinant.
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6. Using the notation
Gy By Oy a,
bn bs’ bs’ b4
Gy Cp Cp €,
to denote the system of determinants obtained by omitting in
turn each one of the columns, these four determinants are
connected by the relations

al (a’b.cl - aﬁ (asblcl) + al (alblc! - a‘ (albﬂcﬂ) = 0,

b, (atbaco) - ba (a,b‘c‘) + bs (acblcs) -b, (aubnct) =0,

¢, (abe)—c, (ade,) + ¢, (abc,) - ¢, (abgc,)=0.
These relations may be either verified by actual expansion of the
determinants, or else may be proved by a method analogous to

that used in Art. 3. Take the three equations
ax+ay+az+aw=0,
ba+by+bz+bw=0,
cx+cy+cz+cw=0.

Then (as in Art. 5) we can eliminate y and z by multiplying

the equations by (b,c,), (c,a,), (a,,), respectively, and adding,

when we find (abc,) z+ (abe,) w=0.

47278

In like manner, multiplying by (b,¢,), (c,a,), (2,5,) respectively,
we get (a,50,)y +(abye,) 0 =0.
And in like manner,
(ahc,) 2+ (abc,)w=0.

Now, attending to the remarks about signs (Art. 4), these
equations are equivalent to
(ab,c,) z=—(abec)w, (ade)y=(abe)w, (adec)z=—(ab,c)w,
or z, y, 2, w are respectively proportional to (abc), — (ab.¢c,),
(abe,), — (abge,); substituting which values in the original
equations we obtain the identities already written.

7. If now we have to eliminate between the four equations
ax+by+cz+dw=0,
ax+by+cz+dw=0,
ax+by+cz+dw=0,
ax+by+cz+dw=0,
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‘we have only to multiply the first by (ab,,), the second by
— (ab,c,), the third by (ab,c,), the fourth by — (a,b.c,), and add,
when the coefficients of @, y, z vanish identically, and the
determinant is found to be

dl (a:bncc) - dx (asbacu) + ds (a'obncn) - d¢ (albicl) )
or, writing it at full length, and altering all signs,

abed, —abed +abed —adcd +abcd —abcd,
+abed,—abed +adbed,~abed, +abed —abed,
+aped —abecd +abcd ~adbed +abed ~abed,
+abed —abed +adcd —abed +abed —abed,.

8. There is no difficulty in extending to any number of equa-
tions the process here employed; and the reader will ohserve
that the general expression for a determinant is = t+ abc,d, &c.,
where each product must include all the varieties of the n letters
and of the n suffixes, without repetition or omission, and the
determinant contains all the 1.2.3...n sach products which
can be formed. With regard to the sign to be affixed to each
element of the determinant, the following is the rule: We give
the sign + to the term abcd, &c., obtained by reading the
determinant from the left-hand top to the right-hand bottom
corner; and then “the sign + or — ¢ affixed to each other
product according as it vs derived from this leading term by an
even or odd number of permutations of suffixes.” Thus, in the
last example, the second term apbcd, differs from the first
only by a permutation of the suffixes of & and ¢; it therefore
has an opposite sign. The third term, apbcd,, differs from
the second by a permutation of the suffixes of ¢ and c; it
therefore has an opposite sign to the second, but it has the
same sign with the first term, since it can be derived from it by
twice permuting suffixes. :

Ex. In the determinant (a,b,¢;d,¢;), What sign is to be prefixed to the element
asbicdie,?

From the first term, permuting the suffixes of a and ¢, we get azb.c,d,¢;, the first
constituent of which is the same as that in the given term; next permuting the
suffixes of 4 and 6, we get azb,c,d.e, Which has two constituents the same as the
given term ; next, permuting c'and e, we get ab,c,d¢, ; lastly, permuting d and ¢, we
get the given term agbyc,de,. Since, then, there has been an even number (four) of
permutations, the sign of the term is +. In fact, the signs of the series of terms are

aybycidies — agbyoidiey + adieid e, — abicdie, + asbicidie,.
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The rule of signs may otherwise be presented thus: we
take for each suffix so often as it comes after a superior suffix
the sign —, and compound these into a single sign + or —.
‘Thus comparing the elements abcde,, apbcde, it will be
seen that the suffix 1 which came first in the former element,
is in the latter preceded by three constituents; that the suffix 2
is preceded by two which came after it before, and the suffix 4
by one. The total number of displacements is therefore six,
and this being an even number, the sign of the term is positive.
Thus the rule is, that the sign of the term is positive when
the total number of displacements, as compared with the order
in the leading term, is even, and vice versd. The same results
will be obtained if, writing the suffixes always in the order
1, 2, 3, &c., we permute the letters, giving to each arrange-
ment of the letters its proper sign + or — according to the
rule of signs. Thus the determinant of Art. 7 might be written
abed, —achd +cabd, - &e.

138 1727874 172°87°¢

9. A cyclic interchange of suffizes alters the sign when the
number of factors in the product is even, but not so when the
number of factors is odd. Thus ab, being got from a,b, by one
interchange of suffixes, has a different sign; but ab.c, has the
same sign with b, from which it is derived by a double
permutation.  For, changing the suffixes of @ and b, abg,
becomes a,b,c,, and changing the suffixes of 4 and ¢, this again

becomes apbe. In like manner ab,cd, has an opposite sign
to abcd, being derived from it by a triple permutation, viz.

172787°4)
through the steps a.b cd,, abcd,, abcd,.

27178741 2787174 27874 :

This rule enables us easily to write down the terms of a
determinant with their proper signs, by taking the cyclic
permutations of each arrangement. Thus, for three rows the
arrangements of suffixes are evidently + 123, + 231, + 312, and

— 213, — 132, — 321. For four rows the arrangements are
+ 1234 — 2341 4 3412 — 4123 ; —1243 + 2431 — 4312 + 3124
— 1324 + 3241 — 2413 + 4132; + 1423 — 4231 4 2314 — 3142,

10. We are now in a position to replace our former definition
of a determinant by another, which we make the foundation
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of the subsequent theory. In fact, since a determinant is
only a function of its constituents a,, b, c,, &c., and does not
contain the variables @, y, 2, &c., it is obviously preferable to
give a definition which does not introduce any mention of
equations between these quantities z, y, 2.

*Let there be n' quantities arrayed in a square of n columns
and n rows, then the sum with proper signs (as explained, Art. 8)
of all possible products of n constituents, one constituent being
taken from each column and each row, is called the determinant
of these quantities, and is said to be of the »** order. Con-
stituents are said to be comjugate to each other, when the
place which either occupies in the horizontal rows is the same as
that which the other occupies in the vertical columns. A deter-
minant is said to be symmetrical when the conjugate constituents
are equal to each other; for example,

a hy g
LA
g Syel.

11. In. these first lessons, as in the previous examples, we
usually write all the constituents in the same row with the
same letter, and those in the same column with the same suffix.
A common notation, however, is to write the constituents of a
determinant with a double suffix, one suffix denoting the row
and the other the column, to which the constituent belongs.
Thus the determinant of the third order would be written

a.,n al,ﬂ algs
aﬂ,u an,g) as‘s
as,n aa, 2 Ty |
or else zial, las,aaa,s’

~

* We might have commenced with this definition of a determinant, the preceding
articles being unnecessary to the scientific development of the theory. We have
thought, however, that the illustrations there given would make the general theory
more intelligible ; and also that the importance of the study of determinants wounld
more clearly appear, when it had been shown that every élimination of the variables
from a system of equations of the first degree, and every solution of such a system,
gives rise to determinants, such systems of equations being of constant occurrence in
every department of pure and applied mathematics.
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where, in the sum, the suffixes are interchanged in all possible
ways. The preceding notation is occasionally modified by the
omission of the letter a, and the determinant is written

(1) 1)7 (17 2)7 (1’ 3) 117 12, 13
(2,1), (2,2), (2,3) | or |21, 22, 23
(3,1), (3,2), (3,3) 31, 32, 33 |.

Again, Dr. Sylvester has suggested what he calls an umbral
notation. Consider, for example, the determinant
aa, ba, ca, do
aB, b8, c8, dB
ay, by, oy, dy
ad, b, cd, dd |,
the constituents of which are aa, ba, &c., where a, b, ¢, &c., are
not quantities, but, as it were, shadows of quantities; that is
to say, have no meaning separately, and only acquire one in
combination with one of the other class of umbre a, 8, v, &e.
Thus, for example, if a, B, vy, 8 represent the suffixes 1, 2, 3, 4,
the constituents in the notation we have ourselves employed are
all formed by combining one of the letters a, b, ¢, d with one
of the figures 1, 2, 3, 4. Now the above determinant is written
by Dr. Sylvester more compactly .
a a
b B
S
d, & 1,
which denotes the sum of all possible products of the form
aa.bB.cy.dd, obtained by giving the terms in the second column
every possible permutation, and changing sign according to the
foregoing rule of signs, Observe that if the two columns are
identical, and if in general s means the same thing as sr, then
the determinant is symmetrical,
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LESSON IIL

REDUCTION AND CALCULATION OF DETERMINANTS.

12. WE have in the last Lesson given the rule for the forma~
tion of determinants, and exemplified some of their properties in
particular cases. We shall in this Lesson prove these pro-
perties in general, together with some others, which are most
frequently used in the reduction and calculation of determinants.

The value of a determinant ts not altered if the vertical
columns be written horizontally, and vice versi (see Arts. 2, 5).

This follows immediately from the law of formation (Art. 10),
which is perfectly symmetrical with respect to the columns and
rows. One of the principal advantages of the notation with
double suffixes is that it exhibits most distinctly the symmetry
which exists between the horizontal and vertical lines.

13. If any two rows (or two columns) be interchanged, the sign
of the determinant is altered.

For the effect of the change is evidently a single permutation
of two of the letters (or of two of the suffixes), which by the
law of formation causes a change of sign.*

14. If two rows (or f two columns) be identical, the deter-
minant vanishes.

For these two rows being interchanged, we ought (Art. 13)
to have a change of sign, but the interchange of two identical
lines can produce no change in the value of the determinant.

* It may be remarked that a determinant is a function which is determined
(except for a common factor) by the properties that it is linear in respect of the
constituents of each row and of each column, and that it merely changes sign if two
rows or columns be interchanged. Thus for two rows, the most general lineo-linear
function of the rows and columns is

b, (48, + Ba,) + b, (Co, + Day);
and the condition that it is to change sign when we interchange @, and 5,, , and 5,,
givesA=D=0, B+ C=0. The function is therdfore C (a,b, — a,), and if we
agree that the coefficient of a,b, is to be unity, the function is 4,8, — a,d, as before.
C
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Its value, then, does not alter when its sign is changed ; that is
to say, it is = 0.

This theorem also follows immediately from the definition of
a determinant, as the result of elimination between n linear
equations. For that elimination is performed by solving for the
variables from n — 1 of the equations, and substituting the values
8o found in the ™. But if this »™ equation be the same as one
of the others, it must vanish identically when these values are
substituted in it.

15. If every constituent in any row (or tn any column) be
multiplied by the same factor, then the determinant vs multiplied
by that factor.

This follows at once from the fact that every term in the
expansion of the determinant contains, as a factor, one, and but
one, constituent belonging to the same row or to the same column.

Thus, for example, since every element of the determinant

a‘n bﬂ cl
a, b, c,
aa’ ba? ca

contains either a,, a,, or a,, the determinant can be written in
the form a4, +a,4,+a,A, (where neither 4, 4, nor 4,
contains any constituent from the a column) ; and if a,, a,, a, be
each multiplied by the same factor %, the determinant will be
maltiplied by that factor. )

Cor. If the constituents in one row or column differ only
by a constant multiplier from those in another row or column,
the determinant vanishes, Thus

k(l’, ai’ aa a,, aa’ aa
Kby by b, | =% | b, b, b, | =0 (Art. 14).
kcs’ Cy Gy Cy Cy G

16. If in any determinant we erase any number of rows
and the same number of columns, the determinant formed with
the remaining rows and columns is called a minor of the given
determinant.” The minors formed by erasing one row and one
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column may be called first minors; those formed by erasing two
rows and two columns, second minors, and so on.

We have, in the last article, observed that if the constituents -
of one column of a determinant be a, a, @, &c., the deter-
minant may be written in the form ¢ 4, +a,4, +a,4, + &ec.
And it is evident that 4 is the minor obtained by erasing the
line and column which contain a, &c. For every element of
the determinant which contains @, can contain no other con-
stituent from the column a or the line (1); and a, must be
multiplied by all possible combinations of products of n—1
constituents, taken one from each of the other rows and
columns. But the aggregate of these form the minor A,.
Compare Art. 7. In like manner the determinant may be
written a4, +b,B,+¢,C, + &c., where B, is the minor formed
by erasing the row and column which contain 3,.

17. If all the constituents but one vanish 1n any row or column
of a determinant of the n'* order, its calculation s reduced to the
calculation of a determinant of the n —1® order. For, evidently,
if a, a, &c., all vanish, the determinant a4, + a4, + &e.,
reduces to the single term a 4 ; and 4, is a determinant having
one row and one column less than the given determinant.

Conversely, a determinant of the » — 1'® order may be written

as one of the n® or higher order. Thus

3 c. 1, 0, 0 1, b, ¢,
‘ b" o |=| 0 bygfor=105,e¢ &
w 0) ba) ca 0’ ba) cs

18. If every constituent in any row (or in any column) be
resolvable into the sum of two others, the determinant is resolvable
tnto the sum of two others. '

This follows from the principle used in Art. 16. Thus, if in
the Example there given, we write a, + a, for a,; b, + 8, for b, ;
¢, +9, for ¢, ; then the determinant becomes

(a,+a)A4,+(5,+8,) B+ (c,+v,) C,
= {al.Al. + blBl + clal} + {ale + BIBI + '7101}'
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‘Thus we have

al"'aﬂ Gy aa Gy Cy @y Gy Gy
bl +Bn b,, bz = bxl b:’ ba + B:’ bﬂ bl
¢ +717 Cy G Cy Cy € Yy Cy G e

In like manner, if the constituents in any one column were
each the sum of any number of others, the determinant could
be resolved into the same number of others.

19. If again, in the preceding, the constituents in the second
column were also each the sum of others (if, for instance, we
were to write for a,, a,+a,; for b, b, + B,; for ¢, ¢, +1,), then
each of the determinants on the right-hand side of the last -
equation could be resolved into the sum of others; and we see,
without difficulty, that

(a: +a, bﬁ + BI’ c:) = (albica) + (a|Bsca) + (anbsca) + (aIBscl)‘
And if each of the constituents in the first column could be
resolved into the sum of m others, and each of those of the second
into the sum of n others, then the determinant could be resolved
into the sum of mn others. For we should first, as in the last
Article, resolve the determinant into the sum of m others, by
taking, instead of the first column, each one of the s partial
columns; and then, in like manner, resolve each of these into n
others, by dealing similarly with the second column. And so, in
general, if each of the constituents of a determinant consist of
the sum of a number of terms, so that each of the columns can
be resolved into the sum of a number of partial columns (the
first into m partial columns, the second into =, the third into
P, &ec.), then the determinant is equal to the sum of all the deter-
minants which can be formed by taking, instead of each column,
one of its partial columns ; and the number of such determinants
-will be the product of the numbers m, =, p, &ec.

20. If the constituents of one row or column are respectively
equal to the sum of the corresponding constituents of other rows
or columns, multiplied respectively by constant factors, the deter-
minant vanishes. For in this case the determinant can be
resolved into the sum of others which separately - vanish.
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Thus
ka,+la, a,, a, ka,, a, i, a, a
kb, + 1, b, b, | =| kb, b, b + | U, b, b,
ke, +lc,y ¢, c, ke,, ¢, le,y ¢y 0, |-

But the last two determinants va.msh (Cor., Art. 15).

21, A determinant s not altered if we add to each comstituent
of any row or column the corresponding constituents of any of the

other rows or columns multiplied respectively by constant factors.
Thus

a,+ka, + la, a, a, a, a, a, ka, +la,, a,, a,
b +kb,+Uy,y b,b |=|b, b, b | +|kb+1, b, b,
c,+ke,+ 1, c, ¢, Cy Cp G ke,+ e, ¢, ¢ |.

But the last determinant vanishes (Art. 20).* The following
examples will shew how the principles just explained are applied
to simplify the calculation of determinants.

Ex. 1. Let it be required to calculate the following determinant :

9,13,17, 4| |1,1,1, 4 ,1,1,1
18,28,33, 8| (241, 8(_[241,1
30,40,54,13—41218_4,1,2,6
24, 87, 46, 11 2,42 11! 124238]|.

‘The second determinant is derived from the first by subtracting from the constitnents
of the first, second, and third columns, twice, three times, and four times, the corre-
sponding constituents of the last column. The third determinant is derived from
the second by subtracting the sum of the first three columns from the last. When-
ever we have, as now, a determinant for which all the constituents of one row are
equal, we can get by subtraction one for which all the constituents but one of one
row vanish, and so reduce the calculation to that of a determinant of lower order
(Art. 17). Thus subtracting the first column from each of those following, the deter-
minant last written becomes

;’ g’_‘l"_g 2, -1,-1 4 -1,-1 ‘ 4,-1,
‘s 2 2 -8,-2 2|=|-7-2 2|=l-7-2],
P TH T 2, 0 1 0, 0 1

2, 2 0 1 ’ r

The third of these follows from the second by subtracting twice the last column
from the first, leaving a determinant of only the second order, whose value is
-8—-7=-16.

* The beginner will be careful to observe that though the determinant is not
altered if we substitute in the first row a, + ka, + la, for a,, &c., yet if we make the
same substitution in the second row far a,, &c., we multiply the determinant by &;
and if in the third for a,, &c., we multiply it by ,
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N.B.—It is in all cases possible to make all actual constituents in any row of the
same value—by multiplying each and the terms in its column by the product of the
others. In this way a determinant can, as in this example, be reduced to one of
lower order, and this process is generally the best for numerical calculation,

.Ex, 2. The calculation of the following is necessary (Sur/faces, Art. 234) :
5, —10, 11, 0 5 —10, 11,0

5, — 10, 11
-10,-11, 12, 4 —382, -85, 840 32’_35"34
11, 12,-11, || 11, 12, -1, 2| 1’ 5’ s
0, 4, 2, -6 1, &5 80 ’ ?
5, -2 1 6, —2 1 s 1
=10(3, 7,1|=10] 92, 90 =90| ' l
—_ = 9) =
L L8 _89 17,0 39, 17 | =90 (51 + 89) = 8100,

The first transformation is made by subtracting double the third row from the second,
and adding the sum of the second and third to the fourth. In the next step it will
be observed, that since the sign of the term @,b,c,dy is opposite to that of a@b,c,d,,
when ¢, is the only constituent of the last column which does not vanish, the deter-
minant becomes — ¢, (2,5,d;). In the next step, we add the second and third columns,
we take out the factor 5 common to the second column, and the sign — common to
the second row. We then subtract the first row from the second, and eight times
the first row from the last, and the remainder is obvious,

Ex. 8. 7,-2 0,6
-2, 6,-22
0,-2 53

5 2 8,4 |=— 972 (Surfaces, Art. 225).

Ex. 4. 25, —15, 28, -8
—15,-10, 19, 5
23, 19, —15, 9

- b 6 9, -5 |=194100 (Surfaces, Art. 234).

Ex. b. Given n quantities «, B, v, &c., to find the value of
, 1, 1, 1, &c.
o B v o &
a®, 2, % &8, &ec.

a""l, ﬁn—l’ ,yn—l, 6»—1’ &e. |.
It is evident (Art. 14) that this determinant would vanish if @ = 8, therefore & — 8

is a factor in it. In like manner so is every other difference between any two of the
quantities a, 8, &e. The determinant is therefore

=(B—a)(y—a) (8- a)..ly —B) (& —p)..d —y)..&ec.
For the determinant is either equal to this product or to the product multiplied by
some factor. But there can be no factor containing a, B, &c., since the product con-
tains ¢™!, f*1, &c.; and the determinant can contain no higher power of a, 8, &c.;
and by comparing the coefficients of a*-! it will be seen that the determinant contains
no numerical factor. This example may also be treated in the same way as the
next example, .
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Ex, 6. To calculate , 1, 1, 1
a B v ¢
a, @ oY &8
aly B4 o4 3. .

Sobtract the last column from each of the first three and the determinant becomes
divisible by (8 — a) (& — B8) (¢ — ), the quotient being

1, 1, 1
a+s, B+3, v+
Q4o+ ad+ 8, BN+, Pyt +

Subtract again the last column from the two preceding and the determinant is seen
to be divisible by (e — 7) (8 — ), and its value is thus at once found to be

@=8)B- -8 @-7)B-7)(a—-p) (e+B+y+d)*

Ex. 7. In the solution of a geometrical problem it became necessary to determine
\ from the equation

ad, 8, ld
(@+A)2 (B+N)? (c+Ap?
(2a + A% (256 +N\)3, (2¢+A)®
Subtract the first row from the second, and divide by A ; subtract 8 times the first
row from the last and divide by A\; then snbtract the second row from the third
and divide by 3; and, lastly, subtract this last row from the second and divide by A,
when the determinant becomes

a, b, L
2a+A, 26+A, 2+
8a®+a\, 352+ 06N, 8ct+c\ |=0. )
Again, subtract the first column from the second and third, and divide by 5 — g,

¢ — a; then subtract the second from the third, and divide by ¢ — b; and then from
the first column subtract a times the second and add ab times the last; and from

=0,

- the second column take (a + ) times the last, and we have finally

abe, —(ab+bc+ca), a+b+e
A 2 0
0, A 3 =0,
which reduced is .
(@ + b+c) A2+ 8 (ab + bc + ca) X + 6abec = 0.
Ex. 8. G+c)32 a? a?
b,  (c+a), &8
e, et, (a+8)?|=2abc(a+bd+c)s
Ex. 9. , 1, 1

sina, sinfB, siny
cosa, cosf, cosy

=4sin}(a-p)sin} (B—9)sing(a~9)

# On the general theory of which this and the preceding example form part, see
note at end on Rational Functional Determinants.
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Similarly, by Ex. 6,
: sinde, gin’a cosa, sina cos’a, cos’a,

sin’f, sin?BcosB, sinp cos’, cos’f,

sin’y, sin*y cosy, &iny cos'y, cosly, | _

sin?, sin?d cosd, sind coe?s, cos’s,

8in (@ — g) &in (a — ) sin (« — &) sin (8 — ) sin (8 — &) &in (y - 9).

Ex, 10. | cos(a — ), cos (B — ), cos(y — @)
cos(a + B), cos (B + ), cos(y + a)
gin (a + ), sin (8 + v), sin (y + a)
sina, cosa, sina cosa
sinp, cosB, sinfoosp
siny, cosy, siny cosy
=2sin} (8 — y) sin} (y — a) sin} (a — B) {sin (a + B) +sin (B + ) +sin(y + o)}
This follows at once from the identities

=24in (a— @) sin(8—7) sin (a— ).

Ex. 11,

@V +a't +a"db+ab’ +ab’+ab)|1,a b |=
1, d, ¥
1' an’ 14
¥ +a"¥—2b, a b 1, a, & a b ab
a"b +ab” =2, o, b |=|1,a% b* [-2|a, ¥ o¥
abl + a’ -— %’Ib" a’l’ b" l, a"" b"‘ a”’ bn’ a"b"

Ex. 12. Many of these examples may be applied to the calculation of areas of
triangles, it being remembered that the double area of the triangle formed by three
points is

1, 1, 1
«, z", ="
Y, ¥y
and by three lines az + 3y + ¢, &c., is

a b c |?

a b,
a”, b", ¢’ | divided by (a'd” —a"t") (a"b—ad") (al/ —a'd)

(see Conic Sections, p. 32). For example, the area of the triangle formed by the
centres of curvature of three points on a parabola is (the coordinates of a centre of

cmatmbeing;pnz,-:l:)

6 , 1, 1
;‘ y” y'z’ y”’

¥ yh
In like manner may be investigated the area of the triangle formed by three normals,
or any other three lines connected with the curve.

=R W= =9 G- O +5y+ ).

Ex.18. | 0, ¢, b 0,¢bd
60 a 60,0 ¢ -
b, a,0 [=2abc; | b a 0,1

d, ¢ f, 0 | =a?d bt + o2f*—2abde - 2bosf ~2adcf,
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Ex.14, Prove |0, 1, 1, 1 0,z 48 2y 2
1, 0, 22 y* =% 0,2y and %t 2y
1, #% 0, 2* ¥ 20, HHthz
1, 9% 2% 0 2 4 0 5 Y ot

=(t+z+y+2)(+a-y-2)-2+y-2)(t—z—y+12)

Ex. 15. a, \, \, A, &o.
A B A A, &e
M A 6 A, &o.
A AN, 4 &
&e. '

where all the constituents are equal except those in the principal diagonal, is
@ (M) =\ 22, where ¢ (A) is the continued product (a — \) (5 - A) de.

Ex. 16. Let u be a homogeneous function of the n'® order in any number of
variables; and let u;, u, u,, &c., denote its differential coefficients with regard to
the variables ), %,, %5 &c.;and in like manner, let u,;, u,,, %, denote the differ-
ential coefficients of u,, &c. Then, by Euler's theorem of homogeneous functions,
we have

0 = U2y + iy + Uy + Gy (8 — 1) 4y = @ytigy + 2ty + Zythyy + &,y e

We shall hereafter speak at length of the determinant (called the Hessian)
formed with the second differential coefficients, whose rows are u;, %, t;, &c.;
Uy, Usg Ugy, &c., &c. At present our object is to shew how to reduce a class of
determinants of frequent occurrence, which are formed by bordering the Hessian,
either with the first differential coefficients, or with other quantities, as for example

1y UYpg Uy Yy Gy
Yg1y Upgy Upgy Us G
Ugyy Upzy Usgyy Usy Gy
ty Uy ty 0, 0
ay ay ay 0, 0, |.

In this example we only take three variables, and the determinant formed by the
first three rows and columns is the Hessian, which we shall call /, but the processes
which we shall employ are applicable to the case of any number of variables.
‘We denote the above determinant by the abbreviation (: :) , and use (:) R (:) , (:)
to denote the determinants of four rows, formed by bordering the Hessian with
a single row and column, either both «’s or both a’s, or one u and the other . We
also write a,x, + @y, + a;x; = a. If now we multiply the first column of the above
written determinant by x;, the second by x, the third by z;, and subtract the sum
from n — 1 times the fourth column, the first three terms vanish, the fourth becomes
— nu, and the fifth — a. Again, multiply the fourth row by n — 1, and subtract
in like manner the sum of the first, second, and third rows multiplied by w,, zy, x4
respectively, then the first three terms vanish, the fourth remains unchanged, .
and the last becomes — a. Thus then (n—1)? times the determinant originally

D
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written is proved to be equal to
thy Yy Uiy o . @
Ugyy Usg Uspy 0, ay
Us1y Usny Usy 0, a
0o, 0, 0, —n(n—1)y, —a
@y 6y ay ) 0 |

But now since (Art. 15) & determinant which has only two terms d,, d; of the fourth
row which do not vanish, is expressible in the form d,D, + dsDy’; the above deter-
minant may be resolved into the sum of two others, and we find that the originally

given determinant
e

In like manner it is proved that (:) =- i Hu, Or, again, if there be four
variables, and the Hessian be triply bordered, we prove in the same way that

@ep=a2 CR)-atm o () -mmr oo ()-
‘When u is of the second degree, it is to be noted that, in the case of three variables,
(:) =0is the condition that the line a should touch the conic u; ahd (: ﬁ) =0is
the condition that the intersection of the lines a, B should be on the conic. In like
manner for four variables the vanishing of (:) , (a ﬁ) , (a B 7) respectively, are the

a apBy,
conditions that a plane should touch, that the intersection of two planes should touch,

and that the intersection of three planes should be on, the quadric . The equation then

(::ﬂ) =0 expresses that the polar plane of & point passes throngh one or other

of the two points where the line a8 meets the quadric. But points having this
property lie only on the tangent phmes at these two points. The transformation,

therefore, that we have given for p) expresses the equation of the tangent planes

at the points where e meets the qundnc, and the transformation for ( ) gives the
equation of the tangent cone where a meets the quadric,

Ex. 17. Find the value of a determinant of the form

@ 1, 0, 0,0
-1, 5 1, 0,0
0,-1, ¢ 1,0
0, 0,-1, d1

09, 0 0-1el.

Determinants in which all the constituents vanish except those in the prlmpd
diagonal and the two bordering minor diagonals, have been studied by Mr..Muir
under the name of continuants (Proceedings of the Royal Soc., Edinb., 1878—4). The *
above determinant may be written in the abbreviated form (a, b, ¢, d, €) ; and taking
out the constituents in the first row (as in Art. 16), the value of the determinant is
seen to be a (b, ¢, d, €) + (¢, d, ¢). In this way we can easily form the series of
values of continuants of two, three, &c. rows, viz.

ab+1, abc+c +a, abed+ cd+ad+ab+1, '
- abede + abe + abe + ade + cde + a + ¢ + ¢, &c.
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The rule of formation is, take the product abede of all the constituents, and omit from
it in every possible way the pairs of consecutive literal constituents. Thus, in the
last case, the omitted pairs are de, cd, bc, ab, (bc, de), (ab, de), (ab, cd).

Determinants of the class here described occur in the theory of continued frac-
tions; for it is obvious tha!; the snccessive approximations to the value of the

m@udfmchwa+n—,&c,m

@3 (a8¢) (ab 0,46
@G W  Gaa '

Ex. 18. Find the number of terms in a continuant of the n'® order. From the
equation (g, 3, ¢, d, ) = a (b, ¢, d, €) + (¢, d, ¢), it is obvious that if (n) be the namber
required, we have the relation (n) = (n —1)+ (n —2); and that therefore for the
orders 1, 2, 8, &c., we have the series of numbers 1, 2, 3, 5, 8, 18, &c.; and generally

it {1_*‘#)}' = Ay + B, {(5), the number required is 4, + By.

LESSON III

MULTIPLICATION OF DETERMINANTS.,

22. THE product of two determinants may be at once
written down as a determinant whose order is the sum of
their orders. For instance, the product of (a?,), (2,8,y,) may
be written down

a, a, 0,0, 0
bn ba? 0 b 01 0
0, 0, a, a, a .
0, 0,8, 8, B '

0, 0, %% % "Wy

as is evident on expanding the last written determinant. (See
also post Art. 32). We shall now shew that the product
of two determinants may be written down as a determinant
whose order does not exceed the highest of the two.

The product of two determinants of the same order s the
determinant whose constituents are the sums of the products of the
constituents in any row of one by the corresponding constituents
in any row of the other.
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For example, the product of the determinants (a,bc,) and
(2,8,7,) is
a2, + btﬁ 1 + ¢y 6% + blB! + ¢ @0, + blﬁz + %5
aﬁal + bQBl + cﬁ"l’ alas + bQB’ + ci'yi’ a|a3 + biBS + c’ 8
a2, + bsB T CTy %, + b,B’ + CYsy G2y + bss; + s
The proofs which we shall give for this particular case will
apply equally in general. Since the constituents of the deter=
minant just written are each the sum of three terms, the de-
terminant can (by Art. 19) be resolved into the sum of the 27
determinants, obtained by taking any one partial column of the
first, second, and third columns. We need not write down the
whole 27, but give two or three specimen terms:

alal’ alal7 alaa alal, 61397 cl"a axan’ 01797 blBB
0, a2, ag, | + | 02,58, ¢, |+ | a2, ¢V, b8, | + &e.
aaan a,an, aaaa anan baB-n cg'ya aaan ca"g’ bBBI

Now it will be observed that in all these determinants each
column has a common factor, which (Art. 15) may be taken out
as a multiplier of the entire determinant. The specimen terms
already given may therefore be written in the form

ay al, a: al’ bn cx ayy cl’ b:
@02, | @, a, a, + axﬁn s | B bﬂ C +a|7:Ba Gy Cy bs M
as‘) aa’ an az’ bs’ cs as’ 05, ba

But the first of these determinants vanishes, since two columns
are the same; the second is the determinant (ab,c,); and the
third (Art, 13) is =—(abc,). In like manner, every other
partial determinant will vanish which has two columns the
same; and it will be found that every determinant which does
not vanish will be (ab.¢,), while the factors which multiply it
will be the elements of the determinant (,8,y,).

It would have been equally possible to break up the deter»
minant into a series of terms, every one of which would have
been the determinant (e,S,y,) multiplied by one of the elements
of (abc,).

The theorem of this article is applicable to the multiplication
of determinants of different orders, because it has been shewn
(Art. 17) that we can always write that of the lower order
as one of the same order with the higher, s

e,



ANOTHER PROOF. . 21

23. On account of the importance of this theorem, we give
another proof, founded on our first definition of a determinant.

The determinant which we examined in the last Article is
the result of elimination between the equations

(alal + blBI + cl'yl)x+(ala’+ blB’+ cl'yﬂ)y-’- (alaﬂ+ blBﬂ+ cl'Y;)”:o’
(aaal + bﬂBl +¢ Jz+ (aaas+ bsﬁn'*' C,'y,)y+ (axas+ ana+ cn"a)z=0)
(aaal + baB 1+ 0,'7,) z+ (asas'l' baB a+ ca'ya)y + (asaa+ baBs+ s s) 2=0.
Now if we write

ax+ay +az =X,

Bz +By+Bz=1,

12+ Y +7E =2,
the three preceding equations may be written

a,X+5Y+cZ=0,

aX+bY+cZ=0,

a‘X-i- ba Y+ caZ= 0,
from which, eliminating X, Y, Z, we see at once that (abc,)
must be a factor in the result. But also a system of values of
@, ¥, #z can be found to satisfy the three given equations, provided
a system can be found to satisfy simultaneously the equations
X=0, Y=0, Z=0. Hence (2,8,y,) =0, which is the con-
dition that the latter should be possible, is also a factor in the
result. And since we can see without difficulty that the degree
of the result in the coefficients is exactly the same as that of the
product of these quantities, the result is (a,5.c,) (2,8,7,)-

So in general the product of any number of determinants
may be expressed as a determinant whose order does not exceed
the highest of the orders of the given determinants, and whose
elements are rational functions of the elements of the given
determinants.

It appears from the present Article that the theorem con-
cerning the multiplication of determinants can be expressed in
the following form, in which we shall frequently employ it:
If a system of equations

6 X+bY+¢Z2=0, a, X+bY+cZ=0, a,X+b,Y+¢Z=0
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- be transformed by the substitutions
X=agtaytaz, Y=Bz+By+Bs Z=vz+vy+72
then the determinant of the transformed system will be equal to
(adc,) the determinant of the original system, multiplied by
(@,8,7,), which we shall call the modulus of transformation.

24. The theorems of the last Articles may be extended as |
follows: We might have two sets of constituents, the number
of rows being different from the number of columns; for

%y Bn %

example
’ “u Bn’ Y

and from these we could form, in the same manner as in the last
Articles, the determinant

a,a, + blBl + YY) aidl + bssl + N | .

a2, + blB ot CYay A%y + bQBl + G |

whose value we purpose to investigate.

Now, first, let the number of columns be greater than the
number of rows, as in the example just written, so that each
constituent of the new determinant is the sum of a number of
terms greater than the number of rows; then proceeding, as in
Art, 22, the value of the determinant is

a2, a0, I e, bﬁﬁl l +&c
I a,a, aa, a2, baﬁs
=) (Biva) +(cia,) (v.a,) + (ady) (a,8,)- _
That is to say, the new determinant s the sum of the products of
every possible determinant which can be formed out of the ome set
of constituents by the corresponding determinant formed out of the
~—0ther set of constituents.
—~

an bn cl
as’ b:’ cs

25. But in the second place, let the number of rows exceed
the number of columns. Thus, from the two sets of con-
stituents,

@y B .
% B, l
% ﬁs L I

a, b,
as’ b:
a, b,
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let us form the determinant

‘a0, +b8, aa +b8, aa +bB,

a|a2+bBﬂ n+bnﬁai aaaa+b B

. a0, + bllsa’ a2, + baBa‘) a0, + bsB s | °

Then when we proceed to break this up into partial determinants
in the manner already explained, it will be found impossible to
form any partial determinant which shall not have two.columns
the same. The determinant, therefore, will vanish identically. Or
this may be seen immediately by adding a column of cyphers to
each matrix and then multiplying, when we get the determinant
last written as the product of two factors each equal zero.

26. A useful particular case of Art. 22 is, that the square of
a determinant 1s a symmetrical determinant (see Art, 10). Thus
the square of (a,b,c,) is
al’ + bl' + c‘n ) 483, + bibn + CCy aa, + bnba + C,Cy
aa,+bb,+cc, a' +b* +¢', ag,+bh+cgc,
aa,+bb,+cc, aa +bdb +ege, a' +5' +¢.
Again, it appears by Art. 24 that the sum of the squares of the
determinants (b,c,)* + (c,a,)" (alb,)' is the determinant
al’ + bl' + cl’ b alaﬁ + blﬁﬁ + clcﬂ
aa,+bb,+cc, a' +b' +¢' |.
Ex. 1. X a), 5, ¢;; ay by, C, be the direction-cosines of two lines in space, and 6

their inclination to each other, cos 6 = a,a, + 5,6, + ¢;c; ; and the identity last proved
gives sin?0 = (5,0,) + (€,8.)* + (2,5,)%

Ex. 2. In the theory of equations it is 1mportant to express the product of the
squares of the differences of the roots; now the product of the differences of »
quantities has been expressed as a determinant (Ex. 5, p. 14), and if we form the
square of this determinant we obtain

80 81y 82 .e8ny
81y S 83 8a

........................

Sn-1y Smy 3n+g---‘m ’
where s, denotes the sum of the p*® powers of the quantities a, 8, &c.

Ex. 8. In like manner it is proved, by Art. 24, that the determinant
80y 81

=z @-pn,

80y 81y 82

‘ Sty 8 |=Z(B—79) (y—a)(a-p)%
8 8 8
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We thus form a series of determinants, the last of which is the product of the
squares of the differences of a, 8, &c.; all similar determinants beyond this vanish
identically by Art.25. This series of determinants is of great importance in the
theory of algebraic equations,

Ex, 4. If there be any n quantities , 8, y, &c., and a like number o, £, y’, &y
the product may be formed

a’y ra™l, }r(r—1) a2..1
By Y dr (r—1) pr2d

essaeescesssesnastssesssasacetcinn s

(a—a), (@a—a), (@a—y) ... '

l1-a, a?..(—a)

1-8, g% (- BY

ssscsscssasecersanstarenes

B=a)y, B=BY)Y, B=7)F ..

when if the number s > r + 1 each side vanishes; etherwise as each determinant of
the first matrix contains as factors every difference of the first quantities, and each of
the second every difference of the second set, the resulting determinant is divisible by
the product of both continued products of differences.

Ex. 5. Various well-known identities may be established by the method of
Art. 26. Thus it is easily seen that
cosa, 8ina
cosf, sing
cosy, siny

cosSa, 8ina
cos 3, &in B

cosy, siny

1, cos (8 — a), 005(7_“)
gives cos (« — ), 1, cos (y — B)
cos (a — ), cos (8 — 1), 1

similarly

cosa, sina sin (e + «”), sin (B + a), sin(y + a’)

cosf, sinB | | sing, cosp’ sin(a + @), sin(8 + "), sin(y + 8"

cosy, siny | | siny’, cosy’ sin(a + 9"), sin(8 + %), sin(y + v’
*If a conic break up into two lines (az + By + ¥2), (a’z + B’y + v'z), we find,

equating coefficients,

sin a’, cos a’

a, a d, a 2a, 2h, 29
BB | |8 B|=]|2k 2, 2 |=0 (ctf Conics, Art.77).
Y Iy 29, 2, 20
If a biquadratic be of the form (az + B8)* + (a’z + B')4, by similarly identifying
a? a? a? a?’ a, b ¢
) «'f’ a'p bc, d]|=0,
&, g g B* 6 dye
Ex, 6. In like manner, from Art. 24, the two methods of writing
a, c—2ba | _ 2(ac—-%) ac’ +a'c— 285

a’, b’ ¢ l ' =2, d |7 | ac’ +ale—208, 2 (a'c -9
=2 (") (an = (ca’)? + 2 (ab) (b0),
give the identity
4 (ac — 8% (a'd’ = 8) — (ac’ + a’c — 268')? = 4 (bc”) (ad”) — (ca)?,
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Again :
I a, b ¢ d|*_| a?+b2+ct+d? aa’+ bV +co +dd | =(b)? + (ca’)®+ (ad)?
a, ¥, oy d'| T | aa’+ 8 +cc’'+dd, a? + b2+ ¢t + A% | + (ad)? + (b + (ed')?; .
ad —a'd, a, a'
but (5¢') (ad’) + (ca’) (O2) + (ab) (cd) = | b’ — b'd, 3, ¥/ | =0,
cd —-cdy ¢, ¢

hence the right side may be written
{(8¢) + (ad)}? + {(ca) + (3a")}* + {(ad) + (ed)}%
and the identity exhibits the product
(a? + 5% + ¢ + &%) (a"2 + b2 4 ¢"2 4 d),
a3 the sum of four squares, a theorem due to Euler.

Ex. 7. The relation among six distances from a point along a line to points which
form an involution is that the determinant

1, a; + ay a1,
1, b + by b0,
1, c1+¢y 065
may vanish. (Conics, Note, p. 810).

2% —z 1
¥ -9 1,
2% — 2,1
(2—a)(z—a), §—a) (¥ —a), (z—a) (z2—ay)
(=) (2~b), (y— ) (y— by (- 8) (2= &)
(@—e)(@—c) y—a) (y—ca)y (2— ) (2= c2)
by taking the values a, for z, &, for y, ¢, for z, this reduces to

Multiplying this by

we get

]

0, .(bl —ay) (5 — ), (61— @) (6, —ap)
(@, = 4y) (a, - 3y), 0, - (er=8) (er - 89)
(@ —a)@—a), &~ )G —c) Y

= (b =) (61— ay) (@ — 8y) {(@y = ;) (81 — ¢3) (01 — @g) + (a2 — by) (B; — ¢)) (c2 — @)}y
whence the original determinant is expressed as the sum of the last two products,,
or as . )

0, a—2b,c¢—a
a—b, 0 b—c
6z —ay by —c; 0

Ex. 8. Let the origin be taken at the centre of the circle circumscribing a triangle,
whose radius is R; and let M be the area of the triangle, then

o ¥, R «, ¢y, —-R
2MR=| 2", y’, R| and -2MR=| 2", ', — R |.
zll” y”,, R z”,’ y”, — R

Multiply these determinants according to the rule, and the first term «'2 4- y’* — R?
vanishes; the second a'z” + y'y” — R*=— } {(@’ — 2")? + (¥ — ¥")?} = — 4c? where
¢ is a side of the triangle, Hence then

0, ¢ 5
¢, 0, a?
8, a?, 0

—4M3R2=-} = — {a?%®,

_whence R= %—‘;, a4 is well known,
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Ex. 9. The same process may be used to find an expression for the radius of the
sphere circumscribing a tetrahedron. Starting with the expression for the volume
of the tetrahedron
2, ¥, ¢, 1
zy y' 2 1
dll, yl', xlll, 1
=, ¥, 2%, 11.

We find, as before, if a, d; & e; c, f are pairs of opposite edges of the tetrahedron
0, c?, 8%, a*
—smvi=g | D 6B E
¥, a, 0, f?
@ ey f50 0,
whence if ad + be + ¢f = 28; by Ex. 13, p. 16, we find
86R2V2 =8 (S — ad) (8 — be) (S —¢f).

6V =

Ex. 10. The above proofs by Mr. Burnside were suggested by the following proof
by Joachimsthal of an expression for the area of a triangle inscribed in an ellipse.
Multiply the equations

x’ zl ’

;’ 5! 1 ;s%’ -1
M _\2 oy |, My
ab a’ B’ ’ ab " |a’ d’

zFIP U dl' "

g =5 -,

And the product is a symmetrical determinant, of which the leading terms, such as
2
:’T"'%’ — 1, vanish when the points 'y, 2”y”, z'"y’" are on the curve, while the
= Yy’ . :
other terms are -a—,+?~—l, &c. Now it can easily be proved that if o be a
side of the triangle, and 5" the parallel semi-diameter,

Ll ('/——;,-"")’ =2(1- LA L

T a

a!
Thus we have
9o, X B
’ bl"g’ b2
41:— ¥ 0 a? | _ a?fBy?
“taE=mtim Y o | =
2
ngn 'Z‘;‘gr 0

Ex. 11. The following investigation of the relation connecting the mutual distances
of four points on a circle (or five points on a sphere) was given by Prof. Cayley (Cam-~
$ridge and Dublin Mathematical Journal, vol. 11., p. 270).

Substitute the coordinates of each point in the general equation of a circle
2?4+ y?—24z - 2By + C=0,
and eliminate 4, B, C, when we get a determinant with four rows such as
2+ y? -2, -2, 1.
Multiply this by the determinant (which only differs by a numerical factor from the
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preceding) whose four rows are such as 1, z/, 3/, 2?2 + y’% and the first term of tha
product determinant vanishes, the second being (z’ — z”)®+ (y' — ¢”")%. If then the
square of the distance between two of the points be (12)?, the product determinant is
0, (12)% (13)2, (14)

(217, 0, (28)%, (24)?

(31)% (323, 0, (34

(417, (42)%, 43)* 0 |=0,
which is the relation required. As has heen already seen, this determinant expanded
gives the well-known relation (12) (34) + (13) (24) + (14) (28) =0, The relation
connecting five points on a sphere is the corresponding determinant with five rows,

Ex. 12. To find a relation connecting the mutual distances of three points on a line,
four points on a plane, or five points in space. We prefix a unit and cyphers to the
two determinants which we multiplied in the last example, thus

1, 0, 0, 0 0,00 1
2+ g% — 2/, — 2y, 1 X 1, &, ¢, 2+ y*
&c. &c. .

‘We have now got five rows and only four columns, therefore the product formed, as
in Art. 25, will vanish identically. But this is the determinant-

0, 1, 1, 1, 1

1, 0, (12)% (13)% (14)*

1, (213, O, (23), (24)*

1, (31)% (82 O, (34)°

1, (41)% (42)% (48)% O (=0,
which is the relation required. If we erase the outside row and column, we have the
relation connecting three points on a line ; and if we add another row, 1, (31)% (52)?, &c.,
and symmetrical column, we get the relation connecting the mutual distances of
five points in space. We might proceed to calculate these determinants by subtracting
the second column from each of those succeeding, and then the first row from those
succeeding, when we get

C2(12)%, (12) + (18)2 — (23)%, (12)2 + (14)2 — (24)

(12)2 + (13)2 — (23)%, 2 (13)%, (13)? + (14)* — (34)?
) (12)2 + (14)2 — (24)% (13)% + (14)2 — (34)?, 2 (14)2 =0.

Now the determinants might have been obtained directly in this reduced but less
symmetrical form by taking the origin at the point (1), and forming, as in Art, 25,
with the constituents 'y, #”y"”, &c., the determinant which vanishes identically,

4y T2 +yy, Z gy

=" +yy, T?+y, Ty
zﬂzlll_‘_ylyl”, z'lz"’ +yl'y’", d”’""y"".
which it will readily be seen is equivalent to that last written.

Ex. 13. To find the relation connecting the arcs which join four points on a sphere.
Take the origin at the centre of the sphere, and form with the direction-cosines of
the radii vectores to each point, cos a’, cos 8', cos ¥’ ; cos a”, &c., a determinant which
vanishes identically, this will be

1, cosab, cosac, cos ad
cosba, 1, cosbc, cosdd
cosca, cosch, 1, cosed
cosda, cosdd, cosde, 1 =0,
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ab)

If we substitute for each cosine, cosad, 1 — -— + &c., and then suppose r the radius

of the sphere to be infinite, we derive from the determinant of this article the relation
of last article connecting four points on a plane.

a- X’ hv 9
hy b-\ f,
9 Sy e—=)\

determinant is one of like form with A? instead of A, the first line being
4 -2\, H, G, &c., where
A=a® + A2+ g% B=b +fi+h, C=0 +g*°+S%
=gh+f(@+0), G=kftg(c+a) H=fy+h(a+d),
and the expanded determinant equated to cypher gives A8 — LAY+ MA? — N =0, where
L=a*+8+c24+2(f2+ g2+ A%, A ’
M= (be — f7P + (ca— g)F + (ab — K+ 2 (af = ghY + 2 (bg — Bf)? + 2 (ch —fU)",
"and N is the square of the original determinant with A init=0; L, M, N are then
all essentially positive quantities. In like manner if ¢ () be formed similarly from
any symmetrical determinant, ¢ (A) ¢ (— \) equated to nothing, gives an equation for
A%, whose signs are alternately positive and negative, which therefore, by Des Cartes’s
rule, cannot have a negative root. The above constitutes Sylvester's proof that
the roots of the equation ¢ (\) =6 are all real. It is evident, from what has been
just said, that no root can be of the form g .(—1), and in order to see that no root
can be of the form a + g8 J(— 1), it is only necessary to write a —a =a', b —a =",
¢ — a = ¢, when the case is reduced to the preceding. -

Ex. 14 If ¢ ) = , calculate ¢ (A).¢ (~A). The new

LESSON 1IV.

MINOR AND RECIPROCAL DETERMINANTS,

27. WE have seen (Art. 16) that the minors of any deter~
minant are connected with the corresponding constituents by
the relation

ad +ad +ad +&.=A

.and these minors are connected with the other constituents'by
the identical relations

b4 +bA4,+b4,+&e.=0,
¢4, +cd,+ ¢4, +&e. =0, &o.
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For since the determinant is equal to a,4, + a,4, + &c., and since
4, A, &c. do not contain a,, a, &c., therefore b 4, + 5,4, + &e.
is what the determinant would become if we were to make in it
a,=b, a,=b, &c.; but the determinant would then have two
columns identical, and would therefore vanish (Art. 14).

28. From the above can be deduced useful identical equations
connecting the products of determinants formed with the same

constituents. Thus writing down the two identical equations
(Art. 3)

a (b)+b (ca) +o (ab) =0,

a () + b (ca’)+ ¢ (ad)=0;
multiplying the first by d’, the second by d; and, subtracting,
we have

(ad’) (b¢') + (8d") (ca) + (ed’) (ab’) =0.
Similarly from the three equations

a (bdd’)—=b (cd’a”)+c (da'd”)-d (ab'c”)=0,

o (bdd’)=b (cd'a”)+ ¢ (da'b”)—d (ab'c”)=0,

a” (bd'd”) = b (cd'a”) + ¢ (da'd”) —d” (ab'c”) =0,
multiplying these respectively by (ef”), (¢’f), (¢f’), and adding,
we deduce the identity
(adf”) (b @") — (bef”) (cd'a”) +(cef") (da'd") — (def") (ab'c")=0;

and so on.

29. We can now briefly write the solution of a system of
linear equations
ax+by+cz+&e.=§,
ax+by+cz+&e.=1,
ax+by+cz+ &e. =§ &e.,
for, multiply the first by 4,, the second by 4, &c., and add,
the coefficients of y, z, &c. will vanish identically, while the

coefficient of =" will be a 4, +a,d, + &ec., which is the deter-
minant formed out of the coefficients on the left-hand side of
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the equation, which we shall call A. Thus we get
Azx=AF+ An+ AL+ &e.,
Ay=BE+ Bn+ B+ &e,
az=Ck+ Cop+ CL+ &c., &e.

30. The reciprocal of a given determinant is the determinant
whose constituents are the minors corresponding to each con-
stituent of the given one. Thus the reciprocal of (ab,c,) is

Al) B Y Cl
A:, B:’ 0:
As’ Bﬂ Cs ?

where 4, B,, &c., bave the meanings already explained. If we
call this reciprocal A’y and multiply it by the original deter.
minant A, by the rule of Art. 22, we get :
alAl + blBl + G 01’ aaAl + baBl + (‘»,Cl, asAx + bsBl + 0301
alAl + blBa + ¢ 01’ aaAa + ban + G Cz’ asAs + baB: + Cs Ci
aIAI + blBl + cl 03’ a’AS + b!BB + ci 03, alAﬂ + bﬂBﬂ + oﬂ Gﬂ
But (Art. 27) ¢, 4,+ 5B, +¢,C,=A, a,4,+5,B,+¢c,C,=0, &ec.
This determinant, therefore, reduces to

A, 0, 0
0, A, 0
0, 0, A
Hence (ab,c,) (4,B,0,) =(aby,); therefore (4 B,C,)=/(abe,)"
And in general, A’A = A"; therefore A" = A™".

= A’

31. If we take the second system of equations in Art. 29,
and solve these back again for §, 5, &c., in terms of Az, Ay, &c.,
we get

A’E=a Az +b Ay +cAz+ &,
where a, b, c, are the minors of the reciprocal determinant.
But these values for §, 9, {, &c., must be identical with the ex-
pressions originally given; hence, remembering that A’=A"",
we get, by comparison of coefficients,
8,=A", b =4""%, ¢ =Aa""%, &ec.,

which express, in terms of the original coefficients, the first
minors of the reciprocal determinant. Co
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32. We have seen that, considering any one column a of a
determinant, every element contains as a factor a constituent
from that column, and therefore the determinant can be written
in the form Z2aq,4,. In like manner, considering any two
columns a, b of the determinant, it can be written in the form
= (azb,) 4, ¢ Where the sum = (a,b,) is intended to express all
possible determinants which can be formed by taking two rows
of the given two columns.

For every element of the determinant contains as factors a
constituent from the column a, and another from the column 4;
and any term a,b.c,d;, &c., must, by the rulé of signs, be accom-
panied by another, — ab,c,d,, &c. Hence we see that the form
of the determinant is 2 (a,b,) 4, ,; and, by the same reasoning
as in Art. 16, we see that the multiplier 4, , is the minor formed
by onditting the two rows and columns in which a,, b, occur.

In like manner, considering any p columns of the determi-

- nant, it can be expressed as the sum of all possible determinants
that can be formed by taking any p rows of the selected
columns, and multiplying the minor formed with them, by the
complemental minor; that is to say, the minor formed by erasing
these rows and columns, For example,

(ad,ecde,) (a Yicde,) — (a,b,)(cde,)+(ab,)ede,) —(ad,)(c,de,)
o) e die) - (ab)(cde) +(ad)cde) +(ab) (cde)
- (a )(Gl () 4) + (a b )(cldaea)
The sign of each term in the above is determined without diffi-
culty by the rule of signs (Art. 8).

It is evident, as in Art. 27, that if we write in the above a
¢ for every b, the sum E(a'cn) (c,d,e,) must vanish identically,
since it is what the determinant would become if the ¢ column
were equal to the b column.

33. The theorem of Art. 31 may be extended as follows:
Any minor of the order p which can be formed out of the inverse
constituents A,, B, dc. is equal to the complementary of the cor-
responding minor of the original determinant, multiplied by the
(p—1)" power of that determinant.
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For example, in the case where tbe original determinant is
of the fifth order,
(4,B)=A (cde,), (4,B,C)=A"(dg,), &ec.

The method in which the general theorem is proved will be
sufficiently understood from the proof of this example. We
have

Ax=AE+An+ AL+ Ao+ Ay, -

- Ay=BEt+ Bn+ B+ Bw+ By.
Therefore

ABx—AAy=(AB)E+(4,B) ¢+ (4.B) o+ (4,B)v.
But we can get another expression for = in terms of the same
five quantities y, £, {, ®, v. For, consider the original equations,

E=az+dby+cz+dw+eyu,
t=ax+by+ez+dw+eu,
o=ax+by+tecz+dw+eu,
v=ax+by+cz+dw+teu,
and eliminate 2, w, u, we get
(acde)x+ (bede)y=(cde,) E— (cde) §+ (cde) w—(cde) v;
and since (a,cde,) is by definition = B,, comparing these equa-
tions with the former, we find (4,B,) = A (¢d.¢,), &c., Q.E.D.

Ex. 1. If a determinant vanish, its minors 4,, 4,, &c, are respectively proportional
to B,, B,, &c. For we have just proved that A4,B, — 4,B, = AC, where C is the
second minor obtained by suppressing the first two rows and columns. If then
A=0,wehave 4, : 4, :: B, : B,, &c.

Ex. 2. A particular example of the above, which is of frequent occurrence, is
obtained by applying these principles to the determinant considered, Ex. 16, p.17. We
thus find, using the notation of that example (:) (g) - G)z =A (: g) ; (see Surfaces,
Art. 80):

Ex.3. Asin Art. 32, the determinant (@,b,¢,d,) may be written .

(a18;) (cady) + (a1ds) (e4da) + (@18y) (c2d) + (33dy) (e1d) + (aiBy) (e1dy) + (asbs) (c:d)).

Ex. 4, If six arbitrary quantities p, g, , 3, ¢, 4 be assumed, and we denote by (ab)
the quantity

P (azbs) + q (a:81) + 1 (a,8y) + 8 (@,B)) + ¢ (b)) + v (asdy).
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similarly letting (cd) = p (¢xds) + ¢ (c3dh) + r (e1dy) + 2 (¢1d,) + ¢ (e,d)) + u (6,d)), &c.,
with like meanings for six such functions, then it is easily seen by the identical
vanishing of groups, as in Art. 32, when the form in Ex, 8 is written with two
or more suffixes the same, that

(5¢) (ad) + (ca) (b) + (ad) (cd) = (ps + ¢¢ + ru) (axbscsd.)
See Surfaces, Art. b7e,

Ex. 5. The homographic relation between two sets of four quantities a, 8, v, 8
and o', g, o, & is found from the relation of a one-one correspondence between
them, vis, daa’+ Ba+ Ca’+ D =0, &c. (Conics, Art. 881) in the form of the
vanishing of the determinant

aa’, a, a’, 1
BB, 6 B, 1
77 7 71
3, 8 o, 1].

Calculating this by Ex. 3, it is found
= ('~ 7) (@' &) By + ad) + (y'-a) (F' - &) (ya+£0) + (' — ) (' - &) (aB + ¥3),
but this is evidently

By + a8 1, By’ + a'¥
ya+ B3, 1, 'a + Q¥
aB+ 78, 1, &' +v'¢
and since (B'—9) (@' - &)+ (Y -a) (- +(a'-F) (v~ =0,
the determinant may also be written with the following abbreviations
4=B-7)a-8) B=(y~-a)B-8), C=(a—-g)(y—-2)
L4=F-v)(d-8), B=(y-a)F-98), C'=@~-p-%
in any of the forms B'C— BC’'=C(C'A—- CA’'=A'B— AB’,

This leads to the expansion of the involution determinant (Ex. 7, p. 25) when

& = a’, & = a, in the form there given among others.

Ex. 6.
sina &in (e + 0), sin @, sin (e + 6), 1
sin B sin (8 + 6), sin B, sin(8 + 6), 1

f" sin y ein(y + 6), siny, sin(y +6), 1
gind sin(é + @), sin &, sin (& +6), 1

a-l6mn0mn(¢+0)m}(ﬂ )sin (y — a) sin (a— @) sink (a — &) sink(8— 3) sing(y —3),

‘-s is easily seen by applying Ex. 8, coupling first and fourth columns and second and
rlnrd and introducing the abbreviations

°...2w=a+ﬁ+'y+8, 20, =a+B~y—8 20=a—-B+y—8¢ 203=a-B~y+3d,
Ex. 7. The theorem of Art. 33 may be established otherwise as follows. Let

=2 gin 0 sin (o + 6) | cos’o,, cos oy, 1

coeloy, cOBay, 1 I
cos’oy, COB0y, 1

[ T T %y A, 4, ... 44
by by ooiba =4, then B,, B,, ...Bs = Am
lu by oocdn Ln L, L-

is by Art. 30 the determinant of the reclprocnd, or, as Cauchy called it, the adjoint
system,
F
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Now we have the following forms for the product
B,, ...Ba A, A, A, ... As a4, A, ... As

0” «.Ca A= 0, Bg,- -B;y B - a,B], [T .

= a,A%;

L, ..L, 0, Ly, Ly ...ln a,L,, Ly, ...La
whence a factor A can be removed. Similarly the product

4, 0, 4 4y ... 44 G Ayt ayAy b Atbedy Ay Ag

Cyy «..Cy
D., D. 0, 4, B;, By,...Bs a,By+a,By, 8Byt 8yBy, By B
VTR AT=] 0,0, €y CponiCn | = | €10+ 0yC0 wereereneeseenscsssasense
R N el B R
v 0,0, Ly Ly...ln | | a,Li+ayLy, bLy+b3Lyy Ly Ln
@,y 0y 1.
=| 30 5 | ams

from which the common factor A? can be removed. And in like manner generally
for a minor of order p.

LESSON V.

SYMMETRICAL AND SKEW SYMMETRICAL DETERMINANTS.

34. IN this lesson it is convenient to employ .the double
suffix notation, and to write the constituents g,, a,, &c.; and
we, therefore, begin by expressing in this notation some of the
results already obtained. We denote the constituents of the
reciprocal determinant by «,, a,,, &c., where, if a,, be any con-
stituent of the original, a,, is the minor obtained by erasing the
row and column which contain that constituent. The equations
of Art. 27 may then be written

a0, +a.0, +a,0, +&.=A, __‘?'

a0, +a.0.,+a0, + &e. = O’ .
or more briefly S,0.0a,=4, Sa,a,=0; that is to say, the
of the products a,a, (where we give every value to s {
1 to n) is =0, when r and »" are different, and = A when r=

Since any constituent a,, enters into the determinant onl; *
the first degree, it is obvious that the factor a,,, which multip  §
it, is the differential coefficient of the determinant taken w. {
respect to a,,; similarly, that the second minor (Art. 32), whict ¥
multiplies the product of two constituents a,,, a,, is the secon(
differential coefficient of the determinant taken with respect tc
these two constituents, &c.

PR B
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If any of the constituents be fanctions of any variable z,
the entire differential of the determinant, with regard to that

variable, is evidently a,, %‘ + a, é"—"-} &c.,and may be written

down as the sum of » determinants in each of which one row
(or column) only, differs from that in the original determinant
by having the constituents of the latter differentiated.

Ex. If w, v,, &c. denote the first differentials of 4, v, &c, with respect to z; u, vy
the second differentials, &c., prove

% 0, © % 0, ©
o= | Gy Oy 0y | =] Yy Uy Uy
Uz Uy W03 By Vg W |-

The differential is the sum of the nine products of the differential of each term by the
minor obtained by suppressing that term,
(anth + @50 + a1310)) + (@p1th; + @203 + @00,) + (a3yts + agev; + agswy).

But the first three terms denote the result of changing in the given determinant the
first row into ,, v,, v, and therefore vanish; the second three terms vanish as
denoting the result of changing the second row into w,, #; w0, ; and there only
remain the last three terms which denote the result of changing the last row into
@, 05 w;. The same proof evidently applies to the similar determinant of the
% order formed with s functions. -

35. The  determinant is said to be symmetrical (Art. 10)
when every two conjugate constituents are equal (a,=a,). In
this case it is to be observed, that the corresponding minors will
also be equal (¢,=a,); for it easily appears that the deter-
minant got by suppressing the »* row and the s* column differs
only by an interchange of rows for columns from that got by

{ suppressing the s* row and the +* column. It appears from
t the last article, that if any constituent a, were given as any
. fnn\ction of its conjugate a,,, the differential coefficient of the

- determinant, with regard to a,, would be a,,+a,,aa—". In

present case then, where a,=a,, a,=a,, the differential
cient of the determinant, with regard to a,, is 2a,. The
ferential coefficient, however, with respect to one of the con~
ments in the leading diagonal a, remains as before a,,, since
ph a term has no conjugate distinct from itself.

36. If, as before, a,, denote the first minor of any deter-
t’ ‘ant answering to any constituent a,,, and if B; denote the
/" : minor of the determinant a, answering to any constituent
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a,, which will, of course, be a second minor of the original
determinant, then this last may be written

A=a,0,—-2,0,0,8;
where we are to give ¢ every value except r, and % every value
except 8. For, any element of the determinant which does not
contain the constitnent a, must contain some other constituent
from the »* row, and some other from the s* column ; that is to
say, must contain & product such as a,a, where ¢ and % are
two numbers different from » and s respectively. But as we
have already seen, the aggregate of all the terms which multiply
a, is a,; and the coefficient of a,a, (by Art. 32) differs only
in sign from that of a,a,; that is to say, differs only in sign
from the coefficient of a; in a, Therefore — 8, is the value
of the coefficient in question.

Thus then if we have calculated a symmetric determinant
of the n—1* order, we can see what additional terms occur
in the determinant of the n* order. Let A be the determinant,
D that obtained by suppressing the outside row and column,
B,, any minor of the latter, and we have

A=Da,- 348, -23 4,478,
where r is supposed to be different from s, and every value is
to be given to » and s from 1 to n—1.

Again, we have occasion often, as at p. 17, to deal with

determinants such as

Gy a

13) 19
Gyyy Gy Gy
i3 Oy By
R‘n X,, Aa ?
obtained by bordering a symmetric determinant horizontally
and vertically with the same constituents. This is in fact a
symmetric determinant of the order one higher, the last term
vanishing, and is

- {allxl' + an)':’ + a,,k,' + 2“21)"2)'3 + 20, M, + 2auxlx:})
or generally -3a.M'-23 a0 )\,

a

FF

37. If any symmetric determinant vam:she.;, the same deter-
minant bordered as in the last article is, with sign changed if



I d
SKEW SYMMETRICAL DETERMINANTS. a7

need be, a perfect square, when considered as a function of
Ay My A,y de. 'We saw (Art. 33, Ex. 1) that when the deter-
minant vanishes «,a,=a", &c., whence it is evident that
@, &, &c. must have all the same sign, and we have generally
a,=++(a,a,). Further, since it was shewn in the same ex-
ample that when a determinant vanishes, the constituents of the
reciprocal determinant in the second row are proportional to
those in the first, it follows that the signs to be given to the
radicals are not all arbitrary. If, for instance, in the above
we write a,=+ /(2,a,), a,=+ +(a,a,), then we are forced
to give the positive sign also to the square root in a, = +/(a,a,,).
Substituting, then, these values in the result of the last
article, it becomes, if a,, &c. be positive, the negative
square,
- {)"1 '\/(au) + l‘n V(an) + .)'a '\/(a‘u) + &c'}’)

and if a,,, &c. be negative the determinant is a positive square,

‘What has been just proved may be stated a little differently.
‘We may consider the bordered determinant as the original de-
terminant ; of which, that obtained by suppressing the row and
column containing A is a first minor, and «,, obtained by sup-
pressing the next outside row and column is a second minor.
And what we have proved with respect to any symmetrical
determinant wanting the last term a,,, is, that if the first minor
obtained by erasing the outside row and column vanish, then
the- determinant itself and the second minor, similarly obtained,
maust have opposite signs. And this will be equally true if a,,
does not vanish. For in the expansion of the determinant, a,
is multiplied by the first minor, which vanishes by hypothesis,
and therefore the presence or absence of a,, does not affect the
truth of the result.

88. A skew symmetric determinant is one in which each
constituent is equal to its conjugate with its sign changed.
Constituents a,, in the leading diagonal, being each its own
conjugate, must in this case vanish; otherwise each could not
be equal to itself with sign changed.

A skew symmetrical determinant of odd degree vanishes. For
if we multiply each row by —1; in other words, if we change
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the sign of every term, it is easy to see that we get the
same result as if we were to read the columns of the original
determinant as rows, and vice versi. Thus, then, a skew
symmetrical determinant is not altered when anultiplied by
(- 1)*; and, therefore, when n is odd, such a determinant must
vanish.

It is easy to see that the minor a, differs by the sign of
" each constituent from the minor a,,, and therefore a,=(-1)""a,..
Hence @,=a, when n is odd, and is equal with contrary
sign when n is even. a, is itself a skew symmetric deter-
minant, and therefore vanishes when the original determinant
is of even degree.

The differential coefficient of the determinant, with regard

(.4

to any constituent a,, being a,+a, % is a,—a,. When
therefore n is éven it is = 2a,, and when n is odd it vanishes,

39. Every skew symmetrical determinant of even degree 1s
a perfect square. (Prof. Cayley).

It was shewn (Art. 36) that any determinant is

=a, 0, —2.,6..8.
and in the present case a,, vanishes, as does also «_, which is
a skew symmetric of odd degree. On this account therefore
we have, as in Art. 37, 8°,=8,8.; and therefore, exactly as
in that article, the determinant is shown to be
{au '\/(Bu) + au ‘\/(Bn) + Gy, V(Bn) + &c'}"

The determinant is therefore a perfect square if 8,,, B, are
perfect squares, but these are skew symmetrics of the order
n—2. Hence the theorem of this article is true for deter-
minants of order n if true for those of order »n —2, and so on.
But it is evidently true for the determinant of the second order
0’

=G

%s |, which is = a’,. Hence it is generally true.

40. We have seen that the square root of the determinant
contains one term a,. (8, ,.), where 8, ., contains no
constituent -with either of the suffixes n~ 1 or n. But taking
any two of the remaining suffixes, such as n — 3, n —2, we see that
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V(B,., o) contains a term a,_, . (Y, ), Wherery, ,  con-
tains none of the four suffizes, of which account has already
been taken. Proceeding in this manner we see that the square
root will be the sum of a number of terms such as LN R .
each of which is the product of 4 constituents, and in which
no suffix is repeated. The form, however, obtained in the last
article a,, v/(B,) t a,, ¥(B,,) + &c. does not show what sign is
to be affixed to each term. Thus if the method of the last
article be applied to the skew symmetric of the fourth order,
its square root appears to be a.a,ta.a,+a,a,; but it
has not been shown which signs we are to choose. This,
however, will appear from the following considerations: When
in the given determinant we interchange any two suffixes
1, 2, since this amounts to a transposition of the first and
sécond row, and also of the first and second column, the
determinant is not altered. Its square root then must be a
function, such that if we interchange any two suffixes it will
remain unaltered, or at most change sign. But that it w:ll
" change sign is evldent on considering any term a,a,, &c.
which, if we interchange the suffizes 1 and 2, becomes a,a,,
&e.; that is to say, changes sign, since a,,=—a, It follows
then, in the particular example just considered, that the signs
of the terms are g0y = 0,0y + 0, 0,5 for if we give the second
term a positive sign, the interchange of 2 and 3, which alters.
the sign of the last term, would leave the first two unchanged.
And generally the rule is, that the square root is the sum of
all possible terms derived from a a,,...q,., , by mterchange of
the suffixes 2, 3, ...n, where, as in determmants, we change sign
with every permutation. But it is possible, and the better
course is, to effect the interchanges in such manner that the
signs shall be each of them +; thus, in the particular example,

the expression may be written a a,, + a2, + a g,

Ex. 1. To write out the skew symmetrical determinant of the sixth order,
Denoting by (1234) the expression just given with all signs positive for the square
root of that of the fourth order, if we proceed always in the same cyclical order we
write down the expressions (3456), (4562), (5628), (6234), (2345), and the expression
required is the square of the sum of the fifteen terms contained in

a,5 (8456) + a,, (4662) + a,, (5628) + ay, (6234) + a,¢ (2345).
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Ex. 2. If the constituents of a symmetrical determinant be each increased by
% times the corresponding constituents of a skew symmetrical, the determinant
so formed when expanded contains only even powers of k. For, altering & to
~— k does not change its value,
For instance (see Surfaces, Art. 80c) we may write
a, h—kz, g+ky, 1—Fka
h + ke, b, S—kz, m—kpB
g—ky, f+kz, ¢ n—ky
1 +ka, m+ kB, n+by, d o g
The same proof shews that if conjugate constituents of a determinant be ‘1maguury
quantities, the value of the determinant is real.

‘Ex. 3. The square of any determinant of even order may be written as a skew
symmetrical determinant. For instance, calculate the product
Gyy Gy Ggy Gy Gy —0Gyy Ggy — 0y
bl’ blr bl’ b‘ bu ’_bu bz; _'bl
€1y € Cy C4 Cy —Cp Cg— €
dl)d!vdl) dc dn—dvdm"dl ’
and it is found to be of the skew symmetrical form, Or, again, for any multipliers
2 q 8t u form the determinant product of
0,—-r, ¢ -3 Gy Gy Gy Gy
r 0, -p —t by, by by by
-¢ » 0, -u Cpy Cy Oy C4
s t u O dyy dyy dyy d, 1,
and multiply it by a,, Gy Gy G,
By by by b,
) €y C3 6 C4
dy dy dy dy |,
the product may be written 0 , (ab), (ac), (ad)
(a), 0, (%), (3d)
(ca), (), 0, (cd)
(da), (dB), (do), O
in the notation of Ex, 4, Art, 33. Since (a5) = — (ba) &c., we have thus proved
{(3¢) (ad) + (ca) (b2) + (ad) (ed)}* = (p# + gt + ru)? (adycsd))?,
which was otherwise seen in that Example, ‘

=A+ ¥+ I (ax + Py + y2)°.

41. We can reduce to the calculation of skew symmetric
determinants the calculation of what Prof. Cayley calls a skew
determinant, in which, though the conjugate terms are equal
with opposite signs, a;, = —a,,, yet the leading terws a; a,,, &ec.
do not vanish. We shall suppose, for simplicity, that these
leading terms all have a common value . We prefix the
following lemma: If in any determinant we denote by D the
result of making all the leading terms =0, by D; what the
minor corresponding to a; becomes when the leading terms are
all made =0, by D,, what the second minor corresponding to
a,a, becomes when the leading terms vanish, &c., then the
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given determinant, expanded as far as the leading constitunents
are concerned, is
A=D+ 2a,D;+ 2a;a,D;+...+ a,8y...a,,

where, in the first sum ¢ has any value from 1 to 7, in the second
sum ¢, k are any binary combinations of these numbers, &c.

For, the part of the determinant which totitains no leading
constituent is evidently D; the terms which contain a;; are a4,
where A, is the corresponding minor, hence the terms which
contain a; and no other leading constituents are got by making
the leading constituents =0 in 4;;; and so for the other terms.

42. If this lemma be applied to the case of the skew deter-
minant defined in the last article, all the terms D;, D,, &c.
are skew symmetric determinants; of which, those of odd order
vanish, while those of even order are perfect squares. The
term a a,,...qa,, is \", and the determinant is

A=\+A"2D,+A"*2D, + &e.,
where D,, D,, &c. denote skew symmetrical determinants of the
second, fourth, &c. orders formed from the original in the
manner explained in the last article.

Ex.1. | A\, ayy 6, |, where dy, =~ a,,, &c.
an X, Gy
Gy Gpyy A | 8=A+ X (a5 + ay® + a57).

Ex, 2. The similar skew determinant of the fourth order expanded is
AL+ A2 (a5 + oy’ + 0y? + O® + Ga® + 7) + (G198 + i + 01 0)™

43. Prof. Cayley (Crelle, vol. XXXIL, p. 119) has applied
the theory of skew determinants to that of orthogonal substitu-
tions, of which we shall here give some account. It is known
(see Surfaces, p. 10) that when we transform from one set
of three rectangular axes to another, if a, b, ¢, &c. be the
direction-cosines of the new axes, and if

X=az+bytcs, Y=d2+by+cz Z=a"z+8y+"z;
that we have X4 Y+ Z'=a"+y'+ 2,
whence a'+a”+a" =1, &c., ab+a't’ +a"b" =0, &c.;
that also we have
2=0X+dY+d"Z y=bX+¥Y+V'Z, s=cX+Y+ 2,

G
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and that we have the determinant formed by

a,byc; a,b,c; &e.=11.
It is also useful (in studying the theory of rotation for example)
instead of using nine quantities a, b, ¢, &c. connected by six
relations, to express all in terms of three independent variables.
Now all this may be generalized as follows: If we have a

function of any number of variables, it can be transformed by
a linear substitution by writing

z=a,X+a,Y+a,7+&c, y=a,X+a,Y +a,Z+ &e., &ec.,
and the substitution is called orthogonal if we have
2+y'+2'+ &e.=X"+Y*+ 2"+ &e.,
which implies the equations

a'+a'+&e=1, a,a, +a,a,+ & =0,&e.

21722
Thus the n* quantities a,,, &c. are connected by §n (n + 1) re-
lations, and there are only n (n — 1) of them independent.
We have then conversely

X=axz+ay+a,z+&., Y=a2+ay+az2+&e.,&e.,

equations which are immediately verified by substituting on the
right-hand side of the equations for z, y, 2, &c. their values.

And hence, the equation X*+Y"+ &e.=2"+y* + &ec. gives us
the new system of relations

a'+a)+&=1, a,a +a.a +&c=0.

1 132792

Lastly, forming by the ordinary rule for multiplication of
determinants, the square of the determinant formed with the n*
quantities a,,, &c., each constituent of the square vanishes except
the leading constituents, which are each =1. The value of the
square is therefore =1. Thus the theorems which we know to
be true in the case of determinants of the third order are gene-
rally true, and it only remains to shew how to express the n*
quantities in terms of §n(n—1) independent quantities. This
we shall effect by a method employed by M. Hermite for the
more general problem of the transformation of a quadric

function into itself. See his paper ¢ Remarques, &ec., Camb.
and Dub. Math. Jour., vol. 1X. (1854), p. 63. '
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44. Let us suppose that we have a skew determinant of the
(n —1)® order, b,,, b,,, &c. where b, =—1b,,,and b, =b,=b,=1;

1) “19?
and let us suppose that we form with these constituents the

two different sets of linear substitutions,
a:=buE+ ba+b,l+&c, X=0bE+bn+0b,¢+&e.,
=b,E+bn+0b,8+&c., Y=0bE+0b.0+05,8+&e.,
2=byE+ b+ bl + &y Z=bF+bn+ b8+ &e.,
from adding which equations we have, in virtue of the given
relations between b, , b, &c.,
x4+ X=2§, y+¥=29, &e.

If now the first set of equations be solved for £, 9, &c. in terms
of z,y, &ec., we find, by Art. 29,

At =B x4+ 8,y +B,2+&c, An=82+B,y+&e.

(where 8,,, B,,, &ec. are minors of the determinant in question);
and putting for 2§, = + X, &c., these equations give

AX=(28,—-A)z+2B,y+28,2+ &e.,
AY =282+ (2B,— A) Y+2By~ +&e., &e.,
which express X, Y, &c. in terms of @, y, &c. But if we had

solved from the second set of equations for £, %, &c. in terms
of X and Y, &c. we should have found

AE=8 X+B,Y+B,Z+&e., Ay=B,X+B,Y+B,7Z+&e,
whence, as before,
- Ax=(28,-A4)X+2B,Y+ 28,2+ &e.,
Ay =28, X+ (2B, - A) Y+ 2B, Z + &e.

Tims, then, if we write
28 —A 28,—A 28 28,
_uA_=au’ —_“A——=a“; _AJA= 199 T“"—'“m

we have =, y, &c. connected with X, Y, &c. by the relations
=a,X+a,Y+ &, y=a,X+4a,Y+ &, &,
X=a2 t+a,y +&ec, Y=a,2 +a,y +&e., &ec.

‘We have then 2, y, &c., X,+Y, &c. connected by an orthogonal
substitation, for if we substitute in the value of = the values



44 SYMMETRICAL AND SKEW SYMMETRICAL DETERMINANTS.

of X, ¥, &c. given by the second set of equations, in order that
our results may be consistent, we must have
a,'+ au’ + au’ +&e.=1, a,a,+a,0,+a,a,+&.=0, &e.
Thus then we have seen that taking arbitrarily the 4n (n- 1)
quantities, b, b,,, &c., we are able to express in terms of these
the coefficients of a general orthogonal transformation of the
n* order.
Ex, 1. To form an orthogonal transformation of the second order. Write
a=[ 1, A i
-\ l =14\,
then B), =By =1, g1z =\, By =— A, and our traneformation is
L+A)z= (1-A)X+207, (1+A)X=(1-A)z~2y,
A+A)y=—NX+A-N)F, (1+A)F= 2Dz +(1-AD)y.

Ex. 2. To form an orthogonal transformation of the third order. Write

A= L, v —p
-y 1, A
P U 3 TS LB B )

Then the constituents of the reciprocal system are
1+X% vy —p+Ay
—v+Apy, 14p% A+
p+Ay, —A+puy, 1493 |,

consequently the coefficients of the orthogonal substitution hence derived are

14 A —p?—a,  2(v+Ap), 2 Ay — ph
20u=3), 1+m-N-32,  2(w+))
20w4p)  2(m-X), 14+B-N-p

where each term is to be divided by 1 + A? 4 u? 4 2%

45. Tt is easy to see that for a symmetrical determinant of the
orders 1, 2, 3, 4 the number of distinct terms is =1, 2, 5, 17
respectively, and the question thus arises what is the number
of distinct terms in a symmetrical determinant of the order n.
This number has been calculated as follows by Professor Cayley :

® The geometric meaning of these coefficients may be stated as follows: Write
A =a tan }0, u = 4 tan }6, v = ¢ tan }0, then the new axes may be derived from the
old by rotating the system through an angle 6 round an axis whosp direction-cosines
are a, b, ¢. The theory of orthogonal substitutions was first investigated by Euler
(Nov. Comm. Petrop., vol. Xv., p. 75, and vol. XX., p. 217), who gave formuls for the
transformation as far as the fourth order. The quantities A, u, u, in the case of the
third order,. were introduced by Rodrigues, Liouville, vol. V., p. 406. The general
theory, explained above, connecting linear transformations with skew determinants,
was given by Cayley, Crelle, vol. XXXI1., p, 119,
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Consider a partially symmetrical determinant represented (see
Art. 11) by the notation

aa
b
cc

4

rp
97 1,

where in general fg=gf, but all the letters p, ¢, ... are distinct
from all the letters p’, ¢, ... so that these letters give rise to no
equalities of conjugate terms; say, if in the bicolumn there are
m rows aa, bd, ... and n rows pp’, ¢¢/, ... this is a determinant
(m, n); and in the case n=0, a symmetrical determinant. And let
¢ (m, n) be the number of distinct terms in a determinant (m, n).

Consider first a determinant for which = is not 0, for instance

aa |, =| aa, ab, ap’y af

bb ba, b, b’y by
/4 pa, pb, pv'y pd
97 92y gby 97, 99 |,

then ga, ¢b, gp’, ¢4’ are distinct from each other and from every
other constituent of the determinant, and the whole determinant
is (disregarding signs) the sum of these each multiplied into a
minor determinant; the minors which multiply ga, ¢b are each
of the form (1, 2) ; those which multiply ¢p’, ¢¢” are each of the
form (2, 1); and we thus obtain
$(2,2)=2¢(1,2)+24(2, 1),
and so in general
¢ (m, n)=m¢ (m— 1, n) +n¢ (m, n —1),
whence in particular ‘
¢ (m, 1)=m¢ (m~1, 1) + ¢ (m, 0).

Next, if n=0, let us take for instance the symmetrical de-

terminant

aa |, =| aa, ab, ac, ad
b ba, bb, bc, bd
cc ca, cb, cc, cd

dd da, db, de, dd
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We bave here terms multiplied by dd; ad.da, bd.db, cd.dc;

and by the pairs of equal terms od.d} +¥d.da, ad.dc + cd.da,

bd.de + cd.db, the other factors being in the three cases minors

of the forms (3, 0), (2, 0), and (1, 1, respectively ; thus we have

$(4,0,=413,0)+3¢(2,0)+3¢ (1, 1),
and so in general
é(m 0)=¢(m—1,0)+(m—1)¢(m-2,0)
+}(m—1)(m-2)¢p(m-3,1),
which last equation combined with the foregoing
¢ (my 1) =mp (m—1, 1) + $ (m, 0) .

gives the means of calculating ¢ (m, 0), ¢ (m, 1); and then the

general equation ¢ (m, n) =m¢ (m— 1, n) + np (m, n— 1) gives

the remaining quantities ¢ (m, n).

It is easy to derive the equation

2¢(m, 0)~- ¢ (m—1,0)—(m—1) $(m—2, 0)= $(m-1,0)
+ (m—1) ¢ (m-2, 0)
+(m=1)(m—2)  (m-3, 0)

+(m-1).. 32l¢(0 0)
And hence, using the method of generating functlons, and
assuming

=3 0,00+ $(1,0) 42 $(2 0.t 12— $(m, 0)+...
du
we find at once 2%—u—xu=—l—u;,
. du 1 ‘
that is 27=(1+ +—)¢h,

or, integrating and determining the constant, so that for =0
« shall become =1, we have

4o

vil-=)’
whence ¢ (m, 0), the number of terms in a symmetrical deter-
minant of the order m, is

U=

AoHe
Vi-=)°

= 1,2...m coefficient of &™ in
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The numerical calculation by this formula is, however, somewhat
complicated; and it is practically easier to use the equations
of differences directly. We thus obtain not only the values of
¢ (m, 0), but the series of values

¢ (07 0)1
° ¢ (l’ 0)’ ¢(0, l)’
$(2,0), ¢(1,1), ${0,2),
¢ (3, 0), &c.,
which are found to be

17, 23, 24, 24, 24

73, 109, 118, 120, 120, 120,
388, 618, 690, 714, 720, 720, 1720,
&e., &e.,

as is easily verified. But as regards ¢ (m, 0) we may, by
writing the equation in % under the slightly different form

2(1—w)3——£—(2—z’)u=0,

obtain from it the new equation of differences
¢ (m, 0) =me (m—1, 0)— } (m—1) (m—2) ¢ (m -3, 0),
and the process of calculation is then very easy. Starting
from the values ¢ (1,0) =1, ¢ (2, 0) =2, which imply ¢ (0,0) =1,
we have -
m=1, 1=1.1

=2, 2=2.1

=3, 5=3.2- L.,

=4, 17=4.5- 3.1,

=5 13=5.17— 6.2,

=6, 388=6.73-10.5,

dL . &, &



LESSON VL

DISCRIMISATISG SYMMPTRICAL DETERMINANTS.

44. Iy we add the quantity A to each of the leading terms
of a symmetrical determinant, and equate the result to 0, we
have an equation of considerable importance in analysis.®* We
have already given one proof (Sylvester’s) that the roots of
this oquation are all real (Ex. 14, p. 28), and we purpose in
this Lemon to give another proof by Borchardt (see Liouville,
vol, Xi1, p. 80), chiefly because the principles involved in this
proof aro worth knowing for their own sake. First, however,
wo mny romark that a simple proof may be obtained by the
applioation of & principle proved in Art. 37. Take the de-
torminant

8y +h’ T By &e.
By G tN gy &
By Gy au"'x’ &e.
&o. ,
and form from it & minor, as in Art. 87, by erasing the outside
line and column; form from this again another minor by the
sane rulo, and so on.  \We thus have a series of functions
of A, whose degrees regularly diminish from the »* to the 1%;
and we may take any positive constant to complete the series.
Now, it' we subatitute successively in this series any two values’
of' A, and count in each case the variations of sign, as in Starm’s
thearem, it is oasy to see that the difference in the number of
varatione cannot exceed the number of roots of the equation
of the #* degree which lie between the two assaumed values
W N\ This appears at once from what was proved in Art. 37,

ana

W e e Nevewinatin of the e toagzatries of the plamets (s
Japae, Jewweigee Ve, axt L, Book 13, At 6L
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that if A be taken so as to make any of these minors vanish,
the two adjacent functions in the series will have opposite signs.
It follows, then, precisely as in the proof of Sturm’s theorem,
that if we diminish A regularly from + o to — o, when A
passes through a root of any of these minors, the number of
variations in the series will not be affected; and that a change
in the number of variations can only take place when A passes
through a root of the first equation, namely, that in which A
enters in the n** degree. The total number of variations, there-
fore, cannot exceed the number of real roots of this equation.

But, obviously, in all these functions the sign of the highest
power of A is positive; hence, when we substitute + o , we get
no variation; when we substitute — oo, the terms become
alternately positive and negative, and we get » variations;
the equation we are discussing must, therefore, have n real
roots. It is easy to see, in like manner, that the roots of each
function of the series are all real, and that the roots of each
are interposed as limits between the roots of the function next
above it in the series.

47. It will be perceived that in the preceding Article we
have substituted, for the functions of Sturm’s theorem, another
series of functions possessing the same fundamental property,
viz. that when one vanishes, the two adjacent to it have
opposite signs. Borchardt’s proof, however, which we now
proceed to give, depends on a direct application of Sturm'’s
theorem.

The first principle which it will be necessary to use is a
theorem given by Sylvester (Philosophical Magazine, December,
1839), that the several functions in Sturm’s series, expressed
in terms of the roots of the given equation, differ only by
positive square multipliers from the following. The first two
(namely, the function itself and the first derived function) are,
of course, (z— a) (z— B) (z —1v) &c., = (x—B) (x— ) &ec.; and
the remaining ones are

= (a—B)z—1)(w- 8)&. ; X(a—B)(B-u)(y-a)'(@—8)&e. &e.,

where we take the product of any % factors of the given
g -
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equation, and multiplying by the product of the squares of
the differences of all the roots not contained in these factors,
form the corresponding symmetric fanction. We commence
by proving this theorem.*

48. In the first place, let U be the fanction, V its first
derived function, R,, R,, &c., the series of Sturm’s remainders;
then it is easy to see that any one of them can be expressed
in the form AV - BU. For, from the fundamental equations

U=QV-&, V=0Q,B-R, BR,= Q’R'—.R., &e.,
we have
R =Q V-1,
'Rs= QxRa- V= (Qsol -1) V- Q:U;
R‘-:-' (QﬂQ’— 1) ‘Rﬂ_ QSV= (Q|QaQa— Ql—' Qa) V"(QgQg_ 1) U;
and so on. We have then in generalt B,= AV - BU, where,
since all the @’s are of the first degree in =, it is easy to see
that 4 is of the degree k¥ — 1, and B of the degree %— 2, while
R, is of the degree n—£.

But this property would suffice to determine B, R,, &c.,
directly. Thus, if in the equation B ,= Q, V- U, we assume
Q,=ax + b, where a and b are unknown constants, the condition
that the coefficients of the highest two powers of « on the right-
hand side of the equation must vanish (since R, is only of the
degree n~ 2) is sufficient to determine ¢ and &4 And so in

* I suppose that Sylvester must have originally divined the form of these
functions from the characteristic property of Sturm’s functions, viz. that ¥ the
equation has two equal roots a =@, every one of them must become divisible by
z — a. Consequently, if we express any one of these functions as the sum of a
number of products (z — a) (z — ) &c., every product which does not include either
o —a or z—f must be divisible by (e« — 8)?; and it is evident in this way that
the theorem ought to be true. The method of verification here employed does not
differ essentially from Sturm’s proof, Liouville, vol. viI. p. 856,

+ The theory of continued fractions, which we are virtually applying here, shews
that if we have Ry = AV — ByU, Riyy = ArsV — B U, then 4;Byy; — Apy, By ia
constant and = 1. In fact, since Ry, = QiRe — Ri-,, we have

Apyy = Qedr — Aiy, By = QB — By,
whence AgBiyy — Apy By = Ae-\Br — ABg-,,

and by taking the values in the first two equatlons above, na.mely, where k= 2
and % = 8, we see that the constant value =
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general, if in the fanction 4V~ BU we write for A the most
general function of the (4- 1) degree containing % constants,
and for B the most general function of the (4 —2)* degree con-
taining k£ —1 constants, we appear to have in all 25—1 constants
at our disposal, and have in reality one less, siuce one of the
coefficients may by division be made =1.* We have then just
constants enough to be able to make the first 24 — 2 terms of
the equation vanish, or to reduce it from the degree n +4%—2
to the degree n — & The problem, then, to form a function of
the degree n — %, and expressible in the form 4V — BU, where
A and B are of the degrees k- 1, k—2, is perfectly definite,
and admits but of one solution. If| then, we have ascertained
that any function B, is expressible in the form 4V — BU, where
A and B are of the right degree, we can infer that B, must be
- identical with the corresponding Sturm’s remainder, or at least
only differ from it by a constant multiplier. It is in this way
that we shall identify with Sturm’s re.nainders the expressions
in terms of the roots, Art. 47.

49. Let us now, to fix the ideas, take any one of these

functions, suppose

S@-BrB-7)(r—a)(z-98) (z—¢) &e,
and we shall prove that it is of the form AV~ BU, where 4
- i8 of the second degree, and B of the first in z. Now we can
immediately see what we are to assume for the form of 4, by
making z =a on both sides of the equation. The right-hand
side of the equation will then become

A(a~B) (@) (a-3) (a—¢) &e,

since U vanishes; and the left-hand side will become

Z(@-B)B-9)(v-a)(x-29) (a—¢) &
It follows, then, that the supposition z = a must reduce 4 to the
form =(8—9)*(a—8)(a—1), and it is at once suggested that
we ought to take for 4 the symmetric function

SB-7)x-B8) (@=-1).

* Just as the six constants in the most general equation of a conic are only
equivalent to five independent constants, and only enable us to make the curve
satisfy five conditions.
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And in like manner, in the general case, we are to take for 4
the symmetric function of the product of k—1 factors of the
original equation multiplied by the product of the squares of the
differences of all the roots which enter into these factors. It
will not be necessary to our purpose actually to determine the
coefficients in B, which we shall therefore leave in its most
general form. Let us then write down
2(@-B)B-9)(y-a) (-8)&e.==(a—B)" (x- a)(z—B)
x Z(x—B) (z—1) &e. + (az + ) (z - a) (- B) &e,

which we are to prave is an identical equation. Now, since an
equation of the p“ degree can only have p roots, if such an
equation is satisfied by more than p values of z, it must be an
identical equation, or one in which the coefficients of the several
powers of a separately vanish. But the equation we have
written down is satisfied for each of the n values z=a, =3, &c.,
no matter what the values of a and & may be. And if we sub-
stitute any other two values of , then, by solving for a and 5 -
from the equations so obtained, we can determine a and b, so
that the equation may be satisfied for these two values. It is,
therefore, satisfied for » + 2 values of @, and since it is only an
equation of the (n+1)" degree, it must be an identical equation.
And the corresponding equation in general, which is of the
degree n + k — 1, is satisfied immediately for any of the n values
x=a, &c. ; while B being of the degree 2 — 1 we can determine
the % constants which accur in its general expression, so that
the equation may be satisfied for & other values; the equation
is, therefore, an identical equation. ‘

50. We have now proved that the functions written in
Art. 48 being of the form AV — BU are either identical with
Sturm’s remainders, or only differ from them by constant factors.
It remains to find out the value of these factors, which is an
essential matter, since it is on the signs of the functions that
everything turns. Calling Sturm’s remainders, as before,
R, B, &c., let Sylvester’s forms (Art. 47) be T, T, &c., then
we have proved that the latter are of the form 7,=2AR,
T,=2\,R,, &c., and we want to determine A, A,, &. We can
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at once determine A, by comparing the coefficients of the
highest powers of : on both sides of the identity 7,=4,V-B,U;
for 2" does not occur in 7, while in ¥ the coefficient of 2" is n,
and the coefficient of « is also » in 4,, which =2 (z — «); hence
B,=n". But the equation 7,=A,V— B,U must be identical
with the equation R, = @, V— U multiplied by A,; we have,
therefore, A, =n",

To determine in general A, it i3 to be observed that since
any equation 7,=4,V- B, U is A\, times the corresponding
equation for R, and since in the latter case it was proved
(note, Art. 48) that 4,B, — A, B,=1, the corresponding
quantity for 7, 7, must =A,,.. Now from the equations

T,=A,V-—B‘U, Ty,=4,,V-B,,7,

k1
we have

4, T,—-AT, =(4.B,,-4,B)U=\\,,U.
Comparing the coefficients of the highest powers of = on
both sides of the equation, and observing that the highest power
does not occur in 4,7,,, we have the product of the leading
coefficients of 4,, and T, =A,,. But if we write

2(@=B)'=py Z(a—B)(a-v)(B-9)'=py &c,
we have, on inspection of the values in Arts. 47, 49, the
leading coefficient in T,=p,, in T,=p,, &c., and in 4,=n, in
A,=p,in 4,=p, &c. Hence

L]
P =AMy 2=, pI=A M, &e., whence 7\,=Z—:;’;, A= npp: y &e.

] 2" "8? ) '4"'8)
2

The important matter, then, is that these coefficients are all
positive squares, and therefore, as in using Sturm’s theorem
" we are only concerned with the signs of the functions, we may
omit them altogether.

51. When we want to know the total number of imaginary
roots of an equation, it is well known that we are only con-
cerned with the coefficients of the highest powers of x in
Sturm’s functions, there being as many pairs of imaginary roots
as there are variations in the signs of these leading terms.
And since the signs of the leading terms of 7}, T}, &c. are the
same as those of B, B, &c., it follows that an equation has as
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many pairs of imaginary roots as there are variations in the
series of signs of 1, n, = (a—B8)", =(a— B (B—9)' (v—a)’, &e.
This theorem may be stated in a different form by means of
Ex. 3, Art. 26, and we learn that an equation has as many pairs
of imaginary roots as there are variations in the signs of the
series of determinants

' >
l) 3oa l 80, 81 ') "o’ 31’ 33 ? 30’ "17 ’z’ "s ? &‘c‘9

’n 8: 1?7 a; 3 19 T2 T3 “¢
8y 3, 2 Y3 4 s

®

®

h .
% 5
@

the last in the series being the discriminant; and the condition
that the roots of an equation should be all real is simply that
every one of these determinants should be positive. )

52. We return now, from this digression on Sturm’s theorem,
to Borchardt’s proof, of which we commenced to give an
account, Art. 47; and it is evident that in order to apply
the test just obtained, to prove the reality of the roots of the
equation got by expanding the determinant of Art. 46, it will
be first necessary to form the sums of the powers of the roots of
that equation. For the sake of brevity, we confine our proof
to the determinant of the third order, it being understood that
precisely the same process applies in general; and, for con-
venience, we change the sign of A, which will not affect the
question as to the reality of its values. Then it appears im-
mediately, on expanding the determinant, that s, =a,, + a, +a,,
since the determinant is of the form A\'—A\*(a, +a,+a,) + &e.
And in the general case s, is equal to the sum of the leading
constituents. We can calculate s, as follows: The determinant
may be supposed to have been derived by eliminating 2, y, 2
between the equations .

M =a“w + auy + auzt Xy =a,,a: + any +a”z ? Az= a"a;+aay + anz'
Maltiply each of these cquations by A, and substitute on the
right-band side for Az, Ay, Az their values, thus we get

x’x= (al |’+al:+au')z+(allafl+ al’aﬁ-l-alsais)y + (allasl-l-a“au-" aua“)z’
x.y =(aﬂall+aﬂal’+a”all)z+(ail”+a”’+aﬂ’)y + (aila’| +a|’an+ a“a“)z’
x’z = (allal 1+ aﬂal,+ auall)z-l- (alla’l +al¥aﬂ+ a”als)y + (aﬂ’+ au’+a“’) z’
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from these eliminating z, 7, z, we have a determinant of form
exactly similar to that which we are discussing, and which
may be written

bu - X’, bu’ bu

bn’ bﬂ - X"1 b:zs

b, by =N 1.

Then, of course in Jike manner,
8,=b,+b,+b,=a,+a,'+a, +2a)+2a, +2a,

The same process applies in general and enables us from s, to

compute 8,,,. Thus suppose we have got the system of equations

Nx=d||x+d,g +dmz’ X’y = ux+dny +d”2, X’z=d,,w+d”y +dnz)
from which we could deduce, as above, s,=d, +d_+d,,; then
‘multiplying both sides by A, and substituting for Ax, &c. their
values, we get
Ne=(da,+da,+da,)2+(d,0,+da,+da,)y

un 18718 ma 12722

+ (dﬂan + dnaae + duau) %

xmy = (d!la“. + dnau + dﬁals) & + (d!laﬂ + dﬂan + d”a”) y
’ + (dﬂaal + d”an + dnau) )

0 x”“ = (d’laﬂ + duall + d”alﬂ) z + (dﬂaﬂ + duan + dsaau) y
V + (da;an + duana + dssam) %
whence s ,,=d, a, +da,+d,a,+2d e, +2d,0,+2d,a,.
53. We shall now shew, by the help of these values for
8,y &c., that each of the determinants at the end of Art. 51
can he expressed as the sum of a number of squares, and
- is therefore essentially positive.* Thus write down the set of

constituents
1, 1, 1, 0, 0, 0, 0, 0, 0

By Bogy Bggy Bony gy gy Ty Ty Oy b
_ 8,8 | . .
then it is easy to see that 8“’ 8‘ is the determinant formed
1 “g

* M. Kummer first found out by actual trial that the discriminant of the cubic
which determines the axes of a surface of the second degree is resolvable into a sum
of squares, (Crelle, vol. XXVI,, p. 268). The general theory given here is due, as
‘we have said, to Borchardt.



56 SYMMETRIC FUNCTIONS.

from this, by the method of Art. 24, which expresses it as
the sum of all possible squares of determinants which can be
formed by taking any two of the nine columns written above.

% % | is thus seen to be resolvable into the

The determinant
8 &
sum of the squares

(all - a”)’ + (aﬂ - a”). + (ass - all)’ + 6 (a”’ + aSI’ + al! b
and is therefore essentially positive. Again, if we write down
1, 1, 1, 0, 0, 0, 0, 0, 0

Byyy Bygy Ay Ty Byyy Qugy Ty Byyy By
i b bn’ bss? bﬂs? bm b bw bsl' 1w 1)

where 3,,, &c. have the meaning already explained, it will be
Sy 8, 8,
8y 85 &
8 8y 8,
determinant. which, in like manner, is equal to the sum of the
squares of all possible determinants which can be formed out of

the above matrix. And similarly in general.

u? 13

easily seen from the values we have found that is the

LESSON VIIL

SYMMETRIC FUNCTIONS.

54. WE assume the reader to be acquainted with the theory
of the symmetric functions of roots of equations as usually given -
in works on the Theory of Equations. Thus, we suppose him
to be acquainted with Newton’s formula for calculating the sums
of the powers of the roots of the equation

" —pat +pa™t - pa® + &e =0,
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viz. 8,—p, =0, 8,—ps, + 2p,=0, s,—pgs,+ps, - 3p,=0, &c,
whence =Py & =pl. =2p, s, =pl. = 3p,p,+ 3p, &c‘)
and with the formul=
Sa"Br =88 —8,.,
DBy = 88,8, = 8018, = 8. 8p = Sp1 Bt 2miprr &C.

We can thus calculate 2a™8*, &c. first in terms of the sums s, s,,
&ec., and ultimately in terms of the coefficients p,, p,, &c.*

Ex. We can get determinant expressions for the sums of powers in terms of
the coefficients, or vice versd, by solving, as in Art. 29, the system of linear equations
above written, for s,, &, &c., or p,, p,, &c. Thus we have

4= lpu l Py L, 0 Py 1,00
20y 11 2pgy Py 1 ; 8= 205 Py 1, 0 ; &
8py Pey 1 8py Py Py 1
4py Py P2 21
1.2. Pz:l & 1,0 10,0
8 8 |; 1.2.8.p,=8 8, 2 , 1.2.8.4.p,=| % 2,0 ; &
8gy 83 3y 8 85 8, 8
- 8 8y 3y 8y

55. It is more natural to start from the equations
Sa=p, Z2aB=p, Zafy=p, &e,

* This process is a very bad one, in fact if it were employed throughout, we
should have for instance to calculate Zafy, that is p, from the formula
6Zapy= & = p
— 852, —38p;(ps® —2p)
+25  +2(p®—38pip, + 3py)
= Gpy
but the process introduces terms p3 and p,py each of a higher order than p,
(reckoning the order of each coefficient as unity) with numerical coefficients which
destroy each other. And so again Za?g would be calculated from the formula
Za’= an= pi (22— 2p)
—& = (p=-3pps+3p)
= Ppips—8py
but there is here also a term p,* of a higher order, with numerical coefficienta
which destroy each other. And the order in which the several expressions are
derived, the one from the other is a non-natural one; s; is required for the
determination of Za*@, whereas it is properly Za?8 which leads to the value of s,
1
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and thence derive the sets of equations

p = 2a,
P = ZaB,
p =32+ 2318,
p, = 21/3'],
PP= 2’3 + 32aly,

P’ =S2'+332°8+63a8y;

we thus have 1 equation to give Zz; 2 equations to give
=23 and T2'; 3 equations to give Sa8y, Za'B, Za’, and so on.
Aund taking, for instance, the third set of equations, the first
equation gives a3y, the second then gives Za"8, and the third
then gives X2°; thus

2187=P;’

228 =p,p,~ 3py

' =p' -3(p.p,—3p,)-6pn

=p’ —3pp, +3py

The process for the formation of the successive sets of equations
is further explained and developed in Prof. Cayley’s “ Memoir
on the Symmetric Functions of the Roots of an Equation,”
Phil. Trans., vol. cXLvIl, (1857), and the original and inverse
sets of equations, for equations up to the order 10, are therein
exhibited in the form of tables (see Appendix).

56. If we have any homogeneous function of the coefficients
Puo P &c., we shall use the word order of that function, in
the usual sense, to denote the number of factors of which
each term consists. Thus, if any term were p,p,’p,, the order
of the function would be r+s+¢ If the function be not
homogeneous, the order of the function is as usual regulated
by the order of the highest term. By the weight of a function
we shall understand the sum of the suffixes attach®d to each
factor. Thus, if any term were p p'p,, the weight of the
function would be r+2s+3¢; or, again, if any term were
P.P.py this term would be of the third order, while its weight
would be 7+ s+ ¢ In the case of every function, with which we
shall be concerned, the weight will be the same for every term.
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57. On inspecting the expressions given above for s, 3,, 3,, &c.
in terms of the coefficients, it is obvious that the weight of every
term in s, is two, in s, is three, and it is easy to conclude by
induction that the weight of every term in s, is ». In like
manner, it is evident that the weight of 2a"8® is m+ p, of
Sa"Bry® is m+ p + ¢, &ec. '

This may be proved in general as follows: If for every
root a, B, v, &c. we substitute A times a, A times 83, A times 1,
&c., we evidently multiply the function Za™8%y* by A™?'%, But
it is known that if we multiply every root by A, we multiply
2, by A\, p, by A%, p, by X%, &c. It follows then that Sa™8%y*
expressed in terms of the coefficients must be such that if we
substitute for p,, Ap,, for p,, A’p,, and so on, we shall multiply
every term by A™”?; and this, in other words, is saying that
the weight of every term is m+ p + ¢.

58. Since

p=a+B+v+&e., p,=a(B+y+&e)+By+&e., &e.,
and none of the coefficients, p,, p,, &c. contains any power
of a beyond the first, it is plain that the order ‘of any symmetric
function Za™@%y* (where m is supposed to be greater than p
or ¢) must be at least m. For, of course, unless there are at
least m factors, each containing @, a™ cannot appear in the pro-
duct. But, conversely, any symmetric function, whose order is
s, will contain some terms involving a™. For if ¢, ¢,, ¢, &ec.
be the sum, sum of products in pairs, in threes, &c. of 8, v, 8,
&ec., we have p =a+gq,, p,=aq,+9q,, p,=aq,+ g, &c., and the
coefficient of the highest power of a in such a term as p,p,’p%,
will be ¢, '¢,'q,'; and, conversely, the multiplier ¢ ¢ 'q, can only
arise from the term pp'p/' It therefore cannot be made to
vanish by the addition of other terms. It follows then that
the order of any symmetric function Za"8%" is equal to the
greatest of the numbers m, p, ¢; for we have proved that it
cannot be less than that number, and that it cannot be greater,
-since functions of a higher order would contain higher powers
of a than o™,

By the help of the two principles just proved (that the
weight is the degree in the roots, and the order the highest

L
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degree in any one root), we can write down the literal part of
any symmetric function, and it only remains to determine the
coefficients. Thus if it were required to form Z2a’ (8 — )", we
see on inspection that this is a function whose weight is four,
and that it is of the second order; that is to say, there cannot
be more than two factors in any term. The only terms then
that can enter into such a function are p,, p,p,, »,", and the
calculation would be complete if we knew with what coefficients
these terms are to be affected.*

59. Symmetric functions of the differences of the roots of
equations} being those with which we shall have most to deal,
it may not be amiss to give a theorem by which the sum of
any powers of the differences can be expressed in terms of
the sums of the powers of the roots of the given equation.
Expanding (z—a)™ by the binomial theorem, and adding the
similar expansions for (x — 8)", &c., we have at once

S(—a)" =s2" —msa"™" 4+ m(m~1) 8" - &ec. .

Now if we substitute a for  in = (z—a)* it becomes
(a—B)"+ (a—9)" + &c.; similarly if we substitute 8 for x it
becomes (8 — a)" + (8 — 7)™ + &c., and so0 on; and when we add
the results of all these substltutxons, if m be odd, the sum

vanishes, since the terms (a— 8)", (8 —a)™ cancel eacb other.
If m be even, the result is 2= (a—8)". But when the same
substitutions are made on the right-hand side of the equation
last written, and the results added together, we get

88,—mss, +im(m—1)ss,  — &e.
If m be odd, the last term will be —s_s,, which will cancel the

first term, and in like manner, all the other terms will destroy
each other. But if m be even, the last term will be identical
with the first, and so on, and the equation will be divisible by
two. Thus, then, when m is even, we have

Z(a—B)"=88,—msgs, +im(m-1)ss  —&e.,

* The foregoing example of the calculation of Tafy, Za’B, Td?, in effect shows
how we can in every case obtain for the determination of the coefficients the required
number of linear relations.

+ Such functions have been called critical functions,

’

~
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where the coefficients are those of the binomial until we come
to the middle term with which we stop, and which must be
divided by two. Thus

Z(a—PB) =2,8,—43,8,+ 33}, =(a—B)*=3,,~63,3.+1588,—10s, &c.

60. Any function of the differences will of course be un-
changed if we increase or diminish all the roots by the same
quantities, as, for instance, if we substitute &~ A for « in the
given equation. It then becomes

@~ (p,+70) &7 +{p, +(n=1) \p, + }n (n— 1) M} 2™
—{p+ (n—2) Ap, + &e.} 2™ + &e. =0.

Now any function ¢ of the coefficients p,, p,, &c. will, when
we alter p, into p, + 8p,, p, into p, + 8p,, &c., become

{ 8p,+d¢ 8p,+&c} 1]2 {%(Sp,)'-f &c.}+&c.

If then, in any function of p,, p,, &c., we substitute p, + n\ for
Py Pt (n=1)Ap, +in(n—1)\" for p, &c., and arrange the
result according to the powers of A, it becomes -

d$ dé d$ o) =
¢+7~.{nd—p‘+(n— 1) p, @+(n—2)p,d—p’+&c.}+l (&e.) =

But since we have seen that any function of the differences is
unchanged by the substitution, no matter how small A be, it is
necessary that any function of the differences, when expressed
in terms of the coeﬂicients, should satisfy the differential equation
dé dp
dp (n l)p| ‘+(n 2)1’: P

1

n— + &e. =0.

Ex. 1. Let it be required to form X (e — 8)2. We know that its order and weight
are both = 2. It must therefore be of the form 4p, + Bp,%. Applying the differential
equation, we have {(n — 1) A + 2nB} p, = 0, whence B is proportional to n ~ 1 and
A to — 2n. The function then can only differ by a factor from (n — 1) p,* — 2np,.

The factor may be shewn to be unity by supposing a=1 and all the other
roots = 0, when p, =1, p, =0, and the value just written reduces to n—.1, as it

ought to do.

Ex.2. To form for a cubic the product of the squares of the differences
(« —B)* (B— 7 (y ~ ) This is 8 function of the order 4 and weight 6. It must
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therefore be of the form
Aps® + Bpspypy + Cpy pi® + Dpg® + Epy*pyt.

. d d d
Operating with 8 — + 2p, — + p,—— it becomes
€ ap, P dp, i dp,

(24 + 8B) pyp, + (2B + 9C) pyps* + (B + 6D + 6E) p;p, + (C + 4E) p,p,%

and as this is to vanish identically, we must have C = —4E, B=18E, A =-27E,
D = — 4E, or the function can only differ by a factor from

Pi’pst + 189, P20y — 4ps* — 4P pi® — 27p,%
The factor may be shewn to be unity by suppoaing'-y and consequently p, to be = 0.

61. We shall in future usually employ homogeneous equa-
tions. Thus, writing «:y for @, and clearing of fractions, the
equation we have used becomes

' —pay+pa Ty 2 py =0.
We give 2" a coefficient for the sake of symmetry; and we find

it convenient to give the terms the same coefficients as in the
binomial theorem ; and so write the equation

ax"+na "y +4n(n—1)ag"y' +...4 na_axy"* +ay" =0,
or, as this may be for shortness represented,
(ay @y «.oa,) (2, )" =0.

One advantage of using the binomial coefficients is, that thus
all functions of the differences of the roots will, when expressed
in terms of the coefficients, be such that the sum of the numerical
coefficients will be nothing. For we get the sum of the nume-
rical coefficients by making ¢ ,=a,=a,=&c.=1; but on this
supposition all the roots of the original equation become equal,
and all the differences vanish.

When we speak of a symmetric function of the roots of the
homogeneous equation, we understand that the equation having
been divided by ay", the corresponding symmetric function has

been formed of the coefficients =t , 2 , &c. of the equation in z ,
a0 ao y

and that it has been cleared of fractions by multiplying by the
highest power of a, in any denominator. In this way, every
symmetric function will be a homogeneous function of the co-
efficients a,, a,, &c.; for, before it was cleared of fractions, it was
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a homogeneous function “of the degree 0, and it remains homo-
geneous when every term is multiplied by the same quantity.
Or we may state the theory for the symmetric functions of the
roots of the homogeneous equation, without first transforming it
to an equation in #:y. If one of the roots of the latter equation
be a, that is, if a factor of the function is = -ay, then it is
evident that the homogeneous equation is satisfied by any
system of values 2, y° for which we have & =ay’, since it
is manifest that we are only concerned with the ratio o’ : y'.
And since the equation divided by y" is resolvable into factors,
80 the homogeneous equation is plainly reducible to a product
of factors (xy — yx’) (xvy” — yx”) (xy”” — yx”), &e. Actually mul-
tiplying and comparing with the origlnal equation, we get
a,=yy"y"” &c., na,=—32y"y"” &c., {n(n—1)a,=3x'2"y"” &e.,
a, =t x2"'ad" &c., na,_ =FSy'a"x" &e.

By making all the y’s =1, these expressions become the ordinary
expressions for the coefficients of an equation. in terms of its
roots, #, #”, &c. And conversely, any symmetric function ex-
pressed in the ordinary way in terms of the roots «/, 2”, may
be reduced to the other form, by imagining each 2’ divided by
the corresponding 3, and then the whole multiplied by such
a power of y'y” &c., as will clear it of fractions. Thus the
sum of the squares of. the ‘differences = («/ —2”)' becomes
S @y -y ’)y""y" &e. And generally any function of
the differences will consist of the sum of products of deter-
" minants of the form (x'y” —y'a") (z'y"” — y'=”) &c., by powers
of ¥,y", &ec. ‘

62. The differential equation which we have given for
functions of the differences of the roots requires to be modified
when the equation has been written with binomial coefficients,
Thus, if in the equation a " + na,z""y + &c. =0, we write 2+
for z, the new a, becomes a +7ta°, a, becomes a, + 2\a, + Na,,
a, becomes a, + 3\a, + 3\'a, + N, &c and any functlon ¢ of
the coeﬂicients is altered by this substitution into

d d d
¢+x( d:+2a d¢+3a d¢+&c)+&c.
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Any function then of the differences, since it remains unaltered
when z +\ is substituted for z, must satisfy the equation

. dé dé

% Za +2a,da +"""T+&‘°'=°'
In like manner any function which remains unaltered, when
¥+ ) is substituted for y, must satisfy the equation

‘1"’+(n 1)a, +(n %)a, ""’+&c. 0.

Functions of the latter kmd are fanctions of the differences of
the reciprocals of the roots, and in the homogeneous notation
consist of products of determinants of the form «'y” — y'2”, &e.,
by powers of o/, 2/, &c. Functions of the determinants
a'y’ — y'«’ alone, and not multiplied by any powers of the z’s
or the y’s, will satisfy both the differential equations.

08. It is to be observed that the condition

d¢ do

d + 2a, da +3a, da,
is not only necessary but sufficient, in order that ¢ should be
unaltered by the transformation 2+ A for 2. We have seen
that the cocfficient of A in the transformed equation then
vanishes, and the coefficient of A" is easily found to be

T T N
whew, consulermg the second term as denoting 'y A.A¢, the
a, a,, &c. which appear explicitly in A¢ are not to be differen-
tiated. DBut this being so, the two terms together are = {5 A. A¢,
where A.A¢ denotes now the complete effect of the operation A
upon A¢. For, when we operate with the symbol on itself,
the result will be the sum of the terms got by differentiating
the a,, a,, &c., which appear explicitly, together with the resalt
on tho supposition that these a,, a,, &c., are constant. Thus, then
A¢ vanishing identically, we have A.A¢ =0, or the coefficient
of A' vanishes. So, in like manner, for the coefficients of the
othor powers of A.

+ &e. =0

+8 +6a + &e. +
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Ex. To form for the cubic agz? + 8a,2% + 3a,zy* + a,4?, the function
Z (2 = 21)? (2298 — 2a%2)* (2ath — 29

This can be derived from Ex, 2, Art. 60, or else directly as followa, The function is to
be of the order 4 and weight 6, It must therefore be of the form

Aay3,0,8, + Baya,0,8, + Caytna,a, + Dag0,0,0, + E6,043,,,
. d d d
Operate with a‘E*'%'E*'M"JT,’ and we get
(B +64) ay0,84a,+ (3C+2B) a50,2,0y+ (2B + 6D +8B) a,0,8,a,+(4E +8C) a,0,a,0,=0,

Equating separately to 0 the coefficient of each term, and taking 4 =1, we find
B=~6 C=4, D=4, E=-38,

64. M. Serret writes the operation a, jf + &ec. in a compact

form, which is sometimes convenient. If we imagine a fictitious
variable {, of which the coefficients e, a,, &c., are such func-
tions, that

da, da, da,

dg =Gy dg 2“’ dg

then evidently %%’ =a°g—f + 2a, g: + 3a, g‘f’ + &e.

d¢ d
' da, + &c. may be briefly written —— an

n is a variable, of whlch a, a, &c. are supposed to be such
functions, that

de da
.(l—:o = ﬂa" zﬂ" = ('n - 1) (2 &Ca

=3a,, &c.,

In like manner ne , Where

65. The above operators

d d
% Za, 20 g e

may be represented by

+ 2a, ua,%+(n—l)a,-l1—i—+...,

{ysa ] {.‘38"}
respectively, since the first of them operating on (a,, a,...a,)(z, ¥)"
produces the same effect as y5,, the second the same effect as
x5, 1f the function be expressed in terms of its roots

- =a,(z- ay) (- By) ...,
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then the two operators may be transformed into symbols
operating on the roots, as we have

"'{.’/8:}= 8u+83+o--’ i
{8} ==(a+B+...)ad,, +a' + ﬂ‘sp 2
the proof of which may be supplied without difficalty.

LESSON VIIL

ORDER AND WEIGHT OF ELIMINANTS.

66. WHEN we are given %k homogeneous equations in %
variables (or, what comes to the same thing, £ non-homoge-
neous equations in % —1 variables) it is always possible so to
combine the equations as to obtain from them a single equation
A =0, in which these variables do not appear. We are then
said to have eliminated the variables, and the quantity A is
called the Eliminant® of the system of equations. Let us take
the simplest example, that which we have already considered in
the first lesson, where we are given two equations of the first
degree ax + b=0,a’z+ 5" =0. If we multiply the first equation
by a’, and the second by a, and subtract the first equation from .
the second, we get ab’ — a’b =0, and the quantity ab’—a’b is the
eliminant of the two equations. Now it will be observed, that
we cannot draw the inference ad’ — a’b =0 unless the two given
equations are supposed to be simultaneous, that is to say, unless
it is supposed that both can be satisfied by the same value
of . For, evidently, when we combine two equations ¢ (z) =0,
4 (2)=0, and draw such an inference as I (x)+my (z)=0,
it is assumed that = means the same thing in both equations.
It follows then that ab’—a’b=0 is the condition, that the two
equations can be satisfied by the same value of , as may
also be seen immediately by solving both equations for z,
and equating the resulting values. And so generally, if we

* Eliminants are also called resultants,
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are given. any number of equations, U=0, V=0, W=0, &c.,
we may proceed to combine them, and draw an inference such
a3 U+ mV + nW =0, only if the variables have the same values
in all the equations. And, if by combining the equations, we
arrive at a result not containing the variables, this will vanish if
the equations can be satisfied by a common system of values
of the variables, and not otherwise. Hence for any such system
of equations the eliminant .may in general be defined as that
Junction of the coefficients, whose vanishing expresses that the equa~
tions can be satisfied by a common system of values of the variables.

67. We have now to show how elimination can be performed,
and what is the nature of the results arrived at. 'We commence
with two equations written in the non-homogeneous form

- pa" +pa™ —&e.=0, or ¢ (x)=0,

2 -qx"" +¢2"" ~&c.=0, or ¥ (z)=0.
The vanishing of the eliminant of these equations is, as we have
seen, the condition that they should have a common root. If
this be the case, some one of the roots of the first equation
must satisfy the second. Let the roots of the first equation
be a, B, v, &c., and let us substitute these values successively
in the second equation, then some one of the results (a),
4 (B), &c. must vanish, and therefore the product of all
must certainly vanish. But this product is a symmetric func-
tion of the roots of the first equation, and therefore can be
expressed in terms of its coefficients, in which state it is the
eliminant required. The rule then for elimination by this
method, is to take the m factors

¥ (@) ="~ g™ +¢4™ — &,

¥ (B) =8"- %ka'l' q:ﬁH— &c‘)

Y =7"- 07"+ ¢y —&e, &e,
to multiply all together, and then substitute for the symmetric
functions (aBy)", &c., their values in terms of the coefficients of
the first equation. - -

Ex. To eliminate z between z? — piz + p, =0, 2?—¢z+ ¢, =0, Multiplying
(@ — qra + g3) (B — @18 + ¢5), We get
&' ~q1af (a + f) + ¢; (a® + £%) + ¢17af — 12z (a + B) + 0*;
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and then substituting a + 8 =p,, aff =p,, a®+ B2=p,®— 2p,, we have
Pi* = 0102y + 2 (022 — 2P0) + 9o — 1001 + 051

or (P2 — ¢2)* + (71 — @1) (P19 — P:01),
which is the eliminant required.

68. We obtain in this way the same result (or at most
results differing only in sign), whether we substitute the roots
of the first equation in the second, or those of the second in the
first. In other words, if a’, B, o, &c. be the roots of the
_second equation, the eliminant may be written at pleasure as
the continued product of ¢ («), ¢ (8’), ¢(v'), &e., or as the
product of Y (a), ¥(8), ¥ (v), &c. For remembering that
¢ (2) = (x—a) (x—- B) (- v), &c., the first form is

(- a) (@' - B) (¢ =) &e. (B —a)(B —-B)(B -17)&e,

and the second is

-o)(@—8)(x—7) &e. (B-)(B-8)(B-7) &e.

In either case we get the product of all possible differences
between a root of the first equation and a root of the second;
and the two products can at most differ in sign.

69. If the equations had been given in the homogeneous
form, with or without binomial coefficients, -

az” +magx™ 'y + §m (m—1) a g™y + &e. =0,
b + nba™'y + in (n —1) ba™"y" + &e.=0,

we can reduce them to the preceding form by dividing them re-
spectively by a.y", 8.y", when we have p, = ~ mi, g,=- —I;b- , &e.
We substitute then these values for p, g, &c. in the result
obtained by the method of the last article, and then clear of
fractions by multiplying by the highest power of a, or b, in
any denominator, Thus the eliminant of ag”+2a.2y+ay’
ba'+ 2bxy + by’, obtained in this manner from the result of
Ex., Art. 67, is

(aob; - a,bo)’ +4 (anbo - aobl) (anba - a,b,).
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It is evident thus that the eliminant ¢s always a homogeneous
Junction of the coefficients of each equation. For before we
cleared of fractions, it was evidently a homogeneous function
of the degree 0, and it remains homogeneous when every term
is multiplied by the same quantity.

The same thing may be seen by applying to the equations
directly the process of Art. 67. Let the values which satisfy
the first equation be 2y, 2”’y”, &c.; then, if the equations have
a common factor, some one of these values must satisfy the

second equation. We must then multiply together
(5™ +nb 2™y + &e.) (b2 +nba™"y" + &e.) (&e.),

which is a homogeneous function of the coefficients &, b,, ... of
the second equation, and of course remains so after substituting
for the symmetric functions (2’2" &c.)" &c. their values in terms
of the coefficients of the first equation. And in the same manner
the function is homogeneous as regards the coefficients of the
first equation.

70. The eliminant of two equations of the m* and n* orders
respectively, 18 of the n* order in the coefficients of the first equa~
tion, and of the m™ in the coefficients of the second.

For it may be written either as the product of m factors
¥ (a), ¥ (B), &c., each containing the coefficients of the second
equation in the first degree, or else as the product of n factors
¢ («), ¢ (B'), &c., each containing in the first degree the coeffi-
cients of the first equation. Or confining our attention to the
form y (a).y (8).&c. we can see that this form, which obviously
contains the coefficients of the second equation in the degree
m, contains those of the first in the degree n, since the sym-
metric functions which occur in it may contain the »“, and no
higher, power of any root (Art. 58).

71. The weight of the eliminant s mn; that is to say,
the sum of the suffixes in every term is constant and =mn.
For if each of the roots a, B; ', 8, &c. be multiplied by the
same factor A, then since each of the in differences a— a’ (see
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Art. 68) is multiplied by this factor A, the eliminant will be
multiplied by A™. But the roots of the two equations will be
multiplied by A if for p, g, we substitute Ap,, Ag,; for p,, ¢,;
A%, A, ; &c. We see then, that if we make this substitution
in the eliminant, the effect will be that every term will be
multiplied by A™; or, in other words, the sum of the suffixes
in every term will be mn. The same thing may also be seen
to follow from the principle of Art. 57. In ¥ (z) the sum of
‘the index of every term and the suffix of the corresponding
coefficient is n; that is to say, ¥r () consists of the sum of a
number of terms, each of the form ¢, af. If, then, we take any
term at random in each of the factors v (), ¥ (8), &c., the
corresponding term in the product will be ¢, g, 9, 2, &ec.,
and if we combine with this all other terms in which the same co-
efficients of the second equation occur, we get ¢, g, jg,.Sa'B",
&c. The sum of the suffixes of the ¢'s is n -4+ n—j+n—k+ &ec.,
or since there are m factors, the sum is mn— (£+7+ &k + &ec.).
But, by Art. 57, the sum of the suffixes of the p’s in the ex-
pression for Sa'@y*, &ec. is ¢+j+k+ &e. Therefore the sum
of both sets of suffixes is mn, which was to be proved.

The result at which we have arrived may be otherwise stated
thus:* If p, q, contain any new variable z in the first degree ;
if Py ¢, contain it in the second and lower degrees; if p, g, tn
the third, and so on ; then the eliminant will vn general contain
this variable in the mn® degree.

It is evident that the results of this and of the last article are
equally true if the equations had been written in the homo-
geneous form az™ + &c., because the suffixes in the two forms
mutually correspond. And again, from symmetry, it follows that
the result of this article would be equally true if the equations
had been written in the form @ a" + ma,_a™ 'y + &ec., where the
suffix of any coefficient corresponds to the power of « which
it multiplies, instead of to the power of y.

* Or again thus: if in the eliminant we substitute for each coefficient p,, the term
2% which it multiplies in the original equation, every term of the eliminant will be
divisible by 2™, Or, in the homogeneous form, if we substitute for each coefficient
aa the term 2?y™-*, which it multiplies, every term of the eliminant will be divisible
by z""‘y"".
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72, Since the eliminant is a function of the differences
between a root of one equation and a -root of the other, it
will be unaltered if the roots of each equation be increased by
the same quantity; that is to say, if we substitute x+ A for a
in each equation. It follows then, as in Art. 60, that the elimi-
nant must satisfy the differential equation

" da dA

dA
m o+ (m=1)p, +&e +n -1)g, +&c—
&, tm-Ne o zg. tr=1g d
"or, a8 in Art. 62, if the equations had been written with

binomial coefficients, we have

da dA

°d +2ad +&c+b

", 5+ T

as, +&c.— .

73. Given two homogeneous equations between three variables,
of the m* and n* degrees respectively, the number of systems of
values of the variables whick can be found to satisfy simultaneously
the two equations i3 mn.*

Let the two equations, arranged according to powers of z, be

ax™ + (by + cz)a™ + (dy* + eyz + f2') 2™ + &e. =0,
‘2" + (b'y + c'z) 2" + (d'y + 'yz + f2") 2" + &e. = 0.

If now we eliminate = between these equations, since the co-
efficient of 2™ is a homogeneous function of  and z of the first
degree, that of o™ is a similar function of the second degree,
. and so on,—it follows from the last Article that the eliminant
will be a homogeneous function of y and z of the mn® degree.
It follows then that mn values of y and 2t can be found which
will make the eliminant =0. If we substitute any one of these
in the given equations, they will now have a common root when

* These equations may be considered as representing two curves of the m* and .
n® degrees respectively; the geometrical interpretation of the proposition of this
Article being, that two such curves intersect in mn points. The equations are re-
duced to ordinary Cartesian equations by making z =1.

4 The reader will remember that when we use homogeneous equations, the ratio
-of the variables is all with which we are concerned. Thus here, z may be taken
srbitrarily, the corresponding value of y being determined by the equation in g : «.
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solved for z /since their eliminant vanishes’ ; and this value of =,
combined with the values of y and z already found, gives one
system of values satisfying the given equations. So we plainly
bave in all mn such systems of values. We shall, in Lesson x.,
give a method by which, when two equations have a common
root, that common root can immediately be found.

Ex. To find the oordinates of the four poir:s of intersection of the two conics
az? 4 byf + e + 2fyz + g2z + 2hzy =0, 2+ ¥y + 2+ 2w+ 2z + 24’2y =0.
Arrange the equations according to the powers of z, and eliminate that variable,
a8 in Art. €7; then the result is
{1a¥)  + 2 (af) 32 + far) £
+4ak’, 3+ (ag) 23 (5K, 8 + {39) + 2 (fX): 92+ {(ch') + 2 (9)} 2y +(e9) "] = O,
where, as in Lesson 1, we have written /al’; for a¥/ — a’. This equation, solved for
¢ : 2, determines the valnes corresponding to the four points of intersection. Having
found these, by substituting any one of them in both equations, and finding their
common root, we obtain the corresponding value of z:z. We might have at once
got the four values of z : z by eliminating y between the equations, but substitution
in the equations is necessary in order to find which value of y corresponds to each
value of 2. By making z =1, what has been said is translated into the language of
ordinary Cartesian coordinates. .

74. Any symmetric functions of the mn values which stmul-
taneously satisfy the two equations can be apraaed in terms of
the coefficients of those equations.

In order to be more easlly understood, we first consider
non-homogeneous equations in two variables. Then it is plain
enough that we can so express symmetric functions involving
either variable alone. For, eliminating y, we have an equation
in @, in terms of whose coefficients can be expressed all sym-
metric functions of the mn values of = which satisfy both equa-
tions. Similarly for y. Thus, for example, in the case of two
conics, .y, &c. being the coordinates of their points of intersec-
tion, we see at once how to express such symmetric functions as

2, +w +wm+ wlr’ y’l +y’u +y’m +y’lr’ &c‘,
and the only thing requiring explanation is how to express sym-
metrio functions into which both variables enter, such as

Ty, + &Y., + 2y + Z,Y
To do this, we introduce a new variable, ¢ = Az + uy, and by the
belp of this assumed equation eliminate both & and y from the
given equations. Thus y is immediately eliminated by substi-.
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tuting in both its value derived from ¢=2Az+ uy, and then we
have two equations of the m* and n"” degrees in z, the eliminant
of which will be of the mn® degree in ¢, and its roots will be
obviously Az, + uy, Az, + py,, &c., where z,y, x,y, are the
values of z and y common to the two equations. The coeffi-
cients of this equation in ¢ will of course involve A and u. We
next form the sum of the #* powers of the roots of this equa-
tion in ¢, which must plainly be = (Az, + uy,)*+ Az, +py, ) + &e:
The coefficient, then, of A* in this sum will be Sx}*: the coeffi-
cient of A" gives us Zz'"y,, and so on.

Little need be said in order to translate the above into the
language of homogeneous equations. We see at once how to
form symmetric functions involving two variables only, such as
3y2,2.72,, for these are found, as explained, Art. 61, from the
homogeneous equation obtained on eliminating the remaining
variable; the only thing requiring explanation is how to form
symmetric functions involving all these variables, and this is

“done precisely as above, by substituting ¢ =z + uy.
Ex, To form the symmetric functions of the coordinates of the four pointa
common to two conics, The equation in the last Example gives at once
YY.Yulde = (06) +4(a9) () 5 222020 = (@Y} + 4 (ak) (BK);
and, from symmetry,  zgz,z,7, = (0) +4 (&) (¢f)
=2 @y.Yu2w) = 4 {(@0) (af") + (ak') (cg) + (ag’) () + 2 (ag) (f9)}, &e.
To take an example of a function involving three variables, let us form
2 @322 ),
which conuponds to Z (¢'y") when the equations are written in the non-homogeneous
‘om?l.y the preceding theory we are to eliminate between the given equations, and
t=Az+py; snd the required function will be half the coeficient of Au in
= (ﬂ,z*,,c',,z ,). 1f the result of elimination be
Att + (BA + COu) £z + (DA? + EAp + Fu?) 0222 + &o.,
E (#2%,2%,2%) = (BA + Cu)® — 24 (DA? + Eu + Fiu¥),
and L (zy2*2%.2%,) = BC — AE.
By actual elimination
A = (ab) + 4 (ak’) (687), B =4 {(ba’) (59") + (&) (ak)) + (OK)) (") + 2 (OF") (94")},
C=4{(ad) (af") + (ag’) BF) + (ak) (39") + 2 (ah") (S H)}
E =4 {(ad) OF) + (5¢) (ak) - 2 (af") (Bf") — 2 (59 (hg") + 4 (&) (Rg"))

75. To form the eliminant of- three homogeneous equations tn
three variables of the m*, n*, and p* degrees respectively.
The vanishing of the eliminant is the condition that a system
, . L
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of values of z, y, z can be found to satisfy all three equations.*
When this is the case, if we solve from any two of the
equations, and substitute successively in the remaining one the
values so found for z, y, 2z, some one of these sets of values must
satisfy that equation, and therefore the product of all the results
of substitution must vanish. Let 2, ¥/, 2/; 2", ¥", £”, &ec.
‘be the systems of values which satisfy the last two equations,
which (Art. 73) are np in number: substitute these values
in the first, and multiply together the np results ¢ (<, ¥, 2"),
(”yy”y 2"), &e. The product will plainly involve only sym-
metric functions of ', y’, 2’, &ec., which (Art. 74) can all be
expressed in terms of the coefficients of the last two equations;
‘and, when they are so expressed, it is the eliminant required.

76. The eliminant i a homogeneous function of the np® order
tn the coefficients of the ﬁrat equation ; of the mp™ tn those of t]ze
second ; and of the mn™ tn those of the third.

For, each of the np factors ¢ (z, &/, 2) is a homogeneous
function of the first degree in the coeflicients of the first equation ;
and the expression of the symmetric functions in terms of the
coefficients only involves coefficients of the last two equations,
from solving which &, 3/, 2/, &c. were obtained. The eliminant
is therefore of the np" degree in the coefficients of the first
equation; and in like manner its degree in the coefficients of
the others may be inferred. '

77. The weight qf the eliminant will be mnp ; that is to say,
If all the coefficients in the equations which multiply the first power
of ome of the variables, z, be affected with a suffix 1, those which
multiply 2* with a suffix 2, and so on ; the sum of all the suffizes
in each term of the eliminant will be equal to mnp. In other
words: If all the coefficients whick multiply z contain a new
variable tn the first degree ;—if those which multiply 2* contasn ¢t -
n the second and lower degrees, and 8o on ;. then the eliminant
will contain this variable in the degree mnp.

* If the three equations represent curves, the vanishing of the eliminant is the
condition that all three curves shall pass through a common point.
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This is proved as in Art. 71. In the first place, it is evident
that if a homogeneous equation of the m" degree be satisfied by
values o/, 3/, 2’; and if the equation be altered by multiplying
each coefficient by a power of A, equal to the power of 2z, which
the coefficient. multiplies, then the equation so transformed will
be satisfied by the values A/, Ay, 2’; or, in general, that the
result of substituting A2’, Ay, 2" in the transformed equation is
A" times the result of substituting a:’, y’, 2’ in the untransformed.
Thus, take the equation 2’ +y* — 2 - 2z — zy", the transformed
is 2’ + 3* —\%2° — \'2"z - A2zy’; and, obvxously, the result of sub-
stituting AL, Xy’ , 2 in the secoud is A’ times the result of
substituting a: y ¥ ¢ in the given equation. If, then, the three
given equations be all transformed by multiplying each coeffi-
cient by a power of N equal to the power of z, which the
coefficient multiplies, it follows, if 2/, 3, 2° be one of the
systems of values which satisfy the two last of the original
equations, that the transformed equations will be satisfied by
(A, Ay, 2’), and the result of substituting these values in the
first will be A"¢ (¢, ¥/, 2'). The elimin’ant, then, which is the
product of np factors of the form ¢ (¢, 3, z) will be multiplied
by A"¥. If, then, any term in the eliminant be abc,, &ec.,
where the suﬂix corresponds to the power of z, which the
coefficient multiplies, since the alteration of @, into A'a,, 5,
into A9, &c., multiplies the term by A**, we must have
k+l+&c =mnp. Q.E.D.

78. It is proved, in like manner, that three equations are in
general satisfied by mnp common values; that any symmetric
function of these values can be expressed in terms of their co-
efficients ; and that we can form the eliminant of four equations
by solving from ‘any three of them, substituting successively in
the fourth each of the systems of values so found, forming the
product of the results of substitution, and then, by the method
of symmetric functions, expressing the product in terms of the
coefficients of the equations. In this way we can form the
eliminant of any number of equations; and we have the follow-
ing general theorems: The eliminant of k equations in k—1

tndependent variables ts a homogeneous function of the coefficients
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of each equation, whase arder 18 equal to the product of the degrees
of all the remaining equations. If each coefficient fn all the
equations be affected with a suffic equal to the power of any one
variable which 1t multiplies, then the sum of the suffizes tn every
term of the eliminant will be equal to the product of the degrees
of all the equations. And, again, if we are given k equations
tn k variables, the number of systems of common values of the
variables, which can be found to satisfy all the equations, will be
equal ta the product of the orders of the equations.

LESSON IX.

EXPRESSION OF ELIMINANTS AS DETERMINANTS,

79. THE method of elimination by symmetric fanctions is,
in a theoretical point of view, perhaps preferable to any other,
it being universally applicable to equations in any number of
variables; yet as (in the absence of tables of symmetric func«
tions) it is not very expeditions in practice, and does not
yield its results in the most convenient form, we shall in
this Lesson give an account of some other methods of elimia
nation. The following is the method which mest obviously
presents itself. It is in substance identical with what is called
elimination by the process of finding the greatest common
measure. We have already seen that the eliminant of twa
linear equations azx+b=0, a’z+¥% =0 is the determinant
ab'—ba’=0. If now we have two quadratic equations

ar’+bx+c=0, a'z’+bz+c =0,
multiplying the first by a, the second by a, and subtracting,
we get
(a®)z+ (ac’)=0;
and, again, multiplying the first by ¢, the second by ¢, sub«
tracting, and dividing by =, we get
(ac’) z + (bc') = 0.
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The problem is now reduced to elimination between two linear
equations, and the result is

(ac')* + (ba’) (b¢) =0.

80. "So, again, if we have two cubic equations
a+ b’ +cx+d=0, d+bz2'+cx+d =0,
we multiply the first by a’, the second by a, and subtract;
and also multiply the first by d’, the second by d, subtract and
divide by . The problem is thus reduced to elimination be-
tween the two quadratics

(ab)2*+ (ac’) 2+ (ad’) =0, (ad’)a’ + (bd') x+ (cd’)=0.
By the last article the result is
{(ad’)*~ (ab) (od)}*+{(ad)(a0')—(ab") (bd)} {(ad") (dB')—(ac’) (de')}=0-
Now it is to be observed that the equation
(ab) (cd) + (ac) (@) + (ad) (b') = 0
is identically true. Consequently when we multiply out, the

preceding result becomes divisible by (ad’), and the reduced
result is
(ad)? 2(ad')(ab')(0d') (ad) (ac) (bd)

+ (ac)} (ed) + (b2)* (ab') — (ab') (5¢) (od) =00
The reason that in this process the irrelevant factor (ad’) is in-
troduced is that, if ad’=a’d, and therefore a to @’ in the same
ratio as d to d’, we must get results diﬂ'ering only by a factor,
if from the first equation multiplied by a’ we subtract the second
equation multiplied by a, or, if from the first equation multiplied
by &', we subtract the second equation multiplied by . Thus,
-on the supposition (ad’) =0, even though the original two cubics
have not a common factor, the two quadratics to which we
reduce them would have a common factor. In general then,
when we eliminate by this process, irrelevant factors are intro~
duced, and therefore other methods are preferable.

81. Euler’s Method. If two equations of the m® and »*
degrees respectively have a common factor of the first degree,
we must obtain identical results, whether we multiply the first
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equation by the remaining n—1 factors of the second, or the
second by the remaining m — 1 factors of the first. If then we
multiply the first by an arbitrary function of the (n —1)* degree,
which, of course, introduces n arbitrary constants ; if we multiply
the second by an arbitrary function of the (m—1)* degree, intro-
ducing thus m constants; and if we then equate, term by term,
the two equations of the (m + n — 1)* degree so formed, we shall
have m +n equations, from which we can eliminate the m +n
introduced constants, which all enter into those equations only
in the first degree; and we thus obtain, in the form of a deter-
minant, the eliminant of the two given equations.

Ex. To eliminate between aa? + dzy + cy? = 0, a’2* + ¥'zy + c'y* = 0.
We are to equate, term by term,
(dz + By) (az* + bxy + cy®) and (A'z + B'y) (a's® + b'zy + c'y")
The four resulting equations are

* Ab+ Ba— A'Y — B'a’ =0,

Ac+ Bb - A'¢ - BY =0,

. P ;[ — B¢ =0,
from which, eliminating 4, B, 4, B, the result is the determinant

a 0, a’, 0
5 a, ¥, o
¢ b ¥
0,¢c0¢|.

82. This method may be extended to find the conditions that
the equations should have two common factors. In this case it
is evident, in like manner, that we shall obtain the same result
whether we multiply the first by the remaining n—2 factors of
the second, or the second by the remaining m — 2 factors of the
first. As before, then, we multiply the first by an arbitrary
function of the n —2 degree (introducing n—1 constants), and
the second by an arbitrary function of the m — 2 degree;. and
equating, term by term, the two equations of the m+n—2
degree so found, we have m+n—1 equatious, from any m + n — 2
of which, eliminating the m +n—2 introduced constants, we
obtain m+ n—1 conditions, equivalent, of course, to only two
independent conditions. ;
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Ex. To find the conditions that
00 + bty + oay? + AP =0, a'a + ¥ty + Cmyf + Ty =0,
should have two common factors. Equating
(4z + By) (az® + baty + czy? + dy?) = (A'z + B'y) (a'z + b'z%y + Czy? + d'yY),

we have P U — 40 cieeienes =0,
Ab+ Ba— AW — B'd =0,
Ae+Bb—~ A'c’ — BY =0,
Ad+ Bo — A'd — B'? =0,

from which, eliminating 4, B, 4', B’, we have the system of determinants [for the
notation used, see Art. 3],

83. 8Sylvester’s dialytic method. This method is identical in
its results with Euler’s, but simpler in its application, and more
easily capable of being extended. Multiply the equation of the
m* degree by «™*, 2"y, 2"y, &c.; and the second equation

by &™*, a™ %y, ™ %", &c., and we thus get m + n equations,
from Whlch we can eliminate linearly the m+ » quantities
™" ™y, &', &c., considered as independent un-

knowns Thus, in the-case of two quadratics, multiply both
by « and by y, and we get the equations

ax' + ba'y + cxy’ =0,
az’y + bzy’ + cy* =0,
a’w‘+b’a;’y+c'zy’ =0,

'z*y + Vxy' + 'y’ =0,
from which, elnmmatmg ', a'y, zy', ¥, we get the same deter-
minant as before,
a b ¢
- a b ¢
a’, bl, c’
a, b, c 1.
In general, it is evident by this method, that the eliminant
is expressed as a determinant of which = rows contain the coeffi-
cients of the first equation, and m rows contain the coefficients
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of the second. Thus we obtain the rule already stated for the
order of the eliminant in the coefficients of each equation.
Ex. 1. Eliminate z between a + bz + ¢22=0, 2* =1,
Multiply the former by z, and put 2* = 1, and we get
et+ax+br2=0;

from this similarly b+ex+axt=0,

and the eliminant is in determinant form and expanded
a, b c|l=—[a b c|=a®+5 +c— 8abe.
¢ ad ’b, ¢ a
b e a e ad

It can also be found by the method of symmetric functions: let o be an imaginary
cube root of unity, then the roots of the second equation substituted in the first give
the eliminant as

(@45 +¢) (a+ b + cw?) (a + b + ce),
which is thus the value of the determinant.

Ex. 2. Similarly eliminating between a + bz + ca? + da? =0, 24 =1,

a8, ¢,d|=—|abc d|={@+cf—b+d{@—cP+G—dy}
d, a, b, ¢ b¢,d a .

¢, dya b c,dya b

b ¢c da d, a b c

=(a+b+c+d)(a—d+c—d)(a+bi—c—di)(a—bi—ec+ di).

Ex. 3. Generally, in a similar manner for @ an imaginary n* root of unity, the
determinant
a,be.l|=@+ b + ¢ +.+1))
L,abd k| (a+ do +cw?+..+ lo™?)
k, 1, a ..... (@+ bw? + .ccvernnt lo™%)

by ¢, Byt | (400" + ceresinenit L),

Ex. 4, Various determinants may be found by this method of elimination,
Starting from the equations @,z + axy =0, 5,2+ b,y =0, they are consistent if (a,5,) =0,
Take the squares and product of these expressions, they also vanish together if the
original equations be consistent ; hence, eliminating 23, zy, y? dialytically,
af 200, o
aby, ayb; + azdyy ab,
b2 2bb, b
must be a power of (a,5,), and it is obviously (a,b,)%.

Similarly (a,5,)® can be written down as a determinant of order 4. Again,

Bz + by) (e + ) =0,
(e + cpy) (212 + azy) =0,
(2% + ay) (b + by) =0,
are consistent if (b,c;) (¢,a;) (a,,) vanish. Hence this product may be written

| bicry bycy + Boeyy Boca

€10, €10z + €48y, €44,
aby, ayb; + agy, agby
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And in like manner all determinantd of the matrix

ol &Y e bycyy LT ab,
28,0y 25,8y 210y byos + baty €18 + G301y by + agh,
a? b ot bty L asby

are products of the third order of the quantities (5,¢,), (¢,85), (@154)¢

84. Bezout’s method. This process also expresses the elimi-
nant in the form of a determinant, but one which can be more
rapidly calculated than the preceding. The general method
will, perhaps, be better understood if we apply it first to the
particular case of the two equations of the fourth degree

az'+b’y+erly' +dxy +ey'=0, dz'+b 2y + I’y +d xy + €y =0.
Multiplying the first by o', the second by a, and subtracting,
the first term in each is eliminated, and the result, being divisible
by y, gives
(ab’) & + (ac’) 2°y + (ad’) xy* + (a€’) y* = 0.

Again, multiply the first by a’z+5"y, and the second by ax+ by,
and the two first terms in each are eliminated, and the result,
being divided by 3", gives .

(ac) & + {(ad’) + (6¢); 2y + {(ad) + (2d")} 2y™ + (b¢) " =0.
Next, multiply the first by a’z" + b’zy + ¢’y*; and the second by
ax’ + bry + cy*; subtract, and divide by 3*; when we get

(ad’) 2 + {(a) + (b)) ay + {(B¢) + (cd)} ay™ + (o) " = 0.
Lastly, multiply the first by a’2*+ b2’y +c'zy*+d’y*; the second
by aa® + b2’y + cxy’ + dy’ ; subtract, and divide by y*; when we
get

(ae) 2" + (be) 2y + (&) 2" + (de) " = 0.
From the four equations thus formed, we can eliminate linearly

the four quantities z°, 2y, xy*, 3°, and obtain for our result the
determinant

(ab), (ac) -, (ad) ) (a€)
(ac), (ad’)+(be), (ad) +(2d") ) (be)
(ad’), (a€) +(bd), (®€) + (cd), (c€)
(a), (6¢), (c€), (de)
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85. The process here employed is so evidently applicable to
any two equations, both of the n* degree, that it is unnecessary
to make a formal statement of the general proof. On inspection
of the determinant obtained in the last article, the law of its
formation is apparent, and we can at once write down the deter-
minant which is the eliminant between two equations of the
fifth degree by simply continuing the series of terms, writing an
(af’) after every (a¢’), &c. Thus the eliminant is

(ab), (ac) 4 (ad) ) (ad) » (af")
(ac), (ad)+(b), (ad) +(bd")  , (af")+(be) ) (&)
(ad’), (a€')+(bd), (af")+(be')+(cd), @ )ed) ()
('), (af")+(¢), &) +(ed), () +(de), (")
{af"), (I?f) ] (¢f), (@), (¢f")

It appears hence that in the eliminant every term must con-
tain a or a’; as was evident beforehand, since if both of these
were =0, the equations would evidently have the common
factor y=0.

It appears also that those terms which contain a or o’ only in
the first degree are (ab’) multiplied by the eliminant of the equa-
tions got by making a and a’=0 in the given equations. For
every element in the determinant written above must contain a
constituent from the first row, and also vne from the first column;
but as all the constituents of the first row or column contain
a or o/, the only terms which contain @ and o’ in only the first
_degree are (ab’) multiplied by the corresponding minor; and this,
when a and o” are made = 0, is the next lower eliminant.

86. It only remains to shew that the process here employed
is applicable when the equations are of different dimensions;
and, as before, we commence with the following example :

az' + b2’y + ca'y* + dxy’ + ey = 0, o'z’ + by +y'=0.
Multiply the first equation by a’, the second by az*, and subtract,
when we have
(ba’) 2° +(ca)a:y+(da)xy"+(ea)y 0.
In like manner, multiply the first by a’z+ 5"y, and the second by
(ax + by) x*, and we get

(ca’) 2° +{(d") +(dd)} 2%y + {(aV) + (ea)}wy +(eb) g’ ~o.
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This process can be carried no further; but if we join to the
two equations just obtained the two equations got by multi-
plying the second of the original equations by x and by y, we
have four equations from which to eliminate °, 2%y, zy*, 3".

And in general, when the degrees of the equations are un-
equal, m being the greater, it will be found that the process of
Art. 84 gives us n equations of the (m —1)* degree, each of
these equations being of the first order in the coefficients of eack
equation: to which we are to add the m —n equations found by
multiplying the second equation by &7, 2" ™7, &c., and we
can then eliminate the m quantities 2™, 2™y, &c from the m
equations we have formed. Every row of the determinant con-
tains the coefficients of the second equation, but only »n rows
contain the coefficients of the first. The eliminant is, therefore,
as it ought to be, of the n* degree in the coefficients of the first,
and of the m® in those of the second equation.

87. Cayley’s statement of Bezout’s method. 1f two equations
¢ (2, y), ¥ (x, y) have a common root, then it must be possible
to satisfy any equation of the form ¢ + Ayr=0, independently
of any particular value of A. Take, then, the equation

$ @y ¥ (@,y)—-¢ @, ¥) ¥ (= y)=0;

which, if ¢ and Y have a common factor, can be satisfied inde~
pendently of any particular values of 2" and 3. We may in the
first place divide it by xy’—ya’, which is obviously a factor: next
equate to 0 the coefficients of the several powers of 2/, ¥’; and
then eliminate the powers of z and y as if they were independent
variables, when the result comes out in precisely the same form
as by the method of Art. 84.

Ex. To eliminate between axz? + bzy + ¢y = 0, a'z* + ¥'zy + ¢'y2 = 0.

(az? + bay + cy?) (@'z"% + V'ay + c'y?) — (a'2° + U2y + ¢'y?) (ax’ + b2y’ + cy®),
when divided by zy’ — yx’ gives

{@d) z + (ac’) g} &' + {(ac) =+ () y} ¥’ = 0;
md, eliminating =, y between the coefficients of «” and y’, separately equated to 0,
we get the eliminant
(@) + (ba') () = 0.

88. We proceed now to the theory of functions of three
variables, the eliminant of which, however, except in particular
cases, has not been expressed as a determinant, though it can
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always be expressed as the quotient of one determinant divided
by another. We shall shew, in the first place, how to form
a function of great importance in the theory of elimination.

‘Given k equations in % variables, ¥=0, v=0, w=0, &ec., if we

du du du
d—-.‘b ) zy ) E )
U, u, u, &ec.
vy Uy vy &e
v, w,, w0, &
&e.
is called Jacobi’s determinant, or simply the Jacobian of the

given equations, and will be denoted in what follows by the
letter J.

write u,, u,, u,, &c. for &ec., then the determinant

89. If any number of equations are satisfied by a common
system of values, that system will satisfy the Jacobian ; and when
the equations are of the same degree, st will also satisfy the dertved
equations of the Jacobian with regard to each of the variables.

The proof of this for three variables applies in general, By
the theorem of homageneons functions we have

au, + yu, + 2u, =ny,

&, +yv, +2v, =n'y,

@w, + YW, + £, = n"1w.
Now if, as in Lesson 1v., we write the minors of the Jacobian,
obtained by suppressing the row and column containing w,, v,, &c.,
U, V,, &c., then if we solve these equations, we find (Art. 29)
Joe=Unu +Vn'y + Wn"w, from which it appears at once that if
4, v, w vanish, J will vanish too. Again, differentiating the
equation just found, we have, for n’ =2" =n,

dv, W,

J+wg=nu% +nv ot +mf:dj‘l;I +o (U + 0V, + v, W),

df __dU,, dv, 4w,
o @Hw@‘ +nw -73/—+n(u,U‘+ vV, + v, W),

But remembering (Art. 27) that
0T 40V, +0,W,=J, w40V, +w,W,=0,
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we see that the supposition ¥=0, v=0, w =0 (in consequence of

which J is also =0) makes g, Z—'-; also to vanish.

90. We can now express as a determinant the eliminant of
three equations, each of the second degree. For their Jacobian
is of the third degree, and therefore its differentials are of the
second. We have thus three new equations of the second
degree, which will be also satisfied by any system of values
common to the given equations. From the six equations,

then, u, v, w 4 dJ dJ we can eliminate the six quantities
t Bt Bt | "h, dy, dz1
a*, i, &', ye, zz, xy, and so form the determinant required.
Again, if the equations are all of the third degree, J is of the

sixth, and its differentials of the fifth, and if we multiply each
of the three given equations by 2%, 3*, #*, 2, 2z, xy, we obtain
eighteen equations, which, combined with the three differentials
of the Jacobian, enable us to eliminate dialytically the twenty-
one quantities, «°, «'y, &c., which enter into an equation of the
fifth degree. This process, however, cannot, without modifi-
cation, be extended further. :
' Ex. 1. The Jacobian of two homogenequs equations may likewise be emplayed
to write down ip determinant form their eliminants. Thus, for

ax? + 2bxy + ¢y =0,

a'z? + W'ay + 'y =0,

writing the Jacobian a,2? + 20,2y + a2,
the eliminant is a b c

a, ¥, ¢

Gy Gy G

Ex. 2. For two cubics as® + 8bay + Sczy? +dy* =0,
@2t + BY2%y + B'zy + AP = 0,

the Jacobian may be written

’ agt + dayzy + Bagz’y? + dayzy® + oyt

and since its two derived functions vanish for & common value, the eliminant is
a b ¢ d|.
a, ¥, d
gy @y Gy O3
Q) Ggy Qg Q4
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Similarly for two biquadratics with a like notation, the eliminant is
a, b ¢ d, e O
a, ¥, ¢, d, ¢, 0
0, a b ¢ d, e
0, a' ¥ ¢, d, ¢
gy Gyy Gy A3y Gy Gy
ayy Gy Oy @y, A5y Gg

Ex. 8. As in Ex. 4, Art. 83, we can easily determine the following and similar
identities :

(@bt =| ot a a?, 2aa, 2a,,, 2a,a, ,

0% b2 bty 2, 2b3by, 26,5,
ah 6% of 2,0y, 2¢56y, 2¢105
bieyy oy Bycyy byts + byony, Byey + bioyy Bicy + by
€18y Coflgy Cyllyy Cylty + 3y C30y + 01y 0,83 + Coy
by, azbyy ayby azby + Gy ashy + aybyy ayb; + aghy

(016285 (01s03)(A1220) (318565) = | Bycyy Byfyy Bsay Bofs + Bycyy 50y + bicyy Brea + 850 |«
€105y CoGy C3lty, Cp83 + Cyly C38) + 103 €103 + o0
a;dyy azbyy a3bs, agby + ashyy ashy + asbyy 15, + aghy
aydy, Gty a3dy, aydy+asdy agdy + aydy, aydy+ agd;
bydyy bydyy bydsy bady+ bydy, bydy + bydyy Bydy + bydy
€18y, Coy Cyflyy Cxy + Cyllyy €38, + €1y, Cydy + cd;

91. Dr. Sylvester has shewn that the eliminant can always
be expressed as a determinant when the three equations are of
the same degree. Let us take, for an example, three equa-
tions of the fourth degree. Multiply each by the six terms -
(=", 2y, ¥", &c.) of an equation of the second degree [or gene-
rally by the 4= (n — 1) terms of an equation of the degree (r—2)].
We thus form eighteen [§n (n—1)] equations. But since these
equations, being now of the sixth [2n—2] degree, consist of
twenty-eight [n(2n—1)] terms, we require ten [3= (n + 1)] ad-
ditional equations to enable us to eliminate dialytically all the
powers of the variables. These equations are formed as follows:
The first of the three given equations can be written in the
form Aa*+ By + Cz, the second and third in the form

A'a*+ By+C'zy A’z + B"y+C"z;
and the determinant (4B’C”) which is of the sixth degree in
the variables must obviously vanish for any values which
satisfy all the given equations, We should form two similar
determinants by decomposing the equations into the form
Ay'+ Bx +Cz, A2*+ Bx+Cy. So again we might decompose
h

» .

/ N
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the equations into the forms Axz®+ By'+Cz, A'z*+ B'y*+C'z,
A”a® + B"y*+0"z) for every term not divisible by a* or y*
must be divisible by z); and then we obtain another deter-
minant (4B°C”) which will vanish when the equations vanish
together. There are six determinants of this form got by inter-
-changing «, y, and z in the rule for decomposing the equations.
Lastly, decomposing into the form Aa*+ By'+ (2%, &e., we
get a single determinant, which, added to the nine equations
already found, makes the ten required. In general, we decom-
pose the equations into the form Ax*+ Byf+ C?7, such that
a+B+y=n+2,and form the determinant (4B°C”); and it can
be very easily proved that the number of integer solutions of
the equation a + 8+ y=n+2 is }n(n+1), exactly the number
‘required.

92. When the degrees of the equations are different, it is
"not possible to form in this way a determinant, which shall give
the eliminant clear of extraneous factors. The reason why
such factors are introduced, and the method by which they are
to be got rid of, will be understood from the following theory,
due to Prof. Cayley: Let us take for simplicity three equations,
“u, v, w, all of the second degree. If we attempt to eliminate
dialytically by multiplying each by =, y, 2, we get nine equa-
-tions, which are not sufficient to eliminate the ten quantities
- o’ oy, &c. Again, if we multiply each equation by the six
quantities, 2%, 2y, 3", &c., we have eighteen equations, which are
more than sufficient to eliminate the fifteen quantities «*, z’y, &e.
"If we take at pleasure any fifteen of these equations, and form
their determinant, we shall indeed have the eliminant, but it will
be multiplied by an extraneous factor, since the determinant is of
the fifteenth degree in the coefficients, while the eliminant is only
of the twelfth (Art. 76, mn + np + pm =12, when m=n=p=2),
The reason of this is, that the eighteen equations we have formed
- are nof independent, but are connected by three linear relations,
- In fact, if we write the identity uv=wvu, and then replace the
* first u by its value, az* + by" + &c., and in like manner with the
v on the right-hand side of the equation, we get

-ax'v + by'v + ca™v + 2fyzv + &e. = a'wtu + Vy'u + &e.
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In like manner, from the identities v =wv, wu=uw, we get two
other identical relations connecting the quantities =", y'u, z'v,
a'w, &c. The question then comes to this: *If there be m+p
linear equations in m variables, but these equations conneeted by
p linear relations so as to be equivalent only to m independent
equations, how to express most simply the condition that all
the equations can be made to vanish together.” In the present
case m=15, p=3.

93. Let us, for simplicity, take an example with numbers
not quite so large, for instance, m =3, p=1. That is to say,
let us consider four equations, s, ¢, u, v, where s=ax+ b,y +c2,
t=ax+by+c.z, &c., these equations not being independent, but
satisfying the relation, Ds+ Dt+ Du+Dy=0. Now I say,
in the first place, that if we form the determinant (ab.c,) of any
three of these equations, s, ¢, u, this must contain D, as a factor.
For if D,=0, we shall have s, ¢, u connected by a linear rela-
tion, so that any values which satisfied both s and ¢ should satisfy
v also; and therefore the supposition D, =0 would cause the
determinant (ab,c,) to vanish. And, in the second place, I
say that we get the same result (or, at most, one differing
only in sign) whether we divide (ab,c,) by D, or (a,bec,) by D,.
For (Art. 15) D, (ab,c,) is the same as the determinant of which
the first row is a,, b, c,, the second, a, b, c,, and the third,
Da, Dp,, Dc,; but we may substitute for Da, its value
—~D,a,—Dga,—Da, and in like manner for Dp,, De,. The -
determinant would then (Art. 18) be resolvable into the sum
of three others; but two of these would vanish, having two
rows the same, and there would remain D, (a,b,¢c,) = — D, (a,b,c,).
It follows, then, that the eliminant of the system may be ex-
pressed in any of the equivalent forms obtained by forming the
determinant (a,b,c,) of any three of the equations, and dividing
by the remaining constant D,.

Suppose now that we had five equations s, ¢, u, v, , con-
nected by two linear relations Ds+ D¢+ Du+ Dy +Daw=0,
Es+Et+Eu+ Ep+Ew=0. Eliminating w from these
relations, we have (D E)s+ (D,E)t+(D,E)u+ (D.E)v=0,
and we see, precisely as before, that the supposition (D,E,) =0
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would cause the determinant (ab,c,) to vanish; and that we
get the same result whether we divide (a,,) by (D,E) or
divide the determinant of any other three of the equations by
the complemental determinant answering to (D.E,). This
reasoning may be extended to any number of equations con-
nected by any number of relations, and we are led to the
following general rule for finding the eliminant of the system
in its simplest form. Write down the constants in the m+p
equations, and complete them into a square form by adding
the constants in the p relations; thus

3; an bﬂ cl Du Ex
t;' ay bﬂ ca .D,, E:
u; a, b, ¢, | Dy, E,
v; a, b, c, | D, E,
w; a, b, ¢, | D, E,

then the eliminant in its most reduced form is the determinant
of any m rows of the left-hand or equation columns, divided
by the determinant got by erasing these rows in the right-hand
columns,

Thus, then, in the example of the last Article, we take
the determinant of any fifteen of the equations, and, dividing
it by a determinant formed with three of the relation rows,
obtain the eliminant, which is of the twelfth degree, as it
ought to be.

-94. And, in general, given three equations of the m*, n*
and p* degrees, we form a number of equations of the degree
m+n+p- 2, by multiplying the first equation by all the terms

&, &""%, and s0 on. 'We should in this manner have

n+p-1)(n+p) +i(p+m-1)(p+m)+i(m+n—1)(m+n)
equations, But the number of terms, o™*"**, &c., to be elimi-
nated from the equations formed, is § (m +n+ p —1) (m + n+ p),
or, in general, less than the number of equations. But again,
if we consider the identity wv =vu, which is of the degree m + n,
and multiply it by the several terms «*, &c., we get 4 (p—1)p
identical relations between the system of equations we have
N
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formed ; and in like manner § (n— 1) 7 + § (m — 1) m other iden-
tities; and the number of identities subtracted from the numbe=
of equations leaves exactly the number of variables to be elimi-
nated, and gives the eliminant in the right degree.

95. If we had four equations in four variables, we should pro-
ceed in like manner, and it would be found then that the case
would arise of our having m + = linear equations in m variables,
these equations not being independent, but connected by n + p
relations; these latter relations again not being independent,
but connected by p other relations. And in order to find the
reduced eliminant of such a system, we should divide the deter-
minant of any m of the equations by a quantity which is itself
the quotient of two determinants. 1 think it needless to go into
further details, but I thought it necessary to explain so much of
the theory, the above being, as far as I know, the only general
theory of the expression of eliminants as determinants; since
whenever, in the application of the dialytic method, any of the
equations is multiplied by terms exceeding its own degree, we
shall be sure to have a number of equations greater than the
number of quantities which we want to eliminate.

LESSON X.

DETERMINATION OF COMMON ROOTS.

96. WHEN the eliminant of any number of equations
vanishes, these equations can be satisfied by a common system
of values, and we purpose in this Lesson to shew how that
system of values can be found without actually solving the
equations. The method is the same whatever be the number
of the variables; but for greater simplicity we commence with

_ the system of two equations, ¢ =0, Y= 0, where

MN=-1

¢=a,2"+a, " +a, 2" +&ec =0,
v=ba" +b,_a"" +b,_a* +&ec.=0.



BY DIFFERENTIAL COEFFICIENTS OF ELIMINANT. 91

Let us suppose that some root of the second equation, z=a
satisfies the first, and therefore that R the eliminant of the system
vanishes. Now in ¢ we may alter the coefficients (e, into a,+4,,
a,,intoa,  +4 _, &ec.); and the transformed equation

az"ta, "' +&e+A4a"+4, " +&.=0
will obviously still be satisﬁed by the value == a, proyided only

that the increments 4, &ec. are connected by the single
relation

ml’

A"+ A4, o+ &e.=0,
since the remaining part of the equation, by hypothesis, vanishes -
for z=a. The transformed equation then has a root common
with ¥, and therefore the eliminant between x and that trans-
formed equation vanishes. But this eliminant is- obtained from
R, the eliminant of ¢ and +, by altering in it a_ into a_ +4,,, &c.
The eliminant so transformed is

R+{A 9E | 4 dR+&c}+&c.=0.

m d m=1 d
‘We have =0 by hypothem and since the increments 4, &o.
may be as small as we please, the terms containing the ﬁrst

_powers of these increments must vanish separately. We have
dR dR

then 4 ~— da, +4, 55— a_ +&c.=0. This relation must be iden-
tical with the relation A o2 + A4, 0"+ &e. =0, which we have
seen is the only relatlon that the increments need satisfy, It
follows then that the several differential coefficients are pro-
portional to &”, «"”, &c., and therefore that a« can be found
by taking the quotient of any two consecutive differential co--
efficients.

Cor. 1. If a,, a, be any two coefficients in ¢, we must have,
when B=0 dR dR .dR dR
' day da_, ‘da,’ da
of the first by the second as of the thu‘d by the fourth will =a*.
It follows that g—g %li - %EIJ—ZE— vanishes when R =0, and
therefore must contain B as a factor; or, in other words,

%R- %’— %% contains R as a factor if we have pg=r+s

; since the quotient as well
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Cor. 2. Tt is evident, by parity of reasoning, that the differ-
ential coefficients of the eliminant, with regard to the several
coefficients in 4, are proportional to a°, a*, &c.; and hence, as

in the last corollary, that, when B=0, 3—5: d‘i—B H ggz gb£ ;
ot 7 -k

dBdR dRdR .
or that d—;’ ‘E’ ~ da, &, contains B as a factor when we have
ptg=r+s

Cog. 3. Or, again, if we substitute in the second equation
the values of a", a™*, &e. given above, we have

dR dR
b‘z‘: +b-_1aa—'.—l+&0.=°
when B=0. But the left-hand side of this equation cannot
contain B as a factor, for it obviously contains the coefficients
of ¢ in a degree less by one than that in which B contains

them. It must therefore vanish identically.

97. The results of the preceding article may be confirmed
by calculating the actual values of the differential coefficients
of B. We know (Art. 67) that R=¢ (a) ¢ (8) ¢ (v) &e. But

~ since ¢ (a) =a,a" +a, @™ + &c., we have dbl@)_ » ; and

therefore da,
ZE  29(8) $ () S+ B8 () § (1) S+ 8.

If then a satisfies ¢, we have ¢ (a) =0, and % =a’¢(8) $(v) &e.

In like manner %= a'¢ (8) ¢ () &ec.; and therefore, as before,
aR _ dR
da, " da,

Also, in general, if we multiply together, we find
dR dR
da, d—a;=¢"' {$ (B} {¢ (N} &e.+ B (8" + a'F’) p(7) &o. +&e. 5

and it can easily be seen that the series of terms multiplying B

. d'B , dRdR -
is Torda,” If now we subtract da, a.’ the terms not multiplied
by B will destroy each other if we have p+ ¢g=r+ s, and there -

::a’:a’;

oS
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will then remain
@ilj_c_ll_id]i (d’R _d’R)
da, "' \da,da,  dada,)"
By a similar process we can shew that %@ _ 4R dE is
d'R d’R
da,db, aydb, d“qdbr.

98. What has been said is applicable, as we shall presently
see, to a system of equations in any number of variables. The
following simpler method only applies to a system of two equa-
tions. In this case we have seen (Art. 84) that the eliminant
can be expressed in the form of the determinant resulting from
the elimination of =™, ™%, &ec. from a system of equations
linear in these quantities. When this determinant vanishes, the
equations are consistent with each other, and if we leave out
any one of them, the remainder will suffice to determine .
Hence if B,, B,,, &c. represent the minors of the determinant
in question, we have z", 2" &c. severally proportional to
By By By &e.y or to B, ,8,,, B,y &c., &e. These values are
simpler than those found by the preceding method, since they
are a degree lower than the eliminant in the coefficients of
each equation; whereas the values found by differentiating the
eliminant are a degree lower than it only in the coefficients
. of one of the equations. For example, the common value
which satisfies the pair of equations

az'+bx+¢=0, ada*+¥x+c=

is by this method found to be — %,-: =- EZZ,;
preceding method it is given in the less simple form

2¢ (ac) = b (bc') o’ (b¢') - ¢ (ab')

a (bc)— ¢ (ab’) — —2d’ (ac) + b (ab))’
All these values are equal in virtue of the relation, which is
" supposed to be satisfied, (ac’)" = (ad’) (b¢').

divisible by R, but the quotient is not ———

; whereas by the

99. If we substitute in any of the eﬁuations used in the last

article the values d‘a?R. for ™", &c., this equation must be

m=1
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satisfied when R=0, and therefore thefresult of substitution
must be divisible by B. In other words, if a,, a,, &c. be the
constituents of any of the lines of the determinant of Art. 84,
we must have a, d:fR + ddR + &ec. divisible by B. But if
we examine what a,,, &c are, we see that a,, is the determinant
(a,5..), &c., and thus that the function a,, Eii+&c contains
the & coefficients in a degree one higher than R whlle its welght
exceeds that of B by n—r+1. Consequently the remaining
factor must be 3, _,, multiplied by a numerical coefficient. To
determine this coefficient, we suppose all the terms of 4 to
vanish except b, .. Now it follows at once from the method of
elimination by symmetric functions, that if 4 consist of factors
V, W, &c., the eliminant of ¢ and 4 is the product of the
eliminants of ¢, V; ¢, W; &c. For if V be (- a) (- B), &e.,
and W be (z- o) (x—8'), &c., the eliminant of ¢ and V is
¢ (a) ¢ (B) &c., that of ¢ and W is ¢ («') ¢ (8’) &ec., and the
product of all these is the eliminant of ¢ and

Again, if ¥ reduce to the single term 5,248, since the elimi-
nant of ¢ and 2 is a, and of ¢ and y is a_, the eliminant of
¢ and ¥ will be ,"a’a,f. The only one then of the series of

terms ‘—ZB—, &c., which will not vanish when all the coefficients

‘m-1

of ¥, except b,, are made to vanish, will be %1}, and this will

be ab,"a*"a,f. But in the case we are considering, it will

be found that the term by which % is maltiplied will be b.a

a%oy
and hence that in general, when « - +1,
0B BB
m-1
Ex. Inorder to make what has been said more intelligible, we repeat the proof

for the particular case of the two cubics a,z® + az? + ayz + @y, 5y2® + ba? + b,z + by
then we have the system of equations (Art. 84)

+&c.=(n—r+1) Bb,...

(ashs) 2* + (ashy) z + (asdo) = 0,
(aad1) 2% + {(asho) + (asb1)} @ + (azh,) = 0,
(a3do) 3’ + (a55,) z + (a;8) = 0.
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Substituting then, suppose in the second equation, the following quantity must be
divisible by R,
dR dR dR
(CAN) 7t {(asde) + (a3,)} F (azbo) a, *
Bat, considering the order and weight of the function in question, it is seen at once
that the remaining factor must be 4, multiplied by a numerical coefficient. To deter-
mine that coefficient, let &,, &,, b; all vanish, then the quantity we are discussing

dR dR
reduces to — 8, (a, d_a;-"a"E-
and therefore the function we are calculating at most differs in sign from 25,R.

. But R, on the same supposition, reducesto b,%a;a,?;

100. There is no difficulty in applying the method of -
Arts. 96, 97 to the case of any number of variables. For
greater clearness we confine ourselves to three variables, but
the same proof applies word for word to any number,
Let there be three equations ¢=0, ¥ =0, x=0, where
¢=a,, " +...+a, 5,22 + &c., and let the values a’y’2’
satisfy all the equations; then they will still satisfy them if
in ¢ we alter @, , , as 5 yinto a, , ,+ 4, . e s+ A g1 &,
provided only that A4, 2™+ &e.+ 4, g ,2yP2"" + &e. = 0.
But, as in Art. 96, the equation must also be satisfied

dR dR
A — .=0;
7,0, 0 da,,.,o,o-'- Aa,ﬁ,'{da’,ﬁ,’ +&0 0,
and comparing these two equations, we see that the value of
each term a/°y’#z" must be proportional to the differential of
the eliminant with respect to the coefficient which maultiplies it.
We obtain the values of @, 3, #/, by taking the ratios of the
differentials of B with respect to the coefficients of any terms
which are in the ratio of «, , 2. And this may be verified
asin Art. 97. For let the common roots of v, x, substituted
in ¢, give results ¢’, ¢”, &c. Then R=¢'¢"¢"” &c. And

; w/aylﬂzl']¢ll¢ll/ &c. + d’ﬂy,/ﬂzln¢l¢,ll &c. + &c';

d.
da“yﬁ"’
and if we suppose ¢’ to vanish, the value of this differential
coefficient reduces to its first term, and it is seen, as before, that
the differential with regard to each coefficient is proportional
to the term which that coefficient multiplies. The same corol-

laries may be drawn as in Art. 96.

101. And genefally, in like manner, if the coefficients
of ¢ be functions of any quantities a, b, ¢, &c., which do
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not enter into 4, y, it is proved by the same method that
dR dR d¢ dp
da'db 'dad
supposed to have the values &/, 3/, 2/, which satisfy all the
equations. For either, as in Art. 97, we have when ¢’=0,

:iif do % " &e. dR d¢ ¢”¢"’ &e. ; or, again, as in Art. 92,

if a, b, ¢ be varied, so tbat tbe same system of values continues
to satisfy ¢, we have

dp  dby, db :
da8 +db8b+ 8¢+ &e.=0;

while, because in this case the eliminant of the transformed ¢
and of the other equations continues to vanish, we have

dR dR dR

T 8a +—7 7b b + %86+&c.=0,

and these two equations must be identical.

, Where in the latter differentials z, y, 2 are

102. The formule become more complicated if we take the
differentials of the eliminant with respect to quantities a, b, &e.
which enter into all the equations. As before, if we give these
quantities variations, consistent with the supposition that the
eliminant still vanishes, we have

dR dR dR

Now, in the former case, where a, b, ¢, &c. only entered into
one of the equations, a change in these quantities produced no
change in the value of the common roots, since the coefficients
remained constant in the other equations, whose system of
common roots was therefore fixed and determinate. But this
will now no longer be the case, and the common roots of
the transformed equations may be different from those of the
original system. Let the new system of common roots be
o +8x, y + 8y, 2+ 8, &c., then the variations are connected
by the relations

d d d ,
dt8a+d‘§8b+&c+ ¢8a:+ ¢8y + &e. =0,

ay dyr ay d\lr , _
da8 + b‘b+&c+dz8z’+7y—8y + &c. =0, &e.

oc + &e. =0.
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If there are % such equations, there will be % —1 independent
variables ;* we may, therefore, between these % relations elimi-
nate the %k —1 variations 82/, 8y, &c., and so arrive at a
relation between the variations 8a, 85, &c. only; the coefficients
dR dR &o

da’db’ "
Ex. 1. Let there be two equations and one variable. The final relation then is

(%%’%%) 8a+(%%—%%) 3 + &c. = 0,

and the several coefficients are proportional to R ‘—z—li &c. If the equation had

of which must be severally proportional to ——

been given in the homogeneous form, we might ha.ve taken z as constant, and sub-
stituted 'ff , ‘3" for z: dt in the preceding formula. This makes no change,
because it was proved, Art. 89, that the common root satisfies the Jacobian, or makes
dpdy _dpdy
dzdy " dy dz°
Ex, 2. If there are three equations, the coefficient of da is

dp dy dy

da’ da’ da
o Yu x
b Y2 X2 Iy
where ¢,, ¢, denote the differential coefficients of ¢ with respect to z and y, &c.

103. If a system of equations is satisfied by fwo common
systems of values, not only will the eliminant B vanish, but
also the differential of B with respect to every coeﬂ‘iclent in
either equation. For evidently the values of the dxﬁ'erentlals,
given Art. 97, all vanish if both ¢(a) and ¢ (8)=0, or, in-
Art. 100, if ¢’, ¢” both =0. In this case the actual values of
the two common roots can be expressed by a quadratic equa-
tion in terms of the second differentials of BE. The following,
though for brevity, stated only for the case of two equations,
applies word for word in general. We have (see Art. 97)

§ 5= (1) $ )&+ B (o) $ (8) &+ o,

* I the equations had been given as homogeneous functions of % variables, still
gince their ratios are all we are concerned with, we may assume any one of the
variables 2 to be the same in all the equations, and may suppose ¢’ = 0,

o
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which, when ¢ (), ¢ (8) =0, reduces to the single term
aB'¢ (7) $ () &e.
In like manner, in the same case,
PR @B+ a8 $ ) O &, § =B () $(0) &
dots, = O+ B (1) $ () &, } 2= '8P (o) $(9) &

If then we solve the quadratic in A : u,
d'R d'R d'R
| i g & L
M dap M dada, T da
the roots will give the ratios o” : «f, 87 : 8.
If the equations have three common systems of values, all
the second differentials of R vanish, and the common roots are
found by proceeding to the third differential coefficients and

solving a cubic equation.

=0,

LESSON XL

DISCRIMINANTS.

104. BEFORE entering on the subject of discriminants, we
shall explain some terms and symbols which we shall frequently
find it convenient to employ. In ordinary algebra we are wholly
concerned with equations, the object usually being to find the
values of # which will make a given function =0, In what
follows we have little to do with equations, the most frequent
subject of investigation being that on which we enter in the next
Lesson: namely, the discovery of those properties of a function
which are unaltered by linear transformations. It is convenient,
then, to have a word to denote the function itself, without being
obliged to speak of the equation got by putting the fanction =0:
a word, for example, to denote ax’+ bxy + cy® without being
obliged to speak of the quadratic equation ax’+ bxy+ cy®=0.
‘We shall, after Prof. Cayley, use the term guantic to denote a
homogeneous function in general; using the words quadric,
cubic, quartic, quintic, n“, to denote quantics of the 2nd, 3rd,
4th, 5th, n”* degrees. And we distinguish quantics into binary,
ternary, quaternary, n-ary, according as they contain 2, 3, 4,
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n variables. Thus, by a binary cubic, we mean a function
such as ax’+ba"y + cxy*+ dy’; by a ternary quadric, such as
ax' + by" + c2* + 2fyz + 2gzx + 2hxy, &e. Professor Cayley uses
the abbreviation (a, 8, ¢, d}{2, )’ to denote the quantic
ax® + 3bx'y + 3cxy’ + dy’, in which, as is usually most con-
venient, the terms are affected with the same numerical coeffi-
cients as in the expansion of (z+y)’. So the ternary quadric
written above would be expressed (a, b, ¢, f, 9, 2}z, ¥, :3;.
‘When the terms are not thus- affected with numerical coeffi-
cients, he puts an arrow-head on the parenthesis, writing, for
instance (a, &, ¢, d{z, )" to denote aa’+ dx'y+ cxy®+ dy’.
When it is not necessary to mention the coefficients, the quantic
of the n* degree is written (z, y)", (=, ¥, 2)", &e.

105. If a quantic in % variables be differentiated with respect
to each of the variables, the eliminant of the % differentials is
called the discriminant of the given quantic.

If n be the degree of the quantic, its discriminant is @ homo-
geneous function of its coefficients, and is of the order k (n —1)*,
For the discriminant is the eliminant of % equations of the
(n —1)* degree, and (Art. 78) must contain the coefficients of
each of these equations in a degree equal to the product of the
degrees of all the rest, that is (n—1)'". And since each of
these equations contains the coefficients of the original quantio
in the first degree, the discriminant contains them in the
k(n—1)"" degree. Thus, then, the discriminant of a binary
quantic is of the degree 2 (n—1); of a ternary, is of the degree
8(n—1)% &ec.

106. If in the original quantic every coefficient multiplying the
Jirst power of ome of the variables x be affected with a suffix 1,
every term multiplying the second power by a suffix 2, and so on ;
then the sum of the suffixes in each term of the discriminant s
constant and =n (n—1)"". It was proved (Art. 78) that if
every coefficient in a system of equations were affected with a
suffix corresponding to the power of @ which it multiplies, then
the sum of the suffixes in every term of their eliminant would be
equal to the product of the degrees of those equations, viz.,
=mnp &c. Now suppose, that in the first of these equations
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the suffix to the coefficient of 2, instead of being 0, was /; that
of o' was [+ 1, and so onj; it is evident that the effect would be
to increase the sum of the suffixes by [ for every coefficient of
the first equation which enters into the eliminant; and since
(Art. 78) every term contains np &ec. coefficients of the first equa-
tion, the total sum of suffixes is mnp &e. + Inp&e.=(m + ) np &e.
Now, in the present example, it is evident that every coefficient
in the £ —1 differentials U,, U, &c.,* multiplies the same power
of x as it did in the original quantic U. But in the remaining
differential, U, every coefficient multiplies a power of  one less
than in U, and the coefficient multiplying any term &' in this
differential will be marked with the suffix I+ 1, since it arose
from differentiating a term 2™' in the original quantic. It
follows, then, that the sum of suffixes in the discriminant
must =(n—1)" 4+ (n—1"*=n(n—1}*"

We shall briefly express the results of this and of the last
article by saying that the order of the discriminant is % (n — 1)*;
‘and its weight, n (n —1)*. Thus for a binary quantic the weight
of the discriminant is n (n — 1).

107. If a binary quantic contain a square factor, then, as is
well known, the discriminant vanishes identically. For the two
differentials must each contain that factor in the first degree,
and therefore, since they have a common factor, their eliminant
vanishes. In like manner, if a terna;'y quantic be of the form
X*¢+ XYy +Y"x, where X=az+ by +cz, Y=d'z + by + 7,
then the discriminant must vanish, since every term in any of
the differentials must contain either X or Y, and therefore the
differentials have common the system of roots derived from the
equations X=0, ¥Y=0. In like manner, the discriminant of a
quaternary quantic vanishes, if the gquantic can be expressed as
a function in the second degree of X, Y, Z, these being any
linear functions of the variables.t We shall call those values

* We write, as hefore, U,, U,, U, &c. to denote the differential coefficients of U
with respect to z, y, 2, &c.

+ In other words, the vanishing of the discriminant of an algebraical equation
expresses the condition that the equation shall have equal roots; and the vanishing
of the discriminant of the equation of a curve or surface expresses the condition that
the curve or surface shall have a dauble point,
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which make all the differentials vanish, the sz’ngulir{lnjmw of the
quantic. T

108. We shall now discuss the properties of the discrirrinant
of the binary quantic U= aa"+ na,z"y + in (n—1)a "y +&a. .

The eliminant of U and U, 1s a, times the discriminant, and -
the eliminant of U and U, s a, times the discriminant.* For-
since nU=aU,+yU,, the result of substituting in »U any root
of U is yU/; and when all the results of substitution are
multiplied together, the product will be y’y”y"” &c. (which is
=a, see Art. 61), multiplied by the product of the results of
substituting the same roots in U, which is the discriminant.

109. To express the discriminant in terms of the values
2y, Y, dc., which make the quantic vanish.

Lot U= (ay, - y,) (ay,~ ys,) (a4, — ya,) &o. (seo Art. 61);
then '

Ui=y,(zy,—y=,) (xy,~y=,) &e.+y,(xy,—y) (@y,~y=,) &e.t&e. 5
and the result of the substitution in U, of any root xy, of U is
Y, (zy,—yz,) (2y,—yx,) &e. Similarly, the result of sub-
stituting 2y, i8 ¥, (z,y, — 29,) (z,y, —y,x,) &c. If, then, all the
results of substitution are multiplied together, the product is

1 Y.YYs &e. ('len _ylzi)’ (xl 3 _ylwa)* (w,!/,—y,w,)’ &e.

This, then, is the eliminant of U and U, and if we divide it
by a, which is =y,vy,y, &c., we shall have the discriminant
=(z,9,—y2,) (y,— yz,) &c. If we make in it all the y’s=1,
we get the theorem in the well-known form that the discriminant
is equal to the product of the squares of all the differences of
any two roots of the equation. We shall, for simplicity, refer
to the theorem in the latter form.

110. TRe discriminant of the product of two quantics vs equal
to the product of their discriminants multiplied by the square of
their eliminant. For the product of the squares of differences of
all the roots evidently consists of the product of the squares of
differences of two roots both belonging to the same quantic,

* We do not take account of mere numerical factors.
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multiplied-by the square of the product of all differences between
a root of one and a root of the other, and this latter product is
the eliniinant (Art. 68). As a particular case of this, the dis-
criminant of (z—a) ¢ () is the discriminant of ¢ (z) multiplied
. :_by.."the square of ¢ (a). For if B, ¢y, &c. be the roots of ¢ (),
" then (a—B)*(a—9)*'(B—9)" &ec. is equal to the square of
(a—B) (e — ) &c. which is ¢ (), multiplied by the product of
the squares of all differences not containing a.

111. The discriminant of (a,, a,...a,_, a Yz, y)* ts of the
Jorm a @+ a*,_ ¥, where { 18 the discriminant of the equation of
the (n—1)* degree (a, a,...a,_, a,_ Yz, y)"". For we evidently
get the same result, whether we put any term a,=0 in the
discriminant, or first put ¢, =0 in the quantic, and then form
the discriminant. But if we make a,=0 in the quantic, we
get @ multiplied by the (rn— 1)* written above, and (Art. 110)
its discriminant will then be the discriminant of that (n—1)*
multiplied by the square of the result of making in it z=0;
that is, by the square of a,_,. In like manner we see that the
discriminant is of the form a ¢ + a,"y.*

112. The discriminant being a function of the determi-
nants x.y, - «,y,, & must satisfy the two differential equations
(Art. 62),

da dAa da
na,za+(n-l)a,3a—’+(n-2) a,E—+&c.=0,

dA dA dAa

‘B;+ 2a, 35— da + 3a, -~ da,
or, if the original equation had been written with binomial
coefficients,

d da da
+(n l)ada+&c.—0 % Za, + 2 'da

+ &e.=0;

— 4+ &e.=0.

* This theorem was first published by Joachimsthal ; I had, however, previously
been led by simple geometrical considerations to the following theorem in which it
is included. If @, contain a factor z, and if a, contain 2? as a factor, the discriminant
will be divisible by 22. If a, contain 2 as a factor, if @, contain 2% and a, contain 23,
the discriminant will in general be divisible by 2% In like manner, if a, contain 2;
Gy 8*; ay, 2*; and a,, #*, the discriminant will be divisible by 212, &c.
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Ex. To form the discriminant of (a,, a,, a,, Kx, y)" which we suppose arranged
according to the powers of @,, We know (Art. 111) that the absolute term is
a,2D, where D is the discriminant of (a,, a,, Kx, y)*1. The discriminant then is
a,2D + ayd + a2y + &c. ; operating on this with a, ;&- + 2a, ddT + 3a, %, + &c., we

) 1
may equate separately to zero the coefficient of each power of a,, Thus, then, the
part independent of a, is
d
a,p + 4a,a,D + a2 (20, Z, + 8a, %ﬂ + &c.) D;

or, remembering that (a2 d + 2a, de + &c.) D =0, we have

¢=—4a,D+a, (a,zgz+2a.-d—+&c)1)
m@thediscriminantm
(a2 — 4a,3) D + aya, (a, d%,”“‘ %,+&c.) D + a2y + &e.

In like manner, from the coefficient of @, we can determine y», but the result does
not seem simple enough to be worth writing down,

113. If the discriminant of a binary quantic vanishes, the’
quantic has equal roots, and the actual values of these roots can
be found by a process similar to that employed in Lesson x.
Let U=ag"+ a,2"" + ax"™ + &c. be a quantic whose discrimi-
nant vanishes, and having therefore a square factor (z—a)". -
Then evidently ¥V, where

V=Ag"+ A2+ Ax"" + &e.

will also be divisible by 2 — a, provided that 4, 4,, &c. be any
quantities satisfying the condition
Ad"+ Ad" + A 0" + &e. =0.

In this case then we shall have U+ AV divisible by z—a.
Let it =(z—a) {(2'- ) ¢ (x) + Ay (z)}. It follows then, from -
Art. 111, that the discriminant of U+ AV is the discriminant
of the quantity within the brackets, multiplied by the square
of the result of substituting a for z inside the brackets. But
this result is Ay (2). We have proved then that in the case
supposed, the discriminant of U+ AV is divisible by A"

But since U+AV is derived from U by altering a, into
a,+AA4, &c., the discriminant of U+ AV is derived from the
discriminant of U by a like substitution, and is therefore

dA
.,tha $+A —+&c)+x*(&c.). :

A+7\.(A Vo
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By hypothesis A =0. But the discriminant will not be divisible
by A* unless the coefficient of A vanish. Now the relation thus
obtained between 4, 4, &c. must be identical with the relation
- Ad" + Aa"" + &c.=0, which we have already secn is the only
relation that need be satisfied by 4, 4,, &c. in order that the
discriminant of U+ AV may be divisible by A". We must have

therefore the quantities a", a"”, &, &ec. respectively propor-
tional to da dd da &c. Dividing any one of these terms

da,’ da,’ da,’
by that consecutive to it, we get an expression for &. We may
state this result: When the discriminant vanishes, the several dif-
Jerential coefficients of the discriminant with respect to a,, a,, &e.
are proportional to the differential coefficients of the quantic with
respect to the same quantities.

114. This result may be confirmed by forming the actual
values of these differential coefficients in terms of the roots, which
may be done by solving from the n equations

dA _dA da;  dA da,

E-—-da' d7+d7,33 + &e.
‘We know the expressions for A, a,, a,, &c. in terms of the .
roots, and therefore from these n equations can find the =
quantities sought. The result will be found to be

9 3 (-0 (-3 (3B

X {(a=B)(a—9)+ (a=B8) (@a=d)+(a—1v) (a- 3)},
where the product of the squares of all the differences, not con-

taining a, is multiplied by the sum of the products (n —2 taken
together) of the differences which contain a,

dA
da

n-1

dA
da

n-3

=3a (B—9)"(y—9)" (8- B) {{a—B) (a—19) + &e.},

=Z2a'(8-9)"(v—9)" (8- 8)*{(x- B) (a- 1) + &e}, &,

and the supposition a =3 reduces these sums to quantities which
are in the ratio 1, a, a’, &c. Asin Art. 96, it follows from the
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, . daida dada. ...
theorem of the last article that da, da,~ da. da, B divisible by

A when p+ ¢g=r+s. If more than two of the roots are equal
to each other, all these differentials vanish identically, and we
find the equal roots by proceeding to second differentials of the
discriminant.

115. We know, from Art. 98, that instead of the functions
in the last two articles, which are of an order in the coefficients
only one lower than the discriminant, we may substitute func~
tions of an order two lower, and possessing the same property,
viz. that they vanish when more than two roots are equal, and
that if two roots are equal (a=/3) they are to each other in
the ratios 1, a, o, &c. If we proceed by Bezout’s method of
elimination (Art. 84) to eliminate between the two differen~
tials U,, U,, the resulting equations of the (» —2)* degree, when
expressed in terms of the roots, are = (a — 8)* (x—1v) (z—8)=0,
3¢, (a— B)* (z—1) (2—8)=0, Sq,(a= )" &e. =0, where ¢,,,, &e.
are the sum, sum of products in pairs, &c. of all the roots
except @ and B.* The discriminant is then, by Bezout’s:
method, expressed as a determinant, whose constituents are

2 (@-8)% 2q, («=A) 29, (a—A),&e,
2q,(a-8)% 2¢," (a—B)y 2¢g, (2 B), &e,
2g, (@—B), 29,9,(a—8J, 2¢," (a— A, &, &e.

And when the given equation bas two roots equal, the first

minors of this determinant will, by Art. 98, be in the ratio
1, a, a*, &. A somewhat simpler series, possessing the same

property, is =(8—q)" (y—8)* (8- 8), 2a (8—9)* (y—9)"(6-8),
=a* (8= &e..

116. The following proof of the theorem of Art. 113 is
applicable to the case of a quantic in any number of variables.
For simplicity, we confine ourselves to the case of two inde-
pendent variables, the method, which is that of Art. 102, being

# The first of these functions of degree n — 2 is one of the series to which we
are led by Sturm’s process. With regard to the extension of Sturm’s theorem, see
Bylvester’s memoir in-the Philosophical Tt ctions for 1853.

P
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equally applicable in general. Let the coefficients in U be
functions of any quantities a, b, &c., and let variations be given
to these quantities consistent with the suppesition that the dis-
criminant still vanishes, and therefore such that
d dA
| 8 %
Now if the effect of this change in a, b, &c., is to alter the
singular roots from z, y into x+ 8z, y+ Jy, since these new
values satisfy U, U, U, &c., we must have

ob + &e.=0.

au, dU, au,
da'8a+ b‘b+&c+ 8::+Ti!;'8y =0,
du, au, dU
d’B +db’86+&c+dw8x+ ’8y=0,
dy, ay, LA
88 +~d—b’86+& +d38 + 83/ 0.

Multiply tbese equations by =z, y, 2 respectnvely and add;
then since nU=aU, +yU,+ 2U,, the coefficient of da will be
‘—EU, in {IZ dU,c‘liZ ig,the coeflicient of Su
will be (n—1)U,, which wxll vanish, since U, is satisfied for the
singular roots. We get therefore

2 s0+ 2T 85 + &e.=0,
and therefore the differentials of A with respect to a, b, &c. are
proportional to the differentials of U with respect to the same
quantities, it being understood that the @, y, z which occur in
- the latter differentials are the singular roots.

n

117. The theorem proved for binary quantics (Art. 111) may
be extended to quantics in general. Let a be the. coefficient
of the highest power of any of the variables, 3, ¢, d, &e., those
of the terms involving the next highest power, then the dis~
criminant is of the form

afd + (¢, x, ¥, &c.Xb, ¢, d, &e.)'.

Thnn, for a ternary quantic, to which for greater simplicity
i onnelvel, if a be the coeﬂiclent of 2*; b, ¢ those of
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£" "z, 2"'y; then if in the discriminant we make a =0, the re-
maining part will be of the form 5°¢ +bcy +c’x. To prove
this: first, let U be any quantic whose discriminant vanishes,
V any other reduced to zero by the singular roots of U4 then
I say that the discriminant of U+ AV will be divisible by A%
For, let U=as"+bz""'z+&c., V=A42"+ B "w+ &ec., then
the coefficient of N in the discriminant of U+ AV will be
.AéA +Bdi\+&c and (Art. 116) aa &e. are proportional

T 7 .y . 7a * & proporti
to 2", 2"'x, &c. The coefficient of A\ is therefore proportional
" to the result of substituting the singular roots in ¥, and there-
fore vanishes.

Now, in the case we are considering, the supposition of
a=0, b=0, c=0 must make the discriminant vanish, since
then all the differentials vanish for the singular roots z=0,
¥=0. Any other quantic ¥V will vanish for the same values,
provided only A=0. The general form of the discriminant
then must be such that if we substitute for 5, 4+ AB; for ¢,
¢+ A0, &ec., and then make a, b, ¢c=0, the result must be
divisible by A*; or, in other words, if we put for 5, AB; for ¢,
AC, &c., and then make a=0, the result is divisible by A"
which was the thing to be proved.

118. Concerning discriminants in general, it only remains
to notice that the discriminant of a quadratic function in any
number of variables is immediately expressed as a symmetrical
determinant. And, conversely, from any symmetrical deter-
minant, we may form a quadratic function which shall have
that determinant for its discriminant. The simplest notation
for the coefficients of a quadratic function is to use a double
suffix, writing the coefficients of o', 3*, &ec., a,, a,, a,, &ec.,
and those of wy, 2, &c., a, a,; a,, and a, being identical in
this notation. The discriminant is then obviously the sym-
metrical determinant

Gy Cigy Qo &e.
Gy Gy Oy &e.

L) an) aaa’ &c'
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119. Invariants. Tbe discriminant of a binary quantic
being a fonction of the differences of the roots is evidently
unaltered when all the roots are increased or diminished by
the same quantity. Now the substitation of z+ A for z is &
particular case of the general linecar transformation, where, in
a homogeneous function, we substitute for each variable a linear
fanction of the variables; as for example, in the case of a
binary quantic where we substitute for z, Az + uy, and for
Y, Nz+p'y. It will illustrate the nature of the enquiries in
which we shall presently engage if we examine the effect of
this substitution on the discriminant of the binary quadratic,
ax’+ 2bxry +'cy®. When the variables are transformed, it be«
comes ‘

a (A% puy) +2b Az + py) Nz + wy) + o (N2 +4Y)";
and if we call the transformed equation a’z*+20'zy + ¢y*, we have
@’ =a\' + 260\ + N7, ¢ =ap’ + 2bpp’ + op”,
Y =ahp +b (Mg’ +Np) + Ap
It can now be verified without difficulty that
a'd = 5" = (ac—b") (Ap' — Np)';
that is to eay, the discriminant of the transformed quadratic is
oqual to the discriminant of the given quadratic multiplied by

the square of the determinant My’ — A'u, which is called the
modulus of trangformation, '

120. Now, a corresponding theorem is true for the discrimi~
nant of any binary quantic. 'We can see & priors that this
must be the case, for if a given quantic has a square factor,
; bave a square factor still when it is transformed; so
the discriminant of the given quantic vanishes,

-
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that of the transformed must necessarily vanish too. The one
must therefore contain the other as a factor. The theorem
however can be formally proved as follows: Let the original
quantic be (zy, —y=,) (xy, — y=,) &c., then (Art. 109) the dis-
criminant i8 (z,y, — y,2,)" (z,y, — y,2,)° &ec.

Now the linear factor (zy, —yz,) of the given quantic be-
comes by transformation y, AX+uY)—2, (NX+x'Y), and
if we write this in the form Y X-X Y, we shall have
Y =Ny, —Nw, X, =—py +px. If then the transformed
quantic be written as the product of the linear factors
(Y, X-XY)(Y,X- X,Y) &c., we have expressions, as above,
for Y, X5 Y, X, &c., in terms of y,, @,; 7, =, &. We
can then, without difficulty, verify that

( Y;'Xa - Xx y;) = (XI‘" = Nu) (ylw! -y, :)' -

- It follows immediately that (Y, X, -Y X)*(Y,X,-Y,X,) &e.
is equal to (y,—2y,) (y2,—y,2,)" &c. multiplied by a power
of A’ =2’ equal to the number of factors in the expression
for the discriminant in terms of the roots. A corresponding
theorem is true for the discriminant of a quantic in any number
of variables. K :

‘What I have called Modern Algebra may be said to have
taken its origin from a paper in the Cambridge Mathematical
Journal for Nov. 1841, where Dr. Boole established the prin-
ciples just stated -and made some important applications of
them. Subsequently Prof. Cayley proposed to himself the
problem to determine & priori what functions of the coefficients
of a given equation possess this property of ¢nvariance; that
when the equation is linearly transformed, the same func-
tion of the new coefficients is equal to the given function
multiplied by a' quantity independent of the coefficients. The
result of his investigations was to discover that this property
of invariance is not peculiar to discriminants and to bring
to light other important functions (some of them involving
the variables as well as the coefficients) whose relations to
the given equation are unaffected by linear transformation.
In explaining this theory, even where, for brevity, we write
only three variables, the reader is to understand that the
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processes are all applicable in exactly the same way to any
number of variables.

121. We suppose then that the variables in any homo-
geneous quantic in % variables are transformed by the
substitution

e=AX+upY+vZ+&e,

y=A\X+puY+v 27+ &e.,

e=NX+p, Y +v, 7+ &e., &c.,
and we denote by A the modulus of transformation ; namely,
the determinant, whose constituents are the coefficients of
transformation, A, u, v, &c., A, u, v,, &c., &ec.

Now it is evidently not possible in general so to choose the
coefficients A, p,, &c., that a certain given function ax"+ &e.
shall assume, by transformation, another given form o’X" + &e.
In fact, if we make the substitution in az"+ &e., and then
equate coefficients, we obtain, as in Art. 119, a series of equa-
tions @’ =al\," + &c., the number of which will be equal to the
number of terms in the general function of the n* degree in
k variables. And to satisfy these equations we have only at
our disposal the 4* constants A, A, &c., a number which will
in general be less than the number of equations to be satisfied.*
It follows then that when a function ax"+ &ec. is capable of
being transformed into a’X " + &c., there will be relations con-
necting the coefficients a, b, &c., @', ¥, &c. In fact, we have
only to eliminate the %* constants from any %'+1 of the
equations o’ =a)"+ &c., and we obtain a series of relations
connecting a, a/, &c., which will be equivalent to as many
independent relations as the excess over 4* of the number of
equations. Thus, in the case of a binary quantic, the number

* The number of terms in the general equation of the‘ n® degree homogeneous

fn E variables is (1) (1”2”(),;"_("1)*’“1); and it is easy to see that the only

cases where this number is not greater than %2 are, first, when n = 2, when it becomes
8k (% + 1), a number necessarily less than %2, %k being an integer; and secondly, the
case ¥ =2, n = 8, when both numbers have the same value 4, That is to say, the
only cases where a given function can be made by transformation to assume any
assigned form are, first, the case of a quadratic function in any number of variables ;
and secondly, the case of a cubic function homogeneous in two variables,-
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of terms in a homogeneous function of the n* degree is n+ 1.
If then, in any quantic az” + &c., we substitute for z, A X+ 4, Y,
and for y, AX+ .Y, and if we then equate coefficients with
a’X"+ &c., we have n+1 equations connecting a, @, A,, &ec.,
from which, if we eliminate the four quantities A, A, x,, u,, We
get a system equivalent to n — 3 independent relations between
a, b, a’, ¥/, &c. It will appear in the sequel that these relations
can be thrown into the form ¢ (a, b, &c.)=¢ (a, ¥, &c.); or,
‘in other words, that there are functions of the coefficients
a, b, &e. which are equal to the same functions of the trans~
formed coefficients. The process indicated in this article is
not that which we shall actually employ in order to find such
functions, but it gives an & priors explanation of the existence
of such functions, and it shows what number of such functions,
independent of each other, we may expect to find.

122. Any function of the coefficients of a quantic is called
an tnvariant, if, when the quantic is linearly transformed, the
same function of the new coefficients is equal to the old function
multiplied by some power of the modulus of transformation;
that is to say, when we have

(o, ¥V, c, &c.) = A%¢ (a, b, ¢, &c.).

Such a fanction is said to be an absolute invariant when p=0;
that is to say, when the function is absolutely unaltered by
transformation even though A be not =1. If a quantic have
two ordinary invariants, it is-easy to deduce from them an
absolute invariant. For if it have an invariant ¢, which when
transformed becomes multiplied by A?, and another 4, which
when transformed becomes multiplied by Af, then evidently the
q" power of ¢ divided by the p* power of 4 will be a function
which will be absolutely unchanged by transformation.

It follows, from what has been just said, that a binary
quadratic or cubic can have no invariant but the discrimi-
nant, which we saw (Art. 120) is an invariant. For if there
were a second, we could from the two deduce a relation
¢ (a, b, &c.)=¢ (ay &, &c.). But we see from Art. 121 that
there can be no relation connecting q, b, &c. with o', ¥, &c.,
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since, with the help of the four constants A, &ec. at our dis-
posal, we can transform a given quadratic or cubic, so that the
coefficients of the tramsformed equation may bave any values
we please. In the'same manner we see that a quantic of
the second order in any number of variables can have no
invariant but the discriminant. On the other hand, suppose
we take the binary quartie ax'+ 462’y + 6cx’y* + 4dxy’ + ey,
and that the coefficients become by linear transformation
a, ¥, &ec., it will be found that we have two invariant
functions both distinct from the discriminant; in fact, we have
the two equations

¢ —AV'd’ + 3¢ = A* (ae — 4bd + 3¢%),
dde+2bdd — a'd™ — €b”— ¢ = A® (ace + 2bed — ad® — eb* - ¢°),
and from these two we deduce the absolute invariant
(a'c’e +2b'Cd" — a'd"”— 67— ¢°)* _ (ace+ 2bed — ad’— b’ ~ )’
(o'’ — 4b'd’ + 3¢™)° (ae— 4bd + 3¢*)° ‘
In this case the invariance of the discriminant may be deduced

as a consequence of the preceding equations, for the discri-
minant is

(0 — 4bd + 3¢")" — 27 (ace + 2bed — ad® — &b* — &),

and consequently the discriminant of the transformed equation
is equal to that of the original multiplied by A",

123, In the same manner as we have invariants of a single
quantic we may have invariants of a system of quantics. Let
there be any number of simultaneous equations az"+ &e.=0,
a’c" + &c.=0, &c., and if when the variables in all are trans-
formed by the same substitution, these become 4X"+ &c.=0,
A’ X" + &c.=0, &ec., then any function of the coefficients is an
invariant if the same function of the new coefficients is equal
to the old function multiplied by a power of the modulus of
transformation ; that is to say, if . '

¢ (4, B, &e., 4’y B’ &e., A” &e.) = A ¢(ah,&e.,d ), &e., a”y &)

The simplest example of such invariants is the case of a-
system of linear equations. The determinant of such a system
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is an invariant of the system. This is evident at once from
the definition of an invariant and from the form in which the
fandamental theorem for the multiplication of determinants has
been stated in Art. 23.

If we are given an invariant of a single quantic, we can
derive from it a series of invariants of systems of quantics of
the same degree. In order to make the spirit of the method
more clear, we illustrate it in the first instance by a simple
example. We have seen (Art. 119) that ac—%* is an in-
variant of the quadratic ax®+ 2bxy+cy', and we shall now
thence derive an invariant of a system of two quadratics.
Suppose that by a linear transformation az*+ 2bxy+ cy'
becomes AX*+2BXY +CY?, and a'z"+ 202y + ¢y’ becomes
A'X*'+2B’XY+C’Y*; then evidently, by the same transfor-
mation (% being any constant),

(a+ka)2'+2(B+ k) zy +(c+kc)y”
will become
(A+%4’)X*+2(B+kB) XY +(C+kC') Y™

Forming then the invariant of the last quadratic, we have
(Art. 119)

(4 +k4) (C+kC") - (B+EB')'= A'{(a+ ka') (c+kc)— (b+kb”}

But since % is arbitrary, the coefficients of the respective powers
of & must be equal on both sides of the equation; and therefore
we have not only, as we knew before,

(AC—-B")=A(ac-b), (4’C’'—B™=a*(dd -b"),
but also AC’+0A’ —2BB’ = A (ac +cd’ —2b%),

an equation which may also be directly verified by the values
of A, B, &c. given Art. 119. 'We see then that ac’ + ca’ — 200’
is an invariant.

- By exactly the same method, if we have any invariant of a
quantic az® + &c., and if we want to form invariants of the system
azx® + &c., a’a” + &c., we have only to substitute in the given
Anvariant for each coefficient a, a + ka’, for b, b + k¥’, &c., and
the coefficient of each power of % in the result will be an
Snvariant. Writing down, by Taylor’s theorem, the result of

Q
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substituting a + ka’ for a, &c., the theorem to which we have
been led may be stated thus: If we have any invariant of
a quantic az”+ &c, and if we perform on it the operation

d -‘%‘ +¥ %-}-&c., we get an invariant of the system of two

quantics az” + &c., a’z" + &c. We may repeat the same opera-
tion and thus get another invariant of the system, or we may
operate with a” ‘% +b,’¢%)+ &c., and thus get an invariant of
a system of three quantics, and so on. This latter process
gives us the invariants which we should find by substituting
for a, a + ka’ + la”, &c., and taking the coefficients of the pro-
ducts of every power of & and . In the same manner we get
invariants of a system of any number of quantics.

124. Covariants. A covariant is a function involving not
only the coefficients of a quantic, but also the variables, and
such that when the quantic is linearly transfornmed, the same
function of the new variables and coefficients shall be equal
to the old function multiplied by some power of the modulus
of transformation; that is to say, if az" + &c. when transformed
becomes AX* 4 &c., a function ¢ will be a covariant® if it is
such that

¢ (4, B, &c., X, Y, &e.) = &%¢ (a, b, &c., =, ¥, &c.).

Every invariant of a covariant s an tnvariant of the original
quantic. This follows at once from the definitions. Let the
quantic be az”+ &c., and the covariant a’z™ + &c. which are
supposed to become by transformation 4X* + &e., 4'X"™ + &ec.
Now an invariant of the covariant is a function of its coefficients
such that

¢ (4, B, &c.)= &% (o', ¥/, &e.).

* In the geometry of curves and surfaces, all transformations of coordinates are
effected by linear substitution. An invariant of a ternary or quaternary quantic is
a function of the coefficients, whose vanishing expresses some property of the curve
or surface independent of the axes to which it is referred, as, for instance, that the
curve or surface should have a double point. A covariant will denote another curve
or surface, the locus of a point whose relation to the given curve is independent of
the choice of axes. Hence the geometrical importance of the theory of invariants
and covariants, ’
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But 4’, B’, &c. by definition can only differ by a power of
the modulus from being the same functions of 4, B, &c. that
a, v, &ec. are of a, b, &c. Hence when the functions are both
expressed in terms of the coefficients of the original quantic and
its transformed, we have

V¥ (4, B, &c.)= A'\p(a,b &e.),
or the function is an invariant. Similarly, a covariant of a
covariant is a covariant of the original quantic.

125. We shall in this and the next article establish prin-
ciples which lead to an important series of covariants.

If in any quantic » we substitute z + k2’ for @, y + &y for y,
&c., where ay'’z’ are cogredient to zyz, then the coeffi-
cients of the several powers of %, which are all of the form

14
(:c’ dia: +y ‘%—+ &c) u, have been called the first, second, third,

&ec. emanants® of the quantic. Now eack of these emanants s
a covariant of the quantic. We evidently get the same result
whether in any quantic we write z+ &z’ for @, &c., and then
transform z, 2/, &c. by linear substitutions, or whether we make
the substitutions first and then write X+ X’ for X, &c. For
plainly
AX+pY+vZ+EkNX +p,Y +v2)
=M(X+kX )+ p, (Y+ kYY) +v,(Z+E2").
If then u becomes by transformation U, we have proved that
the result of writing x + k2’ for «, &ec. in 4, must be the same
as the result of writing X + 4X’ for X, &c. in U, and since %
is_indeterminate, the coefficients of # must be equal on both
gides of the equation; or

du  ,du ,dU ., dU '
d Y &= X Y 23+ &y & QED.

126. If we regard any emanant as a function of &, ¥y, &e.,
treating x; y, dc. as constants, then any of ts invariants will be

. Ingeometryunmmhdenotethepohrcurvesonurfaoesofnpomtmthregud
to & cuxve oy surface. . :
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a covariant of the original quantic when z, y, dc. are considered
as variables.
d’u aru

We have just seen that 27 — + &c. becomes X7 = + &e.

when we substitute for &/, 7&.X'+p, Y’ + &c., and for =z,
AX+pY+&. It is evidently a matter of indifference
whether the substitutions for 2’, &ec., and for z, &c., are
simultaneous or successive. If then on transforming «/, &c.

L

alone, 2 74 + &e. bocomes aX” +&e., then a, &e. will bo
such functions of z, &c. as when z, y, &c. are transformed will

au
become X
considered as a function of &/, 3/, &c. only, is by definition such
a function of its coefficients as differs only by a power of the
modulus from the corresponding function of the transformed

coefficients a, b, &c. But since, as we have seen, a, &c. become

(4
U &c. when z, &c. are transformed, it follows that the given
X, ) )

&c. Now an invariant of the given emanant

invariant will be a function of du y &c., which when x, &c. are
transformed will differ only by a power of the modulus from
the corresponding function of dX” &ec. It is therefore by

definition a covariant of the quantic.

Thus then, for example, since we have proved (Art. 119)
that if the binary quantic az®+ 2bxy+cy’ becomes by trans-
formation 4X*+2BXY +CY?, then

AC- B*=A"(ac-b");

it follows now, by considering the second emanant (z’ 4 +y -‘—z-).u
. dx "7 dy
of a quantic of any degree, that

au ¢_1_'_q_(d'U) A d'v d'u d*u
ax* dy*~ \dXay, e " dyf ~ (dz_dy) !
a theorem of which other demonstrations will be given.

127. In general, if we take the second emanant of a quantic
in any number of variables, and form its discriminant, this will
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be a covariant which is called the Hessian of the quantic. It

was noticed (Art. 118) that the discriminant of every quadratic

function may be written as a determinant. Thus then if, as

we have done elsewhere, we use the suffixes 1, 2, &c. to de-

note differentiation with respect to x, y, &c., so that, for
2,

example, u,, shall denote Z?':, then the quadratic emanant is

u, o + 2u, 2y’ + &c., and its discriminant, which is the Hessian,
is the determinant

uu’ un’ “m &c’
Ugyy Upgy Uy &e.
un’ un) Usggy &c'

&e.

128. We have seen (Art. 123) that the determinant of a
system of linear equations is an invariant of the system. If
then, given a system wu, v, w, &c. of as many functions as
variables, we take the first emanants

2w, + y'u, + 2'u, + &c., &e.,

their determinant u, u, u, &c.
Yy Yg Yy &e.
Wy Wy Wy &e.

&e.

is a covariant of the system. This is the determinant already
called the Jacobian (Art. 88). The Hessian is the Jacobian of
the system of differentials of a single quantic u , u,, u,, &ec.

129. Contravariants. 'When a set of variables @, y, &c. are
linearly transformed, it constantly happens that other variables
connected with them are also linearly transformed, but by a
substitution different from that which is applied to @, y, &e.
If the equations connecting =, y, # with the new variables be
written as before

e=MNX+pY+vZ, y=AX+pY+vZ, 2=A\X+pY+v 2,
then variables £, 7, { are said to be transformed by the tnverse
substitution, if the new variables, expressed in terms of the
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’ old are
=ME+An+0G H=plt+pnt+pl Z=vi+va+v}
where if in the first substitution the coefficients are the con-
stituents of the determinant (Mu.v,) read horizontally, in the
second they are the same constituents read vertically; and
where if in the first substitution the old variables are expressed
in terms of the new, in the second the new are expressed in
terms of the old. Stated thus, it is evident that the relation
between the two substitutions is reciprocal. Solving for £, 9, {
in terms of Z, H, Z, we get (Art. 29)
At=LE+MH+NZ, an=L5+MH+ N7,
Al=LE+MH+ NZ,
where L, M,, &c. are the minors obtained by striking out from
the matrix of the determinant (A,u,) (the modulus of transfor-
mation) the line and column containing A, p,, &ec.

Sets of variables z, y, z; £, 0, {, supposed to be transformed
according to the different rules here explained, are said to be
contragredient to each other. In what follows, variables sup-
posed to be contragredient to @, y, z are denoted by Greek
letters, the letters a, B, v being usually employed in subsequent
lessons. We proceed to explain two of the most important
cases in which the inverse substitution is employed.

130. When a function of x, g, s, &c., is transformed by
linear substitutions to a function of X, Y, Z, &ec., then the
differential coefficients, with respect to the new variables, are
linear functions of those with respect to the old, but are ex-
pressed in terms of them by the ¢nverse substitution. We have

d_ddo ddy dd
iX“dzdx Ty axt & dx

But from the expressions for z, y, &c. in terms of X, ¥, &c.,
we have

+ &e.

dax dy dz _
dx'—'xu JX Ay EX'—)&

d d d d
Hence then ax= ’d:c+ d+ dz+&°
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d d d d
W:p‘d-;+p,@+p,z+&c.,&c.

Thus then, according to the definition given in the last article,
the operating symbols 4 4 4
dz' dy' dz’
2, y, 2, &c., that is to say, when the latter are linearly trans-
formed, the former will be linearly transformed also, but
according to the different rule explained in the last article.

If, as before, u,, u,, &c. denote the differential coefficients of u,
and U, U, &c. those of the transformed function U, we have
just proved that

U=Mu, + 0y, + My, U= nu, + pu, + py, &e.
Consequently, if u,, u, w, all vanish, U, U,, U, must all vanish

likewise. Now we kn:),w ‘that ,y %, u, all vanish together only
when the discriminant of the system vanishes; if then the dis-
criminant of the original system vanishes, we see now that the
discriminant of the transformed system must vanish likewise,
and therefore that the latter contains the former as a factor,

as has been already stated (Art. 120).

Similarly

&c. are contragredient to

131. In plain geometry, if @, y, z be the trilinear coordinates
of any point, and =€+ yn+2{=0 be the equation of any line,
& 7, { may be called the tangential coordinates of that line
(see Conics, Art. 70). Now, if the equation be transformed to
any new system of axes by the substitution &=\ X+ &ec., the
new equation of the line becomes

EOu X+, T49,2) 40 (VX4 1, V40, 2) + ENE 4, T4 9, Z) =0,

8o that if the new equation of the right line be written
EX+HY+ ZZ=0, we have

E=2NE+am+M8 H=pb+pm+pl Z=vE+va+rl

In.other words, when the coordinates of a point are transformed
by a linear substitution, the tangential coordinates of a line are
trangformed by the inverse substitution; that is, they are con-
tragredient to the coordinates of the point. In like manner,
in the geometry of three dimensions, the tangential coordi-
nates- of any plane are contragredient to the coordinates of any
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point. When we transform to new axes, all coordinates zyzw,
«'y’2’w’, &c. expressing different points, are cogredient: that is
to say, all must be transformed by the same substitution
z=AX+&c, ' =\ X"+ &c., &c. But the tangential coordi-
nates of every plane will be transformed by the inverse
substitution, as we have just explained. Similarly the ray
coordinates of different lines for the same system of reference
are cogredient, but the axial coordinates are transformed by the
inverse substitution, that is, are contragredient to the former.
See Surfaces, Art. 57e. 4

The principle just stated will be frequently made use of
in the form

zf+ym+28=XE+YH + ZZ,

where z, y, z being supposed to be changed by the substitution,
e=NX+pu Y+ &, & n, { are supposed to be changed by the
inverse substitution =\ £+ A+ A5, &e. In other words, in
the case supposed, £ + yn + 2{ is a function absolutely unaltered
by transformation, and analogous statements easily follow in the
other cases mentioned.

132. If a function aa"+ &c. becomes by transformation
AX" + &c., then any function involving the coefficients and
those variables which are supposed to be transformed by the
inverse substitution is said to be a contravariant if it is such
that it differs only by a power of the modulus from the corre-
sponding function of the transformed coefficients and varmbles.
that is to say, if

¢ (4, B, &c., B, H, &c.) = A% (a, b, &e. g,n,&&)

Such functions constantly present themselves in geometry.
If we have an equation expressing the condition that a line
or plane should have to a given curve or surface a relation
independent of the axes to which it is referred (as, for ex-
ample, the condition that the line or plane should touch the
curve. or surface), then, when we transform to new axes, it is
obviously indifferent whether we transform the given relation
by substituting for the old coefficients their values in terms of
‘the new, or whether we derive the condition by the original
rule from the transformed equation. In this way it is seen



e
»

CONCOMITANTS. 121

that the conditions in qut:.stion are of such a kind that ¢(a, b, £, &c.)
differs only by a factor from ¢ (4, B, &, &e.).

133. Besides covariants and contravariants there are also
functions involving both sets of variables, which differ only

-by a power of the modulus from the corresponding trans

formed functions : t¢.e. such that

- ¢(4,B,&e., X, Y, &e., E,H,&c.) = A’$ (a,d, &e.,2,y,&c. £, 9, &¢.).

Dr. Sylvester uses the name concomitant as a general word
to include all functions whose relations to the quantic are un-
altered by linear transformation, and he calls the functions now
under consideration mexed concomitants. I do not choose to
introduce a name on my own responsibility ; otherwise I should-
be inclined to call them divariants. The simplest function of
the kind is x£ 4 yn + 2§, which we have seen (Art. 181) is trans-
formed to a similar function, and is therefore a concomitant
of every quantic whatever.

134. If we are given any invariant 7 of the quantic
e+ na 2y + nba" 'z + §it (n - 1) a2y + &e.,

we can deduce from it a contravariant by the method used in
Art. 123. If a2" + &c. becomes by transformation 4 X" + &c.,
then, since z£ + &ec. becomes XZ + &c., it follows that

ax"+&c. +k(xE+yn+20)"=A4 X"+ &c. + K(XE+YH + ZZ)".
Now an invariant of the original quantic fulfils the condition
¢ (4, 4,, B, &e.) =44 (a,, a,y b,y &e.).

Forming then the same invariant of the new quantic, it will be
seen that

$ (4, + k5", 4, +kE'H, &c.) = A% (a, + kE", a, + k£, &e.).

Since % is arbitrary we may equate the coefficients of like
powers of % on both sides of this equation.
Bat, by Taylor’s theorem, these coefficients are all of the form

d s d oy d  and '
(Fd—;;+rﬂa;.+f' I‘E"-l-fﬂ vd7.+&c.)l.
R
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‘We have proved then that they differ only by a power of the
modulus from the corresponding function of the transformed
equation. They are, therefore, contravariants, since it is assumed
all along that £, 5, { are to be transformed by the inverse sub-
stitution. Dr. Sylvester has called contravariants formed by this
rule, first, second, &c. evectants of the given invariant. Thus
& ar £ “ﬂ£+&c. is the first evectant. It is to be ob-
da, da,
served that in the original quantic the coefficients are supposed
to be written with, and in the evectant without, binomial coeffi-
cients. Comparing this article with Art. 123 we see that the

function £" g;l + &c. may be considered either as a contravariant
0
of the single given quantic, or as an tnvariant of the system

obtained by combining with the given quantic the linear func-
tion zE+yn+ 2{. The theory of contravariants, therefore, may
be included under that of invariants.

If we perform the operation §* ‘% + &ec. upon any covariant
°

we obtain a mixed concomitant, for it is proved in the same way
that the result, which will evidently be a function involving
variables of both kinds, will be transformed into a function of
similar form. .

Ex. 1. Weknow that ac—3* is an invariant of ax?42bxy+ cy?; hence cE>—2bEn + an?
is a contravariant of the same system.

Ex. 2. Similarly, abe + 2fgh — af? — bg® — ch?, being the discriminant, and there-
fore an invariant of ax? + by? + c3® + 2fys + 292z + 2hay,
(b — ) B+ (ca — g9) n*+ (ab — %) T+ 2(gh — af ) n¥ + 2(Rf - bg) CE+ 2 (fy — ch)n
is a contravariant of the same quantic. Geometrically, as is well known, the function
equated to zero expresses the tangential equation of the conic represented by the given
quantic.

Ex. 8. Given a system of two ternary quadrics az? + &c., a’2? + &c., then since
a' (be —f?) + &c. is an invariant of the system (Art. 123), we find on operating with
g 5+ o, that
(' + o — %S") B+ (ca’ + da — 29g") o + (ab' + o' — 2AK) L*
+2(gh'+g'h—af'— af) n{+2(hf"+ Kf - bg'— ¥g) CE+ 2 (Y +'9— k'~ c'R) En
- is a contravariant of the system. We might have equally found this contravariant
by operating with a’ ‘% + &c. on the contravariant of the last example, Geometrically,

the function equated to zero expresses the condition that a line should be cut har-
monically by two conics.
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135. When the discriminant of a quantic vanishes, it has
a set of singular roots &’y’2’ [geometrically the coordinates of
the double point on the curve or surface represented by the
quantic]; and in this case the first evectant will be the perfect
n* power of (£'£+ym+2¢). Since we have seen that this
evectant is a function unaltered by transformation, it is sufficient
to see what it becomes in any particular case. Now if the
discriminant vanishes, the quantic can be so transformed that
the new coefficients of 2", "'y, "z shall vanish; that is to
say, so that the singular root shall be y=0, 2=0 [geome
trically, so that the point yz shall be the double point]. But
it was proved (Art. 117) that the form of the discriminant is

aoP + alu¢ + albll\l’ + bllx'
Evidently then, not only will this vanish when @, a,, b, vanish,
but also its differentials with respect to every coefficient
except a, will vanish. This evectant then reduces itself to
gé multiplied by the perfect »* power £", which is what
[
(E+yn+2¢)" becomes when 3" and 2"=0, and 2’ =1, Thus
then, if the discriminant of a ternary quadric vanish, the quadric
represents two lines: the contravariant

(be=f*) E + (ca—g") n* +&e.
becomes a perfect square; and if we identify it with (2’£+y9+2¢)",
we get a'y’Z’ the coordinates of the intersection of the pair of
lines. If a quantic have two sets of singular roots, all the first

differentials of the discriminant vanish, and its second evectant
becomes the perfect »* power of

(@& +yn+2E) ("E+y"n+27E),

where a'y’7’, o’y’2” are the two sets of singular roots; and
B0 on.



(124

LESSON XIIIL

FORMATION OF INVARIANTS AND COVARIANTS,

136. HAvING now shewn what is meant by invariants, &e.,
we go on to explain the methods by which such functions can
be formed. Three of these methods will be explained in this
Lesson, and a fourth in the next Lesson.

Symmetric functions. The following method is only appli-
cable to binary quantics. Any symmetric function of the
differences of the roots 8 an tnvariant, provided that each root
enters into the expression the same number of times.® 1t is evident
that an invariant must be a function of the differences of the
roots, since it is to be unaltered when for & we substitute 2 + .
Now the most general linear transformation is evidently equi-
valent to an alteration of each root a into ——ﬁ;:::. By this
change the difference between any two roots a — 8 becomes
(AW =2Np) (a—8)
(Va+u)(VB+w)"
differences may, when transformed, differ only by a factor from
its former valune, it is necessary that the denominator should be
the same for every term; and therefore the function must be
a product of differences, in which each root occurs the same
number of times. Thus for a biquadratic, = (a—8)"(y—3)" is
an ipvariant, because, when we transform, all the terms of
which the sum is made wp have the same denominator. But

In order then, that any function of the

* If in the equation the highest power of z is written with a coefficient a,, we
have to divide by that coefficient in order to obtain the expression for the sum, &c.
of the roots ; and all symmetric functions of the ropts are fractions containing powera
of @, in the denominator. When we say that & symmetric function of the roots is
an invariant, we understand that it has been made integral by multiplying it by such
a power of a, as will clear it of fractions; or, what comes to the same thing, if we
form the symmetric function on the supposition that the coefficient of 2 is 1, that
we make it homogeneous by multiplying each term by whatever power of a, may
be necessary.
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S(a—pP)* is not an invariant, the denominator for the term
(2= B)" being (Na+ u')* WB+p')", and for the term (y-— &)
being (My + w')* (N8 + p)%

137. Or perhaps the same thing may be more simply stated
by writing the equation in the homogeneous form. We saw
(Art. 120) that if we change x into Az + uy, y into Nz + u'y,
the quantity z,y, —a,y, becomes (Ap’—Nu)(zy,—ay,), and
consequently any function of the determinants x y,— x,y, &e.
is an invariant. Now (Art. 61) any function of the roots
expressed in the ordinary way is changed to the homogeneous

form by writing for a, 8, &ec. ;ﬁ R ;i?, &ec., and then multiplying

1 2

by such a power of the product of all the 3’s as will clear it
of fractions. If any function of the differences in which all the
roots do not equally occur be treated in this way, powers of
the y’s will remain after multiplication, and the function will
not be an invariant. Thus, for a biquadratic, = (a—S8)" be-
comes 3y’ (x,y,—=,y,)"; but the function = (a—8)*(y—3&)},
in which all the roots occur, becomes = (zy, — #,9,)" (7, — 27,)"
and this being a function of the determinants only, <s an invariant.

It is proved in like manner, that any symmetric function
formed of differences of roots and differences between = and
one or more of the roots is a covariant, provided that each root
enters the same number of times into the expression. Thus
for a cubic 2 (a—B)* (x—v)" is a covariant.

138, We can, by the method just explained, form invariants
or covariants which shall vanish on the hypothesis of any system
of equalities between the roots. Thus, let it be required to form
an invariant which shall vanish when any three roots are all
equal, it is evident that every term must contain some one
of the three differences a — 8, 8—¢, y— a; and in like manner
for every other set of three that can be formed out of the roots,
Thus, in a biquadratic, there are four sets of three roots: the
difference a — B belongs to two of these sets, and ¢ — & to the
other two; therefore = (x —8)'(y— 8)™ is an invariant which

* Z (a — B) (y — 8) would vanish identically.



126 FORMATION OF INVARIANTS AND COVARIANTS.

will vanish if any set of three roots are all equal. In like
manner, for a quintic there are ten sets of three: a— 8 belongs
to three sets, 4y — & to three other sets; the remaining sets are
aye, ade, Bye, Bd, two of which contain 4 —e and the other
two 8 —e. The function then = (a — 8)* (y — 8)* (8 —e)* (y—¢)* is
an invariant which will vanish if any set of three roots are
all equal. This invariant (Arts. 57, 58) is of the fourth order
and its weight is 10.

So, again, if we wish to form a covariant of a biquadratic
which shall vanish when two distinct pairs of roots are equal,
the expression must contain a difference from each of the pairs
a-B, y—98; a—y, B~8; a- 9, B—v. Such an expression

would be

Z(a=-B)(B-9)(v—a) (z-9),
or 2(a—B) (@—9)(2—98) (= - B)* (z—v)*(x— &)},
which are covariants of the fourth and sixth degrees respectively
in the variables; and of the fourth and third in the coefficients,
and every term of each vanishes when two distinct pairs of
roots are equal.

139. Mutual differentiation of covariants and contravariants.
When we say that ¢ (a, b, &, 9, &c.) is a contravariant, §, 9, &e.
may be any quantities which are supposed to be transformed by
the reciprocal substitution. Now we have shewn (Art. 130)

that the differential symbols &c. are so transformed.

d d

ax’ @ )
‘We may, therefore, in any contravariant substitute these differ-
ential symbols for £, 9, &c., and we shall obtain an operating
symbol unaltered by transformation, and which, therefore, if
applied either to the quantic itself or to any of its covariants,
will give a covariant if any of the variables remain after differ-
entiation; and if not, an invariant. Similarly, if applied to a
mixed concomitant, it will give either a contravariant or a new
mixed concomitant, according as the variables are or are not
removed by differentiation. Or, again, in any contravariant in-
stead of obtaining an operating symbol by substituting for

& n, &e., dia: ) d%,&c., we may substitute Z—g, %g, &c. where
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U is either the quantic itself or any of its covariants, and so
obtain a new covariant. The relation between the sets of vari-
ables , y, 2, &c., €, 9, § &c. being reciprocal, we may, in like
4 d &e
Ydn ' dt?
when we get an operative symbol which when applied to any
contravariant will give either a new contravariant or an in-
variant. _

Thus then, if we are given any covariant and contravariant,
by substituting in one of them differential symbols and operating
on the other, we obtain a new contravariant or covariant; which
again may be combined with one of the two given at first, so
as to generate another; and so on.

A . d
manner, substitute in any covariant, for z,y, 2, &c., T

140. In the case of a binary quantic, this method may be
stated more simply. The formule for direct transformation
being

z=MX+pY, y=AX+pY,
those f01)' the reciprocal transformation are (Art. 129)

L g /‘ E=xlf+x ) H=F‘|E+"‘gﬂ’
whence Af=pE-AH,An=-pE+\H,

—wkich ey be written -
A11=X1H+[lo, (— E); A(—E)'—'an'l'”’u(_E)'

Thus we see that, with the exception of the constant factor
A, 7 and — § are transformed by exactly the same rules as
« and y; and it may be said that y and — x are contragredient
to z and y. Thus then, in binary quantics, covariants and
contravariants are not essentially distinct, and we have only in
any covariant to write 7 and — ¢ for  and y, when we have
a confravariant, or vice versé. In fact, suppose that by trans-
formation any homogeneous function whatever ¢ (x, y) becomes
$ (X, Y), the formule just given shew that ¢ (n, — §) will
become A™® (H, — E), . where p is the degree of the function in
z and y. If then ¢ (=, y) is a covariant, that is to say, a
function which becomes by transformation one differing only by
a power of A from a function of like form in X and Y, evidently
¢ (n, — &) will by transformation become one differing only by
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a power of A from one of like form in Z and H; that is to say,
it will be a contravariant. For example, the contravariant,
noticed (Art. 134, Ex. 1), c£ —2bfn +an’, by the substitution
just mentioned, becomes the original quantic.

Instead then of saying that the differential symbols are
contragredient to  and y, we may say that they are cogredient
to y and = x; and if either in the quantic itself or any of its

covariants we write %, - (% for « and y, we get a differential
symbol which may be used to generate new covariants in the
manner explained in the last article. Or we may substitute

%’ - Z—Z for  and y, and so get a new covariant. The
following examples will sufficiently illustrate this method :

Ex. 1. To find an invariant of a quadratic, or of a system of two gquadratics.
Buppose that by transformation ax? + 2bzy + cy® becomes AX? + 2BXY 4 CY?, then
since we have seen that A d—d!;, -A (T‘iazetmnsformed by the same rtles as 2 and y,
it follows that the operative symbol

d2 a a2 . a2 a* d?

2 —— —_— _— e - [ —
A (a & 25 Zody +e¢ da:’) becomes by transformation (A ari 2B dXdY+ch’) .
If then we operate on the given quadratic itself, we get

442 (ac — 5%) = 4 (AC - BY),
which shows that ac — % is an invariant ; or if we operate on a'z® + 2b'zy + ¢’y® and
the transformed function, we get
242 (ac’ + ca’ — 2b0") =2 (AC’ + CA' — 2BB),
which shews that a¢’ + ca’ — 250’ is an invariant. We might also infer that
a (bz + cy)? — 2b (bz + cy) (ax + by) + ¢ (az + by)*

is & covariant ; but this is only the quantic iteelf multiplied by ac — 52,

Ex. 2. Every binary quantic of even degree has an invariant of the pecond orderin the
coefficients. 'We have only to substitute, as just explained, % y = ‘% for  and g, and

operate on the quantic itself. Thus for the quartic (g, 3, ¢, d, eIz, y)* we find that
ae — 4bd + 8¢? is an invariant; or for the general quantic (@, a;...@n-, a.Ia:, )%
we find that a,as — 1a,ax-) + $n (8 — 1) @y, — &c. i8 an invariant ; where the coeffi-
cients are those of the binomial, but the middle term is divided by two.

If we apply this method to a quantic of odd degree; as, for example, if we operate
on the cubic az® + 3bay + Scay? + dyt, with d%—%dz%y+36%y.——a‘%,, i
will be found that the result vanishes identically. We thus find, however, that a
system of two cubics has the invariant (ad’ — a’d) — 8 (b¢’ — b'c). Or, in general, that
a system of two quantics of odd degree, ajz* + &c , byz* + &c., has the invariant

(Gedn — andy) — 8 (B1bn-y = Gn-18y)) + 1 (8 — 1) (a;Bn-3 — Gn3By) &c,

which vanishes when the two quantics are identical.
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141. When, by the method just explained, we have found
an invariant of a quantic of any degree, we have immediately,
by the method of Art. 126, a covariant of any quantic of higher
degree. Thus, knowing that ac— 5" is an invariant of a quad-
ratic, by forming that invariant of the quadratic emanant of
d’u d*u d*u
= &y ~ @y
of any quantic above the second degree. In like manner, from
the invariant of a guartic ae— 46d + 3¢, we infer that for every
quantic above the fourth degree

@@_4 dv  d'u +3( d'u )’

dz' dy* ~ da'dy daxdy’ dx*dy"
is a covariant, &c. In this way we see that a quantic in
general has a series of covariants, of the second order in the
coefficients, and of the orders 2 (n=2), 2(n — 4), 2 (n — 6), &e.
in the variables. These covariants may be combined with the
original quantic and with each other, so as to lead to new co-
Variants or invariants.

2
any quantie, we lsarn that ) is a covariant

Ex. 1. A quartic has an invariant of the third order i the doefficients, We know
that ita Hessian
(az? + 2bzy + by?) (czd + 2dzy + &) — (ba? + 202y + dy?)", k
or (tic — 8% 24+ 2 (ad — be) %y + (ae + 2b6d — 8¢3) atyP+ 2 (be — cd) zy* + (ce — A7) 4,

is & covaiant. Operste on this with (s, 3, 6, J( &, ~ 2!, and we get soventy-
two times . Y .
ace + 2bed — ad® — eb? — c3,

which is therefore an invariant,

Ex. 2. Every quantic of odd degree has an invariant bf the fourth order in the

-1, 1.

coefficients. The quantic has a quadratic covariant —i;_': ——:;:_:‘ — &c. of the second
order in the coefficients ; and the discriminant of this quadratic will be an invariant
of the original quantic (Art. 124), and will be of the fourth order in its coefficients.
In fact, it is proved in this way that every quantic has an invariant of the fourth
order; for if we take any of the covariants of this article, which are all of even
degree, its invariant of the second order will be of the fourth order in the coefficients
of the original quantic. But when the quantic is of even degree, it may happen that
the invariant so found is only the square of its invariant of the second order.

Ex. 8, To form the invariant of the fourth order for a cubic,
Its Hessian is (az + by) (cx + dy) — (b= + cy)?;
or - (ac — 8%) 2* + (ad — bc) zy + (bd — ¢*) y*,



130 FORMATIOR OF INVARIANTS AND COVARIANTS,

Hence . (ad- be* —4 (ac— ) (Bd— &)
is an invariant of the cubic. In fact, it is its discriminant
a?d? — 6abed + 4ac® + 45%d — 3%,

142, From any invariant of a binary quantic we can gene-
rate a covariant. For from it we can form (Art. 134) the
evectant contravariant £° 571+&c.; and then in this substi-
tuting y, —« for £ and 7, wé have a covariant. For example,
from the discriminant of a cubic which has been just written

we form the evectant
£ (ad* — 3bed + 2¢%) + 38" (— acd + 2b*d — bc')

+ 37" (- abd + 2ac® — b%) + 9* (a’d — 3abe + 20°),
whence we infer that the cubic has the cabic covariant '
(a’d—3abc+2b° abd- 2ac’+b%¢, —acd+2b'd- be*, 3bed— ad™—2c"{ z,y)*

143. The differential equation.—We saw (Art. 62) that in-
variants satisfy certain partial differential equations, and these
furnish a third method of forming these functions based .on the
following principle. If n be the order of a binary quantic, 6
the order in the coefficients of any of its invariants, then the weight
(see Art. 56) of every term in the invartant ts constant and = n0.
For if we alter # into Az, leaving y unchanged, since this is a
linear transformation, the invariant must, by definition, remain
unaltered, except that it may be multiplied by a power of A,
which is in this case the modulus of transformation. It is proved
then, precisely as in Art. 57, that the weight, or sum of the
suffixes, in every term is constant.

Again, the invariant must remain unaltered, if we change
@ into y, and y into , a linear transformation, the modulus of
which is —1. The effect of this substitution is the same as if
for each coefficient a, we substitute a,_,. Hence the sum of
a number of suffixes

a+B+y+&e.=(n-a)+(n—B)+ (n-19) + &e.,
whence 2 (a+ 8+ v+ &c.)=nf. Q.E.D.

Cor. n and @ cannot both be odd, since their product is an
even number; or, a binary quantic of odd degree cannot have
an tnvariant of odd order.
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144. The principle just established enables us to write down
immediately the literal part of any invariant whose order is
given.. For the order being given, the weight is given also.
Thus, if it were required to form for a quartic an invariant of
the third order in the coefficients, the weight must be 6, and
the terms of the invariant must be

Aaaa + Baaa +Caaa + Daaa + Faaa

47270 47171 37870 87271 38 °8)

where the coefficients 4, B, &c. remain to be determined. The
reader will observe that there are as many terms in this in-
variant as the ways in which the number 6 can be expressed
as the sum of three numbers from 0 to 4 inclusive; and gene-
rally that there may be as many terms in any invariant as the
ways in which its weight 470 can be expressed as the sum of
6 numbers from 0 to n inclusive.

We determine the coefficients from the consideration that
since an invariant is to be unaltered by the substitution either
of &+ for «, or of y + A for y, evidently, as in Art. 62, every
invariant must satisfy the two differential equations

ogal+2 g;l 3a dI+&c.-.0 na, dI+(n l)a, dI+&c.—-0
it being supposed that the original equation has been written
with binomial coefficients. In practice only one of these equa-
tions need be used; for the second is derived from the first by
changing each coefficient @, into a,_,. It is sufficient then to
use one of the equations, provided we take care that the func-
tion we form is symmetrical with regard to = and y; that
is to say, does not change (or at most changes sign)* when
we change a, into a_,. And this condition will always be
fulfilled if we take care that the weight of the invariant is
that which has been just assigned. Thus then, in the example
chosen for an illustration, if we operate on Aa,a.a,+ &ec. with

. Wben we change « into y and y into z, this is a transformation whose modulus is

or —1. Any invariant, therefore, which when transformed becomes multiplied

I 1, 0 | by an odd power of the modulus of transformation will change sign when
we interchange z and y, Such invariants are called skew invariants.
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a, -d—'+ &e., we get
1

(2B+24)aaa,+(D+60+44)aaga, .
+(2D+4B)agaa,+ (6E+3D)aaa =0,
whence if we take 4 =1, the other coefficients are found to be
B=-1,D=2, C=—1, E=—1, and the invariant is
eaa,+2a0a —aaa —aaa,—aga,

145. In seeking tp determine an invariant of given order
by the method Just explained, we have a certain number of
unknown coefficients 4, B, C, &c. to determine, and we de so
by the help of a certain number of conditions formed by means
of the differential equation. Now, evidently, if the number of
these conditions were greater than the number of unknown
coefficients, the formation of the invariant would in geperal
be impossible ; if they were equal we could form one invariant;
if the number of conditions were less, we could form more
than one invariant of the given order. We have just seen
that the number of terms in the invariant, which is one more
than the number of unknown coefficients, is equal to the number
of ways in which its weight §nf can be written, as the sum
of @ numbers, none being greater than n. But the effect of

the operation a, di + &c. is evidently to diminish the weight

by one, the number of conditions to be fulfilled is, therefore,
equal to the number of ways in which 3§70 — 1 can be expressed
as the sum of @ numbers, none exceeding n. Thus, in the
example of Art. 144, the number of conditions used to deter-
mine 4, B, &c. was equal to the number of ways in which
5 can be expressed as the sum of three numbers from 0 to 4
inclusive. To find then generally whether an invariant of a
binary quantic of the order 6 can be formed, and whether
there can be more than one, we must compare the number
of ways in which the numbers 326, }n6 -1 can be expressed
as the sum of 6 numbers from 0 to n inclusive.®

* It was in this way Prof. Cayley first attempted to invemgate the number of
invariants and covariants of a binary quantic.
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146. Similar reasoning applies to covariants. A covariant,
like the original quantic, must remain unaltered, when we
change z into pz, and at the same time every coefficient a,
into p°a,. If then the coefficient of any power of z, 2* in
the covariant be a®bscy, &c., it is obvious, as before, that
#+a+ B+ &ec. must be constant for every term; and we may
call this number the weight of the covariant.

Again, in order that the covariant may not change when
we alter z into y and y into @, we must have

pta+B+oy+&e.=(p—p)+(n—a)+(n—pB)+&e.,
where p is the degree of the covariant in 2 and y; whence if
6 be the order of the covariant in the coefficients, we have
immediately its weight =3 (n6 +p). Thus if it were required
to form a quadratic covariant to a cubic, of the second order
in the coefficients, n=38, 6 =p =2, and the weight is 4. We
have then for the terms multiplying 2%, a+8=2, and these
terms must be aga, and ag,. In like manner the terms mul-
tiplying «y must be a,a, a,a,, and those multiplying z* must

19

be a,a, aa,. In this manner we can determine the literal part
of a covanant of any order. The coefficients are determined

as follows:

147. From the definition of a covariant it follows that we
" must get the same result whether in it we change « into  + Ay,
or whether we make the same change in the original quantic
and then form the covariant. But this change in the original
quantic is equivalent (Art. 62) to changing a, into a, +ap,
a, into o, +2a A +a', &c. Hence, in the covariant also the
change of  to #+ Ay must be equivalent to changing a, into
a,+a, &c. Let the covariant then be

A" +pA "y +3p (p-1) 427y + &e.
Let us express that these two alterations are equivalent, and
let us confine our attention to the terms multiplying A. Then
if, as in Art. 64, we use as an abbreviation to denote the
operation a d% + 2a d‘i + &e., the symbol A get
d4, . d4 d4, 4, ad

7;0 )-‘Tc' Ao) d{ —2Au&c) dt =(p- I)A,_,, "IC =PA,,-1
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In like manner, writing j for na, é—+(n—1) a,—a-+-&c.,
° 1

we have

a’A dA
=pdy 5 '=(p-1) 4, &

Thus we see that when 4 is determined so as to satisfy %? =0;

in other words, when A4, is a function of the differences of the
roots of the quantic (Art 58), all the other terms of the
covariant are known. The covariant is in fact

dA B4, | A, 2

(]
AP+ 30 Y+ = o t g 12 T &

It will be observed that the weight of the covariant being
3 (n6 + p) the weight of the term A is 4 (n0- p), since the
weight of A4, together with p makes up the weight of the
covariant, This term A4, whence all the other terms are de-
rived, was named by Prof. M. Roberts the source of the covariant.
He observed also that the source of the product of two cova-
riants is the product of their sources. For if we multiply the
covariant last written by

dB, B af
Ba'+ an ‘aty + ‘%’ wl 2‘1/’ + &e.,

we get, as may be easily seen,

d(4 s (Ao ) a:”"‘y’

E)
OOwP"""

A B + + &e.

Hence, if we know any relation connecting any functions of the
differences 4, B, C,, &c., the same relation will connect the
covariants derived from these functions.

Ex. 1. To find the quadratic covariant of a cubic. 'We have seen (Art. 146) that
A, is of the form a,a,+ Ba,a;. Operate on this with a, % + 2a, %, and we
. 1
(2 + 2B) aoal =0, whence B=-—1 and 4,=a.a,~— a,a,. Operate then with
d N
8a, — da o+ 20, —— dal +a, Za’ and we have 24, = a,a, — a,a,. Operate with the same
on 4,, and we have 4, = a,a; — a,a,, The covariant, therefore, is
(2380 — @y0,) 22 + (20t — 020,) @Y + (0183 — a35) 9.
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Ex. 2, To find a cubic covariant of a'cubic of the third order in the coefficients.
Here n =8, 0 =38, } (n0 +p) =6, The sum then of the suffixes of the coefficient
of 23 will be 8 ; and this coefficient must be of the form Ada,a.q, + Ba,a,a, + Caya,a,.

. d d d
Operate with a°d71I+2a‘d_a;+3a’TJa—,’ and we get

(34 + B) a,a4a, + (2B + 380) a,a,a,,
whence if we take 4 =1, wehave B=—38, (=2, 0r 4, = a,aoao - 3a¢a,a, + 2a,a,a,.
Operate on this three times successively with 3a, El% + 2a2 da +a;—— da, , and we have
the remaining coefficients, and the covariant is (see At 142)

(33080 — 83,3y + 20,010,) 2 + B (330,08, — 20,040, + 2,0,0,) 2%
+ 3 (20,018, — G,8,0, — @50,00) TY? + (3a,0,0) — 2¢,0,0; — a30,00) ¥°.

148. We have seen that a quantic has as many covariants
of the degree p in the variables and of the order € in the
coefficients as functions 4, whose weight is § (0 —p) can be

found to satisfy the equation % =0. And, as in Art. 145, we

see that this number is equal to the difference of the ways in
which the numbers § (n6 — p) and } (n0 — p) — 1 can be expressed
as the sum of @ numbers from 0 to # inclusive. It may be re-
marked that p cannot be odd unless both » and 6 are odd.
Hence only quantics of odd degree can have covariants of odd
order in the coefficients, and these must also be of odd degree
in the variables.

149. The results arrived at (Art. 147) may be stated a little
differently. The operation y :I_i:-r performed on any quantic is

equivalent to a certain operation performed by differentia-
ting with respect to the coefficients. Thus, for the quantic

(a, a,, a,... =, y)", we get the same result whether we operate

on it with % or with + 2a dd + &ec. This latter opera-

% Za.
. d

tion then may be written Y2
proved for a covariant may be written that we have for it

y j—x_ [y %] =0. In other words, that we get the same

; and the property already
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result whether we operate on the covariant with y%’ or with
a, 3‘;— + 2a, d% + &c. In his Memoirs on Quantics, Prof. Cayley
1

2
has started with this property as his definstion of a covariant;
& definition which includes invariants also, since for them we

have yj—: =0, and therefore also [y Z——:] =0.

150. It can be proved, in like manner, that covariants of
quantics in any number of variables satisfy differential equations

. . d d d d
which may be written Y= [yg-x] y 2= [ li_z] , &e.
Thus, for the quantic (g, 3, ¢, £, g, ), ¥, 8)°, we have
d d d d d d .d d
yd—x-'—' h+gdf+2bdb’ ‘dz dg+hdf+2gdc1

and every covariant must satisfy these two equations, While
every invariant must satisfy the two equations
ar  dl ar ar ,dIl dl
a—d—h +93+2’l£=0, ad—y+hzf—+2g% =04
as may easily be proved from the consideration that the invariant
remains unaltered if we substitute for «, z + Ay or & + us.
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LESSON XIV.

'SYMBOLICAL REPRESENTATION OF CONCOMITANTS.

151. IT remains to explain a fourth method of finding
invariants and covariants, given by Prof. Cayley in 1846
(Cambridge and Dublin Mathematical Journal, vol. 1. p. 104,
and Crelle, vol. XXX.); which not only enables us to arrive at
such functions, but also affords the basis of a regular calculus
by means of which they may be compared and identified.

Let «,, y,; 2,, y, be any two cogredient sets of variables;
then, if we write briefly for ‘%n , di%’ gi-—; &, n, &y &e,
it has been proved (Arts. 130, 120, 139) that &, n, &, n, are
transformed by the reciprocal substitution; that §n, — &, is
an invariant symbol of operation; and that if we operate with
any power of this symbol on any function of =, y,, z,, y,, We
obtain a covariant of that function. 'We shall use for §n,- £,
the abbreviation 12.

Suppose now that we are given any two binary quantics
U, V, we can at once form covariants of this system of two
quantics. For we have only to write the variables in U with
the suffix (1), those in ¥V with the suffix (2), and then operate
on the product UV with any power of the symbol 12; the
result must be an invariant or covariant. Thus if we operate

. - . . dUdv dUdvV _,.
_simply with 12 we obtain the Jacobian dmdy &y dx’ which

we saw (Art. 128) was a covariant of the system of quantics.
Again, let

U=az’+2bzy, +oy'; V=az'+2zy,+cy
then if we operate on UV with 12%, which, written at full
length, is

E 1"": + E :’71’ - 2£ lnxgs"’a‘)
the result is ac’+ ca’ — 28", which is thus proved to be an
invariant of this system of quantics. In general, it is obvious
- T
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that the differentials marked with the suffix (1) only apply to U,
and those with the suffix (2) only to V; and it is unnecessary
to retain the suffixes after differentiation;* so that 12" applied
to two quantics of any degree gives the covariant
a&Uudv 4dvdv_ U d'v
I dy Y dy dF  C dady dudy”
Similarly the symbol 12° applied to two cubics gives the
invaridant
(ad’ - da’) — 3 (b’ — cb’),
or to any two quantics gives the covariant
auda’v 3 aeUu d'v +3 d'U a'V _a'uUadv,
4 dy* ~ ° da*dy dedy' " ° dudy’ da'dy  dy° dx’?
and s0 in like manner for the other powers of 12.

152. We can by this method obtain also invariants or co-
variants of a single function U. It is, in fact, only necessary to
suppose in the last Article the quantics U and ¥V to be identical.
Thus, for instance, in the example of the two quadratics given
in the last Article, if we make a=d’, =10, ¢c=7, the invariant
12* becomes 2 (ac—&*). And, in like manner, the expression
there given for the covariant 12° of a system U, ¥, by making
U=, gives the covariant of a single quantic

a@aUd'U (d'U\
& &~ ()"

In general, whenever we want by this method to form the
covariants of a single function, we resort to this process:—We
first form a covariant of a system of distinct quantics, and then
suppose the quantics to be made identical. And in what
follows, when we use such symbols as 12" &c. without adding
any subject of operation, we mean to express derivatives of a

* If W be any function containing z,, y,; #,, y,; We get the same result whether
we linearly transform these variables, and afterwards omit all the suffixes in the
transformed equation ; or whether we omit the suffixes first, and afterwards transform
« and y. This results immediately from the fact that z,, y,; @, y5; =z, y are
cogredient. It follows then at once that if W, written as a function of x,, y, ; s, ys,
be a covariant of U, V; that is to say, if the expression of the coefficients of W in
terms of the coefficients of U and V be unaffected by transformation, then W is also
& covariant when the suffixes are all omitted,
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single function U. We take for the subject operated on the
product of two or more quantics U,, U,, &c., where the variables
@, Y,3 Xy Y,5 &c. are written in each respectively, instead of
« and y; and we suppose that after differentiation all the
suffixes are omitted, and that the variables, if any remain, are
all made equal to = and y.

153. From the omission of the suffixes after differentiation,
it follows at once that it cannot make any difference what
figures had been originally used, and that 12" and 34" are
expressions for the same thing. In the use of this method we
have constantly to employ transformations.depending on this
obvious principle. Thus, we can show that when = is odd, 12"
applied to a single function vanishes identically. For, from
what has been said, 12" =21"; but 12 and 21 have opposite
signs, as appears immediately on writing at full length the
symbol for which 12 is an abbreviation. It follows then that
12" must vanish when » is odd. Thus, in the expansion of 12°,
given at the end of Art. 151, if we make U=V, it will obviously
vanish identically. The series 12*, 12, 12°, &c. gives the series
of invariants and covariants which we have already found
(Art. 141). Tt is easy to see that, when = is even, 12* applied
to (@, a, a,... Y, y)" gives

aa,—naa_ +4n(n—1)aa, _, — &e.,
where the last coefficients must be divided by two, as is evident
from the manner of formation. In particular, we thus have
the invariants, for the quadratic, ac —3*; for the quartic,
ae— 4bd + 3¢*; for the sextic, ag — 65/ + 15ce — 104" ; and so on.

154. The results of the preceding Articles naturally extend
to any number of functions. We may take any number of
quantics U, ¥, W, &c., and, writing the variables in the first
with the suffix (1), those in the second with the suffix (2),
in the third with the suffix (3), and so on, we may operate
on their product with the product of any number of symbols
- 129, 284, 317, 142, &c., where, as before, 23 is an abbreviation
for Em, — Em,y &c. After the differentiation we suppress the
suffixes, and we thus get a covariant of the given system of
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quantics, which will be an invariant if it happens that no power
of z and y appear after differentiation. Any number of the
quantics U, ¥, W, &c., may be identical ; and in the case with
which we shall be most frequently concerned, viz., where we
wish to form derivatives of a single quantic, the subject operated
on is UU,U, &c., where U, and U, only differ by having the
variables written with different suffixes.

It is evident that in this method the order of the derivative
in the coefficients will be always equal to the number of different
figures in the symbol for the derivative. For if all the functions
were distinct, the derivative would evidently contain a coefficient
from every one of the quantics U, ¥, W, &e.; and it will be
still trne, when U, ¥, W are supposed identical, that the degree
in the coefficients is equal to the number of factors in the product
U,U,U, &c., which we operate on. Thus the derivatives con-
sndered in the last Article being all of the form 127 are of the
second order only in the coefficients.

Again, if it were required to find the degree of the derlvanve
in  and y. Suppose, in the first place, that the quantics were
distinct, U being of the degree n, V of the degree n’, W of the
degree n”, and so on ; and suppose that in the operating symbol
the figure 1 occurs a times; 2, 8 times; and so on; then, since
U is differentiated « times, ¥V, 8 times, &c., the result is of the
degree (n—a) + (0’ — 8) + (n” — y) + &. When the quantics
are identical, if there are p factors in the product U7....U,,
which we operate on, the degree of the result in = and y
will be np—(a+ B+ ¢+ &c.). While again, if there be »
factors such as 12 in the operating symbol, it is obvious that
(a+ B+ 9+ &e)=2r. It is clear that if we wish to obtain
an nvariant, we must have a=B8=qy=n.

155. To illpstrate the above principles, we make an ex-
amination of sll possible invariants of the third order in the
coefficients. . Since the symbol for these can only contain three
figures, its most general form is 12%.23¢.317; while, in order
that it should yield an ¢nvariant, we must have

aty=a+B=B+y=n,
whence a=8=q. The general form, then, that we have to
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examine is (12.23.31)% Again, if a be odd, this derivative
vanishes identically; for, as in Art. 153, by interchanging the
figures 1 and 2, we have (12.23.31)"= (21.13.32)*; but these
have opposite signs. It follows, then, that all invariants of the
third order are included in the formula (12.23.31)%, where a
is even. Thus, 12".23".31" is an invariant of a quartic, since
the differentials rise to the fourth degree; 12°.23.31% is an
invariant of an octavic; 12°23%31° of a quantic of the twelfth
degree, and so on; only quantics whose degree is of the form
4m having invariants of the third order in the coefficients. If
we wish actually to calculate one of these, suppose 12.23.31%

write, for brevity, £, 5,, &c., instead of il i, &c., and we

have actually to multiply out dz,’ dy,
(El”s - Ez”’n)’ (Egﬂa - Eglr’z)” (E,"" - Ell”')’-
U

In the result omit all the suffixes, and replace £ by %—I;—‘ &e.;
or, when we operate on a quartic, by a, the coefficient of *, &c.
There are many ways which a little practice suggests for
abridging the work of this expansion, but we do not think it
worth while to give up the space necessary to explain them;
and we merely give the results of the expansion of the three
invariants just referred to. 12%.23%.31° yields the invariant of
a quartic already obtained (Art. 141, Ex. 1, and Art. 144), viz. :—
: aaa +2a0a —aa’—aa'—a’
124.23.31* gives
a,(aa,—4a0, +3a,a)+a, (—4a,0,+ 1200 - 8a,a)
+a,(3a,a,— 8a,a, — 22a,a,+ 24a,a,) + a,{24a,0,— 36a,0,) + 15,00,
And 12%.23°.31° gives ,
a,(aa,—6aa +15a,0~10a,a,)+a, (—6a,a,+ 30a,a,—54a,a,+30a,a,)
+a,, (15a,a, - 54a,a, + 24a.a, + 150a,a, — 135a,a,)
+a, (— 10a,a, 4+ 30a,a, + 150a,a, — 430a,a, + 270a,a,)
+ a, (— 135a,a, + 270a,a, + 495a 0, — 546a5a6)
+a, (- 540a,a, + 7120a,a,) — 280aaa,

156. Though the above-mentioned is the only type of
invariants of the third order, there is an unlimited number of



142 SYMBOLICAL REPRESENTATION OF CONCOMITANTS.

covariants, the simplest being 12.13, which, when expanded, is

FYLTIY_ SV () IV AU LT IT)
de dy dy  drdy \" drdy dy " dy°* de
&¢U (d*U dU U dU\ d*Ud*UdU
m?(za‘a—y** dgﬂz)“v dr dz°
When this is applied to a cubic, it gives the evectant obtained
already (Art. 142).

The general type of invariants of the fourth order in the
coefficients is (12.34)* (13 24)% (14.23)". Thus the discriminant
of a cubic is expressed in this notation as (12.34) (13.24); but
we cannot afford space to enter into greater details on this
subject.

157. The principles just laid down afford an easy proof of

a remarkable theorem first demonstrated by M. Hermite, and to

which we shall refer as * Hermite’s Law of Reciprocity.” The
number of tnvariants of the n* order in the coefficients possessed
by a binary quantic of the p* degree is equal to the number of
invariants of the order p in the coefficients possessed by a quantic
of the n* degree. 'We have already proved that if any symbol
12°.23".34° &c. denotes an invariant of the order p of a quantic
of the degree n, then the number of different figures 1, 2, 3, &e.,
i8 p, and each figure occurs n times. But we might calculate by
the method of Art. 136 an invariant = (a —R8)" (8—1)"(y—9)° &e.,
where we replace each symbol 34 by the difference of two roots
(y—28). This latter is an invariant of a quantic of the p*
degree, since there are by hypothesis p roots; and it is of the
order n in the coefficients of the equation (Art. 58).

Thus, for example, a quadratic has but the single independent
invariant (a— )", though of course every power of tlﬂ"ls
also an mvarmnt and the general type of such invariants is
(a—B)™ Hence, only quantics of even degree have invariants
of the second order in the coefficients, and the general symbol
for such invariants is 12",

So again, cubics have no invariant except the discriminant
(a—=B)'(B—9)*(y—a)* and its powers; and the discriminant is
of the fourth order in the coefficients. Hence, only quantics of
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the degree 4m have cubic invariants whose general type is
12.23".31™. It will be proved that quartics have two inde-
pendent invariants, one of the second and one of the third
order, in the coefficients; and, of course, any power of one
multiplied by any power of the other is an invariant. Hence,
quartics have as many invariants of the p* order as the equation
2z + 3y =p admits of integer solutions; this is, therefore, the
number of invariants of the fourth order which a quantic of
the p* degree can possess.

158. Hermite has proved that his theorem applies also to
covariants of any given degree in « and y; that is to say, that
an n” possesses as many such covariants of the p* order in the
coefficients as a p“ has of the n* order in the coefficients. For,
consider any symbol, 121.234.34” &c., where there are p figures,
and the figure 1 occurs a times, 2 occurs b times, and so on;
then we have proved that the degree of this covariant in =
andyis (n —a) + (o —3) + &c. But we may form the symmetric
function

3 (a- AP (B—y) (v - O (- @) (- A" &e,
which has been proved (Art. 137) to be a covariant of the
quantic of the p” degree, whose roots are a, 8, &c. Every
root enters into its expression in the degree m, which is there-
fore the order of the covariant in the coefficients, and it
obviously contains  and y in the same degree as before, viz.
(n—a)+ (n—0)+ &e. Thus, for example, the only covariants
which a quadratic has are some power of the quantic itself
multiplied by some power of its discriminant, the general type

of which is
(a— B)” (- a) (@ B),

rder of this in the coefficients is 2p + ¢, and in z and y is 2¢.
Hence ‘we infer that every quantic of the degree 2p + ¢ has a
covariant of the second order in the coefficients, and of the
degree 2¢ in « and y, the general symbol for such covariants
being 12®. When ¢ = 1, we obtain the theorem given (Art. 141),
that every quantic of odd degree has a quadratic covariant.

159. Concomitants of quantics in three or more variables are
expressed in a manner similar to that already explained. If
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2Yz2, TYZ, Y2, be cogredient sets of varidbles, then, by
the rule for multiplication of determinants, the determinant

%, Y2 =y + 7,2, — 42 + 7, (3,8, ~ ¥2)

is an invariant, which, by transformation, becomes a similar
function multiplied by the modulus of transformation. And if in
the above we write for x,, d:ci;
an invariantive symbol of o;)eration, which we shall write 123,
When, then, we wish to obtain invariants or covariants of
any function U, we have only to operate on the product
UUU,..U, with the product of any number of symbols
123 124 235" &c, and after differentiation suppress all the
suffixes. Thus, for example, let U,, U, U, be ternary quadrics,
and let the coefficients in U, be q, b, ¢, 2f, 2g, 2k, as at p. 99,
then 123" expanded is

a(b'c"+8°c —2ff”) + b (Ca"+ c"a’—29"g") + c(a'b"+a" b —2k'R")
+ 2f (§h + g"F — alf "= a"F") + 29 (Kf "+ K f' - b'g"-b"¢)
FIR(SG 417G W = H);

and this when we suppose the three quantics U, U, U, to be

identical, or a = @’ = a” &c. reduces to six times

abe + 2fgh — af * — bg* — ck’.
If in the above we replace a, the coefficient of a*, by (g;l,—]&c

for y,, ad;; and 8o on, we obtain

we get the expansion of 123 as applied to any ternary quantic.
This covariant is called the Hessian of the quantic.

It is seen, as at Art. 153, that odd powers of the symbol 123
vanish when it is applied to a single quantic. We give as a
further example the expansion of 123* applied to the quartic,

az'+ by' +cz* + 4 (a @’y + a @’z + by"2 + by’x + ¢, 2% + ¢ 2%)
- +6(dy’e’ +e2’2’ + fa'y’) + 12ayz (lx + my + ne).
Then 123* is
abc—4 (abe, + be,a, + cad,) + 8 (ad” + be' + ¢f*) + 4 (a b, +ab,c,)
—12 (and + amd + byne + b le + cmf + cIf)
+ 12 (b,c, + mea, + nap,) +12(dl* + em® + fn') + 6def —12lmn.
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160. We can express in the same manner functions containing

contragredient variables; for if a, B, ¢ be any variables contra-

gredient to z, y, 2, and therefore cogredient with %’, %, gz,

it follows, as before, that the determinant

44 24y gdd_ddy dd_d2dy
N (dy 1 d_zl dy 2 dzl dzl dx’ dzl dxl 7 dzl dy 3 dx dy 1
(which we shall denote by the abbreviation al2) is an inva-
riantive symbol of operation. Thus, if U, U, be two different
quadrics, 12" is the contravariant called & (Conics, Art. 377),
which expanded is
a‘ (b’c”-l"b”c’— 2fy‘”) +ﬁ'(c’all+ c’lal_ 2g’y”) +'y* (a’bll+ a”bl— 2h’h’l)

+ 237 (g’ Il+ gll ’_ a.lfll_ a’:f’) + 27“ (h:f'll+ h’:fl—b’g”— b”g’)

+ 2aB (flgll +fllg’ — c’h” _cllk’ R
and which, when the two quadrics are identical, becomes the
equation of the polar reciprocal of the quadric.

In like manner, the quantic contravariant to a quartic, which
I have called S (Higher Plane Curves, p. 18), may be written -

symbolic_al_lyil—_z‘,ﬂxd the quantic 7'in the same place may be
written a12® 23" a31'. In any of these we have only to replace

the coefficient of any power of x, =" by gz—. &e. to obtain a symbol

which will yield a mixed concomitant when applied to a quantic
of higher-dimensions. Thus a12* is

(U PT (3T &
{7 o~ (dgz) |+
which, when applied to a quadric, is a contravariant, but, when
applied to a quantic of higher order, contains both z, y, 2, as
well as the contragredient a, B8, v, and, therefore, is a mixed
concomitant,

In general, if we have the symbolical expression for any
invariant of a binary quantic, we have only to prefix a con-
travariant symbol a to every term, when we shall have a
contravariant of a ternary quantic of the same order. And in
particular it can be proved that if we take the symbolical ex-
pression for the discriminant of a binary quantic, and prefix in

U
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this manner a contravariant symbol to each term, we shall have
the expression for the polar reciprocal of a ternary quantic.

Thus, the symbol for the discriminant of a binary cubic is
12%.34%.13.24, and the polar reciprocal of a ternary cubic is
al2*.a34*.213.a24, which is obviously of the sixth order in the
variables a, B, v, and of the fourth in the coefficients.

d d d p
E, @ ’ (—lz- or
a, B, v, and operate on U, we get a covariant (Art. 139); aud
the symbol for this covariant is got from that for the contra-
variant by writing a new ﬁgure instead of a. Thus from a23*
is got 123*, from a23.a24 is got 123.124, &c. Conversely, if
in the symbol for any invariant we rep]ace any figure by a
contravariant symbol a, we get the evectant of that invariant.
Thus,

161. If in any contravariant we substitute

123.124.234.314
is an invariant of a cubic, and the evectant of that invariant is

" In the case of a binary quantic, this rule assumes a simpler

form; for if we substitute a contravariant symbol for 1 in 12,

-7 dd-;, but since
£ and 5 are cogredient with —y and x, this may be written

d
? dx
affects the result with a numerical multiplier. Hence, given
the symbol for any invariant of a binary quantic, its evectant
is got by omitting all the factors which contain any one figure,
Thus,

it becomes, when written at full length, £ %

+ y‘%/ , and may be suppressed altogether, since it only

12%.34%13.24
being tho discriminant of a cubic, its evectant, got by omitting

the factors which contain 4, is 12*13.
dU dU dU

Ydy? ds
for a, B, 7, we also get a covariant, and the symbol for it is
obtained from that for the contravariant by writing a different

If in & contravariant of any quantic we substltute
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new figure in place of every a. Thus, from 34’ we get
134.234, and so on. '

162.° In the explanation of symbolical methods which has
been hitherto given, I have followed the notation and course
of proceeding originally made use of by Prof. Cayley. I wish
now to explain some modifications of notation introduced by
Aronhold and Clebsch, who have employed these symbolical
methods with great success, but who perhaps at first scarcely
sufficiently recognized the substantial identity of their methods
with those previously given by Prof. Cayley. The variables
are denoted z,, z,, z,, &c., while the coefficients are denoted by
suffixes corresponding to the variables which they multiply.
Thus the ternary cubic, the ternary quartic, &c., may be briefly
denoted Za,xxw, Za,,cxxix,, &c., where the numbers
¢, k, I, m are to receive in succession all the values 1, 2, 3, &ea.
It will be observed that in this notation ‘a,;, = a,,;,= a,;, so that
when we form the sums indicated we obtain a quantic written
with the numerical coefficients of the binomial theorem. Thus
when we form the sum Za,xxx, the three terms a, xx x,
e, xrx, a, xxz, are identical, as in like manner are the six

117181 a1
terms

alnwlwswﬂ alnwlzswu‘l aawmsmlxz‘) am“’:‘”a‘”n aauzawlmn amlwazswﬂ

go that the sum written at length would be

a, 22z, + a ,rrr + awxw + 3a,.2xx, +...4 66,222,

And so, in like manner, in general. Now Aronhold uses, as
an abbreviated expression for the quantic in general,

(a2, +azx,+azx,+...)"
where, after expansion, we are to substitute for the products

a,a,a, &c., the coefficients a,, Thus the ternary cubic given
above may be written in the abbreviated form

(alml + aixi + asma ' ;

the terms aaax e +3aaa0xxx,+ &c

in the expansion of the cube being replaced by a, zza2,

3a, 2z, &c. The quantity e zr +ax,+ a2, is written a,
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or sometimes simply a, and the quantic is symbolically ex-
pressed as a. The cubic might equally have been written
(b, + bz, + bx,), (czx,+cx,+cx,)’, &ec., it being understood
that we are in like manner to substituate for 5,63, ¢ c,c,, &c., the
coefficients a,,, a,,, &c. Now the rule given by Aronhold
for the formation of invariants is to take a number of deter-
minants, whose constituents are the symbols a,, a,, a,; 3,,,, &ec.,
to multiply all together, and after multiplication to substitute
for the symbols aa,a, 5,05, the coefficients a,, Gu.,, &ec.
Thus Aronhold first discovered a fundamental invariant of
a ternary cubic by forming the four determinants =t ab.c,

St+bed, tcda, Z+dapb,; multiplying all together and
then performing the substitutions already indicated. This is
the same invariant which, in Prof. Cayley’s notation, would be
designated as 123.234.311.412. In order to obtain an in-
variant by this method, it 18 obviously necessary (as in Art. 154)
that the a symbols, b symbols, &c. respectively should each
occur n times. A product of determinants not fulfilling this
condition is made to express a covariant by joining to it such
powers of a, b, &c. as will make up the total number of
a’s, b’s, &c. to n. Thus the Hessian of a binary quadratic,
which in Cayley’s notation is 12 is in Aronhold’s (ab)'; but
the Hessian of any other binary quantic, which in Cayley’s
notation is still 12*, is in Aronhold’s (ab)*a """

163. In order to see the substantial identity of the two
methods, it is sufficient to observe that by the theorem of homo-
geneous functions any quantic % of the n* order differs only

. - d d . dy\"

by a numerical multiplier from (a:, , +a:,E' +, a—;’) U, 80
that if we write it (e, + a2, + a.2,)", the symbols a, a, a,
differ only by a numerical constant from the differential sym-
bols d% , &c. And we evidently get the same results whether
with Prof. Cayley we form determinants whose constituents are
d d d . .

&z Ix or with Aronhold, whose constituents are

an a:) aa‘
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And the artifice made use of by both is the same.
If we multiply together a number of differential symbols
(g;+ A g—) (% +p %) , &ec., and operate on U, it is evident
the result will be a linear function of differentials of U of an
order equal to the number of factors multiplied together; and
that in this way we can never get any power higher than the
first of any differential coefficient. When, then, it is required
to express symbolically a function involving powers of the
differential coefficients, the artifice used by Prof. Cayley was
to write the function first with different sets of variables, and
form such a function as (dia:‘ +7\.d—dy-‘) (dix,+ ”'diy,) UU, and
after differentiation to make the variables identical. So in like
manner Aronhold in his symbolic multiplication uses different
symbols which have the same meaning after the multipli-
cation has been performed. By multiplying together symbols
a;, a;, a, &c., we can only get a term such as a,;, of no higher than
the first order in the coefficients. When, then, we want to
express symbolically functions of the coefficients of higher order
than the first, the artifice is used of multiplying together
different sets of symbols a,, a;, a,; b, b,, b,, &c., the products
aa,a, bbb, cec, &ec., all equally denoting the coefficient a,,,.

The notations explained in this Lesson afford a complete
calculus, by means of which invariants and covariants can be
transformed and the identity of different expressions ascer-
tained. We shall in a subsequent Lesson give illustrations of
the applications of this method, referring those desirous of
further information to Clebsch’s valuable T'heorie der bindren
algebraischen Formen, in which work this symbolical method
is the basis of the whole treatment of the subject.
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164, S:yce iwvarians and oyvariarts retain their relations
ty ek fher, 1o watter bow the quantic Is Epearly trandformed,
it is plain that when vev.zbmstwl}'d)eserehmitismﬁ-
dent t 2o 3 by divusing the quantic in the simplest form to
which it is pasible to reduce it. This is only extending to
guantics in general what the reader is familiar with in the case
of ternary and quaternary qnantics; since, when we wish to
study the properties of a curve or surface, every geometer is
familiar with the advantage of choosing such axes as shall
reducs; the equation of this curve or surface to its simplest form.*
T'he simplest form then, to which a quantic can without loss
of generality be reduced, is called the canonical form of the
quantic, We can, by merely counting the constants, ascertain
whether any proposed simple form is sufficiently general to be
taken as the canonical form of a quantic, for if the proposed form
does not, cither explicitly or implicitly, contain as many con-
stants as the given quantic in its most general form, it will not
he pmmiblc always to reduce the general to the proposed form.t

* ]t must be owned, however, that as in the progress of analysis greater facility is
guined fu demling with quantics in their most general form, the advantage diminishes
of revlneing them to simpler forms,

¢ 1t in not true, however, conversely, that.a form which contains the proper number
of constanis is necomarily one to which the general equation may be reduced. For
whan wa andasvour by comparison of coefficients to identify such a form with the
genornl equation, nlthough the number of equations is equal to the number of
guantitlon to ba dotermined, it may happen that the constants enter into the equations
In suoh # way that all the equations cannot be satisfied. Thus

(@—a)+(y-pr=lk+my+n
In & form containing five constants, and yot is not one to which the geneml equatmn
of u lornary quadrio oan b reduced ; siuce the constants enter the equation in such a
way that thongh we have more than enough to make the coefficients of = and y and
the absolute terin ldentioal with thoso in any proposed equation, we have no means of
m' the ooefflolunts of &', xy and y*. A more important example is

FAR FAE AR R R 4 O
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Thus, a binary cubic may be reduced to the form X*+Y?*; for
the latter form, being equivalent to (&z + my)* + (I'z 4+ m’y)*, con-
tains implicitly four constants, and therefore is as general as
(ay by ¢, dYx, y)*. So, in like manner, a ternary cubic in its
most general form contains ten constants; but the form
X*4+Y*+Z°+6mXYZ contains also ten constants, since, in
addition to the m which appears explicitly, X, Y, Z implicitly
involve three constants each. This latter, then, may be taken
as the canonical form of a ternary cubic, and, in fact, some of the
most important advances that have been made in the theory
of curves of the third degree are owing to the use of the
equation in this simple and manageable form.

165. The quadratic function (a, b, cYz, y)* can be reduced
in an infinity of ways to the form z*+ 3", since the latter
form implicitly contains four constants, and the former only
three. In like manner the ternary quadric which contains six
constants can be reduced in an infinity of ways to the form
&'+ y'+2% since this last contains implicitly nine constants;
and, in general, a quadratic form in any number of variables
can be reduced in an infinity of ways to a sum of squares.
It is worth observing, however, that though a quadratic form
can be reduced in an infinity of ways to a sum of squares,
yet the number of positive and negative squares in this sum
is fixed. Thus, if a binary quadric can be reduced to tle
form &’ + y°, it cannot also be reduced to the form u* —+", since
we cannot have '+ y* identical with »"—+", the factors on
the one side of the identity being imaginary, and these on
the other being real. In like manner, for ternary quadrics we
cannot have &'+ y* — 2" ="+ v" + w', since we should thus have
'+ y'=2"+u'+ '+ w', or, in other words,

'+ y' =2"+ (le + my + n2)*+ ({z+ my+ n'z2)'+ (x4 m"y+n"2)",
and if we make z and y =0, one side of the identity would

where z, 4, v are hnear functions. In the case of a ternary quantic this form contains
implicitly fourteen ir dent tants, and therefore seems to be one to which the
quartic in general can be reduced. But Clebsch has shewn that a condition must be
fulfilled in order that a quartic should be reducible to this form, namely, the
vanishing of a certain invariant. See also Surfaces, Note to Art. 235,
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vanish, and the other would reduce itself to the sum of four
positive squares which could not be =0. And the same argu-
ment applies in general.

166. We commence by shewing that, as has been just
stated, a cubic may always be reduced to the sum of two cubes.
To do this is, in fact, to solve the equation, since when the
quantic is brought to the form X*®+Y?, it can immediately be
resolved into its linear factors. Now, if the cubic (a, b, ¢, d ¥z, %)*
become by transformation (4, B, C, DY X, Y ) then, since
(Art. 126) the Hessian (ax + by) (cx + dy) — (bx + cy)* is & co-
variant, it will, by the definition of a covariant, be transformed
into a similar function of 4, B, C, D, X, Y. That is to say,
we must have

(ac—0") & + (ad — bc) xy + (bd — ") y*
=(4C-B)X*+(AD- BC)XY+(BD-C") X"

Now, if in the transformed cubic, B and C vanish, the Hessian
takes the form 4DXY; and we see at once that we are to take
for X and Y the two factors into which the Hessian may be
broken up. When we have found X and Y, we compare the
given cubic with AX®+ DY"® and determine 4 and D by
comparison of coefficients.

Ex. To reduce 42 + 922 + 18z + 17 to the form AX% 4+ DY3, The Hessian is
(4x + 8) (6z + 17) — (3= + 6)?,
or 1522 + 50z + 15,
whose linear factors are z + 8, 3z + 1. Comparing then the given cubic with
A(z+32+D3z+1)3

we have 4 + 27D =4, 274 + D =17, whence 728D = 91, 7284 = 455, or A isto D
in the ratio of 5 to 1. The given cubic then only differs by & factor (viz. 8) from

6 (x+38)*+ (8= + 1)8,
and it is obvious that the roots of the cubic are given by the equation
3z + 1+ (z +8) 3J(5) = 0.

167. It is evident that every cubic cannot be brought by
real transformation to the form 4X°+ DY?®, for this last form
has one real factor and two imaginary; and therefore cannot
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ba identical with a ctibic whose three factors are edl. The
discriminant of the Hessian

4 (ac— b%) (bd - %) — (ad — bo)*

is, with digh clianged, the same as that of the cubic. When
the discriminant of the chbic is positive, the Hessian has two
real factors, and the cubic one real factor and two imaginary.
When it i3 negative, the Hessian has two imaginary factors,
and the ctbic three real. When it vanishes, both Hessian and
cubic have two equal factors, and it can be directly verified that
the Hessian of X'Y is X**

It is to be observed, that a quantic of the same degree cannot
always be reduced to the same canonical form. The itnpossibility
of the reduttion indicates some singularity in the form of the
quantic. Thus a cubic having a square factor candot be brought
to the form Aa’+ Dy’: a different candnical form must be adopted,
and the most simple onme is the form 2%, to which the cubic in
question Is obviotisly at once reducible.

168. In the same manuer as a tubic can be broaght to the
sum of tivo cubes, so in general any bindry quantic of odd
degree (2n — 1) can be reduced to the sum of n powers of the
(2n—1)* degree, a theorem due to Dr. Sylvester. For the
number of constants in any binary quantic is always one more
than its degree, or; in the present case, 2n; and wé have the
same number of constants if we take = tetms of the form
(e +my)™™*. The actual transformation is performed by a
method which is the generalization of that employed (Art. 166).
For simplicity; we only apply it to the fifth degree, but the
method is general. The problem then is to determine u, v, w,
so that (s, b, ¢, d, ¢, f Y=, y)* may =u*+v"+ . Now we say
that if we form the determinant

ax + by, bx+cy, cx+dy

bx + ¢y, cx+dy, de+ey
cz+dy, detey, ex+Jy |,

* In general, when a binary quantic has a square factor, this will also be a square
factor in its Hessian, as may be verified at once by forming the Hessian of z?¢p.
X
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the three factors of this cubic will be , v, w. For let
u=lz+my, v=lz+my, w=Uz+m"y;
then, differentiating the identity
(ay b, ¢, d, e, f Yz, y)° = v + " +
four times successively with regard to =, and dividing by 120,

we get
ax+by=l'u+ v+ "w.

Similarly differentiating three times with regard to z, and
once with regard to y,
bz + cy=Umu+ Pm'v+ I"m"w;
and so on.
The determinant, then, written above, may be put into the
form

Pu + I + ", Pout Pm'v+1%m"w , Polut Pm o+ 1"m'"™w
Pmut Um'v+ l"’m"w, Cmu+ U'm" v+ U"m"w, Im*u+ Tm" v +1"m"w

' 18,

Um ut Um o+ 1" m w, utlm®v + U'm™w, m's + m"v + m"'w

But (Art. 22) this is the product

Pu, ™, "w r, »,
lmu, Vm'v, U'm"w | | lm, Um’, U'm"”
mﬂu’ m”v , m’/’w m”’ m’l , m’l’ ,

or is wvw (Im” — U'm)* (U'm” = U'm’)* (I"m — lm”)*.
When, then, the determinant written in the beginning of
this Article has been found, by solving a cubic equation, to be

the product of the factors (z +Ay) (z + uy) (z+ vy), we know
that u, v, w can only differ from these by numerical coefficients,

and we may put
(@, 8¢, d, &, fY2, y)' = 4 (@ + M\y)* + B (2 + py)* +C (@ +v9)°;
and then 4, B, C are found by solving any of the systems of

simple equations got by equating three coefficients on both sides

of the above identity.
The determinant used in this Article is a covariant, which is
called the canonizant of the given quintic.
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169. The canonizant may be written in another, and perhaps
simpler form, namely,
¥y —y'z, yo', - 2
e, b ¢ d
b, ¢ d, e
4 d o f
This last is the form in which we should have been led to it if
we had followed the course that naturally presented itself, and
sought directly to determine the six quantities 4, B, C, A, u, »,
by solving the six equations got on comparison of coefficients of
the identity last written in Art. 168. For the development
of the solution in this form, to which we cannot afford the
necessary space here, we refer to Sylvester’s Paper (Philo-
sophical Magazine, November, 1851). Meanwhile, the identity
of the determinant in this Article  with that in the last has been
shown by Prof. Cayley as follows. We have, by multiplication
of determinants (Art. 22).

¥ —y'z, yo, -2 1,000
a b ¢ d | B 0, 0
b, ¢ d, e 0,z 9 0
¢ d ¢ S 0,0, ¥y

¥ 0, 0, 0

0, ax+ by, bx+cy, cx+dy

0, bx+cy, cx +dy, de+ ey

0, ox+dy, dz+ey, ex+fy |,

which, dividing both sides of the equation by 3’ gives the
identity required.

170. We have still to mention another way of forming the
canonizant. Let this sought covariant be (4, B, C, DYz, ),
where we want to determine 4, B, C, D; then (Art. 140)
(4, B, C, Dj[‘% y— %:)' will also yield a covariant. But if this

operation is applied to (x+Ay)" where x+M\y is a factor in
(4, B, C, DY=, y)°, the result must vanish, since one of the
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factors in the operating symbol is % -2 ‘%} Since, then, the
given quantic is by hypothesis the sum of three terms of the
form (2 + Ay)°, the result of applying to the given quantic the
operating symbol just written must vanish. Thus, then, we
have
A (d, e,/ Xz y)' = B(ey d) )z, 3)" + O (b ¢, dXz, 91

- D(a, b, Xz, y)*=0,
or, equating separately ta Q the coefficients of z*, zy, ¥, we
have ‘ g2 J
Ad—Bc+Cb- Da=0,
Af - Be 4+ Cd— D¢ =0,
whence (Art. 28) 4 is proportional to the determmant got by
a b ¢
b, ¢ d
¢, d, e

which values give for the caponizant the form gtated i in the last
Article.

suppressing the column 4 or and so for B, G, D,

171. We proceed now to quantics of even degree (2n).
Since this quantic contains 2n+ 1 terms, if we equate it to a
sum of n powers of the degree 2n, we have one equation more
to satisfy than we have constants at oyr- disposal. On the other
hand, if we add another 22" power, we have one constant too
many, and the quantic can be reduced to this form in an infinity
of ways. It is easy, however, to determine the condition that
the given quantic should be reducible to the sum of =, 2n*
powers. Thus, for example, the conditions that a quartic
should be reducible to the sym of two fourth powers, and that
a sextic should be reducible to the suym of three sixth powers,
are respectively the determinants

a b e ;:b’;',d
b, ¢, d |=0 16 & €1 9
* ! ey dy e f !
c’d,e ot Bat Bg |

de fiyg
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and so on. For, in the case of the quartic, the constituents of
the determinant are the several fourth differentials of the
quantic, and expressing these in terms of u and v precisely as
in Art. 168, it is easy to see, Art. 26, Ex. 5, that the determinant
must vanish, when the quartic can be reduced to the form
u'+.  Similarly for the rest. This determinant expanded
in the case of the quartic is the invariant already noticed (see
Art. 141, Ex. 1),

ace + 2bcd — ad® - eb* - ¢\

172. When this condition is not fulfilled, the quantic is re-
duced to the sum of n powers, together with an additional term.
Thus, the canonical form for a quartic is naturally taken to be
u'+ v+ 6Au*v'. We shall commence with the reduction of the
general quartic to this canonical form; the method which we
shall use is not the easiest for this case, but is that which shows
most readily how the reduction is to be effected in general.
Let the product, then, of w, v, which we seek to determine, be
(4, B, CXz, 3)", and lot us operate with (4, B, 03{‘% , =y
on both sides of the identity (a, b, ¢, d, e}z, y)* = u* + v* + 6Au™".

Now, as before, this operation performed on u* and on v*
will vanish, and when performed on 6Au®* it will be found to
give 12\uv, where A'=2(44C—B*)A. Equating then the
coefficients of @', xy, and * on both sides, after performing the
operation, we get the three equations

Ac—Bb+Ca= VA4,
Ad— Be +Cb=3\B,
de~Bd+Ce= N0,

whence eliminating 4, B, C, we have to determine A/, the
determinant

a, b, c—=N

b, c+iN, d =0,

c-V\, d, e
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which, expanded, is the cubic
A? — N (ae — 4bd + 3c") — 2 (ace + 2bed — ad® — eb® — c*) = 0,*

the coefficients of which are invariants. Thus, then, we have
a striking difference in the reduction of binary quantics to their
canonical form, between the cases where the degree is odd and
where it is even. In the former case, the reduction is unique,
and the system u, v, w, &c. can be determined in but one way.
When « is of even degree, however, more systems than one can
be found to solve the problem. Thus, in the present instance,
a quartic can be reduced in three ways to the canonical form,
and if we take for A" any of the roots of the above cubic, its
value substituted in the preceding system of equations enables
us to determine 4, B, C.

173. If now we proceed to the investigation of the reduction
of the quantic (a, a,, a, ..., y)™, the most natural canonical
form to assume would be %"+ v+ w™+ &e. + AW &e.,
there being n quantities u, », w, &c. But the actual reduction
to this form is attended with difficulties which have not been
overcome, except for the cases =2 and n=4. But the
method used in the last Article can be applied if we take for
the canonical form »™ + v™ + &c. + A Vuvw &ec., where, if

uow &e. = (4, 4,, 4, ... Y=z, y)",
V is a covariant of this latter function such that when Vuvw &e.

is operated on by (4, 4, j{(—f—y y = g—c)', the result is propor-

tional to the product wvw &c. Suppose, for the moment, that
we had found a function V to fulfil this condition, then, pro-
ceeding exactly as in the last Article, and operating with the
differential symbol last written on the identity got by equating
the quantic to its canonical form, we get the system of equations

Aa, —Aa,+Aa _ —&.=N4,

17 -1
1.,
'Aoan+l - Ala,. + Aga”_l - &C, = a A!,

+Ag, —&=——n— N4, &,

Aga,. . —Aa PYPY

1 n#1

* N.B.—The discriminant of this cubic is the same a8 that of the quaxtic,
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whence, eliminating 4, 4,, 4, &ec., we get the determinant

’
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and having found A" by equating to 0 this determinant expanded
(a remarkable equation, all the coefficients of which will be
invariants), the equations last written enable us to determine the
values of 4, 4, &ec., corresponding to any of the n+ 1 values

of N.

174. To apply this to the case of the sextic, the canonical
form here is »° + v* + w° + Vuvw, where, if uvw be

(4, 4,y 4,, ATz, y)’,
V is the evectant of the discriminant of this last quantic, and
its value is written at full length (Art. 142). Now it will
afford an excellent example of the use of canonical forms if we
show that in any cubic the result of the operation

_dy
dx’? _

performed on the product of the cubic and the evectant just
mentioned, will be proportional to the cubic itself. For it is
sufficient to prove this, for the case when the cubic is reduced to
the canonical form z*+ 3% in which case the evectant will be
@’ — o°, as appears at once by putting b=c=0,and a=d=1in
the value given, Art. 142. The product, then, of cubic and

d
(ay ayy ay a"IcTy )

* The determinant above written may be otherwise obtained as follows. Let
o', y be cogredient to z, y, and let us form the function

(# &+ 7) T+r ey —gon

which (Arts. 125, 181) we have proved to be linearly transformed into a function of
similar form. Equate to zero the n + 1 coefficients of the several powers z*, z*-ly, &c.,
and from these eliminate linearly the n + 1 quantities 2", 2'*-'y/, &c., and we obtain
the determinant in question.
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) 8 8
evectant will be «°— 3°, which, if operated on by ‘—f? — g gives

a result manifestly proportional to «*+3". And the theorem
now proved being independent of linear transforinatiofi, if true
for any form of the cubic, is true in general. Tlie canonical
form, then, being assunied as above, we proceed exactly 43 in
the last Article, and we solve for A from the equation

(%) a5 a, a;— 2

a9 ay o+t o =0
gy a,— I\ a;, a, ’
a;+ A, a, a4 ay

whichi, wheii expanded, will be found to contain ohly even
powers of A. If we suppose uvto reduced as above to its
canonical form a®+3* the three factors of which ate

z+y, z+oy, z+b'y,

where @ is a cube root of unity, then it is evident from the
. above that the corresponding canonical form for the sextic is

A (x+3)+ B(z+wy)*+C(z+o')* + D (2* - ).

It can be proved that if u, v, w be the factors of the cubic,
then the factors of the evectant used above are v—w, w—u,
u- v, so that the canonical form of the sextic may also be
written

u® + 0° + v + Muvw (4 — v) (v — w) (w —u).

175. In the case of the octavic the canonical form is

u’ 4+ 0° + v’ + 2° + AuPv'n’s,
for if we operate on u"v'w"* with a symbol formed according to
the same method as in the preceding Articles, the result will be
. proportional to uwvwe.
As for higher canonical forms we content ourselves with again
mentioning that for a ternary cubic, viz. 2°+ 3y + 2"+ 6mayz,
and that given by Sylvester for a quaternary cubic,

L+y +22+u+ 00
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LESSON XVI.

SYSTEMS OF QUANTICS.

176. It still remains to explain a few properties of systems
of quantics, to which we devote this Lesson. An invariant
of a system of quantics of the same degree is called a combinant
if it is unaltered (except by a constant multiplier) not only when
the variables are linearly transformed, but also when for any
of the quantics is substituted a linear function of the quantics.
Thus the eliminant of a system of quantics u, v, w is a com-
‘binant. For, evidently the result of substituting the common
roots of vw in u+Av+ pw is the same as that of substituting
them in «; and the eliminant of » +Av+ pw, v, w is the same
a8 the eliminant of wvw. In addition to the differential equa-
tions satisfied by ordinary invariants, combinants must evndently

also satisfy the equation
adl  vdl  ddl &e.
F2 T

It follows from this that in the case of two quantics a combinant
is a function of the determinants (ad’), (ac), (64’), &e.; in the
case of three, of the determinants (ab’c”), &c.; and will accord-
ingly vanish identically, if any two of the quantics become:
identical. If we substitute for u, v; Au+ pv, Nu + u'v, every
one of the determinants (ab’) will be multiplied by (A" - AN'u);
and therefore the combinant will be multiplied by a power
of (Mu'~ ') equal to the order of the combinant in the co-
efficients of any of the quantics. Similarly for any number of
quantics. There may be in like manner combinantive covanants,
which are equally covariants when for any of the quantics is
substituted a linear function of them. For instance, the
Jacobian (Art. 88)

“n u,, u:

Yy Yy Y

W,y Wy W,

b
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if we substitute for w, lu + mv 4 e, for v, F'u+ m'v 4+ n'w, &e.
by the property of determinants, becomes the product of the
determinants (Im'n”), (v,v,0,). The coefficients of a combinan-
tive covariant are also functions of the determinants (ab’), (ac);
(ab'c”), &e.

177. If u=(a, b, c... =z, )", v=[(a’, ¥, c"... Xz, 3)" be any
two binary quantics of the same degree, then x+ kv or
(a+ka'yb+ &...Yz, y)", where we give different values to %,
denotes a system of quantics which are said to form with u, v
an tnvolution. Now there will be in general 2 (n — 1) quantics
of the system, each of which will have a square factor. For
‘the discriminant of a quantic of the n" degree is of the
order 2(n—1) in the coefficients (Art. 105). If then we sub-
stitute a + ka’ for a, b + kb’ for b, &c., there will evidently be
2 (n —1) values of %, for which the discriminant will vanish.

If we make y=1 in any of the quantics, it denotes n points
on the axis of 2. We bave just proved that in 2 (n— I) cases,
two of the n points denoted by u+Aiv will coincide; or, in
other words we may say, that there are 2 (n— 1) double points
in the involution.

When u +%v has a square factor z—a, we know that a
satisfies the two equations got by differentiation, viz. u, + kv, =0,
u,+kv,=0, and therefore will satisfy the equation got by
‘eliminating % between them, viz. wuv,—up,=0. Now
u,v, — uv,, which is of the degree 2 (n— 1), is the Jacobian of
u, v; and we see that by equating the Jacobian to 0, we obtain
the 2(n~1) double points of the involution determined by
u, v.*

178. If u and v have a common Jactor, this will appear as a
square factor in their Jacobian. First, let it be observed, that
since nu=au, +yu, nv=av,+yv, then if we write J for
u,v, —wuw,, we shall have n (uv, - vu,) =aJ, n (uv, —vu,) =—yJ.

* In like manner, for a ternary quantic, the Jacobian of 4, v, w is the locus of
the double points of all curves of the system u + kv + i which have double points.
And similarly for quantics with any number of variables,
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Differentiating the first of these equations with regard to y, ard
the second with regard to =, we get
n(uv,—vuy)=2J, n (m’ul —ou,)=-yJ.

It follows from the equations we have written, that any value a
of  which makes both u and v vanish, will make not only J
vanish but also its differentials J,, J;, and therefore x —a must
be a square factor in J.

Or more directly thus: let u=8¢, v=8Y, where 8=Ilr+my;

then U= lp+ B¢|7 =me+ B¢s) v = l‘!’ + B‘P‘u V= my + B‘P‘u H
and U, 0~ U0 =8 (¢|‘Ps— ¢n"'|)+ B l(¢\p‘s— ¢s‘l’) +Bm(¢."’—'¢‘}"|);

whence (n - 1) (u,v, —%,) :
= (n=1) B (d¥,— $,¥) + B (lz + my) (,9,— $,¥)
=nf8" (¢, ¥, — $,¥)-

It follows from what has been said, that the discriminant of the
Jacobian of u, v must contain R their resultant as a factor;
since . whenever R vanishes, the Jacobian has two equal roots.
Thus in the case of two quadratics.

(@) b, Xz, y)"y (¥, Yy 3)Y
the Jacobian is  (ab') z* + (ac) zy + (5¢) ¥*,
whose discriminant is 4 (ad’) (b¢") — (ac’)*, which is the eliminant of
the two quadratics. In the case of quantics of higher order,
the discriminant of the Jacobian will, in addition to the resultant,
contain another factor, the nature of which will appear from
the following articles.

~ 179. It bas been said that we can always determine %, sa
that » + kv shall have a square factor. But since two conditions
must be fulfilled, in order that u+ v may have a cube factor,
k cannot be determined so that this shall be the case unless a
certain relation connect the coefficients of w and v. This condi~
tion will be of the order 3 (n — 2) tn the coefficients both of u and v.
~ If (z—a)® be a factor in u+ kv + lw, x —a will be a factor
in the three second differential coefficients, or x =a will satisfy
the equations

: u,_,+kvu+lw“=0, ﬁ,,+kv,,+lw“=0, Uy + kv, + lw, =0,
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whence eliminating k and [, z = a will satisfy the equation

L) tn’ x,

Yy Copp ¥y
M, Ty, =0.

If then we use the word treble-point in a sense analogous
to that in which we used the word double-point (Art. 177),
we see that the equation which has been just written gives
the treble points of the system u+kiv+lc; and since the
equation is of the degree 3 ‘n —2), there may be 3 (n —2) such
treble points. But we could find the number of treble points
otherwise. Suppose we bave formed the condition that u + kv
should admit of a treble point, and that this condition is of the
order p in the coefficients of u. If in this condition we sub-
stitate for each coefficient (a) of u, a + la”, we get an eqnation
of the degree p in I; and therefore p values of ! will be
found to satisfy it. In other words, p quantics of the system
%+ kv+ lw will have a treble point. It follows then from what
has just been proved that p=3(n—2). And the same argu-
ment proves that the condition in question is of the order
8 (n~2) in the coefficients of ».

This condition is evidently a combinant; for if it is possxble
to give such a value to %, as that u+kv shall have a cube
factor, it must be possible to determine %, so that (u 4+ mv) + &v
shall have a cube factor.

180. If u+ kv bave a cube factor (z — a)®, then the Jacobian
of u and v will contain the square factor (x—a). For the two
differentials u, + Av,, u,+ kv, will evidently contain this square
factor, and therefore it will appear also in the Jacobian, which
may be written (u, + kv,) v, — (v, + kv,)) v,, If then 8=0 be the
condition that » + kv may have a cube factor, S will be a factor
in the discriminant of the Jacobian, since if S=0 the Jacobian
has two equal roots, and therefore its discriminant vanishes.

If B be the resultant, the discriminant of the Jacobian can
only differ by a numerical factor from RS. For since the
Jacobian is of the degree 2(n—1), its discriminant is of the
degree 2{2 (n—1)~—1} in its coefficients, which are of the first
order in the coefficients of both » and v. Now R is of the order
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n in each set of coefficients, 8 of the order 3 (n—2). Both
these are factors in the discriminant; and it can have no other,

since .
n+3(n—-2)=2{2(n-1)-1}.

181. The discriminant of u+ kv, considered as a function
of k, will have a square factor whenever » and v have a
common factor. In fact (Art. 111) the discriminant of u + kv
will be of the form (a-+4a’)p + (b+4b')*y. But if u and v
have a common factor, we can linearly transform u and v
so that this factor shall be g, that is to say, so that both a
and a’ shall vanish. The discriminant will therefore have the
square factor (b+ k')*; and since the form of the discriminant
is not affected by a linear transformation of the variables, it
always has a square factor in the case supposed.

It follows that if we form the discriminant of »+ Av, and
then the discriminant of this again considered as a function of
k, the latter will contain as a factor & the resultant of » and v.
For it has been proved that when R =0, the function of %
has two equal roots, and therefore its discriminant vanishes.
For example, the discriminant of a quadratic ac— 4" becomes,
by the substitution of a + ka’ for e, &ec.,

(ac—b") + k (ac’ + ca’ — 28¥) + k* (d’¢’ - b”),
whose discriminant is
4 (ac—b") (a’d — b™) - (ac + ca’ — 2b0')".

But this is a form in which, as was shewn by Boole, the
resultant of the two quadratics (a, b, c}Yz, ), (a, ¥, Y=, y)*
can be written (cf. Ex. 6, p. 24). This form, all the component
parts of which are invariants, is sometimes more convenient than
that given (Art. 178). In the case of quantics of higher order,
the discriminant of the discriminant will have R as a factor, but
will have other factors besides.

182. If u have either a cube factor or two distinct square
factors, the discriminant of u+4v will be divisible by 4*. For
if the discriminant of « be A, that of u + kv is

‘ A+k(q'g—3+b'%+&c.)+&c.
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Now when u has a square factor A vanishes; and it appears
from the expressions in Art. 114, that if either three roots of
u are equal a = 8 = v, or two distinct pairs be equal a =8, y =34,
then all the differentials of A, %—3,
the coefficient of % in the expression just given vanishes. The
discriminant therefore contains %* as a factor. It is evident
hence that if w+av have a cube or two square factors, the
discriminant of u + kv will be divisible by (k —a)"; since u+ kv
may be written u +av+ (k—a)v. If then, as before, S=0
express the condition that the series u+ kv may include one
quantic having a cube factor; and if 7’=0 be the condition
that it should include one having two square factors, both S
and 7' will be factors in the discriminant with respect to % of
the discriminant of u+/%v. For we have just seen that the
discriminant has a square factor if either S=0or T'=0. We
proved in the last Article that the discriminant has B as a
factor ; and, in fact, the discriminant will be, as Prof. Cayley
has observed, RS®*T™. T do not know whether there is any
more rigid proof of this than that we see that there is no
other case in which the discriminant of u+%v has a square
factor ; that we find in the- case of the third and fourth degrees
that S and T enter in the form S§°, 7™; and that we can thus
account for the order in general. For the discriminant of u + kv
is of the order 2 (n—1) in %, and the coefficients are of the
order 0, 1, ..., 2 (n — 1) in the coefficients of either quantic. The
discriminant then with respect to % will be of the order
2(n—1)(2n—3) in the coefficients of either quantic. But B
is of the order n, S of the order 8 (n —2), and it will be proved
in a subsequent lesson that 7 is of the order 2 (n—2)(n~ 3),
and

&ec., vanish; and therefore

2(n-1)(2n-3)=n+9(n-2)+4(n—2)(n-3).

183. It was stated (Art. 176) that every combinant of u, v
becomes multiplied by a power of (Ax’—A's) when we sub-
stitute Au + uv, Nu+ u'v for u, v. It will be useful to prove
otherwise that the eliminant of u, v has this property. First,
let it be observed that if we have any number of quantics
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one of which is the product of several others, u, v, ww'w”, their
resultant is the product of the resultants (uvw), (uvw'), (uvw").
For when we substitute the comwmon roots of », v in the last
and multiply the results, we evidently get the product of the
results of making the same substitution in w, w’, »”. Again,
the resultant of u, v, kw is the resultant of u, v, w multiplied by
k™ since the coefficients of w enter into the resultant in the
degree mn. If now R (u, v) denote the resultant of u, v, which
are supposed to be both of the same degree n, we have

PR (Au+ po, Nu+ p'v) =R (M'u + pp'vy Nu + p'v)*
=R{(M = Np)u, Nu+ p'v) =M —Np)" B (u, N'u+ u'v)
= (M= V)" B (3, )

whence R (Mu+ pv, Nu+ p'v) =(Ap" —N'p)" R (u, v).

By the same method it can be proved that the eliminant of

Au+ po+vw, Nu+ p'v+vVw, Nu+ p"v +v'w is (Awv’)" times

that of u, v, w, and so on.

184. If U, V be functions of the orders m and n respectively
in u, v, which are themselves functions of @, y of the order p,
and if D be the result of eliminating u, v, between U, V; then
the result of eliminating @, y between U, V will be D" times
the mn® power of the resultant of u, v. For U may be re-
solved into the factors u — av, u — Bv, &c., and V into u—d'v,
u— v, &c. And, Art. 183, the resultant of U, V will be the
product of all the separate resultants » — av, v —a’». But one of
these is (x — a')" R (u, v). There are mn such resultants. When
therefore we multiply all together, we get the mn" power of
R (u, v) multlphed by the p* power of (a—a) (a— a/’, &e.
Baut this last is the eliminant of U, V with respect to u, v

185. Similarly, let it be required to find the discriminant,
with respect to @, y, of U, where U is a function of u, »
First, let it be remarked (see Art. 110) that the discriminant
of the product of two binary quantics u, v is the product of the

* The resultant of u+- kv, v, being the same as the resultant of u, v, A.rt. 176,
Nnunubtnctpumeathe seeondqunntlc from the first.
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‘discriminants of u and v multiplied by the square of their
resultant.

If then U=(u—av) (x — Bv) &ec., the discriminant of U will
be the product of the discriminants of u— av, v —Bv, &e. by
the square of the product of all the separate resultants u — av,
u—Bv. But, as before, any of these will be (x — 8)* R (v, v).
If then m be the degree of U considered as a function of u, v;
there will be 4m (m — 1) separate resultants, and the square of
the product of all will be (a- 8)" (a —)*, &e. x B~ (u, v).
But (a — B)* (2 — )", &c. is the discriminant of U considered as
a function of u, v. If then we call this A, we have proved
that the product of the squares of the separate resultants is
A’R™™™,  Let us now consider the product of the discriminants
of u — av, u— Bv, &c. ; this is the result of eliminating 6 between
the discriminant of u— fv, which is a quantic of the order
2 (p—1) in @ and the quantic of the m* order got by sub-
stituting w=0v in U. Or this product has been otherwise
represented by Dr. Sylvester. If a, b, be the coefficients of
«® in u, v, then (Art. 108) the resultant of u — av, u,—av, will
be a,— ab, times the discriminant of ¥ —av. But

R (4, v) B (u—av, v,—av,) = B (u—av,u v—avv,) = B (u—av, v,v—-uv,).

Now (Art. 178) p (w,v—uv) =yJ where J is wuv,—up,, and
R(u—av,y) is a,— ab,. It appears thus that the discriminant
of u— av differs only by a numerical factor from the resultant
of (u— av, J) divided by B (u,v). The product then of all the
discriminants will be the—resultant of J and the product « — av,
u— Bv, &c., in other words, the resultant of U, J—divided
by the m* power of B (u,v). Thus we have Dr. Sylvester’s
result (Comptes Rendus, LviIL., 1078) that the discriminant of
U with respect to x:y is AR (u, v)™™™ R(U, J). But it will
be observed that the result expressed thus is not in its most
reduced form since B (U, J) contains the factor R (u, v)™.

186. We have next to see what corresponds in the case of
ternary and quaternary quantics to the theory just explained
for systems of binary quantics. Let then w and v be two
ternary quantics, and let us suppose that we have formed the
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discriminant of » + kv. Then (for certain relatiotis between the
quantics u, v) this discriminant considered as a function of %
will have a square factor. In the first place the discriminant
will have'a square factor, if the curves represented by w» and
v touch each other. For we have seen (Art. 117) that if the
equation of a curve be az"+ b5 'x + ¢z 'y + &e. =0, its dis«
criminant is of the form a0 + 5'$ + beyr + ¢xy.  The discriminant
then of u + kv will be of the form (a + ka’) 6 + (b + kb')* ¢ + &e.
Baut if we take for the point xy, a point common to % and v,
both a and &’ will vanish; and if we take the line y for the
common tangent, both 4 and 4" vanish; and the discriminant
will be of the form (c+ k¢)* x; and therefore will always have
a square factor in the case supposed.

187. Again, the discriminant will have a square factor if u
have either a cusp or two double points. The vanishing of the
discriminant A of a ternary quantic gives the condition that
,, 4, u, shall have a common system of values. If, however,
u have either two double points, or a cusp, u,, u,, u, will have two

17 7g)

systems of common values, distinct or coincident, and therefore
(Art. 103) not only will A vanish, but also its differentials with
respect to all the coefficients of . The discriminant then of » + v
being in general A+Ic(a‘iA + édibé+&c.)+&c. will in this
case be divisible by 4°. And as in Art. 182, it will be divisible
by (% — a)* if the curve u + av have either a cusp or two double
points.

Let then R=0 be the tact-invariant of u and v, that is to
say, the condition that the two curves should touch; S=0
the condition that in the system of curves u+ kv shall be
included one having a cusp; and 7'=0 the condition that
there shall be included one having two double points. It has
been proved that R, 8, T are all facters in the discriminant
of the discriminant of u+ kv, considered as a function of
%. In fact this discriminant will be BS*T". TFor an investi-
gation of the orders of R, S, T, when both curves are of
the same degree, see Higher Plane Curves, Art. 399.

. The tact-invariant B is of the order 3n (n— 1) in the coeffi-
Z
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cients, 8 of the order 12'n—1)(n—2), and T of the order
§in—1)(n—2;(32"—38—11): the discriminant of u+ kv in
regard to z: y is of the order 3/ —1)* and the discriminant of
this with regard to k of the order 3 (» —1)*(3a*—6n +2), and
we bave identically

8(n—17(3n"—6n +2)
=3n(n-1)+36(n—1)(n—2)+3(n—1)(n—2) (3n*— 3n—11),

showing that the order of the discriminant is equal to that
of BS*T".

188. The theorem given, Art. 110, for the discriminant of
the product of two binary quantics cannot be extended to
ternary quantics; for the discriminant of the product of two
will, in this case, vanish identically. In fact, the discriminant
is the condition that a curve shall have a double point; and
a curve made up of two others has double points; namely,
the intersections of the component curves. Or, without
any geometrical considerations, the discriminant of wv is
the condition that values of the variables can be found to
satisfy simultaneously'the differentials uv, + vu,, uv, +vu, &ec.
But these will all be satisfied by any values which satisfy
simultaneously u and v; and such values can always be found
when there are rore than two variables.

But the theorem of Art. 110 may directly be extended to
tact-invariants. The condition that » shall touch a compound
curve vw will evidently be fulfilled if w touch either v or w,
or go through an intersection of them, For an intersection
counts, as has been said, as a double point on the complex
curve; and a line going through a double point of a curve is
to bo considered doubly as a tangent. Hence if 7'(, v) denote
the tact-invariant of u, v, we have

T (uy vw) = T'(u, v) T'(u, w) {R (4, v, w)}', _
when B (4, v, w) is the resultant of u, v, w. And the result
may be verified by comparing the order in which the coefficients

of u, v, or w occur in these invariants. Thus, for the coefficients
of u, we have

m+p)(n+p+3m =-8)=n(n+2m—38)+p(p+2m—3)+2rp.
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189. The theory of the tact-invariants of quaternary quantics
is given in Geometry of Three Dimensions, p. 544 ; and there is
not the least difficulty in forming the general theory of the class
~ of invariants we have been considering, to which Dr. Sylvester
proposes to give the name of Osculants. Let there be ¢ quantics,
U, V, W, &c. in k variables; then the osculant is the condition
that for the same system of values which satisfy U, ¥V, &ec. the
tangential quantics 2U/ + y U, + &c., &c. shall be connected by
an identical relation

MU+ &)+ p (V) + &) + v (@ W) + &e.) + &e. = 0.

In other words, the osculant is the condition that the equa-
tions U=0, V=0, &c., and also the system

U, U, U, &e
Vo Vo V, &
W, Wy W, &e.

=0

can be simultaneously satisfied. This latter system having %
columns and ¢ rows is equivalent to £~ ¢+ 1 equations; there-
fore this system combined with the given ¢ equations ‘is appa-
rently equivalent to & + 1 equations in % variables. It is really,
however, only equivalent to k equations; for writing U=0 in
the form zU,+ yU, + &c.=0, and similarly for ¥, &c, we see
that when the system of determinants is satisfied, and all but
one of the equations U=0, V=0, W=0, &c., the remaining one
must be satisfied also. The system then being equivalent to %
equations in % variables cannot be simultaneously satisfied unless
a certain condition be fulfilled. The order of this condition,
in the coefficients of U, is found by the same method as in
Geometry of Three Dimensions. We write for U, U+ Au, and
we examine how many values of the variables can simultaneously
satisfy the <+ 1 eqnations ¥, W, &c., and the system equivalent
to k— 1 equations
v, U, U, & ||=o0.
%, %, u, &ec.

A Vo Vo Vy &e

b W, Wy W, &e
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The order of the i —1 equations ¥V, W, &, is the product of
their degrees n, p, &c.; and the order of the osculant in the
coefficients of U is the product of this number by the order
of the system of determinants, which is found by the rule
given in a subsequent Lesson on the order of systems of
equations.

When we are given but one quantic, the osculant is the
discriminant ; when we are given & quantics in & variables, the
osculant is the resultant. The theorem of Art. 110 may be ex~
tended to osculants in general ; viz. that if we form the osculant
of £—1 quantics in % variables, and if the last be the product
of two quantics U, V, then the osculant of the entire system
will be the product of the osculant of the system of the other
k —2 with U, that of the system of k¥ — 2 with V, and the square
of the resultant of all the quantics.

190. We have already seen (Art. 151) how the invariants
and covariants of a single quantic are derived from those of
a system of quantics in the same number of variables; and we
wish now to point out how the invariants and covariants of
a single quantic are connected with those of a system of quantics
in a greater number of variables. Suppose, in fact, we had two
ternary quantics, geometrically denoting two curves, we can,
by eliminating one variable, obtain a binary quantic satisfied
by the points of intersection of these curves; and it is evident,
geometrically, that the invariants of the binary quantic (ex~
pressing the condition, for instance, that two of these points
should coincide, or should have to each other some permanent
relation) must also be invariants of the system' of two ternary
quantics. Conversely, we may consider any binary quantic as
derived from a system of two ternary quanties; for we have
only to assume X=¢(z,y), Y=+ (z,y), Z=x(z, ), equa~
tions which in themselves imply, by elimination of « and y,
one fixed relation between X, Y, Z, and from which, combined
with the given binary quantic equated to zero, we can obtain a
second such relation. The simplest example of such a transfor-
mation is that investigated by Mr. Burnside Quarterly Journal x.
(1870) p. 211; (compare Conics, néte pp, 386—7), where ¢, ¥, x
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ere quadratic*® functions of = and y. The substitution is then
reducible by linear transformation to X=2a", Y =2zy, Z=3',
giving the fixed relation 4XZ- Y*=0. By making these
substitutions for z' &c. in a binary quantic of even degree,
we have at once a second relation between X, Y, Z; if the
quantic be of odd degree, it can be brought to an even
degree by squaring. The resulting relation is obviously not
unique, but is of the form ¢, + ¢, ,(4XZ7- Y*), where ¢,
is any one form of the relation, and the coefficients in ¢, , are
arbitrary. Geometrically, the binary quantic of the m™ degree
is thus made to represent m points on a conic, determined when
m is even by the intersection of the conic with a curve of the
order §m, and when m is odd with a curve of order m touching
the conic in m points. Among these forms there is always one
whase invariants and covariants are also invariants and co-
variants of the given binary quantic.}

Thus the binary quadratic az® +2bzy + cy” is replaced by the
system aX+bY + ¢Z, 4XZ— Y, and geometrically denotes the
two points of intersection of a line with a conic. The dis-
criminant of the quadratic is also an invariant of the system;
that whose vanishing expresses the condition that the line shall
touch the conic. So, in like manner, the system of two binary
quadratics ax’+ 2bzy + ¢y, a’x® + 2b'xzy + ¢'y", gives rise to the
system of a conic and two lines. The invariant of the binary
system ac +ca’—2bb" (Art. 151) is also an invariant of the
ternary system ; viz., its vanishing expresses that the lines are
harmonic polars with respect to the conic.

If three lines L, M, N be mutually harmonic polars with
respect to a conic, we know (Conics, Art. 271) that the equation
of the conic may be written in the form V= IL*+ mM*+ nN*=0,
whence we infer immediately that if three binary quadratics be

* If linear functions had been taken, the transformation could be reduced to
X=2, Y=y, Z=0, and the binary quantic of the n** degree would represent
# points on the line Z (see Art. 177).

+ This form can be found by operating on ¢om+ Pom-z (4XZ — ¥ %) with the form
reciprocal to 4XZ— Y73, viz. , and equating to zero the coefficients of

every term in the result.

L
dXdz~ ars



174 SYSTEMS OF QUANTICS.

connected in pairs by the relation ac’” + ca’ — 268" = 0, their squares
are connected by an identical relation IL*+mM®+2N*=0,
for V vanishes identically when we return to binary quantics.

To the Jacobian of two binary quadratics answers, for the
system of two lines and a conic, the line 2(ab") X +(ac’) Y +2(5¢) Z,
which is also a covariant of that system. In fact, it is the polar
with respect to the conic of the intersection of the two lines.

More generally, the Jacobian of any system u, v will be
transformed into the Jacobian of the system formed by U, V,
and the fixed conic. For let u, u, u, denote the differentials
of u with respect to X, Y, Z, which, it will be remembered,
denote x*, 2zy, y* respectively, then the Jacobian is

au, +yu,, xu,+yu, ¥h—ay, & -3, X
ml + vz, a:v’ + v. Sl Uy YUy U [T Uy YUy Y, |y
AR AL AR A Yy Yy Uy Y Y 2 Y

but the terms in the first line are proportional to the differentials
of 4XZ - Y*,

The same method being applied to the discussion of the
biquadratic, it is found to be equivalent to the system of twa
conics, viz. the fixed conic 4XZ— Y, and the conic

aX*+cY*+eZ' +2dYZ + 2¢ZX + 26X Y =0,

the discriminant of the latter conic being also an invariant of
the quartic (Art. 171). So again the system of two binary
quartics is equivalent to a system of three conics. We shall
have occasion in the next Lesson to give further illustrations
of this method : it has been applied by Mr. W. R. W. Roberts
to the system of two cubics which involve properties of a
twisted cubic, Proc. Lond. Math. Soc. vol. X111. (1881), and the
relation between binary and quaternary forms is developed
with the general symbolic formule in a paper by Dr. Linde-
mann, Math. Ann. (1884) XXIIL. p. 111, &c.
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LESSON XVIIL

APPLICATIONS TO BINARY QUANTICS.

191. HaviNG now explained the most essential parts of
the gereral theory, we wish to illustrate its application by
enumerating the different invariants and covariants of binary
- quantics for the lower degrees. If Sand 7 be invariants of the
same degree, or covariants of the same degree and order, and &
any numerical factor, then S+ %7, which will of course be also
an invariant or covariant, will not be reckoned in our enumera-
tion as distinct from the invariants § and 7. And, generally,
any invariant or covariant which can be expressed as a rational
and integer function of other invariants and covariants of the
" same or lower degrees is said to be reducible, and will not be
considered as distinct from these latter functions. It is otherwise
if the expression be not rational and integer. Thus, if S be an
invariant of the second and 7' of the third degree, then though
8°+ &T* would not be regarded as a new invariant, yet if it be
a perfect square, and we have B*= 8’ + k7", we count B as a
new invariant distinct from S and 7} and call it irreducible.

It was proved in Art. 121 that -a binary quantic has n—3
absolute invariants, and in Art. 122 that from any two ordinary
invariants an absolute invariant can be deduced. We should
infer, therefore, that the number of independent ordinary
invariants is one more than the number of absolute invariants;
or, in other words, that a binary quantic of the 2 order has
n—2 invariants, in terms of which every other invariant can be
expressed. But as it does not follow that the expression is
necessarily rational, we do not in this way obtain any limit to
the number of irreducible invariants. And so as regards the:
covariants (including in this expression the invariants) we
shall presently see that for a quantic of the n" order there
are, inclusive of the quantic itself, n» covariants, such that
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every other eovariant mulriplied by a power of the quantic
is equal 1o a rational and integer function of the » covariants;
thus, each such other covariant is a rational, but not an integer
fanction of the = covariants; and we do mot hereby obtain
any himit to the number of the irreducible covariants. We have
stated (Art. 145 the method by which Prof. Cayley originally

to determine the number of distinct covariants and
invariants. He did not at the time succeed in obtaining any
limit to their number for quantics above the fourth order. Sub-
sequently Gordan proved (see Crelle, vol. LXIX., or Clebsch,
Theorie der bindren algebraischen Formen, p. 255, also his Pro-
gramm for the University of Erlangen, Ueber das Formensystem
bindrer Formen, Leipzic, 1875), that for a binary quantic or
system of binary quantics, the number of distinct invariants
and covariants is always finite; and he has given a process by
which when we have the complete system of invariants and
covarisnts for a quantic of any degree, we can find the system
corresponding to the next higher degree. His proof, which is
founded on an analysis of the different possible expressions by
the symbolical method explained Lesson x1v., will be found
in a subsequent Lesson on that method. Later still, Prof.
Sylvester has investigated the whole subject by Prof. Cayley’s
method, founded on the theory of the partition of numbers, in
various memoirs in the Comptes Rendus, vol. LXXXIV. pp. 974-5,
1113-6, &c., and subsequent volumes, as also in the American
Journal of Mathematics.

192. It will be convenient to bear in memory what was
proved, Art. 147, that a covariant is completely known when
its leading coefficient, or, as we have there called it, its
source, is known; this coefficient being any function of the
differences of the roots of the quantic.* Thus take the quantic
(ay b, c...Xx, )", we know that, in the case of the quadratic,
(ac—?") is an invariant; and if we desire to form the covariant

¢ Buch functions have been called semi-invariants or seminvariants, as they remain
unaltored (scc Art. 62) when we substitute z + A for z, but not necessarily when we
substitute y + A for y; and as they satisfy one of the differential equations given in
that articlo, but not necessarily the other.
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(ac - &*) 2’ + &c., having this leading term, we observe that
the weight of the given soturce and its degree in the coeffiz
cients are each =2, so that writing 6=2 in the formula
(Art. 147) 2=4 (n6 —p) we have p=2(n—2). The other
coefficients are found by the method explained in that article;
thus the covatiant is found to be
(ae—b%) £ " 4 (n — 2) (ad = be) 2™
+(n—2){(bd~ &) + § (n - 3) (ae — )} 2™ + &;

It follows aléo from what has been stated in the article referred
to; that any algebraic relation between the sources of different
covariants implies a corresponding relation between the co<
variants themselves. L

Prof. Cayley has tised this principle in attempting to form
the complete system of the covariants of a binary quantic;
ahd though it does not lead to any general theory it furnishes
the most elementary and satisfactory proof of the numbers of
concomitants for fatictions of the first four degrees. The leading
coefficient of any covariant being a function of the differences
must (Art. 62) satisfy the differential equation

_ (ad; + 2bd, + 8od, + &c) U=0:

and we assume that U is a rational and integer function of
a, b, ¢, &. Now; if we solve the partial differential equation,
we find that U must be a function of

a, ac—b%, a'd — 3abc + 21*, a'e — $a'bd + Gab'c — 38%, &,
where the law of formation of the successive terms is obvious;
and, in fact, the covariants of which these terms are the leaders
are each the Jacobian of the preceding covariant in the series;
combined with the original guantic. We shall refer to these
quantities a8 L, L, L, &c. and we ses that the leading
coefficient of any covariant must be a function of these quan<
tities: and it must of course be a rational function of them,
The question i whether there are any rational, but not in<
teger functions of L, L, L, &c., which are rational and
integer functions of a, b,¢; and a little consideration shows
that the only admissible form is that of a rational and integer
function divided by a power of L, that is a. For, the leading

AA
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coefficient in question is a rational function of the coefficients
ta, ,¢,...); and if we make in it =0, it becomes a rational
function of a, ¢, d, &c., and by multiplying by a suitable power
of a it can be made an integer function of a, ac, a*d, a’, &e.
But these are the values of L, L, &c. on the supposition of
b=0. Thus we see that the leader of any covariant can only
be the quotient by a power of a of an integer function of these
n quantities. Conversely, the problem of finding all possible
covariants is the same as that of finding the new functions
which arise when rational and integer functions of L, L,, &c.
are formed which are divisible by a. To find these functions
we make a=0 in L, L, &c. and eliminate 4 between any
pair; we thus get a function of L, &c. which vanishes on the
supposition of a=0, and therefore is divisible by a power of
a. By performing the division we obtain the leader of a
new covariant. This again may be treated in like manner,
by putting @ =0 and examining whether it be possible
to eliminate the remaining coefficients. This method will be
better understood from the applications which will be made
presently.

It is obvious that the same considerations apply to the still
simpler forms—of lowest degrees—of particular integrals of the
partial differential equation @, ac— b*,a’d— 8abc+2b°, ae—4bd + 8¢",
a’f— 5abe + 2acd — 6bc’ + 8b°d, &ec. of which the second, fourth,
&c. are the successive quadrinvariants of even quantics as they
arise, and the third, fifth, &c. are the sources of the evectants of
the successive quartinvariants of the correspondmg odd quanncs
a8 they arise. See Art. 142.

193. We have already stated the principal points in the
theory of the quadric form (a, b, cY,¥)" Since there are
but two roots and only one difference, there can be no funetion
of the differences of the roots but a power of this difference;
and the odd powers, not being symmetrical functions of the
roots of the given quadratic, cannot be expressed rationally in
terms of its coefficients. It thus immediately follows that the
quadric has no covariants other than the quantic itself, and ne
invariant other than the powers of the discriminant, ac— &%
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whieh is proportional to (x—8)". We have already shewed
(Art. 157) that it follows, by Hermite's law of reciprocity,
that only quantics of even degree can have invariants of the
second order in the coefficients. These are the system whose
symbolical form is 12°, explained Art. 153,

ac— b, ae — 4bd + 3¢*, ag — 6bf + 15ce — 104", &c.

If we make y=1 in the quadratic it denotes geometrically a

system of two points on the axis of , and the vanishing of the

discriminant expresses the condition that these points should

coincide, Art. 177. '
System of two quadrics. This system

(a) b, Xz, )", (o, ¥y Yz, 9)

has the invariant 12* or ac’ + ca’— 265'. When each quantic is

taken to represent a pair of points ih the manner just stated,

the vanishing of this invariant expresses the condition (see

Conics, Art. 332) that the four points shall form a harmonic

system, the two points represented by each quantic being con-
jugate to each other. We have also proved (Art. 177) that the
-covariant 12 (or the Jacobian of the system) represents the
foci of the system in involution determined by the four

points.
It is easy to see, as in Art. 169, or by Conics, Art. 333, that
the Jacobian may be written in the form

) |8~y
J(uyv)=|a, b, c
. ar’. _bl, cl .

Now by the ordinary rule for multiplication of determinants
" we have

¥ —ay, o o, 2y, 3 0, u, v

a b, c|x|c, ~26,a|l=|u,2D A

a, b ¢ d, —2,d v, A, 2D |,
.or - 2*=—2u'D + 2uva — 20°D,

. where J denotes the Jacobian, D and D' the discriminants of
_the quantics, and A the intermediate invariant ac’+ ca'— 354’
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This equation includes the theorem stated Art. 190, for the case
A=0. The equation just given may also be easily verified
by means of the canonical form. We have seen (Art. 177)
that there are two values of %, for which u+ kv is a perfect
square, and if these squares be =* and y* the system may be
written ax®+ ¢y, a’z’+ ¢y’ or more simply o* +3%, ax’+cy’
‘We have then D=1, I'=ac, A =q + ¢, J= (c— a) zy, by means
of which values the preceding eqpation is at once verified.
8o again the Jacobian of u, J is for the canonical form
} (c- a) (=~ y"), and therefore is in general $Au— Dv. The
invariant A taken between » and J vanishes identically, as is
geometrnca.lly evident.

All other invariants or covariants of a system of two quad-
yics may be expressed in terms of u, v, J, D, D, a.

Thus the eliminant

......

fac’ = ca’)* + 4 (ba’ - ab’) (bc" - cb’),
may also be written in the form
’ {ad +ca’ — 2b6')" - 4 (ac - &) (a'¢’ - 7).

In other words, the eliminant is the discriminant either of the
.Jacobian

(ab) @* + (ac) 2y + (3) %
prof  (ac—8")N + (ag’ + ca’—208") M + (a'¢’ = 17) .
The former expression ig linearly transformed into the latter by

the substitution A + u¥’, - (Aa+ pa’) for z and y.
System of three guadrz'w

(@, b, "I‘”z ?/) (@ by G,I% .’/)’ (@ ¥ Y=, .’/)
This system has, in addition to the invariants and covariants

gorresponding to the respective pairs of quadrics, the deter-
minant 23.31. 12

a b c
al’ b" c’
4{12 b”, Q”'
whose vanishing expresses the condition that the three pairs of
points represented by the quadratics shall form a system in
- involution (Ex. 7, p. 25, also Conics, p. 810). This invariant -

R=

i
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formed for u, v, J is another expression for the eliminant of u
" ‘and v
The expression found for J* of two quadrics may be
generalized, if in the second determinant we write in the second
and third rows ¢”, —2b”, a”; ¢, — 26", a"”’. We thns find
that if there be four binary quadrics u,, u,, u,, »

17 T2 U8 Y9
2JuJu= 0, u, v

£ ]
Uy Dy Dy

uy Dy D »

%

We get, similarly, an expression for the product of two
invariants B R,

a, bn cn Co —2641 a, Dm Dm Du
.2RmR4u= Qy by ¢, Cy —2b, a, |=| D, Dm Dn
Qyy bﬂ Cs Cer —264’ Gy '»Dau Du? Du )

To these formule may be added the following, the truth of
which is easily seen,

uJy+ud, +uJ, =0,

L 1 8 13

u|Rm - ufRin + u:Rgu -u R, = 0)

%198

B u=DJ,+DJ, +D.J,, &.

“198% 11Yss 1¥a1 2% 19)

2R1uJu=(Dn‘Du_Dn")ul+('DuD -D.D )us

18 127 88

+ ('DurDu - ‘DlsDn) Usy &e.
From the linear relations connecting the ’s and J’s follow the
quadric identities

0=0,J+ D J2+ D J.}+2D,J.J,+2D,J J,+2DJJ,

8113 31“193%¢s 19 28 213
0= Uy ut) gy 0
DIH Dm ‘Du1 u,
Dn? Dn’ Dn’ Y,

. 'Dn, ‘Dn’ Du) U |-

Thus a system of three binary quadrics at once gives rise
‘to a conic and their three Jacobians to its reciprocal form.
The equation of the conic is referred to any line and two
‘others through its pole when the three binary quadrics are
any two arbitrarily taken and their Jacobian. The conic
breaks up into right lines if the three binary quadrics form
an involution. : .
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194. It is to be remarked that, by means of Euler’s theorem
for homogeneous functions, the theory of those covariants of
any quantic, the expression of which contains differential
coefficients in not higher than the second degree, reduces itself
to the theory of the quadric; and so every relation between
the covariants of a quadric has answering to it a relation
between such covariants of a quantic in general. Similarly, a
relation between covariants of a cubic gives a relation between
general covariants not involving differential coefficients in more
than the third degree, and so on. Thus, the expression obtained
for the square of the Jacobian of two quadrics gives the identical
relation

{(az + by) T’z + cy) - (a'z+by) (bz + o)}

=— (ac—b*) (a’z*+ 2b'zy + c'y")"* + &e.
But if a, b, ¢; a, ¥, ¢ denote the second differential coefficients
of any two quantics, we have

ar+by=(n—-1)u, dz'+ 22y +y*=n" (W —1)v, &e.,
whence we have an expression for the square of the Jacobian
of any two quantics
(r=1) (' =1)" ' =—2" (o - 1) Hv* .
‘ : +nn’ (n—1) (n'— 1) Auv—n* (n—1)' H'W",
where H denotes the Hessian ac—3' and A, as before, the
covariant ac’ + ca’ — 26",
~ So again, since the Jacobian involves only differential co~
‘efficients in the first degree, the Jacobian of o, u, involves them
only in the second, and therefore can be expressed by means
of the theory of the quadric. Writing L, M for the first
differential coefficients, we have
J=LM'-L'M; .

J(J, ) ={aMM'—b(LM'+ L'M )+ cLL} — {a’M*~2' LM+ L¥].
But the values of the two members of the right-hand side of"
the equation are immediately found by the canonical form of
the quadric, and are respectively '

n n' (2 —1)
Hy, and ool =1y

nl
n—-1

Hy,
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whence J(J, u)= z (?:_nl): 2) Hy- nf ] Aw

~ 195. The cubic. We come next to the concomitants of
the cubic -
o U=(a, b, ¢, d¥z, y)".
1t has but one invariant (Art. 167), viz. the discriminant
D =a"d"* + 4ac’ — 6abcd + 4db® — 3b*c",
If the cubic were written without binomial coefficients, the
" discriminant would be 27a'd" + dac’— 18abed + 4db® —b'c*. It
is to be noted that the function here written is, with sign
changed, the product by a* of the squares of the differences of
the roots of the cubic. A useful expression may be derived
from the last remark. Consider the three quantities 8—y¢,
o —a, a — 3, they are the roots of a cubic for which a=1,5=0,
c==3}{B="+(r-a)+(@-8)}, d=(B~7)(y—a)(@a—8).
Henco  (2a—-B—9)' (28— v—a)* (2y —a— )’
=3B+ (- @)+ (- B - 27 (B— ) (v — o) (- B)"
The Hessian 12* or H, is

-

(ac=b") o'+ (ad—bo)xy + (bd—c")y*=| a, b, ¢
¢ b ¢ d
¥, —ay, & 1.

This has the same discriminant as the cubic itself (Art. 167).
The cubic covariant 12%.13, or the evectant of the discrimi-
nant, which we call J| is (see Art. 142)

(a*'d—3abo+20*, abd+b’c—2ac*, 20°d—acd—bc*, 8bed—ad’~2¢" Yz, ¥)’y
which may also be written in the determinant form

@, 3a'y, 323", 3

¢, =25 a O

d —c¢, —-b, a

0, dy —2¢0b |.
This cubic may be geometrically represented as follows :—If we

take the three points represented by the cubic itself, and take
‘the fourth harmonic of each with respect to the other two, we .
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get three new points which will be the geometrical reptesenta=
tion of the covariant in question. This theorem is suggested
by its being evident on inapection, that if the given cubic take
the form zy (x + y), then = — y will be a factor in the covariant;
as dppears by making a=d=0, b=c=1 in its equation. But
#+y; ®—y are harmonic conjugates with respect to = and .
Now, if a, B, v, & denote the distances from the origin of foar
points on the axis of z, any harmonic or anharmonic relation®
between them is expressed by the ratio of the products
(a=B) (y-29) and (a—1v) (8—35): and this ratio (see Art 136)
is unaltered by a linear transformation; that is, when for each
distance a we substitate %‘i . Such relations, then, being
tinaltered by linear transformation; if proved to exist in one
case, exist in general. We find that the other factors in the
evectant of ay (#+y) are =+ 2y, 2¢+y, so that our result may
be written symmetrically, that the evectant of xyz (where
®; y, £ are connected by the linear relation z+y+2=0) is
(y=2)(z==) (x=y). These considerations lead us to the ex-
pression for the factors of the covariant in terms of the roots of
the given cubic: for if & be the distance from the origin of the
point conjugate to a with respect to 8 and ; solving for & from
1 “aB +ay—28y

a—8=a~ﬁ+a—«y 2a—8—-¢q ?
whence the covariant must be
a’{(2a—-B-9)z+(2By-aB—ay)y} {(2B-a-9)=

+ (2ya— By — Ba) y} {2y — a — B)x + (2a8 — ya— yB) y} = - 21J,

as may be verified by actaal multiplication and substitation in
terms of the coefficients of the equation.

the equation We get 8=

* The anharmonic ratio of four quantities has any of the six values, according
to the order assumed, A, 3, 1 =X, j—x) S5, roj, Which are in general
all different. They may come to have equal values either if A =1 when two
values of the quantities are equal and the other values of the anharmonic ratio
are 0 and o; or if A\=—1, when the quantities form & harmonic series, and the
other values of the anharmonic ratio are 2 and §; or if A2*~A+1=0, when the
quantities form an equi-ankarmonic series, three values of the anharmonic ratio
are one imaginary cube root of —1, and three its other imaginary cube root. °
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Similarly for the quadric covariant, if o be an imaginary
cube root of unity and we solve for 8 from '

(@—7)(8=B)+w(B-7)(5-a)=0;
we get (a+wB+w’fy)8+ﬁfy+w'y¢+m’a,8=0

to determine a distance equi-anharmonic to a, 8, ¥. Hence, we
have the covariant -

{{a+ @B + o'y) 2+ (By + 0yt + 'aB) y}
x {(a+ @B+ wy) 2 + (By + o"ye + 0aB) y},

double this is found to be =¥ (z—a)*(8—1)*, which, multi«
plied by a® and expressed in terms of the coefficients, =~ 18H,

196. We can now see that our list of covariants is complete.
The leading coefficient of any covariant is a function of the
differences 8-y, y—a, a—B. Since the sum of these
quantities is zero, any symmetric function of them can be
expressed in terms of the sum of their squares; and their
continued product. But since this product is only half syms
metrical with respect to the roots of the given cubic, that
is to say, is liable to change sign by an interchange of
the roots, it can enter only by its square into a function
expressible in terms of the coefficients. We thus see, that
if the leader be a symmetric function of the differences, the
covariant ean be expressed as a rational function of U, H, D.
But there is another function, viz. the product of the difs
ferences (2a—pB—¢q)(28—-9—=a)(2y—-a—pB), which though
‘only half symmetrical with respect to the differences, is symme=
trical with respect to the roots of the given qumantic. This is
the leading term of the covariant J. But obviously the square
of this function can be expressed in terms of the sum of squares,
and product of differences. The expression has, in fact, been
given in the last article. It is easy to prove, that in the case
of the cubie written with binomial coefficients, we have

@3 (a~ B)'=18 (b —ac), a*(B—7)" (v~ &)*(a—B)=—27D,

a' 2z~ B~19)(2B-q=a) (2y=a—B)==~27 (a'd—3abc + 25"),
BB



186 APPLICATIONS TO BINARY QUANTICS.

by the help of which values, the expression obtained in the
last article gives the relation between the covariants, due to
Prof. Cayley,
J*-DU*=—4H"

This relation may also be easily verified by using the canonical
form U=ax’+ dy’, in which case we have D =a'd*, H=adzy,
J=ad (az’—dy’). Any other relation between covariants may
be similarly investigated. Thus we can prove that the dis-
criminant of J is the cube of the discriminant of U, the former
discriminant being for the canonical form a°2". So again we
sce that the Hessian of J differs only by the factor D from the
Hessian of U.

Prof. Cayley has used the relation just found between J, .D;
U, and H, to solve the cubic U, or, in other words, to resolve
it into its linear factors. For, since J*—DU* is a perfect
cube, we are led to infer that the factors J+U+/D will also
be perfect cubes, and, in fact, the canonical form shows that
they are 2a°ds® and 2ad®y’. Now, since xa}+ yd} is one of

- the factors of the canonical form, it immediately follows that

the factor in general is proportional to
(UND+ )3+ (UyD-J),
a linear function which evidently vanishes on the supposition

U=o.
Ex. Let us take the same example as in Art. 166, U = 42® + 9% + 18zy% + 1732,
Here we have .D = 1600, J = 110z® — 9022 — 6302y — 670y®, whence
UJD+T=10@Bz+y)*; UJD-J=50(z+3y)°;
and the factors are 3z + y + (x + 3y) 3/5.

197. The entire system of covariants for a cubic is also im-
mediately found by Prof. Cayley’s method explained Art. 192.
‘We start with the three covariants U, H, J, whose leading coeffi~
cients are L =a, L,=ac-b", L,=a ol 3abc+ 2%, If wen
make a =0, the last two become - b” 25°, whence by eliminatin g
b we have 4L + L' =0. Thus we see that 4H+ J* is divisibN e
by a, and actually it is found to be divisible by o, the quotie xut
being D or a'd*+ 4ac’ + 4db° — 3b%¢* — 6abed. We have thws

obtained the new invariant D, together with the equation of
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connection 4H*+J*=DU* If in D we make a=0 it becomes
4db®—3b°¢", and since this combined with the preceding gives
rise to no new relation between L, L, D, we learn that the
system of covariants is complete.

198. System of cubic and quadric. Let these be
U=(a,b, ¢, d)Yz, y); V=(4, B, CYz,y)";

then the following is a list of the different independent covariants
of the system. The figures added to each denote its order in
the coefficients of the cubic and in those of the quadric.

Three cubic covariants, viz. the original cubic U (1, 0); its
cubicovariant (3, 0) which we call J, printed in full Arts, 195, 142,
and the Jacobian of U, V, (1, 1) which is

(Ab—Ba) 2*+(2 Ac— Bb— Ca) "y+(Ad+ Be—2 Cb) «y*+(Bd - Ce) y°.

Three quadric covariants, viz. the original quadric ¥, (0, 1);
the Hessian of the cubic (2, 0) and the Jacobian of these two
(2, 1) which is
(A4 (ad—bc) - 2B (ac-1b"), A (bd- c')—C(ac-b"),

2B (bd - ') —C (ad — be) [z, y)*

Four linear covariants, viz. L, (1,1) which is obtained by
substituting differential symbols in the quadric and operating
on the cubic,

L =(aC—-2bB+cA)x+ (bC—2cB+dA)y;

L,(1,2) which is obtained by operating in like manner with
L, on the quadric,
L= {aBC—b(2B*+ AC) +3cAB—-dA%} =
' +1{aC*=38bBC+c¢(AC+2B*) - dAB}y,
and Z,(3, 1), and L, (3, 2) which are obtained in like manner
from the quadric and the cubicovariant J, and which may
be written at length by substituting for a, b, &c. in the values
of L,, L, just given, the corresponding coefficients of /.

Five invariants, viz. A (0,2) the discriminant of the quadric,
D (4,0) that of the cubic, Z(2, 1) which is the intermediate .
variant between the system of two quadrics ¥V, A

v I=A4(bd~¢")~ B(ad - bc) +C (ac - "),
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R (2, 8), the resultant of the cubic and quadric, which formed
by the methods of either Art. 67 or Art. 86, is
R=a"C"- 6abBC" + 6acC (2B*— AC) +ad (6 ABC - 8B?)
+95'AC*—18bcABC + 6bdA (2B*— AC)
+9¢’'4'C— 6cdBA* + d*4?,
and, finally, M(4, 3), the resultant either of L, L, or of
L, L, is
M= a'dC’-3a"bcC°~ 6a’bd BC"+ 6a’c"BC*+ 2ab* C*+ 6ab’cBC*
+ 3ab'd A C*+ 12ab'd B* C—6abc* A C*~24abc’ B* C+12a* ABO
+ 8ac’B*-3ac’dA*C—12ac’d A B*+ 6acd* 4’ B-ad"A*'-64* BC*
+ 80°cAC* + 120°cB*C - 126°d ABC — 8b°dB’ + 6b%cd A*C
+24b°cd AB* — 6b'd* 4*B— 3bc"4* C — 120" A B* — 6bc¢'d 4*B
+ 8bed* A’ + 6¢*A*B - 2¢°d A°.
This last invariant M is a skew invariant (see Note, p. 131) and
changes sign if we interchange x and y; the functions J, L, L,
are also skew functions. In comparing different invariants we
may conveniently make 4 and C=0, which is equivalent to

taking for « and y the two factors of the quadric. In this
case the fundamental invariants are

=-B" D=a"d"+ 4ac’ + 4db* — 8b'¢' — 6abed,
I=—B(ad~bc), R=-8B%d, M=8B"(ac’—db").
Thus we have in the same case
L, =-2B (bz +cy), L,=—2B"* (bx—cy),

and L the resultant of these two is —8B%bc, whence we see
immediately that L can be expressed in terms of the funda-
mental invariants; in fact, L=R+8Aal So, again, we see
that the square of M can be expressed in terms of the other
invariants, giving a relation between them. For we have

8 (ac + db*) = 2 (D — a'd* + 8b'6" + 6abed),
whenca M*=4B* (D —a'd® + 35" + 6abed)’ - 256 B%db'c’,

and if in this equation we substitute for ad, 'STEI_E , for be, — B+8 ';;.AI ,
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and for B? - A, we have the required relation

M*=- 44D+ D (R*+ 12RAI+ 24A°1%) - 4RI® - 36A1°.

Geometrically, see Art. 190, if the cubic U be represented
by three points on a conic its J covariant determines on the
same conic the harmonic conjugates of each of the three with
respect to the other two; the H covariant determines the
double points of the involution of these six points. Or we
may state it thus (see Conics, p. 387), the triangle touching
the conic at the vertices of U is in perspective with U, the
lines connecting corresponding vertices mark off J on the conic
and intersect in the centre of perspective H,, the axis of the
perspective meets the conic in the points H : H, is also the pole
of H with respect to the conic. Any quadratic V gives a right
line meeting the conic in two points, and the line joining its
pole to the centre of perspective H, is the Jacobian of H and V
and is the axis of a new perspective whose centre is on the
conic and given by the linear covariant L,

The line joining L, and the pole of H meets the conic again
in L. L, is the harmonic of L, with respect to ¥, and L, is
the point where H L, meets the conic again. The invariant
I vanishes for any right line which passes through H,.

199. The quartic. 'We come next to the guartic, which, as
we have seen, pp. 128—9, has the two invariants
S8=ae—4bd+ 36" and T'=ace+ 2bcd —ad®— eb* - C
We have shown (Art. 172) that the quartic may be reduced to
the canonical form z*+ 6ma’y*+ 3%, and for this form these in-
variants are S=1+ 3m*, I'=m—n’,
These invariants, expressed as symmetric functions of the
roots, are 248=a"'S (a - B)*(y—9)", or
128=a? {By + ad + w (ya + £3) + w? (af + y3)} {By + ad + w? (ya + B3) + w (aB + ¥3)},
also
728
i =le@=f)(r=8=(a=n)@-pP+{la=7(@-PH-(a-B-7}
+{(a=8) B-7) ~ (=) (y= O},
and 4327=4a"2 (2~ B)* (y—8)' (x—19) (8- &), or, more con-
veniently, -~
82T 5 aN(: By ~d)~{a—7)(¢-A)H(a~7)(8-B)—(a—2)(B—7)}H(a—3) (B—7)—(a—B)(y—d)}s
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In the latter form it is easy to see that 7=0 is the condition
that the four points represented by the quartic should form a
harmonic system, thus 7" may be called the harmonic invariant
of the quartic, and in like manner S its equi-anharmonic in-
variant, see Note, p. 184, It was stated (Art. 171) that 7'=0
is the condition that the quartic can be reduced to the form
z*+ y',* and that 7 can be expressed as a determinant

a, b ¢
b ¢, d
c,dyel.

If A be the modulus of transformation, then (Art. 122) S and
T become by transformation A'S, A®°T, respectively; and the
ratio S° : 7' is absolutely unaltered by transformation.

200. 7o express the discriminant in terms of S and T. It
has been already remarked (Art. 111) that the discriminant of
a quantic must vanish, if the first two coefficients a and & vanish;
for, in that case, the quantic, being divisible by 3°, has a square
factor. On the other hand it is also true, that any invariant
which vanishes when a and & are made =0, must contain the
discriminant as a factor. Such an invariant, in fact, would
vanish whenever the quantic had any square factor (- ay)’;
for, by linear transformation, the quantic could be brought to
a form in which this factor was taken for y, and in which
therefore the coefficients @ and 5=0. But an invariant which
vanishes whenever any two roots of the quantic are equal, must,
when expressed in terms of the roots, contain as a factor the
difference between every two roots; that is to say, must contain
the discriminant as a factor.

It is easy now, by means of S and 7, to construct an in-
variant which shall vanish when we make a and =0. For on
this supposition S becomes 3¢c*, and ' becomes —¢’; therefore
8°— 277" vanishes. Now this invariant of the sixth order in
the coefficients is of the same order as that which we know

* Dr. Sylvester gives the name catalecticant to the invariant, which expresses that
& quantic of order 2n can be reduced to the sum of n powers of the degree 2n.
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(Art. 105) the discriminant to be. It must therefore be the
discriminant itself, and not the product of the discriminant by
any other invariant. The discriminant is therefore
(ae — 4bd + 3¢*)* — 27 (ace + 2bcd — ad® — eb* — )",

We can in various ways verify this result. For instance, it
appears from Art. 185,% that the discriminant of the canonical
form z*+4 6ma'y*+y* is the square of the discriminant of the
quadratic 2* + 6mazy + y*; that is to say, is (1 - 9m*)". But

(1 —9m*)’ = (1 + 3m*)* — 27 (m — m®)".

‘We should also be led to the same form for the discriminant,
by writing the quartic under a form more general than the
canonical form, viz. Az*+ By'+Cz', where 2 +y+2=0. In
this case we have a=A4+C, e=B+(C, b=c=d=C, and
we easily calculate S=BC+CA+ AB, T=ABC. But if
we equate to nothing the two differentials, viz. Aa®- C2°
By* - C2°, we.get «°, 3° 2° respectively proportional to BC,
CA, AB; and, substituting in z+y+2=0, we get the dis-
criminant in the form '

(BC)t +(CA)} + (4B} =0,
which is (BC+CA + AB)—274*B*C*=0 or 8°—-21T*=0.

201. From the expression just given for the discriminant of
a quartic in terms of S and 7 can be derived the relation
(Art. 196) which connects the eovariants of a cubic.

If we multiply two quantics together, the invariants of the
compound quantic will be invariants of the system formed by
the two components. If then we multiply a quantic by =& + y»,
the invariants of the compound will (Art. 134) be contravariants
of the original quantic; and when we change £ and 5 into y
and — z, will be covariants of it. If we apply this process to a
cubic, the coefficients of the quartic so formed will be

ay, 1(3by—ax) }(cy—bx), }(dy—3cx), —dz; |

* We may also see this directly, thus: The resultant of ax* + by%, a'az* + b'y*
is the A*® power of ab’ — ba’, since the substitution of each root of the first equation
in the second gives ad’ — ba’. Now the discriminant of ax? + 6ca?y? + eyt is the
resultant of az® + 8czy?, Bcz’y + ey®. If we substitute 2 = 0 in the second, and y =0
in the first, we get results e, a, respectively, and the resultant of ax? + 8cy?, 3ex? + ey?
is (ae — 9¢?)?, The discriminant is therefore ae (ae — 9¢?)2
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and the invariants S and 7' of this quartic are found to be the
covariants — $H, {4J of the cubic. But the discriminant of the
product of any quantic by £ + yn, by Art. 110, becomes, when
treated thus, the discriminant of U, multiplied by U*. Express«
ing then the discriminant of the compound quartic in terms of
its. 8 and 7, we get the relation connecting the H, J, and
discriminant of the cubic. '

202. A quartic has two covariants, viz. the Hessian H,
whose leading coefficient is ac— 5, and J the Jacobian of the
quartic and its Hessian, whose leader is a’d — 3abc + 25°

The Hessian is the evectant of T, its value is
H=(ac—-0") 2"+ 2 (ad — bc) 2"y + (ae + 2bd — 3¢*) «y*

+2 (be = cd) xy® + (ce —d”) y*
==| 0,9, -2y,
¥i,a, b,c¢

-zy, b, ¢ ,d
@t ,cy, d,e |,
or 8H=|a, b , ¢ , d |=|d,—8¢ 8,-a
b, ¢, d , e e, —3d, 3c; —b
3y’ —2zy, ', 0 @ 2zy, y', O
0, ¥ ,—2xy 3 0, «,2zy, ¥ |,

and becomes, for the canonical form,
m (2* + y') + (1 — 3m") 2"y,
Expressed in terms of the roots, it is
—48H=a'Z(a—B)' (z—9)' (- 8)"
The covariant J, which symbolically is 12* 13, written at
length, is
J = (a"d — 3abc + 2b°, a’e + 2abd — 9ac’ + 6bc, 5abe— 15acd+ 106*d,
—10ad” + 10b%, — 5ade + 15bce — 10bd?,
— ae* — 2bde + 9c’e — 6¢cd”, — be' — 2d° + Bcdefx, y)*
=} | a°, 8%y, 3zy', 3°, 0
0, 2, 3%y, 3y, ¥
—d, 8¢ ,-3, a,0
-e, 2d, 0, -2b a
0, —e, 8d, —3¢, b
and for the canonical form (1 — 9m") zy (' - 3*).
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We have just seen that the = and y of the canonical form
which we use are factors of J, but it will be remembered
(Art. 172) that the problem of reducing a quartic to its canonical
form depends on the solution of a cubic equation; hence, the
factors of J are the = and y of the three canonical forms.
This may be connected with the theory explained in Art. 177,
If U and V are any two quartics, six values of A can be found,
such that U+ AV shall have a square factor, and those six factors
are the factors of the Jacobian of U and V. But when V is
the Hessian of U, the sextic in question becomes a perfect
square, and there are three values of A, for each of which U+ AV
contains two square factors, but these factors are still the factors
of the Jacobian of U and V. The geometrical meaning of J
may be stated as follows: let the quartic represent four points
on a line 4, B, C, D, then these determine three different
systems in involution (according as B, C or D is taken as the
conjugate of 4), and the foci of these three systems are given
by the covariant J.
From the last remark we can express the factors of J in
terms of the roots. In fact, by Ex. 7, p. 25, the double points
of the involution formed by 8, y; &, & are determined by the
o 2z, 1

quadratic | By; B8+v, 1 |=0. Similar equations determine-
ad, a+3d, 1

the foci for the other two systems.

Ex. 1, To break up the quartic into two quadrati¢ factors.
Let (pz* + 2¢zy + r4%) (p'a® + 29'vy + r'y?) be identified with the quartic, and
substitute in their places for pp’'=a, pg +qp' =25, g’ +rg=2d, rr'=e¢,

pr+rp'=2(c+2%) 9’ =c—p in the identity | p, p’ | | »’, p | =0, expanded
o7 7 q
o |lrr
a8 in Art. 26, The reducing cubic is found to be a, b o+2 [=0or
- 8p+T=0, b e—p, d
e+2, d e

Now, when we write

(y—a)(B—~8)~(a—p)(y—8)=12,

(@=B) (=98 —(B-17)(a—20)=12p,

. B-9)(@=08)—(y—a) (B—28) =12,
in the expressions for § and 7'in terms of the roots, Art. 199, they become

8 = — 4a? (p,py + p3p1 + P1p2),
. T = — 4a%p,0,04.
Hence, since p, + p, + p, = 0; ap,, ap,, ap, are the roots of the cubie
40— Sp+T=0.

cC
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Ex. 2. To discuss the relations between the quadratic factors of J.

Writing out the determinant forms, let us call
u=B+y—a—208)z*—2(By—ad)zy+ [By (e +38) - ad (B+7)] *=aa™+ 2,y + e,
o=(y+ae—B—8)a—2(ya—pd)zy+[ya (B+3)—B8(y+ a)] y*=ayx*+ 2b,2y + e’
v=(a+pf—y-8)a?-2(af—~yd)zy+[af (v +28)—7é(a+ L)l y*=aw™+ 2bxy + cy’.

‘We have thus

o—0=—2(f—y)(z—ay)(z—dy), w—u=—2y—a)(z—By)(x—dy), u—v=—2(a—B)(=—yy)—3v),
vtw= 2(a—0)(@—By)(z—vy), whu= 2(B—0)(z—yy)(z~ay), wtv= 2(y—3)(z—ay)(=—B7).
?—w wl-uw_ ul—o?_ 16U
pr—Ps Ps—P1 P1—pPr @
Thus it appears at once that the identical relation (compare p. 181) between
u, v, w i8 p,u? + p,v? + p;w? = 0. Hence, as this relation involves only the squares,
the quadratics are harmonic in pairs, The same thing is found by actual calculation :
ayc, + c,a; — 26,6, =0, &c.,
also ac, — b= (y —a) (B—¢) (a—B) (y —8) =16 (03 — p1) (01 — p2), &c.,
or, writing 8 =(p, — p3) (03— 1) (P1 = p2)y (@161 — By°) (P2 — ps) = &c. = 16A.
The value already given for H in terms of the roots may be written
a? (u? + v? + w?) = — 48H.
Combining this with the values of U given above we get
a?u?+ 16H _ o+ 16H _ a*w? + 16H
[ ] - Ps )

Ex. 8, We have seen that J can differ only by a numerical factor from the
product of the three quadratics u, v, w. To determine it we may compare the
leading terms of the two forms, or, expressing the symmetric function in terms
of the coefficients, find that

@ B+y—a=-208)(y+a—p~—23) (a+p—y—3) =382 (a®d — 8abe + 25%),
whence aduvw = 82J,

Hence

16aU =

208. Solution of the quartic. 'This is the same problem
as that of the reduction of the quartic to its canonical form
az' + 6cx’y’+ ey*, for in this form it can be solved like a
quadratic. One method of reduction has been explained
(Art. 172); the reduction may also be effected by means of
the values given for S and 7. Imagine the variables trans-
formed by a linear transformation whose modulus is unity,
and so that the new 5 and d shall vanish; then we have
S=uae+3¢', T'=ace—c’; and the new ¢ is given by the equa-
tion 4~ Sc+ I'=0. We get the z and y which occur in
the canonical form from the equations

U=ax'+ 6c’y' +ey', H=acx"+ (ae—3c") 2"y" + cey’,
whence cU—- H=(9c" - ae) =y
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Our process then is to solve for ¢ from the cubic just given,
and with one of the values of ¢ to form ¢U—H which
will be found to be a perfect square. Taking the square root
and breaking it up into its factors we find the new z and y, and
consequently know the transformation, by means of which the
given quartic can be brought to the canonical form. Having
got it to the form ax'+ 6ca’y’ +ey', we can of course, if we
please, make the coefficients of 2* and »* unity, by writing
«* and y* for 2" 4/(a), and y* #/(e).
Ex. Solve the equation
o + 8y — 12077 + 104zy® — 2044 = 0.

‘We have here §=— 216, T'=— 756, and our cubic is 4¢3 + 216¢ = 756, of which
¢ =38 is a root. The Hessian is
H = — 6z* + 602y + 72x%2 + 24xy® — 63644,
38U — H=29 (z* — 4y — 122%2 + 82zy® + 64y*) = 9 (22 — 22y — 8y?)2.
The variables then of the canonical form are X =z + 2y, ¥ = z — 4y, which give
6x=4X+2Y, 6y=X—Y; whence, substituting in the given quartic, the canonical
form is found to be 8X*+2X2Y2- ¥4 The roots then are given by the equations

(+29) @) =x—4y, (x+2y) J(~1)==z—4y.

204. Since J is proportional to the continued product of the
@ and y of the three canonical forms, and since we have just
seen that the square of the product of one set of = and y is
c¢U— H, where c is one of the roots of the cubic 4¢’— Sc+ T'=0,
we have J* proportional to 4H®* — SHU* + TU®. By calculating
with the canonical form, we find the actual value to be —J*
Or, again, we saw in Ex. 2, Art. 202, that
16 (ap,U— H) =a"w’,
16 (ap, U~ H) = a™",
16 (ap, U~ H) = a’w",
and in the following example that
a*uvw = 32J,
hence by the values of p,, p,, p, of Ex. 1 of same article
J'=—4H+U'HS-U"T.

205. Prof. Cayley has given the root of the quartic in a
more symmetrical form. It has been shown that ap,U- H,
ap,U—~ H, ap, U~ H are perfect squares severally of u, v, w.
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If, further, we enquire under what conditions Ax+ pv+ vu
is a perfect square, we find that
A(ac,—b%+p"ac,-b)+ v (ac,—b7)=0
maust be satisfied (compare Ex. 2, Art. 202), or, as it may be
written,
A’ » v
+ +
Ps=Ps Ps— Py P~ Py
If we further wish to make
AV(ap,U-H)+ p(ap,U-H)+ v /(ap, U~ H)

vanish with U, we must have A+ u+v=0, whence, solving,
we find

=0.

A B _ ¥ *
Ps=Ps Ps—Pr P~ P

thus

(pi=p,) ¥(ap,U~H) + (p,~p,) ¥ (ap,U~H) +(p,—p,) ¥ (ap,U~H).

Ex. 1. This may be verified by means of the canonical form, taking for simplicity
a and e=1. If we solve the equation 42—z (1+ 3¢?) + ¢ —c* =0, we find the
three roots to be ¢, — 4 (c+1), — 4 (¢c—1); and the three corresponding values
of H ~¢U are

(1-9) 2%t § (Be+1) (& +97% & (Be—1) (2 -y
Now in order that any quantity of the form
azy+ 8 (B +¢°) + v (=* - 9)

may be a perfect square, we must obviously have a?=4 (8*— 9?), which is
verified when

a?=1-9c% F=4@Bc—1F@Bec+1), ¥*=3@c+1)*@E-1).

Ex. 2, If this method be applied to the example Art. 203, the other values of ¢ are
§ (- 8+9J(—8)}; and the squares of the linear factprs of the quartic are given
in the form '

—2J(8) {2~ 22y—8y*} 1 4 {1 —J(~ 8)} [{1 +J(~8)} #*+ (10— 2 {(-8)} oy~ {2~ 10.J(- )} 5]
T H{1+(=8)} [{1 - J(—8)} &2+ {10+ 2.(~ B)} ey — {2+ 10 J(—B)} 5]
Ex. 8. The factors of H are the values of
(ps = £3) Jap2U — py H ) + (p3 — py) d(@p5?TU — poH) + (py — pg) d(aps*U — p,H).

206. It remains to distinguish the cases in which the trans-
formation to the canonical form is made by a real or by an

* Burnside, Hermathena 1v, 1876,
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‘imaginary substitution. The discriminant of the canonical form
is, as we have seen (note, Art. 200), ae (ae — 9¢”)*; and since the
sign of the discriminant is unaffected by linear transformation,
we see that whenever the discriminant is positive, a and e of
the canonical form have like signs; and when the discriminant
is negative, unlike signs. Now the form az'+ 6c2®y" + ey
evidently resolves itself into two factors of the form, either
(«* +7y") (2 + puy®) or (2" —Ay’) (2" — uy®); that is to say, the
quartic has either four imaginary roots or four real roots. On
the contrary, if a and ¢ have opposite signs, the two factors are of
the form (z* + Ay*) (2" — py®), or the quartic has two real and two
imaginary roots. Hence, then, when the discriminant is negative,
that is to say, when S* is less than 277" the quartic has two
real roots and two imaginary; and when the discriminant is
positive, it has either four real or four imaginary roots.* Now
the discriminant of the equation 4¢’— Sc+ T'=0 is 277 - 8%,
therefore (Art. 167) when S° is less than 27 7, the equation in ¢
has one root real and two imaginary; in the other case it has
three real roots. Hence when a and e have opposite signs, that
.is, when the quartic has two real and two imaginary roots, the
transformation can be effected in one way only. Next, if a
and e have like signs, in which case the equation can be
brought to the form a+ 6ma’y*+y', it is easy to see that
the equation can by two other linear transformations be brought
to the same form; for write z+y and z—y for « and g,
and we have (1+3m)a'+6(1—m)a"y’ +(1+3m)y". Write
z+y+/(—1), and z—y/(-1) for  and y, and we have
(1+3m)a*+6(m—1)zy*+(1+3m)y'. Hence when a and e
have the same sign, that is, when the quartic has four real
or four imaginary roots, though there are three real values
for ¢, one of these corresponds to imaginary values of = and y;
and there are only two real ways of making the transfor-
mation.

# The signs of the invariants do not enable us to distinguish the case of four
real roots from that of four imaginary; but the application of Sturm’s theorem
shews that (the discriminant being positive), when the roots are all real, both the
quantities 4% — a¢ and 8aT + 2 (§* — ac) S are positive, while if either is negative
the four roots are imaginary. (Cayley, Quarterly Journal, vol. 1v., p. 10).
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The same thing may also be seen thus. Imagine the quartic
to have been resolved into two real quadratic factors

(a, 3, X, )% (a0, Y, 9)°; ‘
then these two factors U, V can, by simultaneous transformation,
be brought to the forms AX*+ BY* A'X*+ B'Y ", where X* and
Y* are the values of AU+ V corresponding to the two values of
A given by the equation

(ac —8") A* + (ac’ + ca’ — 26b) A + (a'c’' — ™) = 0.

In order that the values of A should be real, we must have
the eliminant of the two quadratics positive, or
(@—a)(@-R)(B-a)(B-A)
positive. Thus then when the quantic has four real roots, if
we take for a and 8 the two greatest roots, and for «’ and 8’ the
two least; or, again, if we take for a and 8 the two extreme
roots, and for a’ and 8’ the two mean roots, we get real values
for . In the remaining case we get imaginary values. If
either of the quadratics has imaginary roots, the resultant of
the two is positive, and the values of A real.

207. Conditions for two pairs of equal roots. If any quantic
have a square factor z*, this will be also a factor in the Hessian.
For the second differential U,, contains 2, and U,, contains z,
therefore «* will be a factor in U, U,—U," If then a quartic
have two square factors, both will be factors in the Hessian,
which, being of the fourth degree, can therefore differ only
by a numerical factor from the quartic itself. In fact, if a
quartic have two square factors, by taking these for «* and g,
the quartic may be reduced to the form cx®"; but, by making
a, b, d, e all =0, the Hessian, as given Art. 202, reduces to
- 3c'z"y",

Thus then by expressing that a quartic differs only by a
factor from its Hessian, we get the system of conditions that
the quartic shall have two square factors, viz.

ac-—b"~ad—bc_ae+2bd—3c’_be—cd_ce—d’
a 20 6¢c T2 e ?
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a system equivalent to two conditions, as may be verified in
different ways.

We have, in Art. 138, given other ways of forming these
conditions. From the expression (Art. 202) for the covariant
J in terms of the roots, it appears that every term of it must
vanish identically if any two pairs of roots become respectively
equal. This also follows from the consideration that J is the
Jacobian of the quartic and its Hessian, and must vanish
identically when these two only differ by a factor; now the
coefficients in J are, only in a different form, the conditions
already written. Again, we have said (Art. 138) that in the
same case the covariant = (a — 8)* (3 — v)"(y — @) (z — 8)* vanishes
identically. But this, it will be found, is the same as 37U — 2SH;
and we can easily verify that this covariant vanishes when the
quartic has two square factors ; for, making a, &, d, e all =0,
U reduces to 6cz’y’, H to —3c’z"y", T to —¢’, and § to 3¢
Thus, then, we see that in the system of conditions given above,

. . 8T
the common value of the fractions is 55"

208. We next show by Prof. Cayley’s method (Art. 194)
that the system of invariants and covariants already given
is complete. 'We start with the seminvariants a, ac—?",
a’d — 3abc + 2b%, a’e— 4a’hbd + 6ab’c— 34", the first three being
the leading coefficients of U, H, J. Since any relation between
the leading coefficients of covariants implies a similar relation
between the covariants themselves, there will be no incon-
venience in calling the first three terms by the names U, H, J;
the fourth we shall call provisionally Z. If now we make a=0,
we have U'=0, H'=-"¥",J'=20", L'=—3b*; and by elimi-
nating b between the second and third, and second and fourth of
these equations, we have

4H? 1 J"=0, 8H"+L'=0*

Now these two quantities which vanish on the supposition a =0,

* It is easy to see that any result of elimination, obtained by combining these
equations differently, will vanish when the two equations, written above, are
satisfied.
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will, when we give H, J, L their general values, be divisible by
a power of a. The first has been already discussed in the
theory of the cubic. It gives 4H®+J*=U"D, where

D =d'd" + 4ac’ — 6abed + 4b°d — 3b%¢".
The second, treated in like manner, gives 3H*+ L=U*S. We
have thus been led to the two new seminvariants D, 8, and we
may dismiss L, which we have seen can be expressed as a
function of simpler covariants. Making a =0 again in D and 8,
we have

D =0 (4bd - 3¢"), 8'=(- 4bd+3c"),
whence, since H'= -5, we have I’ — H'S8'=0. And giving
D, H, 8 their general values, we find D - HS=- UT. We
are thus led to the new invariant 7' and may dismiss D, which
has been linearly expressed in terms of simpler covariants.
Making a =0 in 7, we have T'=2bcd—eb*— ¢’ and we cannot
now by elimination of b, ¢, d, ¢ obtain any new relation between
H',J', 8, T'. The system is therefore complete, consisting of
U, H, J, 8, T with the equation of connection

4H® + J*=U"(HS-UT).

209. We have already (Art. 190) mentioned Mr. Burnside’s
remark on the identity of the theory of the quartic with that
of a pair of conics (Conics, Art. 370). By the substitution z, 7, 2
for o*, 2xy, y*, the quartic becomes

ax’ + cy® + ez" + 2dyz + 2czx + 2bxy = 0,
with the identity 42z — *=0. Calling these two conics » and v
the discriminant of » + Av is 4N’ — SN+ T'=0. Thus we see that
the invariants of the system of two conics are also invariants of
the quartic. The solution of the quartic evidently is given
by the cubic in A just written; for if A be one of its roots, we
know that the ternary quadratic is resolvable into two factors.
The discriminant of the resolving cubic, 277" — 8% which
vanishes when two conics touch, gives also the condition that
the quartics should have equal roots. To the Hessian of the
quartic answers the harmonic conic (Conics, Art. 378) of the
gystem of two conics, and to the sextic covariant J, which is the
Jacobian of the quartic and its Hessian, answers the Jacobian
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of the two conics and their harmonic conic; that is to say,
the sides of the self-conjugate triangle common to the two
conics. The expression for the square of J in terms of U, H, S,
T, answers to the expression given, Conics, Art. 388a.

210. Since H is a covariant of U, it follows that if « and 8
be any constants, aU+ 68H will be a covariant of U, whose
invariants also will be invariants of U. The following are the
values of the S, 7} and discriminant R, of this form:

S(aU+68H)= Sa*+18TaB + 356",

T@U+68H)=Ta’+ S'a"B+98TaB + (541" - S') s,

R (aU+6BH) =R («’—98a8"— 54T3°)".
The last is a perfect square, becaunse, as was already mentioned,
instead of six cases where aU+ 68H has a square factor, we
have three cases where it has two square factors.

Hermite has noticed that if we call G the function of a, 8,
o’ —98a8" — 54 TB’, then the values just given for the Sand T
of aU+ 68H are respectively the Hessian and the cubicovariant
of @. The discriminant of G differs only by a numerical
factor from the discriminant of U.

The covariants of aU+ 68H are also covariants of U. Its

Hessian is
(aBS+98'T) U+ (a*—38'8) H,
which is the Jacobian, with respect to a, 8, of G' and a U+ 68H.
Since J is a combinant of the system U, H, the J of U+ 68H
will be the same, multiplied, however, by the numerical factor G.
The Hessian of J is S8*U*—36TUH+ 128H", which is the
resultant of aU+ 68H and the Hessian of G. Prof. Cayley
has thrown this into the form
(sv-Ll8) + L -nmm
s e !
shewing that it is a perfect square when the discriminant of U
vanishes.
Ex. 1¢ For the form aU — BH the function G of a, B, is 4a® — Sap? + T2
Thus the quartics of the system aU — BH whose discriminant vanishes are deter-

mined by the reducing cubic of U. The same cubic determines what quartic of the
system coincides with its Hessian.

Ex. 2. The factors of aU — BH are, as in Art. 205, the values of
(ps = ps) d(Bapy — a) J(ap,U — H) + (py — py) {(Bap, — a) {(ap,U —~ H)
+ (01 = p2) (Baps — a) J(ap,U — H).
DD
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211. Since it has been just proved that the Heasian of the
Hessian of a quartic is of the form aTU+ BSH, we can infer,
as in Art. 194, that the same is true of the Hessian of the
Hessian of any quantic. For if we form the Hessian of
%, ¥, —u," this involves the second, third, and fourth differ-
entials of u. But, by the equations (n- 3)u,, =au,,, +yu,,»
&c., we can express the second and third differentials in terms
of the fourth, and so write the second Hessian as a function of
the fourth differentials only, and of the = and y which we have
introduced, and which, it will be found, enter in the fourth
degree. It will then be a covariant of the quartic emanant,
Now every covariant of a quartic is a function of U and H
(Art. 208), and when the covariant is of the fourth degree it
must be a linear function of these quantities. Actually it is
found to be proportional to (2n —5) 77U — SH, where S and T
are invariants of the quartic emanant and, as in Art. 141,
covariants of the higher quantic.

212. System of a biquadratic and gquadratic. This system
is most easily dealt with by Mr. Burnside’s method, Art. 190.
Let the quadratic be ax®+ 28xy + vy’, and let the quartic be
given by the general equatnon, then (Art. 190) this is eqmvalent
to the system of two conics and a right line

ax’ + ¢y’ + ez’ + 2dyz + 2cex + 2bxy, 42z -y, ax+ By + vz,
the properties of which have been discussed, Conics, Art. 870, &e.
For example, the formula of Conics, Art. 377, expressing the
resultant of the three ternary quantics in terms of simpler
invariants, gives at the same time an expression for the

resultant of the two binary quantics. The formula just cited
gives the resultant as ¢* — 433, where

2 =a'(ce—d")+ B (ae- ') + 4* (ac—b")
+2 (bc — ad) By + 2 (bd — ¢) ya + 2 (cd — be) aB,
=4 (ay- 8,
¢ =ea' + 4¢B* + ay' — 4bBy + 2cya — 4dafS.
In the above, 3’ is proportional to the discriminant of the

quadratic, ¢ is an invariant got by substituting differential
symbols in the quadratic, squaring, and operating on the quartic;
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if we operate in like manner on the Hessian of the quartic,
we get an invariant of the same order as =, but differing from
it by a maltiple of S2’. If we treat =, 3’, ¢ as conics and form
their Jacobian, we -get another invariant of the system of
conics, the vanishing of which geometrically represents the
_ condition that the right line shall pass through one of the
vertices of the common self-conjugate triangle of the two conics.
Itis

o’ (3cde — 2d° — be') + a’y (3bee — 2bd" — ade)
+ ay* (abe + 2b°d — 3acd) + o* (a'd + 25° — 3abc)
+ Ba’ (6ed” + 2bde — 9c’e + ae’) + aBy (6ad* — 6b%)
+ By (- a%e — 6b°c + 9ac' — 2abd) + B*a (12bce — 8bd® — 4ade)
+ By (- 12acd + 8b°d + 4abe) + B° (4ad® — 4b%).

This is a skew invariant of the binary system of the quartic
and quadratic. The formula (Conics, Art. 388a) gives an
expression for the square of this in terms of the other invariants.
From what has been stated, as to the geometric meaning of
the skew-invariant, it follows that if it vanishes two of the right
lines which pass through the intersections of the two conics
intersect on the given line; that is to say, these equations are
of the form L+ M =0, where L is the given line and M some
other line. The corresponding property for the binary equations
is, that the vanishing of the skew-invariant is the condition that
the given quartic can be resolved into two quadratic factors
L+ M where L is the given and M some other quadratic. The
system of quartic and quadratic bas only these six independent
invariants now indicated; viz. the S and T of the quartic, the
discriminant of the quadratic, those which we have just called
S and ¢, and the skew-invariant.

We get immediately two quadratic covariants of the binary
gystem by introducing differential symbols into the given quad-
ratic, and operating on the quartic and its Hessian. Thus we
get the two forms

(ca — 258 + ay) &* + 2 (da — 2¢B + by) zy + (ea — 2dB + ey) ¥*;
{a (ae + 2bd — 3¢") — 68 (ad — be) + 6y (ac — b")} &
+ {6a (be — cd) — 48 (ae + 2bd — 3¢") + 6 (ad — be)} xy
+ {6a (ce — &) — 68 (be — cd) + y (ae + 2bd — 3¢")} ¥'.
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To these two binary covariants answer covariant right lines
in the ternary system, which are found by taking the pole of
the given line with regard to either conic and then the polar
of this point with regard to the other. Having now three quad-
ratics, viz. the given one and the two just found, we obtain,
three more quadratic covariants by taking the intermediate
covariant (Art. 193) of each pair; and these six quadratics
complete the system of quadratic covariants. There are five
quartic covariants, viz. in addition to the given quartic and its
Hessian, the Jacobian of the quartic and quadratic, of the
Hessian and quadratic, and of the Hessian and the first covariant
quadratic. Lastly, there is the sextic covariant of the quartic.
The eighteen forms enumerated make up the complete system.

Ex. 1. Required the right lines which have the same pole with respect to each
conic,

The first of the above quadratic covariants identified with az® + 28xy + yy® gives
ay — 25 + ca = \a,
by — 2B+ da =B,
cy —2dB + ea = Ay ;

a, b, c—A\

b, c+d\ d
e—A, ad, €
the reducing cubic of the biquadratic (see Art. 172) is thus found: hence there are

three such lines, and the reduction of a quartic to its canonical form is again seen to be
the same problem as that of two conics to a self conjugate triangle.

whence, eliminating a, 8, v,
=0,

Ex. 2. The above skew invariant is also found by operating with the sextic
covariant of the biquadratic on the cube of the quadratie. Geometrically, we may
determine it, either by expressing that the quadratic is a pair of a system in involu-
tion with the biquadratic, or by expressing that the quadratic is harmonic with one
of the factors of the covariant gextic (Art. 202, Ex, 1).

213. System of two cubics. 'We begin with those invariants
of the system of two cubics (a, b, ¢, dYz, )°, (', ¥, ¢, Y, y)°,
which are also combinants. The simplest is (see Art. 140, Ex. 2)
(ad’) — 8 (b¢"), which . we shall refer to as the invariant . The
properties of this system may be studied most conveniently
by throwing the equations into the form

Av’ + By + Ow’, A"+ B’ + C'w’,
a form to which the two cubics can be reduced in an infinity
of ways. For, the cubics contain four constants each, or eight

~
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in all. And the form just written contains six constants ex-
plicitly ; and u, v, w contain implicitly a constant each, since
u stands for @ + Ay, &c. The second form then is equivalent
to one with nine constants, that is to say, one constant more
than is necessary to enable us to identify it with the general
form.

Any three binary quantics of the first degree are obviously
connected by an identical relation of the form au + 8v + yw =0.
‘We write «, y, z for au, Bv, yw, so that the two cubics are
Az’ + By’ + C2°, A2+ By’ + C'7°, where z +y + 2=0.

Putting for 2 its value, and writing the cubics

(4-0,-0,-C,B-CXz,y)’, (4'-C",-C",~ (", B - 'Yz, y)*;
then forming the invariant P of the system, we find it to be
(BC')+ (C4")+ (4B).

The resultant of the system is found by solving between
the equations 4x"+ By*+ C2’=0, Az’ + By + 0’2’ =0, whence
we get o' =(B(’), y°’=(C4’), 2’=(AB’); substituting in the
identity z+ y + 2 =0, the resultant is

(BO'} + (CA)} + (4B} =0,
or  {(BO)+(C4')+ (AB))*=21(B(C")(04’) (4B).

Now, if we denote the two cubics by » and v, it has been
proved, Art, 180, that there is an invariant, which we shall call
@, of the third order in the coefficients of each cubic, which
expresses the condition of its being possible to determine A, so
that %+ Av shall be a perfect cube. This invariant is identical
with the product (BC’) (C4’) (4B’), which is of the same degree
in the coefficients. For, if any factor (45’) in this product
vanish, Ay — A’u evidently reduces to the perfect cube (4 C’) 2"
It follows then that the resultant is of the form P*- 27Q.

-214. If it were required to form directly the invariant @
for the form (a, b, ¢, d)Y=,y), (a,¥,c,d Y x,¥)", we might
proceed as follows. If u+Av be a perfect cube, its three second’
differentials will simultaneously van:ah; or, for proper values of
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z, y, N, we have
az+ by + A (a'z +b'y) =0,
br+cy+ A (bz+cy)=0,
cxt+dy+A(ce+dy)=0.

Solving these equations linearly for z, y, Az, Ay, and then

equating the product of z by Ay to the product of y by Az,
we get for the required condition

a, b,

4 ’ 4 ’ ’
a, b a a’, b, b a, v, a

’ 4 4 4 /’ 4
by ey, 0/ | x|V, cye|l=|b ¢ | x|V b
¢, d, ¢ dyd,d c, d, d ¢yd,cl;

or  {b(dc)+c(ca’) +d (ab)} x {a (cd&) + ¥’ (db’) + ¢ (bc')}
={¥' (bc) + ¢ (ca’) + & (ab’)} x {a (cd’) + b (d]") + ¢ (bC)},
whence — Q= (b¢')*+ (ca’)* (cd) + ()" (ab’) — 3 (ab) (BC) (cd)
= (ad) (b¢)" ~ (ad) (ab) (cd).
In a different form, by eliminating A, we have the equations

ar+by bxt+cy cx+dy
dre+by bVz+cdy cz+dy’

which are
(ab') = + (ac) zy + (be) ¥ =0,
(ac’) &* + [(ad) + (b)) 2y + (62) y* = 0,
(6c) =+ (bd) zy + (ed') y*=0;
(ad), (ac), (6)
(ac), (ad)+(b¢), (6d) |=@Q.
(6¢), (o), (cd’)
Again, eliminating « : y from the original three equations
we get

therefore

g+ b+M e+ N
b+ c+Ad d+ad!?

whence  ac — 5"+ A (ac’ + ca’ — 2b8') + N (@'c’ — b*) =0,
ad—bo+ N (ad + da’ = be’ — ob')+ N (d'd = b'e') = 0,
bd—c+N(bd' + db —2¢c) + N (b'd - ™) =0,
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so that ac -8, ac+ca’ -200, a'cd-b"
ad—be, ad’ + da’ — b’ — cb’y a'd’ - b'¢ |=Q;
bd-c'y, bd+dbt —2c bVd-c"?
or yet again, eliminating dialytically,
0,0,a b d,?
0,0, 5 ¢
0,0¢4dc,d|[=Q.
a, b a, ¥, 0,0
by e, V', ¢, 0,0
¢, d, ¢, d, 00
If, as in the last article, we give a, b, &c. the values 4 — C,
— 0, &c., this Q would become (BC') (C4’) (AB’). If then we
subtract twenty-seven times this quantity from {(ad’)— 3 (b¢)}%,
we get the resultant in the form
B=(ad)’ -9 (ad’)’ (b¢) + 27 (ca’)’ (cd’) + 27 (db')* (ab')
— 81 (ab’) (b¢) (ed’) — 27 (ad’) (ab') (cd’),
a result which agrees with that of Art. 80, it being remembered
that there the cubics were written without binomial coefficients.

215. We have, in Art. 213, formed the invariant P of the
system Aa’+ By’+ C2', A’2’+ B'y*+ C'2%, by first reducing
them to functions of two variables, and then calculating the
value of (ad’) — 3 (bc’). We shall, for the sake of establishing &
useful general principle, give another way of making the same
calculation. We know that we may substitute in any binary

quantic - ‘%’ for « and y, and 8o obtain an invariantive sym-

d—y ’
bol of operation. Now when this change is made in a function ex-
pressed in terms of @, y, z, where 2 is — (@ + y), we must for z write

d d _ .
=& And when the operation is performed on a function
similarly expressed, since its differential with respect to a will
bediw + % ‘%, or, in virtue of the relation between 2, y, 2,
a4 _-d. .

Tz~ a2 Ve see that the rule may be expressed, that in any

B
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covariant we may substitute for @, y, 2z respectively

d d d d d d
BT & & d
and so obtain an operative symbol which we may apply to any
covariant expressed in terms of z, y, 2z, without first reducing
it to a function of two variables. Thus, in the present case, we
find the invariant P by operating on A’z®+ By’ + C’2’%, with

d day’ d dy\* d dy
4(g-7) + 2@ +z-3)
and the result only differs by a numerical factor from the
foregoing expression (BC’) + (C4’) + (4B’).
In like manner we find that, in the symbolical notation, 12,
~ as applied to a function expressed in terms of z, y, 2, denotes

1, 1, 1
d 4 d
dr,’ dy,’ de,
d d d

dz,’ dy,’ ds,

The Jacobian of the system of two cubics is a combinantive

covariant, whose value is
1, 1, 1
Aa'y, By', Oz
A’z', By, C%* |,
or (BC') y's" + (C4A') 2°2® + (AB') 2™
This is a quartic, for which the two invariants may be expressed
in terms of the combinants which have been enumerated already.
Putting in for 2, (z+y)*, and multiplying the Jacobian by six
to avoid fractions, we get
a=6(04"), b=3(04’), e=6(BC’), d=3(BC’),
o=(BC) + (C4) + (4B) =P,

whence §=3P", T=54Q—P°. We have seen that the dis-
criminant of a biquadratic is §°—277*, The discriminant of

the Jacobian, therefore, is proportional to @ (P°— 27 @), which
agrees with Art, 180,
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216. The value of the Jacobian of the cubics
u=a2’ +3ba'y + 3cxy’ +dy’,
v=a'a"+ 302" + 3c'zy’ + d'y’,
is (ab) ' +2 (ac’) 2% + [(ad’) + 3 (b)) =*y'+ 2 (B) ™+ (cd) ¥*;
writing this
J=aa'+ a2’y + 6a 2’y + daxy’ + 0y,
we have, since, P=(ad’) -3 (b¢), '
(ab') = a,, (ac) =2a,, (ad)=3a,+}P,
(be) = @, = 1P, (b’{) =2a, (cd)= 2
Accordingly, the identity
&) (ad’) + (ca’)(b2') + (ab’) (cd’) =0
gives us aa, - 4a0,+ 30} = {5 P*;
also substituting these values in the determinant form of @
expressed by means of them, p. 206, we find

aga, +2a0a0,—aa’-aa’-a’=}(Q - g4P°.
The covariant 12* of » and v is, in full,
(ac’ + ca’ — 2b0") &* + (ad’ + da'— be’ — cb) xy + (bd' + b — 2¢c) y*,
which we write =H =az"+2Bxy + vy,
thus ac’ + ca’— 260" =a,, ad’+cb’ - 2bc’ =B, + 3P,
bc +da’—2c)' =B, —4P, bd +db —2cc =4,
If the Hessians of » and v be written respectively
H=aa'+2Bzxy +vy', H =d'a'+28zy+vy",
where ac-b'=a, &c.,
we find, as in Ex. 6, p. 24,
8 (ay +yd —288) =4 (a7, - B) + P*.
The results of operating with either cubic on the Jacobian
are two linear covariants, which may be compared with the

results of operating on the cubics with the Hessians; it is easy
to see that we have thus the different ways of writing them,

ac’ — 2PV + ya’ = — (ay, — 268, + ca,) = § (aa, — 3ba, + 3ca, — da )
=={b(bc) +c(ca’) + d (ab)} = L,,
ad —2B¢’ + yb’ =&e.= L,

oo =268 +ay =&e.=L', da’ —2p +by=&e.=L,
EE
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denoting these two linear covariants by
L=Lz+ Ly, L=Lx+Ly,
or in determinant form

adx+by, a b| ax+by, o, V'
L=|baz+cy, byc|, L'=|bz+ecy ¥,c |.
dz +dy, ¢, d cx+dy, ¢y d
It is obvious that their determinant
P a 28, ¥
él’ .‘2’ =] &y 2511 Nh|= Q'
1) 2 a', 23', .7'

Ex. For the forms in Art. 215, the above quadricovariants are
BCyz + CAzx + ABzy,
(BC' + CB) yz + (CA’ + AC’) 2z + (AB' + BA') zy,
B'C'yz + C'A'zz + A'B'ay,

and the above linear covariants are found by operating by the method of that article
to be

A'BCz + B'CAy + C'ABz and AB'C'z + BC'A'y + CA'B's,

217. There is another form in which the system of two

cubics may be usefully discussed, viz.

ax® + 3bx’y + cxy® + dy°, ba’+ 3ca’y + 3dxy’ + ey’

In other words, the cubics may be so transformed as to become
the differential coefficients of the same quartic, with regard to
« and y respectively. We can infer, from counting the constants,
that the proposed form is sufficiently general ; but the possibility
of the transformation will be more clearly seen if we consider
the two linear covariants just obtained: if we make o', ¥, ¢,
d =b, ¢, d, e, we have I'=Tr, L=Ty. Thus we see that,
in order. to effect the proposed transformation, we are to take
these two linear covariants for the new variables.

If » and v be the differentials with regard to z and y of the
same quartic, the quartic itself can only differ by a numerical
factor from xzu +yv; and in fact L'u+ Lv is immediately seen
to be a combinant, as being a function of the determinants
(ab’) &e. The leading term in L'u + Lv is

(b)) (b¢) + (ab') (ad) — (ac')".
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Whence, substituting the values given in last article this
leading term is found to be 4 (a,a,—a')+ % Pa,. But ag,—a
ia the source of the Hessian of the Jacobian; accordingly
12H(J) + PJ =38 (L'u+ Lv).

Thus, in order to obtain the quartic, having for its differentials
the two given cubics, we must add twelve times the Hessian of
the Jacobian to the Jacobian itself multiplied by P.

For the system of cubics considered in this article, J is the
Hessian form of the quartic,

P=aqae—4bd + 3¢,
| @ bl

by d
¢, d, e

218. If we have any invariant of a single quantic, and if we

and Q=

perform on it the operation o' (%+ b';,ib+ &c., we obtain an

invariant of the system of two quantics of the same degree.
For if we form the corresponding invariant of w+Av, the
coefficients of the different powers of A will evidently be
invariants of the system. Thus let the discriminant of u+ v
be D+ 4AM+6N'N+ 4NM' + M D', and we have the three new
invariants M, N, M’, whose orders in the coefficients are (3, 1),
(2,2), (1, 3).

If in general we form sny invariant of »+Av, and then
form any invariant of this again considered as a function of A,
the result will be a combinant of the system u, v; that is to
say, it will not be altered if we substitute lu + mv, l'u +m'v
for u, v. For, by this substitution, we get the corresponding
invariant of (!+Al’)u+ (m + Wm’)v, which is equivalent to a
linear transformation of A, by which the invariants of the
function of A will not be altered. If then it be required to
calculate the invariants of .the biquadratic, which we have found
for the discriminant in the case of two cubics, we may, without
loss of generality, take instead of % and v two quantics of
the system u-+Av which have square factors, taking « and y
for these factors; and so write u = ax® + 3ba"y, v=238cxy" + dy’.
For this system we have P=ad- 3bc, Q=">b"" (ad-bc); the.
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resultant P*— 27Q being a'd® (ad- 9bc). Now, for this form,
the biquadratic is 4ac*A\’+ (a’d® — 6abed — 35°C") A* + 4db°\ 5 or
multiplying by six to avoid fractions D=1D'=0, M=6db’,
M’ = 6ac’, N=d'd"— 6abed — 3b°¢* = P* — 12b°c". Hence,
S8=3N*"—4MM’'=3P(P*-24Q);

T=2NMM’'—- N*=- (P*-36P*'Q + 216 ("),
whence the discriminant of the biquadratic 8°—277" is pro-
portional to @* (P*—27¢), which agrees with Art. 183.

The method used above is evidently also applicable to
covariants. Thus let the Hessian of u +Av be H+ AH, + N H’,
and we are led to the intermediate quadratic covariant H, whose
leader is ac’ + ca’— 2b0’. The covariants and invariants of the
system of three quadratics, just mentioned, are also covariants
and invariants of the system of two cubics. Thus if we take
the Jacobian of each pair of quadratics, we have three quadric
covariants of the orders (3, 1), (2, 2), (1, 3). We have seen
(Art. 167) that a cubic and its Hessian have the same dis-
criminant, and therefore we may identify the discriminant of
H+AH,+N'H' with the expression already found for the
discriminant of u+Av. Now if u, v, w be three quadratics,
the discriminant of Au + pv + vw is plainly AM'D,, + 2auD,, + &ec.
Thus for the system under consideration, we see that D, D,
can only differ by a factor from M, M’ already enumerated ;
and we have the two invariants D,,, 2D, whose sum similarly
is, to a factor, the same with N. Another relation was already
found (Art. 216) between them and P. These invariants, there-
fore are not new but can be expressed each in terms of N and
the combinant P. The expression is most easily arrived at by
taking the particular case already considered u=az’+ 3bz'y,
v=_3cxy" + dy’, in which case we have
H =aca’+ (ad—-be)xy + bdy*, 2D, =0V, 4D, =6abcd—a’d"- b'c".
Thus we find, for the case when the discriminants of both
cubics vanish, the relations P*— N=24D,,, P*+2N=-12D,;
and it can easily be verified that these relations are true in

general.
Lastly, we may form the invariant B of the system of three
quadratics, but we have found this already to be the combinant Q.
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219. We are able now to give a list of the covariants of
the system, which the investigations of Clebsch and Gordan
show to be complete.* There is one quartic covariant (1, 1),
the Jacobian (Art. 216). There are six cubic covariants, the
two cubics themselves (1, 0) (0, 1), their two cubicovariants
(3, 0) (0, 8), and the two Jacobians (2, 1) (1, 2) of either cubic
combined with the Hessian of the other. For the canonical
form, the last four covariants are included in the form

1, 1T, 1
A=z* By Ce*
A (By + Cz), B(Cz+ Ax), C(Az+ By) |,

according as we accentuate ‘the coefficients in neither, either,
or both of the last two rows. There are siz quadratic cova-
riants, viz. the two Hessians (2, 0), (0, 2), and the intermediate
covariant (1, 1), these three being for the canonical form
2BCyz, 2B'C’yz, 2(BC’ + B’C)yz; and for the remaining
three covariants (3, 1), (2, 2), (1, 3), we may take either the
Jacobians of each pair of these (Art. 218), or the results
obtained by operating with each on the quartic covariant.

There are siz linear covariants, viz. the two (1, 2), (2, 1)
considered Art. 216; two (3, 2), (2, 3) obtained by operating
with the Hessian of either cubic on the cubicovariant of the
other; two (1, 4), (4, 1) obtained by operating with either cubic
on the square of the Hessian of the other. Lastly, there are
seven tnvariants, viz. the two discriminants (4, 0), (0, 4), the
combinants P, @, (1, 1), (3, 3) (Art. 213), and the invariants
M, M’, N, of Art.218. Of the preceding invariants P and Q
are skew. We have in Art. 218 connected P* with the in-
variants D, D, of that article, and the expressions there
given for the S and T of the biquadratic are, in fact, expres-
sions for PQ and ¢" in terms of N, M’, &c. We can also con-
nect @' with the functions D, D, &ec. if we remember that,

137 —_—— —

as was remarked (Art. 218), @ is the invariant 12.23.31 -of a

* Of the eight linear covariants which they supposed to be irreducible, Sylvester
has shown that two are not, and d'Ovidio and Gerbaldi have developed their
expreseions, A#ti di Torino, Xv. 267.

.
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system of three quadratics, and that it was proved at the end
of Art. 193 that double the square of this invariant is

'D n D 12 18
'D 12 'D 12) D

D,, D, D

219a. Geometrically, the two cubics may be taken as two
triads of points on a conic, as in the case of Art. 198. When-
any point O (zy') on the conic is joined to the points of the
triad (), the joining lines meet the sides of the triangle (u) in
points forming a triangle in projection with (x), and it is easily
seen that the first emanant with regard to 2/, 4 of the cubic %,
whose roots are represented by the points of the triad, is the axis
of the projection. Similarly, O may be made the centre of a
projection for v, and the axis corresponding be found; these two
axes intersect in a point O’, and as O moves round its conic,
O describes another conic which intersects the conic O in four
points representing the roots of the Jacobian of » and v. The
four corresponding points O can without difficulty be de-
termined.

The roots of the covariant H, are represented by two points
on the original conic whose axes with respect to the two triads
are conjugate lines with respect to that conic.

In Art. 198 it was seen that for a system of a cubic » and a
quadric V the simplest linear covariant is the centre of the
projection with regard to » whose axis passes through the pole
of V. If we calculate for the triad consisting of this centre
and the two points where ¥ meets the conic, the combinant P
with the triad », we find P=0. It follows from symmetry that
each of the vertices of the former triangle is the centre of a
projection with regard to u, of which the axis is conjugate to
the opposite side; and that such relation holds mutually between
» and v when P=0. Another way of stating the condition

" P=0 is that the triads are such that H and its pole are axis and
centre of a projection with regard to v, and H' and its pole, __
axis and centre of a projection with regard to u.

The simplest linear covariants discussed above are represented JlE

as follows : L is the centre of the projection with respect to v~ <=
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‘whose axis is the line joining the poles of H, H'; and L’ the

‘centre of the projection with respect to w of the same line.

The identities established, Art. 216, show that L is also centre

of the projection with respect to u, whose axis joins the poles .
of H, H, and L’ centre of the projecticn with respect to v,

whose axis joins the poles of H,, H. Thus the pole of H, can

be constructed.

If the points L, L’ coincide, H, H,y H are concurrent lines,
and the line joining their poles is the axis of projection for
the L point with respect to both triads and the combinant @
vanishes. '

219b. System of four cubics. It is desirable to generalise
to this case the theorems given p. 181 for three quadrics. For
the determinant of the system, if we denote the combinant
(ad,)-3(be,) by P,, &c., we have, by Art. 33, Ex. 4, the
relation
PP, + PP+ PP, =" 3(abcd), ‘

28 14

and this becomes when a,, &c., are replaced by 3", &e.
Pu, + Pu,+ Pu,

8172

3
Zﬂ Z’, ‘Zn —yxy’ ez + by, ag+by, az+by
=3g| %0 % % =<3 bla: +cy, b,:v+ Y bs:c+c,,y .
Gy Cy Cy X'y
dn dn da) 3 oz +dy, cx+dy, cx+dy
1y @y Oy

This is the cubic which determines the values of &/, ¥/, so
‘that My, + Mu, + Ny, = (zy’ — «y)° be a perfect cube, see Curves
(Art. 216a &ec.), and the discussion of unicursal cubics there given
furnishes an additional geometrical illustration of this theory.
For four cubics, denoting the function just written by J,,,, we
have the equations

Pu“:+Puus+Pnu4=_3Jm7

F, u + P, alby T P, 18% =" 3Juu
P, ully T Pn“: + P, 1w == 3J4m
P, nth T 'Puu: +P 1% == 3J1m

a linear transformation in four variables.
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If J,, signify the Jacobian of the cubics a,2’ + &c., 22"+ &e.,
we have six such Jacobians each a quartic in z, y, which we
may write

Ju=aa'+4b 2% + be 2y +4d 7Y + ey, &e.,
a,=(ad), 2b,=(ac,), &ec.

Now it is easily found, as in Exs. 3, 4, Art. 33, that

(alb’cld‘) = alleu + al'e“ + alleﬂ + aueu + a"ell + a’elC
=—4 {budu + buda + budn + budu + budu + budu}
= 12 (cucu +C,4Cu+ cucu)'

Hence, and from the vanishing combinations,

ab,+ab,+&c. =0, &ec.,
the linear relation had by dialytic elimination of «*, 2%, &ec.,
between the six functions ./, is found to be
Plqu+PuJa+‘Pan+’PuJu+Pan+'PnJu—_-'O’

Other relations can be established connecting the functions H
with these, as at p. 181, on which we need not delay. For
instance, we might show for five cubics, with an obvious notation,

that 2J12Ju6= us’ Hm’ Hn
Uygy H 149 'Hu
us’ H 157 Hu

Also for four that J,J,, +J,J,, +J,J,, =0.*

219¢. The system of four cubics furnishes another geome-
trical view of binary cubic systems. For, we can by linear
combinations alter the functions to 2’ z'y, 23", ¥* and introduce
these as new variables z, y, 2, w, the coordinates of a point in
space which depends on a single parameter ¢, The relations
botween thom, and ¢, may be written z: y=y:2=2:w=¢;
thus the point ¢ is restricted to a twisted cubic, and the roots of
any binary cubic are the parameters of the points of intersection
of a plane with the twisted cubic (compare Surfaces, Art. 337
et seq).

For any point ¢ on the curve the osculating plane is

x — 3yt + 3at' — wt* =0,

so that the points whose osculating planes meet in any point

* Dr. F. Lindemann's paper (MatA. Annalew, vol. XXIII. p. 111) on the geemetric
exposition of binary forms includes the formuls of this article.
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A W S 4

2’y’2w’ are determined by a’—3y't+32't'—w'*=0, or the
points of contact lie in the plane w'z — 32y + 3y'z — 2’w =0, but
this plane passes through y’z'w’".
Hence, in any plane F) az + 3by + 3cz + dw = 0 there is a point
" O whose coordinates are d, — ¢, b, — a, which is the intersection
of osculating planes at the points in which it meets the curve,
and the point and plane may be said to correspond. When O
lies in the plane F” corresponding to a point (7, the above relation
“shows that O lies in the plane F corresponding to O; and the
line OO possesses an invariant relation to the curve. For
two such planes F, F” the P invariant vanishes.
Two equations of the line meeting the curve in the points
t, t, are z—y(t +t)+2tt, =0, y—z(t +t)+wtt, =0, if we
express that this line passes through the point O, the parameters
¢, t, of the points in which the chord of the curve through O
meets the curve are the roots of the quadratic

(ac— ) & + (ad —be) t + bd — ¢* =0,

thus the Hessian of the binary cubic is represented by the
intersections of the chord through O with the curve.

The determinant, whose constituents are the coordinates of
the collinear points O, ¢, ¢, and of any other point, vanishes
_identically. Hence, by the first formula of last Article, if we put

az, + 3by, + 3¢z, + dw, =\,
‘ ax, + 3by, + 3¢z, + dw, =\,
we have identically
A, (@w, - 3yz, + 32y, — wx,) — A, (xw, — Byz, + 32y, — wx,)
= (w,w, — 3y,2, + 32,y, — wx,) (ax + 3by + 3cz + dw).

Hence the plane F' contains the line of intersection of the
osculating planes at the Hessian points.
The plane through the intersection of the osculating planes

)’1 (wwa - 3yz’ + 3zya - ww,) + 7\, (xwx - 3yz| + 3zyl - w‘tn) =0

which is harmonic to the former is easily found to represent the
cubicovariant, and having the same Hessian, its corresponding
FF
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point is the harmonic conjugate of O with regard to the
Heseian points.

219d. A second plane & gives rise to a similar system, and
besides to the results of combining the two. The coordinates of
the tangent line to the curve at any point are £, — 2, ¢ 3¢, 2¢, 1,
whence we find that ¢ is a root of the Jacobian of F, ¢ for any
point on the curve whose tangent meets the line in which the
planes intersect. The line joining OO meets the tangents at
the same points,

The parameters of the points in which a chord through any
point on OO’ meets the curve are given by

MH+ 20 H, + p'H =0.
From any point given on the curve, two chords can be drawn
to meet 00, and if H,=0, these chords meet OO’ in points
barmonically conjugate to 0 and O

The simplest linear covariants are represented by the point
where the plane through O containing the chord through O
meets the curve again, and that in which the plane through
O containing the chord through O meets the curve again.

The invariant P vanishes for two planes if the point
corresponding to one lie in the other, in which case the line F®
becomes identical with its corresponding line Q0.

The combinant @ vanishes when it is possible to draw an
osculating plane through the line F®, in this case it is easy
to see the corresponding line 00" meets the curve and the two
points which represent the simplest linear covariants coincide.®

219e. System of a quartic and cubic. This system consists
of sixty-one formst: 1 sextic, 2 quintics, 5 quartics, 8 cubics,
10 quadrics, 15 linear, and 20 invariant functions. An invariant
of the third degree in the coefficients of the quartic, and
of the second in those of the cubic, can at once be written

* See a paper on this geometrical representation by Mr. W. R. W. Roberts, Proc,
Lond. Math. Society, vol. X111, Also Dr. Lindemann’s paper, Note p. 216.

t In Dr. Gundelfinger’s inaugural dissertation the number was assigned as 64,
but Dr. Sylvester has since shown (Comptes Rendus, t. LXXXVIL) that two of the
quadratic and one of the linear covariants are reducible.
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down from the determinant form of the sextic covariant, p. 192,
being the result of operating with that covariant on the square
of the cubic, a, -3, 38,-d, O

0, a,-38Y, 3,-d

0, a, —3b, 3¢, —d

ay —2b, 0, 2d, —e

b, -3¢ 3d, — ¢ O
The same determinant with only one row so altered is a
covariant cubic, and another of the same degree in the quartic
coefficients may be got from the skew invariant, Art. 219.

. The two simplest linear covariants are
a’ (dz + ey) — 8V’ (cx + dy) + 3¢ (bx + cy) — d’ (ax + by),
and the corresponding one for the Hessian of the quartic. The
determinant just written is the eliminant of these two.
Operating with the quartic on the square of the Hessian of

the cubic, gives an invariant of the first degree in the coeffi-
cients, of the former.

220. System of two quartics. ~ We consider here chiefly the
invariants of this system, which are also combinants. We have
seen, Art. 218, that the invariants of any invariant of Au+ uv
are combinants. Let us form the S and 7' of Au+ pv and
write them

SN+ 3ap+ 8p’y TN + N+ OMp* + T’
then if we form (Art. 198) the invariants and covariants of this
cubic and quadratic, we get combinants of the system of two
quartics.

Thus the discriminant of the quadratic is =*— 488" =

a, 4b, 6¢c, 4d, e é,—-d,c, =V, d

a, 4V, 6c,4d,¢ | | ¢, —d, ¢, —b, a |
= (ae)'+16(bd")"+ 12(ac’)(ce’)— 48(bc’) (cd’)— 8 (ab’) (de’) -8 (ad’) (be"),
which we shall refer to as the combinant 4.

It will be convenient to use the abbreviations (ad’)= a,
() =d, (ad)=B, (b)=8, (a)=D, (e)=N, (bc)=p,.
(cd)=py (ad)=1, (bd’)=3. We have then

A=12AN — 48uu’ + * + 168* — 8aa’ — 884",

‘We can find by a different process an independent combinant

of the same order in the coefficients. The Jacobian of the two
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quartics, J, is ,
ax®+3\a’y+(38+6p)2"y"+(y+88) 2’y +(38"+6p' )2y + 3N xy’ +a'y".
Again a combinant quadratic P or 12° is

(B—3u)a" + (y—28) zy + (8~ 3u) ¥".

The sextic J has an invariant of the second order in its
coefficients (Art. 141), and the discriminant of P is of like order,
neither being identical with 4. ,

The condition that u and v be derived functions of a quintic,
is the vanishing of B=| a, b, ¢, d

b, ¢, d, e
a,v,d, &
V,c,d,e ': ‘
hence, or asin Art. 2195, we find B=AN"—pu’-Bu’ —B' u+8"-ad’;
the invariant of J will be found to be 4 +48B, and the dis-
criminant of P to be 4 — 125.
. The resultant of u, v, found by expanding the determinant
of Art. 84is
B = 1296N"\"* — 3456 (aph™ + &/w'A*) — 1152 (aBA + o/ BAY)
—T29"AN = 576y8AN + 9216ad’up’ + 96y (BN + B*\)
+ 288y (aB'A'+ a’BN) +15368(aB u'+a'Bu) +3072aa” (Bu'+8 n)
+ o' — 48aa’y* — 1688'y* — 256aa’yd + 512a°a™
— 256 (a8 + a’8°) — 4096aa’S". .

In terms of the preceding combinants can be expressed the
combinant which we have called 7'(Art. 182), but which, in order
to avoid confusion, we shall now call C'; and which expresses the
condition that a quartic of the system u+2Av can have two
square factors. Such a combinant must vanish if v reduce to
the single term ¢’z’y". In such a case a, o', 8,8, v, d all vanish;
and we have A4 =12AN - 48up’; B=2AN —pup', B =1296\"N"";
hence we see that (4 —48B)*— R is a combinant which vanishes
on this supposition. And since it is of the same order that we
have seen, Art. 182, that 7 must be, it is identical with it.
Using the values already given for 4, B, R, we find that
(4 —48B)'—- R =128C, where
C=—2Ty(Ap"+ N p*)+18(8'w+87 ")+ 188 AN"+36ydup '~ 36aa up’

+ 18y8AN — 9y*up’ — 3y (aB'N + o/BA) — 248" (Bu’ + B'u)

— 63 (BN + B”\) — 68 (aB'\ + d'BN) + 2 (aB” + o' B’) + ad'y*

+ 4a’a” — 2aa’yd + 4yd® 4 16aa’8" + 88", '
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Again, if we form the invariant which we called 7 (Art. 198)
of the quadratic and cubic at the beginning of this article, it
will be found that

(A +48B)(A-16B)- R=- 1281,
a formula obtained by Mr. Warren, Quarterly Journal, Vol. vII.,
P. 70. ,

221. We consider next D, the resultant of the cubic and
quadratic, and E the discriminant of the cmbic. D is the
invariant which we have called § (Art. 182). It may be
mentioned, that besides the methods already indicated for
calculating that invariant in general, the following may be used.
It is required to find the condition that A can be determined
8o that the three expressions u,, +Av,,, u,,+Av,, u,+Av,, can
be made to vanish together. Now we may multiply each of
these by the 2 (» — 2) terms o™, &c., of a quantic of the degree
2n—5, and so obtain 6 (n—2) equations, from which we can
eliminate dialytically the 6 (» — 2) quantities 2™, &ec., Az™",&e.,
and so obtain § in the form of a determinant. In the case
of the system of two quartics,

D = — 16NN+ 48NN+ 6AN w'u ™+ 16’ u+ 2TA "+ 270
+ 36aAuN” + 360N A’ + 120"\ (Bu” + B'p) — 96au™\*u’
— 961" — ByApu” — 6yu’Np’ — 860NN ™ — 363Au\”
— 48app™ — 48a pty’ — 248 pup” — 248N p'p® + 240 8NN
+ 24/ 8NN — 1808\ u* — 188 A u” — 68N\ + 87w
= My’ (162aa” + 9088") — 36aBu™ — 36a'B'u + 968°AN up’
+ (228a0” — 6088’) p'u” — 4a*y\™ — 4ay\’ — 168"\ w’
— 168" N — 300 N’ — 80a’a’ A p — 50aa’ AN (Bu’ + B'n)
— 208AN (ABd + NaB') + 2yup’ (MBa’ +N'aB’) + 488%auN*
+ 488% A+ 2408 up + 24 BPu’u + 56088 w” + 56/ BB u®
+ 24000’ Bup*+ 240aa’ u*w' B’ + 32a8'u”™ +324/8'u’® + 8N’
+ 3N"2*B” + 24ad’ (B'u” + B7w’) — 6ad’y up’ — 12a’a™AN
— 80aa/BA'AN + 60aa’AN'S* + 1288'AN'S"
+ {84a"a"+ 120aa’B3'— 128*3"} puu'— 192aa’8'up’+ 48y up’
— 488"AN + 6yaa” BN + 6ya’a’ BN + 48a%a” (B’ + B'p)
+ 24aa’8 (B'uw/'+ B7%u) — 96aa’d® (Bu'+ B'p) — a’ay* - 4aaB°
— 4d'a’B"+ 8’ ~ 4yda’a” — 48a"a"d" — 168"aa’ BB + 6400’8



222 APPLICATIONS TO BINARY QUANTICS.

222. In studying the relations of these combinants, we may,
without loss of generality, suppose one quartic to want the first
two terms, and the other the last two; that is, we may write

u = az' + 4ba’y + 6ca’y’, v =602y + dday’ + ey’
To save room, we write ae =1, bd =m, cc’ =n, cad" + c'eb* = p".
We find then
A= (I-4m)"+12n(l - 4m),
B= m'—p'+n(l-m),
R= 0[P (l-16m)+96'p"'—72nl* (I + 8m)+ 12960'2°,
I =-Tm’ + 4lm® + p* (' - 2lm — 8m*) + 6p*
—n (I + 6lm* — 16m") — Inlp* + 12n* (' + lm — 2m"),

D =—n* {9lm® (1 - 4m) — 6p* (2T’ - 6lm — 4m")— 27p*+16n (I-m)’},
E=-0m* + 2lm’p* (1 + 2m) — (1 + 2m)* p* — 2nlm* (I + 2m)*

+4p° + 2np* (1 + 2nt)’ — 18np*lm* — n* (I + 2m)*

+ 362°lm* (I + 2m) — 6np* (I + 2m) — 6n"p" (I + 2m)*

+ 2Tn’p* + 4’ (I + 2m)* — 108n°Im”".
By the help of these values we can verify the equation

16B° — AB*-2IB+ E= D,

which expresses E in terms of invariants already found.

The Jacobian, with this form, wants the extreme terms.
There is no difficulty, therefore, in calculating its discriminant,
and thus verifying the theorem of Art. 180.

Finally, we have seen that a cubic and ‘quadratic have a
skew invariant M. The equation of connection given at the
end of Art. 198, when applied to the case considered in this
article, shows that the system of two quartics has a skew

invariant M of the 9* order in the coefficients of each, whose
square is given by the formula

M*=A(AE-TI"V-8D(I*-9AIE+ 51DE).
Mr. Burnside’s method, reducing the theory of two quartics

to that of three conics, discussed Conics, Art. 388, would have
led us to the same results.
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223. I have alsp sometimes found it convenient to suppose
each quartic to be the sum of two fourth powers, so that for
each the invariant 7' vanishes. Let the quartics be au*+ bv',
a’w' + b'z*, where u is ez + B,y, &c. We use (12) to denote
a8, —aB,, and employ the abbreviations

(12) (34) = L, (13) (42)=M, (14)(23)=N;
where it will be observed that we have identically L+M+ N=0.

Now the invariant S is got by substituting % R —;;—f;, for , y

in the quartic and operating on it with the result. If we
operate in this way with «» upon u the result vanishes; but if
we operate on v the result is (12). We find then at once that
the S of AU+ puVis '
N'ab (12)*+Ap {aa’(13)*+ ab’(14)+ ba’ (23)* + b’ (24)'} + p'a’t (34)"
The combinant then which we have called 4 is
 {ad’ (13)* + b (14)* + ba’ (23)* + bb' (24)*}* - 4aba’b'L*.
In the same case B is found to be — aba’d’L* MN. A

The invariant 7' is found by operating on a quartic with
its Hessian. But here the Hessian of U is ab (12)%"". We
find then that the 7' of AU+ uV is

A {aba’ (12)* (13)" (23)" + abb’ (12)* (14)° (24)%) "
+ M {a'Fa (13) (14)* (34)* + a'B'D (23)* (24)* (34)7).
Hence, we have immediately
E=—a'b'a"b"L*{aa’ N*(13)"+ab M*(14)*+ba’ M*(23)"+5b'N*(24)'}2,
D=—a'B'a"V"L* (a*a”N* (13)° + " M* (14)° + b'a™M* (23)°
+ BN (24)° — 2MNa*a'V (13)° (14)* — 2MNB'Q'Y (23)* (24)*
— 2MNa"ab (13)* (23)* — 2 Nb"ab (14)* (24)*
+2M*N'aba'®' (M* + N* — 2L7)},
=—aba't L[a%a N*(13)° +a'" M*(14)°+ 50" M(23)"+ 55" N*(24)*
+ (M + N* - 2L {a*a'¥’ (13)* (14)* + B'a’V’ (23)* (24)*
+ a”ab (13)* (23)* + b™ab (14)* (24)%}
+2M'N* (M* + N* — AL*) aba'¥),

by the help of which values we can verify the equation already
obtained.
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Sylvester has reduced by two the total number of independent
forms for the system of two quartics which Gordan enumerated
as thirty, viz. there are for each quartic the five forms u, H, J,
S, T'; twelve more forms are got by taking the operations
12, 12°, 12°, 12* performed on the pairs u, v’; v, H'; o/, H;
two more by 12°, 12* performed on H, H'; and lastly, four more
are obtained by operating on the sextic covariant of either
quartic with the other quartic or with its Hessian. This gives
in all eight invariants, eight quadratic, seven quartic, and five
sextic covariants. ,

The following are examples added in further application o
these principles to binary quantics of the first four degrees. In
dealing with the sextic we shall return to the system of two
quartics.

Ex. 1. If three quadratics be the three second derived functions of a single
hiquadratic function, express the relation between their coefficients.

With the notation of p. 181, u=a,22+2b2y+6,9% v=0a,2%4+&¢C., 2Drs=0,CtGsCr—2b, b5,
we must have

ay, by, ay b,
by €y by ey =0,
Gy by ay, by )
by, cp by €

This may be found by comparing coefficients when we effect a linear transfor-
mation on the quadratics. It may be found more rapidly in another form, as follows :

The general conic identity between the quadrics (p. 181) for

® = az? + 2bay + cy?, © =00z + 2cxy + dy?, w =cz®+ 2dxy + ey?,
has Dy=ac—8% - Dy=bd-ct Dyy =ce — d?,
2D,y =be—cd, 2D, =ae+ c®—2bd, 2D;=ad— be,
whence, by the identity (ac — b%) (ce— d?) + (ad — bc) (cd — be) + (ae — bd) (bd —¢?) =0,
derived from the matrix | a, b, o, d |, we get ’
b ¢ d e
Dy D33 — 4D12 Dy + Dy (Dg3 + 2Dy,) = 0.

Ex. 2. To give a geometrical signification of the preceding relation? .

The equation (ax+dy+c2) 2’ + bz +cy +da)y' + (cx+ dy +ee) 2 =0 is that
of the polar of (z/, ¥/, 2") P to the conic u = ax®+ cy®+ e2?+ 2dyz+2cexz+2bxy =0 ; and
if y”? =42’z’, P moves on a conic v =0, and its polar touches

(az + by + ez2) (cz + dy + e2) = (bx + cy + da)’.

This conic is found to be the harmonic conic of « and v, and to mee§ v in the
points which are the roots of the Hessian of u as & binary gmartic. A binary
transformation leaves v of the same form as before. The three quadratics correspond
of course to right lines, and if a binary transformation make them the derived
functions of a binary quartic u, they must be two tangents and their chord of contact
to the harmonic conic, which is the reciprocal of v with respect to u. That the
reducing cubic of the quartic is clear of its second term is (Conics, Art. 881, Ex. 1)
equivalent to this special determination of the harmonic conic F. The conics % and v
are said to be apolar (4dpolaritit und rationale Curven, F. Meyer, Tiibingen, 1883).
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Ex. 3. What relation holds among the coefficients of four quadratics if by the
same linear transformation two of them become derived functions of one cubic and
the other two of another ?

ay by, ay &,

bo o by % | p byt DaDy— 2 DDy + DyyDiy — DyuDss

Gy by, a,, B, | =T 0u (] 1204 18042 1zl

by gy by 4 )
the notation being the same as in Example 1, are easily found to be equal, and the
condition required is got by equating them to zero.

Geometrically, the lines are such that a quadrilateral can be inscribed in the
fundamental conic, having its sides each through the pole of one of the given lines;
thus, points P and R can be found on the conic, such that when P is joined to the
pole of line 2 and R joined to the pole of line 1 the lines meet in Q on the curve;
and when P is joined to the pole of line 4 and R to the pole of line 8 these lines
must meet in S on the curve,

Similarly considered, Ex. 1 has the lines so placed that a quadrilateral can be
inscribed in the conic, having two alternate sides through the pole of one given lme
and the other sides severally through the poles of the other two given lines.

Ex. 4. What relation holds among the coefficients of three quadratics which can
‘be the simplest quadric covariants H, H,;, H’' of two cubics ?

In Art. 219 it was pointed out that P2, PQ, Q? can be independently expressed
by means of the functions D, The values are in the present notation

P2=4 (4D, — D,,) . D,y, Dy, Dy
@=16| Dy Dy Dy |,
) PQ=8{Dy;Dps + Dys? — Dy Dyy — D3 Dy}, sy Dis

whence, comparing values of P2Q? also writing the minors of the last determinant
A = DyyDyy — Dy, &c., we find
4HF = B+ 2BG + CA.
The form of this relation, compared with that in Ex. 1, shows that the Jacobians
of H, H,, H' aresecond derived functions of a quartic. -
~ Ex.b5. A cubic can be uniquely determined whose covariant H, with a given
cubic vanishes identically.
Ex. 6. The P invariant of
u=(z—ay) (z—PBy) (@—yy), v=A@—ay)'+B(=—py*+C (-9
vanishes identically. Similarly, 12" vanishes identically for two quantics
L= (T~ ay) (@ — ag).(z — any), V=4, (x— a)+..t da (. — any)™.
Two binary quantics for which 12" vanishes are said to be apolar (see Ex. 2) : also,
conjugate binary forms by Dr. Schlesinger, Math. Annalen XX11.

Ex. 7. For two cubics, show that, in terms of the roots,
@—a)B-F)(y—Y)+(@-B)B-7)(y—a)+(a-7)(B-a) (y~-8)

= (@=a) (B-7) (y—B) +(B—F) (v~ @) (=) + (=) (a=B) B—) =25,

Ex. 8. In the system of cubic and quadratic (Art. 198), calling the Jacobian of
U and V, u, prove that the combinant P for the cubics u, U, is double the inter-
mediate invariant J, and that the P for the cubics u, J, vanishes,

GG
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Ex, 9. For the cubicovariants J, J’ of two cubics 4, v the combinant
P (J,J)=4D,,P-2Q.

Ex. 10. Calculating, as in Art. 216, the determinant form = R of the resultant
of two cubics (Ex. 2, Art. 90), we get at once

= 8R =P (an, — 44,0, + 8a,7)
+ (aa, — 8bay + 8ca, — day) (ayd’ — By’ + 80}’ — aa))
+ (aa, — 8ba, + B¢ay — day) (a'ay— 8b'a, + 8c'a, — d'ay)
. = %P+ 3 (LL, — LLY) = 15 (P* - 27Q).
For the biquadratic this gives the discriminant in the usual form, a, &c., are then
coefficients of the Hessian,

Ex. 11. The expression u'D’ — 4uloM’ + 6ut?N — duv’M + v*D contains as &
factor the square of the Jacobian of w and v. If the division be effected, show that
the quotient is 2 {P.J + 6H (J)}.

Ex. 12, The combinants P and Q of two cubics are each expressed in terms of
the S and 7 invariants of the discriminant quartic, by a biquadratic whose quad-
rinvariant vanishes.

Ex. 18, If the roots of two cubics a, 8, v; ', £, 7', be connected by the relation

{(a—a) (B—7") (v—B+N((B~B) (y —a) (a— ¥)}+2{(y — 7) (= B)(B—a )} =0,
shew that 4 + Av admits of being a perfect cube.

__ Ex. 14. Determine the condition that a quartic may be such that its covariant
12 with another quartic may vanish identically.
It is ST=0.

Ex. 15. The determinant form for J (Art. 202) is got by expressing that a quartic,
whose covariant 12° with  vanishes identically, has a double root.

Ex.16. If a, d%. +2a, d%’+...+ oy o=, bn%, +2, Ta'f—’+...+ra.h.%'=a',
concomitants of the system a,z®+...= 4, d* +..=v, can be derived from their
sources by repeating the operation & + ¢&’, and this operation on the coefficient of the
highest power of z vanishes : as in the case of a single original function (Art. 147).

Ex. 17. If we combine any quadratic with a cubic and form their Jacobian
Art. 198, it becomes in the method of Art. 219¢ & plane, and as we vary (the quad-
ratics) the chords of the twisted cubic the Jacobian varies, but always passes through
a fixed point. This point is easily seen by the determinant form for the cubicovariant
of a cubic (Art, 195) to be the point which corresponds to that cubicovariant.

Ex. 18. In the system of cubic and quartic the simplest linear covariant p. 219
vanishes identically if the cubic be of the form uvw and the quartic Au*+ Bv*+ Cw'.* In
general, the system may be reduced to the form Aut+ Bvt+ Cwt, A'u+ B'v*+ C'wB,
where % + v 4+ w =0, by the canonizant | @', @, 8, §* |=wrw=0.

b', b’ ) —.’ty’
d, 6 d aly
d,d, e —a
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LESSON XVIII.

HIGHER BINARY QUANTICS.

224. The Quantic. There are in all (including the quintic
itself and four invariants) twenty-three forms. The invariants
are J, K, L of the orders 4, 8, 12 respectively, and a skew
invariant I of the 18th. The discriminant R of the quintic
is not reckoned as a separate invariant, inasmuch as it is, as
we shall presently see, a function (J*—128K) of the invariants
J and K.

Three of the covariants invite special attention, viz. the
Hessian 12*, which if we take the quintic to be (a,b,¢,d,¢, f{z,3)"
has for its value.

H=(ac—b")"+ 3 (ad—bc)x’y+ 3 (ae+bd—2c")a'y’+(af+Tbe—8cd) 2’y
+3 (4 + 0= 20"y + 3 (of - de) ayf + (df — &)
There is a second covariant of the second crder in the

coefficients, viz. the covariant quadratic 12*, the S of the quartic
emanant, which has for its value

8= (ae—4bd + 3¢") &* + (af — 3be + 20d) zy + (bf — 4ce + 3d") y".

And thirdly, there is a covariant of the third order in the
coefficients, viz. the canonizant, the determinant expression for
which we gave Art. 169 ; that is to say, the covariant cubic which
has for its factors the x, y, z of the canonical form. This covariant,
which is also the T’ of the quartic emanant, has for its value

(ace—ad®—eb™+2bcd— &) 2* + (aof — ade — bf + bee + bd' — c'd) z"y
+ (adf—ae’— bef+ bde+c'e—cd”) xy” + (bdf - be’ —cif + 2cde—d°) y".

225. In studying the quintic we constantly use the canonical
form az’ + by’ + cz® (where z +y + z2=0), to which it has been
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shown (Art. 168) that the general equation may.be reduced.
For this form the three covariants just considered are respectively

H=bcy'?’ + caz"s® + abx"y’,
8 =beyz + cazx + abxy,
T = abcayz.

' Differentiating the quintic with regard to = and y successively,
we have u, =ax'—cz*, u,=by'~cz'. It is evident that the
resultant of these two will be the discriminant of the quintic,
and that the combinants of this system will be invariants
of the quintic. These invariants are then immediately found
from the expressions in Art. 223, where we must write for
a and b, a and —c¢, for o’ and ¥, b and —c. 'We have (24),
and therefore M=0; (13)=1, (12)=-1, (34)=-1, (14)=-1,
(23)=1. We observe then at once that B vanishes. We can
see, by counting constants, that any two cubics can be brought
by linear transformation to be the two differentials of a single
quartic; but two quartics cannot be similarly brought to be the
differentials of a single quintic, unless the condition B=0 be
fulfilled. Or it may be otherwise stated that this is the condition'
that the quartics should be reducible to the form au*+ bv* + cw,
a’u' + b'v* + . -
The combinant 4 in like manner becomes

b'c* + c'a’ + a'b* - 2abc (a + b+ o).

This, which we shall call J, is the simplest invariant of the
quintic, and it may be obtained in other ways; viz. either
by forming the discriminant of S, or the quadratic invariant
12° of H.

In either way we obtain the general value of J =

alf* — 10abef + 4acdf + 16ace’ — 12ad’e + 16b°df
+ 9b%¢" — 1250 — T6bode + 485" + 48c% — 320",
226. The discriminant of the quintic may be obtained either

from the theory of two quartics, or by direct elimination
between the two differentials ax'—cz', by*—c2'. When thesa
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vanish together, we may take abc as the common value of
ax’, by', cz*; whence x = (be)t, y = (ca)}, 2=(ab)t. Substituting
in ¢+ y+2 =0, we get the discriminant in the form

(be)t + (ca)t + (ab)t =0,
or {d*c*+c’a’+a’d’—2abc(a+ b+ c)}* —128a*F’c’ (be + ca + ab) =0.

Thus then we are led to the form for the discriminant J*- 128K,
where K is the invariant of the eighth order in the coefficients,
which for the canonical form is a*’c* (bc + ca + ab).

This latter invariant may be otherwise defined : the invariant
K is found by substituting in the usual way differential symbols
for the variables, and operating with the square of the canonizant
on the Hessian. This can easily be verified by the canonical
form. Or else K can be found by forming the invariant 1, as
in Art. 198, of the covariant quadratic bcyz + cazx + abxy, and
the canonizant. In any of these ways the general value is
found to be K = :

a’cdf® — alf 'ce’ — a’f *b'd — 3a’f*d’e — 8a’f°bc’ + Salfde’ + Safb’c

A — 2a°" — 26°f° + a’f*b'¢* + 11a’f *bede — 5a’fbee’ — 5af *b de
+ 12a*0d’ + 12a’f*c°e — 30a’f bd "¢ — 30af *b*c’e + 15a"bde
+ 15b'cef* — 21a’f*c'd’ — 34a’fc’de’ — 34af*bcd® + 22a°c"e*
+226'df* + T8aXfod’ + 18af "be'd — 48a’cd’e’ — A8B'Cdf*
— 27a’fd® — 27af*¢" + 18a’d*e’ + 18b°c'f* + 183af b'e'ed
— 54ab’ce' — 540 de’f — 18af b'd’e — 18af bc’e’ + 3ab’d’e®
+ 86°c’e’f - 220afbec’d” + 106abc’de’ + 106b°cd’ef + 93af bed*
+ 93afc‘de— 30abe’cd® — 30b"ec’df — Yabed® — Ibec’f — 88ac'e®
— 380°d'f — 42afc’d’+ Bac’d’e* + 8b°C’'d’f + 6ac’d’e + 6bo'd’f
+ 270%" — 81b°¢°cd + 38b°'d" + 38b%’c’ +25b% c*d” — 57b%
- 57b¢’c'd +180°d°+18c%+ T4bec’d*—24bc’d* ~24c°d e+ 8¢'d ",

The value of the discriminant in general can be derived hence;
or else, as I originally obtained it, from the formula (Art. 220)
for the resultant of two quartics. 'We thus find
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R = a¥f* — 20a’f"be — 120a%f cd + 160 (a’fce* + a’f°b*d)
+ 360 (a*F*d" + a’f°bc*) — 640 (a’fde® + afb%) + 256 (a’¢* + b/")
— 10a%f*b%" — 16404’/ *becd + 320 (a’fbe’c + af*b’ed)
— 1440a’f* (bd® + C%) + 4080 (alf be'd” + af bec”)
— 1920 (a*be'd + Blecf™) + 26400’ '™+ 4480 (a'f'de’ + af "b'cd”)
— 2560 (a’c’e" + b'df*) — 10080 (alfed’e + af"bc’d)
+ 5760 (a’cd’e® + b*c'df™) + 3456 (a'df + af*c")
— 2160 (a*d*e" + b'clf®) — 180afb’" — 14920afb’c’cd
+ 7200 (ab'e‘c + b'e'df ) + 960af (b'ed’ + be'c’)
— 600 (ab'e"d® + B€''f ) + 28480af bec’d—16000(abe’c’d+ B ecd’f )
— 11520af (bed* + c'de) + 7200 (abe’cd® + bec’df )
| 46400 (ac'e® + Bdf) + 5120afS’d® — 3200 (ae'cd* + BOES)
- 3375b%" + 90008°’cd — 4000 (b%"'d® + b'e’c’) + 20006%°c’d*.
The discriminant may also be expressed as follows: Let
A =d’f* — 34afbe + T6afcd — 32ace’ — 320°df — 12aed* — 12bc’f
+225b%" — 820becd + 480 (bd° + c') — 320c"d" ;
B=3a’f*—22afbe — 12afed + 64 (ace’ + b'df )
~ 36 (aed’ + be’f ) — 458%" + 20becd ;
C=a'fe + 2af bd — 9abe’ — 9afc’ + 32acde — 18ad”® + 6b%cf
— 15bec* + 10bed?,
D =3a’df - 2d’¢" — 9afbc + abed + 18ac’e — 12acd’ + 6b3f
- 15b%c + 106°d* ;
and let C, I be the functions complemental to C and D (where

all these functions vanish if three roots be equal), then three
times the discriminant is

AB+64CC" - 64DD,

227. Quintics have also an invariant of the twelfth degree,
which may be most simply defined as the discriminant of the
canonizant. KFor the canonical form for which the canonizant
is abcxyz, this discriminant is — a'%'¢. And, in general, this
discriminant is — L, where the following is the value of L as
calculated by M. Faa de Bruno. To save space in printing we
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omit the complementary terms. Thus (a'c’de’f®) stands for
a'dde' f* + a’bed f*.
L =a'dd f*— 2 (a'c*de* f°) + (a'celf?) — 6 (a’cd’ef®) + 16(acd’e*f?)
— 14 (a'cde’ f) + 4 (a'ce’) + 4 (a*d’f®) = 11 (a'd*e'f?)+10(a'd’'f)
— 3 (a'd’e") + 4a"bcde’f® — 2 (a’Blce'f?) + 6 (a’B'def*)
— 16 (a®0’d%f?) + 14 (a°0'de’f ) — 4 (a’b'€") + 50a’bc’dlef®
— 82 (a®bc’de’f?) + 82 (a°bce’f ) — 36 (a®bedif®) + 30 (a’bed’e’f*)
+ 80 (’bede'f ) — 24 (a%bede’) + 28 (a"bd’ef™) — 50 (a’bd'e’f )
+ 22 (a®bd’¢") + 16 (a’c'e’f?) + 22a°’d’f* + 50 (a’c’d’é* )
- =16 (a°cCdelf ) — 16 (a’c’e’) — 54 (a’c’d'ef ) — 46 (a’c'd’e’f )
+ 60 (a’'d’") + 6 (a’cd’f*) + 70 (a’cd’é’f ) — 56 (a’cd’e")
— 18 (a’d’ef ) + 14 (a’d’¢") + a’b'e'f* + 182a°b"cde’f*~50(aD’ce’f)
+ 14 (a’B°d’e*f*) — 60 (a’b°d’e’f ) + 30 (a’b’de®) — 168a°b'c*de’f*
+ 48 (a'B’c*de'f ) + 4 (a’B'c"e’) + 48 (a’bed'ef) + 2 (a'B'cd e’ f )
— 6 (a’bcd’e’) — 62 (a'B’dSf?) + 90 (a’D’d’'f ) ~ 39 (a’b’d’e")
— 112 (a®bc'elf’) — 82a’bc’d’ef* + 170 (a'b’d’e’f ) + 104 (a’bc’de’)
+ 108 (a’bc’d’f?) + 42 (a’bc*d'e’f ) —298(a’bc’d’e*)— 242 (a’bed’ef )
+ 294 (a’bed’e®) + 72 (a’bd’f) — 18 (a’bd’¢’) + 164 (a’c’de’f)
+ 24 (a’°¢’) — 63a’c'df* — 394 (a’c'd’¢ f) — 194 (a’c'de’)
+ 324 (@%Cdef ) + 440 (a’Cd'e") — T8 (a*C'd'f) — 428 (a0'd’)
+ 180 (a’cd’e) — 27 (a’d"’) + 18ab’’f — 38ab cde'f + 36 (ab'ce®)
+ 204 (ab*@e’f ) — 102 (ab*d’e’) — 308 (ab’c’de’) — 42ab°Cde’f
~ 674 (ab’cd*e’f) + 590 (ab’cd’e’) + 128 (ab’d’f ) ~ 138 (ab’d’e’)
+ 4 (ab’c'e’) + 652 (ab’c’de’) + T14ab’cd’e'f + 498 (ab'c'def )
— 1246 (ab’c’d'e’) — 224 (ab’cd’f) + 516 (ab’cd’e’) — 48 (ab’d’e)
— 136 (adc’de') — 1078abc'd'ef — 206 (abc'd’e’) + 342 (abc’d’f )
+ 804 (abc’d’e’) — 506 (abc'd’e) + 90 (abed’) — 16 (ac’e’)
+ 220 (ac’d’e’) — 106ac’d’f — 392 (ac’d'e’) +222(ac'd%) — 40(ac’d")
— 278%" + 2341%cde® — 32 (B'd) — T13b'C'd%" + 246 (b'ed*e")
— 4 (b'd’") + 866b°C’d"’ — 550 (b°c’d%") + 56 (bcd’e) + 4 (b°d")
= 1390°c'd*e* + 354 (b°C’d’e) — 83 (bc'd’®) — 830bc°d’%
+ 172 (bc'd") - 16c%d°.



232 HIGHER BINARY QUANTICS.

On inspecting this invariant it will be seen that it vamishes if
b, ¢, d all vanish. Consequently the form ax®+ 5exy*+fy°, to
which Mr. Jerrard has shown that the quintic can be brought
by a non-linear transformation, is one to which no quintic can
be brought by linear substitution unless L =0.

228. We take J, K, L as the fundamental invariants of the
quintic, and we proceed to show how all its other invariants ean
be expressed in terms of these. In the first place, it will be
observed that the interchange in the canonical form either of =
and g, or of x and z, is a linear transformation whose modulus
is — 1. Hence, if any invariant is such that when transformed
it is multiplied by an even power of the modulus of transfor-
mation, it must, for the canonical form, be unaltered by any
interchange of a, b, c; that is to say, it must be a symmetric
function of these quantities. If the invariant is multiplied by an
odd power of the modulus, it must be such as to change sign when
any two of the quantities a, b, ¢ are interchanged; it must
therefore be of the form (a—5)(b—c)(c—a) multiplied by a
symmetric function of a,,¢c. Now an invariant is in trans-

~ formation multiplied by a power of the modulus equal to its
weight. And (Art. 143) the weight of an invariant of the
quintic, whose order is n, is §2. A quintic cannot have an
invariant of odd order in the coefficients. If the order is a
multiple of 4, the weight is an even nnmber, and the sign of the
invariant is unaltered by the interchange of « and y. If the
order be not divisible by 4, the invariant is what we have called
skew, that is to say, such as to change sign when 2 and y are
interchanged. Let us first examine the former kind, which we
have seen must, for the canonical form, be symmetric functions
of a, b, c. Now, since J=(bc+ ca+ ab)*— 4abc(a+b+ c),
K = a’’c* (bc + ca +ab), L = a'd*c', (from which we infer
H=}(K*-JL)=a¢ (a+b +c),*) it follows that if we are

* The reader must be careful to observe that though, in the case of the canonical
form, a%4%¢® (a + & + c), for example, is divisible by a‘b**, we have no right to infer
that in general H is divisible by L, unless in cases where the quotient abe (a + & + ¢)
has been also proved to be an invariant,
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given any quintic, and transform it to the canonical form by
a substitution whose modulus is unity, the numerical values of
the new aq, b, c are given by the cubic
s H K
o-7 o'+ e Li=o.

Now the order of any symmetrical function of a, b, ¢ will be
equal to its weight in the coefficients of this cubic, and when
this weight is a multiple of 4, it is easy to see that the symmetric
function is a rational function of J, K, L.

Being given, therefore, any invariant whose order in the
coefficients is a multiple of 4, it has been proved that we can
write down a rational function of 'J, K, L, which, for the
canonical form, shall have the same value as this invariant,
and therefore be always identical with it. And since it would
be manifestly absurd to suppose an integral function of the
coefficients to be equal to an irreducible fraction, it follows that
every non-skew invariant is an integral function of J, K, L.

If we make the first three coefficients a, b, ¢ each equal 0,
J, K, L all vanish. Hence when three roots of a quintic are
all equal, these three invariants vanish.* If we make a, d, ¢, f
all equal 0, J becomes — 32¢’d*, and L, — 16c°2°, and -therefore
J°—2048L vanishes. Quintics therefore which have two pairs
of equal roots must not only have the discriminant =0, but
also J* =2048L.

229. The simplest skew invariant is got by forming .the
resultant of the quintic az®+ by° + c2°, and its canonizant abcxyz.
Substituting successively the three roots of the canonizant in
the quintic, and multiplying together, we get for the resultant
a’t°® (b—c)(c—a) (a—5). This invariant, therefore, is of the
eighteenth order. Previous to its discovery by M. Hermite,}

* In general all the invariants of a quantic vanish, if more than }n of its roots be
all equal. For when half the coefficients, counting from one end, simultaneously vanish,
no term of the proper weight (Art. 143) can be made with the remaining coefficients.

+ See Cambridge and Dublin Mathematical Journal, vol. 1X. p. 172. M. Hermite works
with a new canonical form, the = and y of which are the two factors of the quadratic
covariant. The quintic then is supposed to be such that ae — 452 + 8¢? bf — 4ce + 3d?
both vanish, and the quadratic covariant reduces to zy The advantage of this is that

the operatmg symbol thence derived is simply d %' and some of the covariants
HH
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‘the possibility of the existence of skew invariants had not been
recognised. I took the trouble to calculate this invariant, and
the result is printed (Philosophical Transactions, 1858, p. 455%),
but as it consists of nearly nine hundred terms I cannot afford
room for it here. The leading terms are a’d®f® —a®’f"; in this,
a8 in every skew invariant, the complementary terms having
opposite signs, and the symmetrical terms vanishing. More-
over if the alternate terms in any equation be wanting every
skew invariant vanishes. For in this case the weight of each
coefficient is even, but the weight of any skew invariant is an odd
number. Thus I vanishes if b, d, f vanish ; that is to say, if the
quintic can be reduced to the form z (2*—a') (2" — 8*), in other
words, if we consider the quintic as denoting five points on a
right line, the vanishing of I is the condition that one of these
points should be a self-conjugate point of the involution deter-
mined by the other four.

By the argument used, it is proved that every skew in-
variant of a quintic must be the product of this invariant I by
a rational function of J, K, L.

230. The square of I being of the thirty-sixth degree can
be expressed rationally in terms of J, K, L (Art. 228). The
actual expression is easily found.

By forming the discriminant of the cubic (Art. 228)

a’—%a’+§a—ﬂ,
we obtain the product of the squares of the differences of a, 5, ¢
in terms of J, K, L, and thus have '
I'L=HK*+18HKL'- 21L*~ 4AK'L' - 4H*;
or putting for H its value } (K*-JL), and dividing by L,
we have :

16'=JK"+ 8LK’ - 2J°LK* - 12JKL* - 432L° + J°L*.

In the last equation of Art.222 when we make B=0 for
two quartics derived from a quintic we find by the same article

obtained by thus differentiating assume a very simple form. Notwithstanding, I
Thave preferred using Sylvester’s canonical form, which I find much more convenient.
* Where the coefficient of 47d’¢3f should have been printed 12500.
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‘#=D and by Art. 220 I+ C=0; whence M* becomes the
function written here. .

231. We come now to the covariants. We have already
(Art. 224) mentioned the quadratic covariant S and the cubic
covariant 7. Considering this system of a cubic and quadratic,
we have (Art. 198) a series of covariants which give com-
pletely-all the covariants of the quintic which are not higher
than the third order in the variables, The five invariants of
Art. 198 reduce to four J, K, L, I already mentioned, the
discriminant of the cubic, and the resultant of cubic and
quadratic, both reducing to L. The four linear covariants
of the system of cubic and quadratic give four linear covariants
of the quintic, of the orders 5 7, 11, 13, which for the canomcal
form are respectively

abe (bex + cay + abz),
abc {®°*+ a’be) (y — 2) + (c’a’™+ bac) (2 — =) + (a'B+ c'ad) (x — y)},

a®b*c® {be (y — 2) + ca (z — @) + ab (z — y)},

a'd'c* {ax + by + c2}. ,
These are the only distinct linear covariants of the quintic.
‘If we eliminate either between the first and last of these, or
between the second and third, or between the first of them
and the canonizant, we get Hermite’s I; and if between the
first linear covariant and the quintic itself we get I (J*—3K).
Thus, then, if I vanish, or if J*=38K, the quintic is immedi-
ately soluble, one of the roots being given by that linear
covariant. Hermite has studied the quintic by transforming
‘the equation, so as to take the first two linear covariants for .
« and y, when all the coefficients in the transformed equation
are found to be invariants. The transformation becomes impos-
sible when the two linear covariants are identical, which will
be when their resultant JK + 9L vanishes.

The system of cubic and quadratic have (Art. 198) three

quadratic covariants, viz. in addition to § itself, the Hessian .-

.of T or a'b’c* (' + y* + 5°), and the Jacobian of this and S, or
» a’b*c* {bex (y — 2) + cay (2 — ) + abz (x ~ y)}.
These are the only distinct quadratic cevariants of the quintic.
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Lastly, there are thme cubic covarizats, vix. in addition to
T itasif, ita enbic eavariant 45°F 'y —3; 23— (x—3); and the
Jacsbian of Sand T,
abe beyz y— 3, +eazx {2z, + abzy (z—3)}.

These sre the ooly cubic envariants of the quintic. We have
Dow enumerated fourteen forms; whose order in the variables
s ot bhigher than the third; adding to these the quintic and
its Hessian, there are atill seven forms to be mentioned. If
we operate with S upon H, we get a quartic of the fourth
order in the coefficients, which only differs by a multiple of
the square of S from abe {az’ + by + ).

A second quartic covariant is the Jacobian of this and 8, or

abela’(b-c)z* +b (c—a)y* + " (a—b) '}

These are the only two quartic covariants. We have a quintic
covariant by taking the Jacobian of 8 and U, viz.

@b-c)?+V(c—-a)y+ (a-0b)2"
—abc(y—z) (s—z) (z—3y) (y5 + 2z + a).

A second quintic covariant is found by taking the Jacobian of
U and the quadratic covariant a’b’c’ (2" + 3" +2'). This gives

o'’ {ax’ (y - 2) + by* (2 — @) + c2* (x - y)}.

Of sextic forms there only is, in addition to the Hessian, the
Jacobian of S and H, or

abe {aa® (y — 2) + by’ (z — ) + c2* (- g)}.

There is one septic form, viz. the Jacobian of U and the
simplost quartic covariant, or

abo {boy'e’ (y — ) + ca2"z’ (2 — z) + aba’y’ (x — y)}.
And lastly, one nonic, namely, the Jacobian of U and H, or
a'ba'y’ — a'oa's" + boy's’ — bay'a’ + cas'a’ — e’y
+ abex’y's" (y — 2) (¢ — ) (x—y).

232, Tho forms might also have been arranged, as
Irof. Cayloy has done, according to their order in the coeffi-
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cients. We give here, in his order, the leading terms of
the less complicated.
(1) %, Quintic, a.
(2) &8, Quadratic, ae — 4bd + 3¢".
(3) H, Sextic, ac — 5" .
(4) T, Cubic, ace —ad®—b% + 2bcd — ¢°.
(5) Quintic, a’f - 5abe + 2acd + 8b*d — 6bc”.
(6) Nonic, a’d — 3abc + 2b°.
(7) Invariant J already given; fourth degree in coefficients,
(8) Quartic, a* (" — df) + a (3bcf — 3bde — 4c’e + 4cd”)
+ 5b%ce + 2b°d" — 2b°f — 8bc'd + 3¢'.
This differs by the square of S from the corresponding quartic
covariant, Art. 231; and is 12* of T and w.
(9) Sextic, a® (cf — de) — ab’f — 2abce + 4abd* — ac’d + 3%
— 6b%d + 3bc".
(10) Linear, a*(cf* — 2def + €°) + a (— bXf " — 4bcef + 8bd’f)
+ a (—2bde’—2¢'df + 14¢°¢") + a(— 22cd’e + 94 )+ 6b°f — 12b%cdf
~ 15b%e" + 10b*d’e + 6bc’f + 30bc’de — 20bcd’ — 15¢'e + 10°d".
(11) Cubic, a* (cef — 3d>f + 2de’) + a(— b'ef + 14bedf — 11bce”)
+ a(—bd'e—9cf+ 14c'de - 6¢cd”) — 8b°df + 9b°e+ 6b*C'f — 16b°cde
+ 86°d* + 3bc’ — 2bc’d®.  This is the Jacobian of S and 7.
(12) Septic, a* (2¢'f — 5cde + 3d°) + a (— 4b%cf + 5b°de + 5bc’e)
+ a (= Tbed® + ’d) + 2b'f — 5b°ce — 20°d" + 8b"c'd - 8bc'.
(13) Quadratic, a* (— c'f* + 5cdef — 3ce’ — 34 + 2d’¢%)
+a (2b°cf* — 5b'def + 3b%¢° — 5bcef + Tbed’f )
+a (— bede* — bd’e — df + 6c’¢’ — 8c'd’e + 3cd)
— b * + 5b°cef + 20°d*f — 3b°de" — 8b°c'df — 4b'c'e* + Th'cd’e
~b'd* + 3bc'f + 5bc°de — 4bc'd® — 3c°e + 2¢*d”.
(14) Quartic, a® (— df*+ €f) + a* (8bef "+ 2bdef - 5be®— 8c'ef )
+ a* (2¢d’f + 12cde’~ 6d%)+a(—2b°f *—2b"cef—6b'd" f+13b'de’)
+ a (20bc*df + 4bc’e* — 52bed’e + 24bd* — 9c'f + 20c°de — 10¢'d°)
+ 6b'ef — 126°cdf — 15b°ce® + 10b°de + 6b°¢*f + 30b*c"de
—200%d® = 15bc’e + 10bc*d".
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(15) Linear, a®(¢f”® — 4def™* + 3¢)f) + a* (—bf* — 8beef™)
+ a* (16bdf* + 4bdelf — 15be* — 6¢’df* + 4ce’f — 22¢cdef)
+ a* (26cde’ + 9d'f — 12d°") + a (10°%f* — 30b%cdf* + bce’f )
'+ a (— T48'd%f + 84b°de® + 18b0f* + 160bo*def — 98bc*e)
+ @ (— 20bcd’f — 94bcd’e* + 51bd*e — 81c'ef + 18¢°d*f + 140c°de")
+a (—1008d% + 18cd®) + 8b*df* — 18b'’f — 6b°C*f* + 32b%cdef
+ 458%e® + 1128°d°f — 1506°d%" — 65°ccf — 284b*C*d*f + 506°c'de*
+ 3208%d’e — 1206°d° + 216bc*'df — 15bc'e* — 310bc’°d’%e + 130bc"d*
— 54c%f+ 90c*de — 40c'd®.
(16) Quintic, @’ (cdf "~ 2ce’f + 2d’ef—de’) + a*(— b'df * +2b%'f )
+ a® (— 8bef™ — 6bedef + 13bce’ — 8bd>f + 2bde")
+a* (16¢%f — 26'd*f — 38¢'de’ + 34cd’ — 9d°)
+a (56°cf™ + 2b°def — 12b°¢" — 24b°cef + 52b%cd’f + Tb%cde”)
+a (—22b"d% — 52bc’df + 34bc’e” + 8bc'd”e — bed* + 18¢2f)
+a (— 25¢'de + 106°d%) — 2b°f* + 10b%cef — 28b*d*f + 30b'de®
+ 3206°*df — 356°¢%¢" — 500°cd’e + 30b°d* — 12b°cf + T0b"c’de
— 40b°c*d® — 15bc°e + 10bc*d”. :
(17) Invariant K already given, 8® degree in coefficients.
(18) Quadratic, 8 degree in coefficients.
(19) Cubic, 9* degree in coefficients.
(20) Linear, 11 in coefficients.
(21) Invariant L already given, 12 degree in coefficients. -
(22) Linear, 13% in coefficients.
(23) Invariant Z; 18" in coefficients.

For (18), (19), (20), (22) we refer to Prof. Cayley’s Ninth
Memoir on Quantics, Pkil. Trans., 1871, p. 17, '

233. Prof. Cayley® has been led to consider in the theory
of the quintic a new canonical form, which is obtained as
follows: Taking for convenience the quintic to be

(a, b, ¢, 4, &, f Yz, y)

* Tt has been already mentioned (p. 134) that the method of discussing covariants
by means of their leading terms or sources was introduced by Prof. M. Roberta
See Quarterly Journal, vol, 1Iv. .
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using small Roman letters for the coefficients, suppose in the
first instance that a, b, ¢, d, ¢, f denote the leading coefficients
of the first six covariants of Art. 232 respectively, thus

a=a, ¢=ac—b? ¢ = a’f — Babe + 2acd 4 8b%d — 6be?,
5 =180 —4bd + 8¢%, d= ace—ad?—be—ci+2bed, f=a%d — 3abe + 2b3,

where — f*=a" (ad — bc) + 4¢° identically, so that any rational
and integral function.containing f can always be expressed as

a function linear in regard to f. This being 8o, we have the
function

‘-]l'-(a,b,c,d,e,f)(x—by, ay)® = z° + 10z%2 (ac — b) + 1023 (a*d — 3abe + 2b9)
+ bay* (a%e — 4a%bd + 6ab’c — 3b*) + y* (atf — batbe + 10a?b?d — 10ablc + 4bS),

and forming the values of a’6—3¢* and a’e - 2¢f, this is found

to be
=(1, 0, ¢, £, a’ — 3¢", a’e — 2¢f Yz, y)".

The last-mentioned function, considering therein a, b, c, ¢, f a8
denoting not the leading coefficients, but the covariants them-
selves, and (x, y) as variables distinct from those of the quintic
and its covariants, is the canonical form in question. Using
in like manner d to stand for the covariant, we have between
the covariants a, b, ¢, d, ¢, f the foregoing identical equation

—~f*=a’ (ad - bc) + 4¢’,
which is to be used to reduce functions of the covariants so as to
render them linear in regard to f.

234. Oriteria for the reality of roots of quintics. It ought
to have been stated earlier that the sign of the discriminant
of any quantic enables us at once to determine whether it
has an even or odd number of pairs of imaginary roots.
Imagine the quantic resolved into its real quadratic factors,
then (Art. 110) the discriminant of the quantic is equal to
the product of the discriminants of all the quadratics, multiplied
by the square of the product of the resultants of every pamr
of factors. These resultants are all real, and their squares
positive ; therefore, in considering the sign of the discriminant,
we need only attend to the discriminants of the quadratic factors.
But the square of the difference of the roots of a quadratic is
positive when the roots are real, and negative when they are
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imaginary, It follows then that the product of the squares of
the differences of the roots of any quantic is positive when it
has an even number of pairs of imaginary roots, and negative
when it has an odd number. We have been accustomed to
write the discriminant giving the positive sign to the term
which is a power of the product of the two extreme coefficients.
This will have the same sign as the product of the squares of
differences of the roots when the order of the quantic is of the
form 4m or 4m +1, and the opposite sign when the order is
of the form 4m + 2 or 4m+3. We see then, in the case of
the quintic, that if the discriminant be positive, there will be
either four imaginary roots or none; and if the discriminant
be negative, there will be two imaginary roots. It remains
then further to distinguish the cases when all the roots are
real, and where only one is so.

235. In order to discriminate between these remaining cases,
there are various ways in which we may proceed. The fol-
lowing® are, in their simplest forms, the criteria furnished by
Sturm’s theorem. Let J be the quartic invariant as before, and

H=0—ac, S=ac—4bd+3c", T=ace+2bcd—ad"—eb*—c’,
M =a’e’ — a’df + Babcf - 3abde + 4acd® — 4ac’e — 2b°f

' + 5bce + 2b°d* — 8bc’d + 3¢,
then the leading terms in the Sturmian functions are proportional
to a, a, H, 5HS8+9aT, — HJ +125M + 48°—216T"*, the last
of course being the discriminant; and the conditions furnished
by Sturm’s theorem to discriminate the cases of four and no

imaginary roots, are that when all the roots are real the three
quantities H, 5HS+ 9aT, — HJ + &c. must all be positive.

* These values are given by Mr. M. Roberts, Quarterly Journal, vol. 1v. p. 175.
The reader who may use Prof. Cayley’s tables of Sturmian functions (Philosophical
Transactions, vol. OXLVII. p. 785) must be cautioned: that the fourth and fifth
functions are there given with wrong signs.

M is already written as (8) in Art. 232, and is connected with D in Art. 226
by the equation D = §2—3M. In fact the expression for the discriminant R there
given is 9R = 25J2 — 192 (D, D, — 4D, D, + 3D,?), where the covariant whose source
is D is written Dyz*+4 D,z%y+&c., and D=D,, C=2D,, 8B+ A=-10J, 3B— A=48D,,
C'=2D,, D'=1D,.
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236. We may apply these conditions to the canonical form
(c—a)a® + S’y + 10c2”y* + 10cz’y® + Scxy* + (c—b) 3°.

in which case the equality of all but two of the coefficients
renders the direct calculation also easy. We easily find then
that the constants are ¢—a, ¢ a, ac, —a’’; and the fourth
being essentially negative, we need not proceed further, and we
learn that the equation just written has always imaginary roots.
We find then that when the invariant L of a quintic is positive,
the roots of the equation cannot be all real. For L being, with
sign changed, the discriminant of the canonizant, when L is
positive, the roots of the canonizant are all real, and the quintic
can be brought to the canonical form by a real transformation.

* When L is negative, two factors of the canomza.nt are
imaginary, and the canonical form is

a(-2z) +{c-dv(- D}Ha+yv(- 1)}

' +{et+d (-1} {z—y (-1},
which, expanded, is

dy® + 5cy'x — 10dy’s* — 10cy*s’ + 5dya* + (c — 16a) 2°.

Writing for brevity ¢+ d” =", I find for this form the Sturmian
constants to be d, d, %, ', r*(—4a'd" + 20acr* + 5r*), and it
would seem that the discriminant being positive, the roots are
all real if d and — 4a’d" + 20acr" + 57 are both positive.*

237. In practice the criteriat furnished by Sturm’s theorem
are more convenient than any other, because the functions to
be calculated are of lower order in the coefficients. It is, how-
ever, theoretically desirable to express these criteria in terms of
the invariants, and this is what has been effected by different

* I give this result, though suspecting its accuracy, because it secms to me to
disagree with the theory derived from the other methods.

t It may be noticed that there is no difficulty in writing down a multitude of
criteria which might indicate the existence of imaginary roots; for any symmetric
function of squares of differences of roots X (a — B)% &c. must be positive if all
the roots are real. We can without difficulty write down such functions which are
also invariants ; and which, if negative, show that the equation has imaginary roots,
But then these may also be positive when the roots are imaginary, and the problem
is to find some criterion or system of criteria, some one of which must fail to be
satisfied when the roots are not all real.

II
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methods by Hermite and by Sylvester. We proceed briefly
to explain the principles of Sylvester’s method, which is
highly ingenious. We have seen already that when the
invariants J, K, L are given, then a, b, ¢ of the canonical
form may be determined by a cubic equation; and we can infer
that to every given system of values of J, K, L will correspond
some quintic. But to every system of values of J, K, L will
not correspond a real quintic. In fact, we have seen, Art. 230,
that the J, K| L of every quintic with real coefficients, are such
that the quantity G is essentially positive, where G is

JK*+8LK*-2J'LK*—72JL'K — 432L° + J°L".

For G has been shown to be the perfect square of a real
function of the coefficients of the general quintic, viz. a'd’f*+ &e.,
this being the eliminant of the quintic and its canonizant, and
therefore necessarily real. 'We may in the above substitute for
K its value in the discriminant from the equation J*— 128K = D,
and so write G,

JD'—4(J*+ 2°L) D’ + (6J° — 29-2"L) J*D* :
- 4(J*—61.2°J°L -9.2"L")JD + (J*- 2" L)* (J*~-21.2"°L),

If now, to assist our conceptions, we take J, D, L for the
coordinates* of a point in space, then G'=0 represents a surface;
and points on one side of it, making G positive, answer to real
quintics, while points on the other side, making G negativef,
answer to quintics with imaginary coeflicients.

238. Now, in the next place, we say that if the coefficients
in an equation be made to vary continuously, the passage from
real to imaginary roots must take place through equal roots.
For, let any quantic ¢ (x) become by a small change of
coefficients ¢ (x) + ey (x), where ¢ is infinitesimal, and let a be
a real root of the first, a+A a root of the second; then we

* Sylvester takes L in the usual divection of z, Jof y, and D of 2.

t Points for which G = 0 answer to real quintics, and it. is easy to see that in
this case the equation admits of linear transformation to the recurring form. For we
have proved that when G = 0 two of the coefficients of the canonical ferm ave equal.
The equation is therefore of the form aa® + ays + b (z +y)* = 0.
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have ¢ (a+4)+ey (a) =0; whence, since ¢(a)=0, we have
& (a) + sy (a) = 0, which gives a real value for A. The con-
secutive root a + % is therefore also real. But if ¢’(a) vanishes
as well as ¢ (a), the lowest term in the expansion of ¢ (a+4)
will be 4%, and the value of %2 may possibly be imaginary.
‘When, therefore, the original quantic has equal roots, the cor-
responding roots of the consecutive quantic may be imaginary.

It follows then, that if we represent systems of values of

o, D, L by points in space, in the manner indicated in the last
article, two points will correspond to quintics having the same
number of real roots, provided that we can pass from one to
the other without crossing either the plane D or the surface G.
* If points lie on opposite sides of the plane D, we evidently
cannot pass from one to the other without having, at an inter-
vening point, D =0, at which point a change in the character
of the roots might take place. If two points, both fulfilling
the condition & positive, be,separated by sheets of the surface
@, we can not pass continuously from one of the corresponding
quintics to the other; because when on crossing the surface
we have G negative, the corresponding quintic has imaginary
coefficients. But when two points are not separated in one of
these ways, we can pass continuously from one to the other,
without the occurrence of any change in the character of the
corresponding quintics.

Now Sylvester’s method consists in shewing, by a dis-
cussion of the surface &, that all points fulfilling the condition
G positive, which he calls facultative points, may be distributed
in three blocks separated from each other either by the plane
D or the surface G And since there may evidently be
quintics of three kinds, viz. having four, two, or no imaginary
roots, the points in the three blocks must correspond respectively
to these three classes. I have not space for the elaborate
investigation of the surface @, by which Sylvester establishes
this; but the following is sufficient to enable the reader to

~convince himself of the truth of his conclusions.

239. One of the three blocks we may dispose of at once,
viz. points on the negative side of the plane D, which we have
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seen (Art. 234) correspond to quintics having two imaginary
roots. Next with regard to points for which D is positive.
‘We have seen, in the last article, that a change in the character
of the roots takes place only when D=0; our attention is
therefore directed to the section of G by the plane D. We see
at once, by making D=0 in the value of G (Art. 237), that
the remainder has a square factor, and consequently that the
-surface G touches D along the curve J*®—2"L, and cuts it
along J*—27.2"L. Now, if a surface merely cut a plane, the
line of section i8 no line of separation between points on the
same side of the surface. If, for example, we put a cup on a
table, there is free communication between all the points inside
the cup and between all those outside it. But if a plane touch
a surface, as, for instance, if we place a cylinder on a table,
then while there is still free communication between the points
‘inside the cylinder, the line of contact acts as a boundary line,
cutting off communication as far as it extends, between points
‘outside the cylinder on each side of the boundary.

Now Sylvester’s assertion is, that if we take the negative
quadrant, viz. that for which both J and L are negative, and
'if we draw in the plane of xy the curve J°—2"L, then all
facultative points in that quadrant, lying above the space in-
cluded between the curve and the axis L =0, form a block
completely separated from the rest, and correspond to the case
of five real roots,

240. In order to see the character of the surface, I form the
discriminant of @ considered as a function of K, which I find
to be — L' (J°+27L)°. Consequently, when both J and L are
negative, the discriminant is negative, and the equation in K has
only two real roots. To every system of values, therefore, of
J and L correspond two values of K, and consequently two
values of D and the surface is one of two sheets. Now I say
that it is the space between these sheets for which & is positive.
In fact, since @ is JD*'+ &e., it may be resolved into its factors
J(D-a)(D-B){(D-1v) +38"}; and since J is supposed to be
negative in the space under consideration, ) must evidently be
intermediate between « and 8 in order that & should be positive.
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Now the last term of the equation being (J°-2"L)* (J°>-27.2°L),
if J*° be nearly equal to 2" L, will be of opposite sign to L, or
in the present case will be positive. And the coefficient of D*
being negative, we see that on both sides of the line J®=2"L
the values of D are, one positive and the other negative, that
is to say, the two sheets of the surface are one above and the
other below the plane D. But I say it is the upper sheet which
touches D along J°—2"L. This may be seen immediately by
looking at the sign of the penultimate term in the equation
for D, by which we see that when the last term vanishes, the
two roots are 0 and negative. The theory then already ex-
plained shows that the curve J*=2"L acts as a boundary line
cutting off communication in that direction between facultative
points -on the upper side of D. But, again, communication in
the other direction is cut off by the plane L=0. For when
‘we make L positive, the discriminant becomes positive, and the
equation in D has either four real or four imaginary roots.
Baut the first Sturmian constant is proportional to L (J*+12L),
which, when J is negative, and L positive and small, is negative.
Immediately beyond the plane L, therefore, the equation to
determine D has four imaginary roots, or the surface does not
exist. The facultative points, therefore, lying as they do within
the surface or between its sheets, are cut off by the plane Z,
on which the sheets unite, from communication with points
beyond it. Thus the isolation of the block under consideration
has been proved.

I need not enter into equal detail to prove that all other
facultative points have free communication #nter se. The line of
contact 2L —J° is no line of separation in the quadrant where
J and L are both positive. For then it is seen, as before, that
it is the points outside the two sheets which are facultative, and
" not the points between the surface and touching plane.

The result of this investigation is, that in order to have all
the roots real, we must have the quantity 2L — J* positive,*

* Sylvester has inadvertently stated his condition te be that 21L—Js is
negative. It is easy to see, however, that what he has proved is, that this quantity
must be positive. For the block which he has described lies on the side of the curve
21 L—-J* next to the axis L = 0. But when L is 0 and J negative, 2!'L—J? is positive.
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and L negative, which also infers J negative. If either con-
dition fails, our roots are imaginary. It is supposed that in both
cases D is positive.

241. We have seen that the cylinder parallel to the axis
of z and standing on the curve 2"'L — J* does not meet G above
the plane D ; the two values of z being one 0, the other nega-
tive. Any other surface then standing on the same curve and
not meeting G would serve equally well as a wall of separation
between the two classes of facultative points. For, all the
points between the cylinder and this surface would be non-
facultative, and therefore irrelevant to the question. Sylvester
has thus seen that we may substitute for the criterion 2""L —J?,
2"L —J?®+ uJD, provided that the second represent a surface
not meeting G above the plane D. And on investigating
within what limits x must be taken, in order to fulfil this
condition, he finds that u may be any number between 1
and —2.

He avails himself of this to give criteria expressed as sym-
metrical functions of the roots. In the first place

- By (B-7)(v-a)(8-¢)

is an invariant (Art. 136), and being of the same order and
weight as J can only differ from it by a numerical factor,
which factor must be negative, since this fanction is essentially
positive; and J we have seen is essentially negative when the
roots are all real. And secondly, the symmetric function

2 (a—B8)" (B-)"(y—a)* (e —a)* (e—B)* (e—)*(8—a)(8- B)*(8—7)"
(the relation of which to the other may be seen by writing it
in the form D'S (a—B)™ (B—9)"(y—a)* (6—¢)™, where D is
the discriminant), is also an invariant, and of the twelfth order.

It must therefore be of the form aJ*®+ B8JD+yL. Now, by
using the quintic®* z(a"— ') (' - §*), the symmetric function

* It was observed, Art. 229, that the characteristic of this form is that Hermites
invariant 7 vanishes, hence it may be safely used in calculating any invariant function
whose order is divisible by 4 and is below 36, since such forms cannot contain J, but
though this form may be safely used in this case, it cannot always be safely used.

.For when a linear factor of a quintic is also a factor in the sextic covariant of the
remaining quartic, a relation must exist between the invariants.
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may easily be calculated and identified with the invariants; and
the result is that its value is proportional to 2L —J*+ §JD.
Since then the numerical multiplier of JD is within the pre-
scribed limits, it may be used as a criterion, and Prof. Sylvester’s
result is, that the.two symmetrical functions mentioned are such
that not only are both positive, as is evident, if the roots are
all real, but also if both are positive, and D positive, the roots
must be all real. It ought to be possible to verify this directly
by examining the form of these functions in the case of an
equation with four imaginary roots.

242. T have also tried to verify these results by examining
the invariants of the product of a linear factor and a quartic,
(azx + By) (x* + 6ma’y* + ') ; these being necessarily covariants
of the quartic (Art. 201). The coefficients of the quintic are
then 5a, 8, 3ma, 3mB, a, 58; and I find for the J of the quintic,
48 (8SH - 3TU), or 48 times

(5m +27m°) (a* + B*) + (8 — 18m® — 54m") «’B".
Now the roots of the quartic are all real when m is negative,
and when 97" is greater than 1. On inspection of the value
given for J, we see that when m is negative every term but
one is negative. Giving then m its smallest negative value — %,
J is negative, viz, — 144 (a* — 8%)*; and J is d fortior: negative
for every greater negative value of m. Or we may see the
same thing by supposing 8= 0, when we have only to look at
the coefficient of the highest power of a in 88H — 37U, which
is — 8 (b*—ac) 8 —3Ta. But now if we call the three Sturmian
constants 4, B, C, viz. '

A=b~ac, B=284+8Ta, C=8°-21T"
the value given for J becomes — 6.48— B, which is essentially
negative when the roots are all real.

The invariant L, according to my calculation, is
54 (8SH—3TU)* - 6400 (8°—217T") (4H® — SHU* + TU?)
+150 (8* —27.0%) U* (8SH+ 15TU) — 4050 U* 8* (28H - 3T,
whence 2" L — J? differs only by a positive constant multiplier
from
—128(8°~217*) (4H® -38HU*+ TU®

+3(8°-211") U* (8SH+15TU)-81U°8° (28H- 3TU).
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Writing 0=a"d — 3abc+ 28", the coefficient of the hlgheat
power of a in this is

128 OF" + 81a*S® + 454° OB — 54a’CSA.
All the terms of this but one are positive when the roots are
all real, but as there is one negative term, is it not obvious, on
the face of the formula, that the whole will be positive when
the roots are all real. Still less that if this formula be positive
and J negative, the roots are necessarily all real. Therefore,
although no doubt Prof. Sylvester’s rule may be tested by the
process here indicated, to do so requires a closer examination of
this formula than I am able to give.*

243. Prof. Cayley in his Eighth Memoir on Quantics
(Phil. Trans. 1867), proceeded by a method a little different
from that described above. Adopting as coordinates

"L —J* D
T=—7gs » Y=g 25 4,
then from the foregoing equation

16I' =JK* + 8LK®-2J'LK* — 12J['K — 432L* + J*L?*,

where, K=}z (J*— D), we deduce without much difficulty

2.2”§,=—3x‘—x’+y(72x’+ 205z + 125) + y* (— 292 — 17)
+y (-2 -9)+y'2= ¢(w,y)wppose,

or, since 2=/, we have z¢ (2, y)=2.2" J' = positive,

and the surface G'=0 may be replaced by 2¢ (z, ¥)=0; that is,
by the plane z =0 and the cylinder ¢ (z, y)=0. The configura-
tion of the regions into which space is divided by this surface
depends only on the form of the ‘curve ¢ (x, y)=0 (Prof.
Sylvester’s “ Bicorn ), which is the section of the cylinder by
the plane z =0, and the discussion as to the reality of the roots
may be then effected by means of the plane curve alone; the
results, of course, agree with those obtained above.

* The verification, however, is easy in the particular case z (z* + 6ma?y® + yf).
We have then J =48m (5 + 27m?), L =12m (56 — 9m?)4; 21L — J3 proportional to
m (1 — 9m?) (60 + 46m? + 648m* + 729m®). Thus, when m is negative, and 9Im? > 1,
we have J and L negative and 21'1L — J3 positive. The latter is positive for imaginary
roots only when m is positive, but in this case J is positive. The imaginary roots
must, therefore, be detected by one criterion or other.
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244. It has been already mentioned (Art. 231), that M.
Hermite has made use of the fact, that the quintic as well as
every equation of odd degree is reducible to a forme-type, in
which the z and y are linear covariants and the coefficients are
invariants. It follows immediately, that by applying Sturm’s
theorem to the forme-type, the conditions for reality of roots
may be expressed by invariants.

Hermite extends his theorem to equations of even degree
above the fourth, by the method indicated in Art. 248. Writing
J*-3K=M, JK+9L=N; and Q a numerical multiple of
Hermite’s I, such that

Q@' =JK'M'-2MNK (J*+ 12K) + JN* (J* +72K) - 48N?,
then the coefficients of the Jorme-type are
A=QM,
B=JKM'— MN (J*+ 18K ) + 30JN?,
C=Q(J/M-12N), :
D=J'KM'—-JMN (J* +30K) + N* (42J° + 144K ),
E=Q(J*M-24JN),

F=J"KM'—J'MN (J*+ 42K) + N*J (54J* + 288K ) — 1152N°,
Thus the first Sturmian constant B*— A4 C is found to be
36N* {(MK —5JN)' — 16 MN*}.

The Sturmian constants being essentially unsymmetrical, there
seems no reason to expect that the discussion of these forms
would lead to any results of practical interest. The coefficients
of the forme-type, as M. Hermite remarked, satisfy the relations
AJ*—2CJ+ E=0, BJ*-2DJ+ F=-1152N",
AE—-4BD+3C*=-12'N°, AF-3BE+2C0D=0,
BF—-4CE+3D'=12'JN".

Thus then the quadratic covariant is N°(z'-Jy"); and
operating with this on the quintic, we get the canonizant in the
form N*(4J - C, BJ- D, CJ—E, DJ- FYz, y)’;
the coefficients inside the parentheses being all further divisible
by N. Hence we have

ACE+2BCD - AD*— EB*- C°=-4.12'N°Q;
KK
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and the second Sturmian constant is get jimmediately by
substituting in the formula of Art. 235, the values just found for

B'—AC, AE—4BD +3C", ACE+2B0D - &c.*

245. The Tschirnhausen transformation consists in taking

a new variable
y=a+ Br+qyr+..+ A"

then there are n values of y corresponding to the » values of z,
and the coefficients of the new equation in y are readily found
in terms of those of the given equation by the method of
symmetric functions, the first for example being as+ Bs,+ s, +&e.
The coefficient of " is evidently a linear homogeneous function
of a, B, &c., that of 4" a quadratic, of 3" a cubic function,
and so on. In the case of the quintic, the transformation is
y=a+Bx+yz'+ 82°, and we have four constants a, B, ¥, &
at our disposal. Mr. Jerrard pointed out that the coefficient of
4* being a quadratic function of a, B, ¢, & was (Art. 165)
capable of being written as the algebraic sum of four squares,
say & — w'+v*—w'. It can therefore be made to vanish, by
assuming two linear relations between a, 8, v, 8; t—u=0,
v—w=0. If we combine with these two that linear relation
which makes the coefficient of 3* vanish, we have three relations
enabling us to express three of the constants a, 8, ¢, & linearly
in terms of the fourth. We can then by solving a cubic make
the coefficient of * also vanish, or else by solving a biquadratic
make the coefficient of y vanish. In this way Mr. Jerrard
showed, that by the solution of equations of inferior qrders,
a quintic may be reduced to either of the trinomial forms
¥ +by=c, or y*+by’=c. The actual performance of the

* The coefficients of the forme-type of the quintic were given by M. Hermite
{Cambridge and Dublin Mathematical Journal, 1854, vol. IX. p. 193), and re-calculated
by me before I found out the key for the translation of Hermite’s notation into
Sylvester’s, whichis A=J, J,=— K, J; =JK +9L.

The discussion of the invariantive characteristics of the reality of the roots of
a quintic was originally commenced by M. Hermite in the same classical paper,
and was resumed by him in his valuable memoir presented to the French Academy,
t. 62, 1866. His result, in our notation, is that the roots are all real, when the dis-
criminant being positive, we have also positive K, 21L—J3+JD, and K (JL+ K%)—18L2
It seems to me that this result is superseded by the greater simplicity of Prof,
Sylvester’s criteria,
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transformations would be a work of great labour, but M. Hermite
showed how, by somewhat altering the form of substitution, we
can avail ourselves of the help of invariants. :

If we have to transform the equation ax” + 62" + cz"* + &c.,
Hermite assumes '

y=a\+(az+b) a+ (az'+ bz +¢) B+ (az’+ bz’+ cx +d) v + &e,

then in the first place the transformed equation will be divisible
by a; and secondly, if the given equation be linearly transformed,
and if the corresponding substitution for the transformed
equation be

Y=AN+(4X+B)d +(4X*+ BX + C) B’ + &e.,

then he has shewn that the expressions for o', 8, &c. in terms

of a, 8, &c. involve only the coefficients of linear transformation,

and not those of the given equation. It is not so with respect

to the first coefficient A, which we have therefore designated

by a special letter.. But the theory of linear substitutions will

be directly applicable to all functions of the coefficients of the

transformed equation which do not contain A. Such, for -
example, will be all symmetric functions of the differences of

the roots of the new equation, since, on subtracting

y,=a\+ (ax, +b) a + &ec., y, =a\ + (ax,+b)a + &e.,

A disappears. Or, what comes to the same thing, if we take A
such that the coefficient of 3™ in the new equation shall vanish,
then the theory of linear substitutions is applicable to all the -
coefficients of the transformed. I give Cayley’s proof of
Hermite’s theorem, and, after his example, take, to fix the
ideas, the quartic

(ay b, ¢, d, Yz, 1)*.
Then, as. we have used binomial coefficients, we shall write
the equation of transformation

y=a\ + (ax + 4b) y— (az’+ 4bz + 6¢) B + (ax’+ 4bx"+ 6¢cx + 4d) @

Adding the 4 values of y, and employing Newton’s formula
for the sums of powers of the roots, we see that the coefficient
of ™ in the transformed equation will vanish if

a\ + 3by - 8¢B +da=0.
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This reduces the value of y to
(ax +b) 9y — (ax’ + 4bx + 3¢) B+ (az® + 4ba” + b6z + 3d) .

In general it will be observed, that in this sabstitution all
the terms have the binomial coefficients corresponding to the
order of the given equation, except the terms not involving x,
which bave the binomial coefficients answering to the order
one lower.

246. Now what is asserted is, that all the coefficients of the
transformed equation will be invariants of the system
(a, b, ¢, dy Yz, ), (2, B, ¥X= 3)
and of course if we regard y as constant, the whole transformed
function will be such an invariant.
This will be proved by shewing that it is made to vanish by
either of the operations

d d d d d d

41;‘%1» 3cz)+2d d+ejd+ (23 +-yjﬁ)

Let the general substitution be y = V, and let ¥, V,, &ec. be
what ¥ becomes when we substitute for = each of the roots of
the given equation, the transformed in y is the product of the
factors y — V,, y— V,, &ec., and it is sufficient to prove that each
of these factors is reduced to zero by this differentiation. We
may, as in Art. 64, write the ﬁrst part of the first operation

d{, and in order to calculate Vs , we must find %aé— Operating

on the given equation, we get
dx dx
(a, & ¢, XY=, 1)’—‘i—§+ (a, &, ¢, Y=, 1)’ =0, or =" 1.

The part then of the differential of V" which depends on the
variation of z is

— [ay - (2az + 4b) B + (3ax’ + 8bx + 6¢) a},
and the part got by directly operating on the a, b, &c. which
explicitly appear in ¥V is

ay — (dazx + 60) B+ (4ax’ + 125z + 9c) a.



INVARIANTS IN QUADRATIC TRANSFORMATION. 253

Adding, we have
(11—7=—2(aw+b)B+(ax’+4bz+3c)a= ( 2/3 )
4 BT
which proves that the effect of the first operation on V is zero.
In like manner, for the second operation, we have, by
. performing on the original equatiqn,

(@, by ¢, dYz, 1)a +“’(b ¢, d, ez, 1)*=0.
Bat the original equation may be written
z(a, b, ¢, dYx, 1)°+ (4, ¢, d, Yz, 1)’ =0.
de av . .
Hence — =a'. The part of —— due to the variation of x is
dn dn
therefore
ax’y — (222’ + 4b2°) B + (3ax* + 862" + 6¢x”) a.
The remaining part is
(4bz + 3c) y — (4ba" + 1202 + 6d) B + (4bx® + 12c2* + 12dz + 3¢) @.

. Adding, the coefficient of « vanishes in virtue of the original
equation, and the remaining part is found to be
av
( Y8t 2B )
which completes the proof of the theorem.

247. When this transformation is applied to a cubic, if we
consider a, B as variables, the coefficients of the transformed
equation in y will be covariants of the given equation. The
transformed in fact has been calculated by Prof. Cayley, and
found to be y*+3Hy+J, where H is the Hessian (ac—5") a+ &e.,
and J is the covariant (Art. 142), (a*d — 3abc + 28°) &* + &ec.

Prof. Cayley has also calculated the result of transformation
- as applied to a quartic. Take the two quantics, as in Art. 212,

(a, b, ¢, d, e}, )", (a, B, Xz, )
and let C denote the skew invariant of the same article, p. 203 ;

- let S and 7 denote the two invariants of the quartic; also let
3’ =64, then the transformed function in y is

¥'+6(2+84)y"+4Cy+ S¢p" - 32" - 6824 + 18 TpA.
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Prof. Cayley has also calculated the S and 7' of the trans-
formed equation. In making the calculation, it is useful to
observe that since the square of J, from which C was derived
(p. 204), can be expressed in terms of the other invariants, so
also may the square of C; the actual expression derived from
his being in our notation
~ C'=T¢’- 82¢"-9 (2= + SA) TA¢+ (2= +38A)' S + 54 T7A°.
The result then is that the new S is S¢*+8S*A*+18TA¢,
and the new 7" is T¢’+ S*A¢* +9A'STo + A® (541" - 8°).

Finally, he has observed that these are the S and T of
Up +6HA, as may be verified by the formule of Art.210.
It follows, then, that the effect of the Tschirnhausen transforma-
tion is always to change a quartic into an equation having the
same invariants as one of the form U+ A\H, and, therefore,
reducible by linear transformation to the latter form. The
foregoing results in a different notation are reproduced, and the
corresponding results for the quintic are obtained in Prof.
Cayley’s Memoir on Tschirnhausen’s Transformation, Phel.
Trans., vol. cLII. (1862).

248. The following is the form in which M. Hermite
presented his theory, and applied it to the case of the quintic.

Let » be a quantic (z, y)"; u,, u, its differentials with regard
to = and y; let ¢ be a covariant, which we take of the degree
n—2 in order that the equation we are about to use may be
homogeneous in  and y; then the coefficients of the transformed

y¢

equation, obtained by putting g==", are all invariants of w.
1

The equation in z is got by eliminating 2 and y between
zu,—y$p=0, and w=0, or, what comes to the same thing,
2u, + ¢ =0, which follows from the other two. If we linearly
transform « and y, the new equation in z is got, in like manner, -
by eliminating between zU,— Y&=0, 2U, + X&=0. But, if
e=AX+uY, y=NX+u4'Y, A=A~ Ay, we have
AX=p'x—py, AY=2Ay—-N\Tz,

and Art. 130, U, =\, + N'u,, U, = pu, + p'u,, and, since ¢ is a
covariant, we have &®=A‘p. Making these substitutions, the
equation in z, corresponding to the transformod equation, is got
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by eliminating between \
z (M, +AN'u,) — A (A\y — Nz) =0,

2 (it + ) + A (W - py) =0,

Maultiply the first by u’, the second by A\’, and subtract, and we
have Azu,—A'y¢p=0. In like manner, multiplying the first
by u, the second by A, and subtracting, we get Azu, + A'zd =0.
In other words, we have the two original equations, except that 2
is divided by A“'. Consequently, the equations in 2z corre-
sponding to the original equation, and to the same linearly
transformed, only differ in having the powers of z multiplied by
different powers of the modulus of transformation A, and
therefore the several coeflicients of the powers of z -are

invariants,
The actual form of the equation in 2z will be
v A s B o o
5+ e + &e.=0.
It is easy to see that the discriminant will appear in the
denominator ; and the coefficient of 2™ will vanish, since, if ¢
be any function of the order n—2, the sum of the results of

¢

substituting all the roots of U in T vanishes. In fact, when

1
the terms of this sum are brought to a common denominator,
the numerator is the sum of ¢a multiplied by the differences of
all the roots except @, and this is a function of the order n — 3
in a, which vanishes for n — 1 values of a, a=8, a=4, &c., and
must therefore be identically nothing. '
In applying this method to the quintic (z, 1)°, Hermite -
substitutes :
ZD: =a¢1 +B¢2+ 7¢s+ 8¢47
where ¢,, ¢,, ¢,, ¢, are four covariant cubics of the orders
3, 5, 7, 9 respectively in the coefficients. ¢, is the canonizant.
¢, is the covariant cubic of the fifth order, the Jacobian of 8
and T whose leading term or source, whence all the other terms
can be derived, is printed in full as (11) Art. 232; on inspection
we see that this source vanishes if both a and & vanish;
consequently, if the given quintic has two equal roots, their



256 HIGHER BINARY QUANTICS.

common value satisfies this covariant. We can form a
covariant cubic of the seventh order from ¢, in the same way
that ¢, was formed from ¢, and by adding ¢,, multiplied by J
and a numerical coefficient, can obtain ¢,, such that its source
vanishes when a and b vanish; and, in like manner ¢, can be
made to possess the same property.

‘When this substitution is made, the coefficient of 2* is a
quadratic function of a, B, v, 8. Hermite finds for its actual
value (a result which may be verified by workmg with the
special form, note, p. 248),

{Fo* + 6KDay — D (F+ 10JK) '} + D | K" + 2FB5
— (9KD+ 104F) &},

where F'=9 (16 L—JK), which vanishes when the quintic has two

distinct pairs of equal roots. By breaking up into factors each

of the parts into which this coefficient has been divided, the two
linear relations between a, «v; 8, 8, which will make it to vanish,

can readily be obtained ; as also by another process which I shall

not delay to explain. The discussion of this coefficient is also

the basis of Hermite’s later investigations as to the criteria for

reality of the roots. He avails himself of a principle of

Jacobi’s (Crelle, vol. L.), that if a, B, y, &c. be the roots of a

given equation, and if the quadratic function

(t+oau+a'v+...a" 'w)" + (t + Bu + By + &e.)* + &e.,

be brought by real substitution to a sum of squares, the number
of negative squares will be equal to the number of pairs of
imaginary roots in the equation. Hermite shews, by an easy
extension of this pnncxple, that the number of pairs of imaginary
roots of the quintic is found by ascertaining the number of
negative squares, when the coefficient of 2* just written is
resolved into a sum of squares. And since the same process is
applicable to every equation whose degree is above the fourth,
he concludes that the conditions for reality of roots in every
equation above the fourth can be expressed by invariants,

249. It does not enter into the plan of these Lessons to
give an account of the rcsearches to which the problem of
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resolving the quintic has given rise.* The following, however,
finds a place here on account of its connection with the theory
of invariants. Lagrange, as is well known, made the solution
of a quintic to depend on the solution of a sextic; and it can
easily be proved that fanctions of five letters can be formed
capable of six values by transposition of letters. Let 12345
denote any cyclic function of the roots of a quintic; such, for
example, as the product
(@=B8)* (B—9) (v-98)(8—e)* (e~ )},
where evidently 23451 and 15432 would denote the same as
12345; then it can easily be seen that there can be written
down in all twelve such cyclic functions. But, further, these
distribute themselves into pairs; and by so grouping them we
can form a function capable of only six values; for instance,
12345 4+ 13524, 12435 + 14523, 13245 + 12534, 13425 + 14532,
14235 + 12543, 14325413542, The actual formation of the
sextic having these values for its roots is in most cases a work
of extreme labour. M. Hermite, however, pointed out that
when the function 12345 is the product of the squares of
differences written above,f all the coefficients of the corre-
sponding sextic are invariants, and that the calculation therefore
is practicable. I have thought it desirable actually to form
the equation, because, in the development of the theory of
sextics, it will be necessary to ascertain the invariant
characteristics 6f sextics whose solution depends on that of a
quintic; and it may be useful to be in possession of more
than one of the sextics which spring out of the discussion of a
" quintic.} I take the simple example z°+ 2ma’y’ + «y*, of which,

* Among the most remarkable of recent investigations in this subject is the
application to it of the theory of elliptic functions by M. Hermite and M. Kronecker.

t In the method of Messrs. Harley and Cockle, the function 12345 is

aB + By + yé + ds + za,

and the sextic chosen is that whose rodts are 12345 — 13524, &c. This has been
calculated by Prof. Cayley (Philosophical Transactions, 1861, p. 263), and the result
is very simple, two terms of the sextic are wanting; bat the coefficients are not
invariants.

1 The form arrived at by M. Kronecker and M. Brioschi is

(x—a)® (z—5a) + 106 (x—a)® —c (z—a) + 682 ~ac=0.

Ey the help of the formulm given further on, the invariants of this equation cam
be calculated, and a, b, ¢ eliminated.

LL
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since two pairs of roots are equal with opposite signs, the
functions of the differences can easily be formed. I find then
that the sextic is the product of
'+ 2° (m+ m’) ¢ + 2" (m® — 2m* +5m’),
by the square of
£ +2 (m’ + 8m) t + 2° (m* + 5m* + 19m” — 25).
Baut if we first multiply the quintic by five, its invariants are
J=2'm (5+3m*), D=2%5"(1—m*, L =4m (5 —m®)"

To avoid fractions I write J=24, D=250B, J°—2"L=50C;
and then forming the sextic, and expressing its coefficients in
terms of the invariants, I obtain
*+448+ (64 -25B) ¢ + (44° +2C—-304B) ¢

+¢'(A'+4AC- 174'B + £35B*)

+¢(24°C—-44°B-1BC + 1104B") + C* - 44ABC+204"B",
which is a perfect square, as it ought to be, when D=0.*

250. M. Hermite has studied in detail the expression of the
invariants in terms of the roots. He uses the equation trans-
formed so as to want the first and last terms ; that is to say,
8o that one root is 0 and another infinite; and the calculation
is thus reduced to forming symmetric functions of the roots
of a cubic. I had been led independently to try the same
transformation on the problem discussed in the last Article, but
found that, even when thus simplified, the problem remained
8 difficult one. It would be necessary to form for a cubic the
sextic whose roots are the six values of

@ (B—9) (a=9)+ B (-8B,

and then to identify the result with combinations of the forms
assumed by the invariants of the quintic when e and f vanish.
M. Hermite expresses his own invariant I as follows. Let

&= (a—8) (a— ) (5—9) + (=) (&) (8 ¢),

a,=(a=B) (a~9) (- 8)+(a—28)(xa—2) (8- 1),

a,=(a—8)(a—3) (¢ — )+ @—1) (@—) (¢ - A);
the continued product of these is symmetrical with respect to
all the roots except a; and if we multiply this product by the
similar products obtained for the other four roots we get Z.

* Though the form with which I have worked is a special one, I believe that the
result is general ; because it scemed to me that the coefficients only admitted of being
expressed in terms of the invariants in one way.
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These factors are of course the values of the determinants

;8,, 32-:,8,: =1 2“‘('7",‘3){ a(y +¢e)—29e , &e.,
ve, y+s, 1 2¢—-(B+8), a(B3+0)-288

which express, p. 193, that one of the roots is self-conjugate
of the involution determined by the other four, which is the
case when I vanishes, as remarked, Art. 229. Determining the
numerical constant by a special form, such as az+5exy*+fy*=0,
we find the product of these fifteen factors by o' to be 10*°L

251. From the roots of a quintic five sets of four can be
formed by omitting each in turn, let Su, Sg, Sy, Ss, S. denote
the equi-anharmonic functions of these sets of four, see Art. 199 ;
also T,, T, Ty, Ts, T. their harmonic functions; it is easy to
see by comparing terms in a simple case, for instance, for the
quintic az® + 100z’y" = 0, that we have in terms of the roots

S 8= 5u(o-ay)"+Sa(o-By)'+ Sy (o) Sa(a-89)'+ 8. (o-sy)'

OF TaTo(aay)'+ Ta(o-B)"+ Tyw—yy)*+ Toa-89)* T (w-cy)"
- 100H=a'S (a-B)* (- yy)* (x-8y)* (x-ey)"

If we calculate for the quintic az®+ 10da"y’ = 0, the value of
the ten terms = (a—p)* (y— 8)*(8—¢)' (e —B)* which we saw,
Art. 241, can only be the quartinvariant, we find

a'S(a—-B)' (y—8)*'(8—e)' (e - v)'=—1250/.

The function = (a — 8)* (8 — )" (y — 8)* (8§ — €)* (¢ — a)* containing
twelve terms (Art. 248), is found to have precisely the same value.
* Similarly it may be noticed, for the covariant D, note p. 240,
a‘Z (a - B) (v—8)* (8 —¢)* (e — 9)" (= — )" (= — By)" = 1000D,
whose source_ is the function D written in full on page 230.

The value of the discriminant B on the same page must be
multiplied by 5° to become identical with a® times the product of
the squares of the differences.

The condition that four of the five roots may be equi-
anharmonic will be that some one of S, Sg, &c. vanish. Hence
their product will be an invariant. We get by a special form -

0*8.838y838: =20° (J* - 3K ).
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Similarly for the harmonic condition, we get the invariant
&' T, TpT, Ts T, = 5 (2"3°L + 2'3"JK - J°).

Again, the function = (a—B8) (@ — )" (3—¢€)" consists of six
terms belonging specially to a, which we may denote by H,,
and similarly for Hp, &c. It is easy to see that, if we write a
for = : y in the above value for the covariant S, the right side
becomes 2H,. Hence, the eliminant of S and u is the product
of these five factors. But by Sylvester’s canonical form or
otherwise, that eliminant is found to be 2JK—9L—J° and
by a special quintic such as (z - 1)*(z+2)2"=0, we can find
the value of the constant, thus

3a"H,HgH H:H,=10"(2JK - J* -9L).

Similarly we can see that I is the eliminant of 7" and u,
for, the resnlt of substituting a in the above value of 7 is
six times the product of the factors a,, a,, a,.

Again, by taking a special quintic of the form used in
Art. 241, we find the constant which gives the symmetric function,
a"Z(a—B) (B~v)'(v—a)’(e—a)'(~ B)'(e—7)"(3—a)(5-B)'(8-)" .

=3.5"(2"L-J°+ }JD)=2.5° (5.2°L - J* - 2°JK ).*

252. The Sextic. The investigations of Clebsch and Gordan
show that, including the sextic itself, there are in all 26 forms.
There are four independent invariants, which we shall call
4, B, C, D, of the orders 2, 4, 6, 10 respectively; a fifth E,
of the order 15, is skew and its square a rational and integral
function of the other four. There are six quadric covariants
whose orders in the coefficients are respectively 3, 5, 7, 8, 10, 12;
five quartics of orders 2, 4, 5,7, 9; five sextics, orders 1, 8, 4
and two of the sixth; three octavics, orders 2, 3, 5; one
decimic, order 4 ; and one duodecimic of order 3.

The first invariant 4 is 12° formed by the method of
Art. 141, and for the general sextic is

ag — 6bf+ 15ce— 10d".

I have given (Art. 174) the canonical form of the sextic; but—
I believe it will be found in practice not less convenient to use==
the more general form

av’® + b’ + cw® + d2°.

* The equation determining the anharmonic ratios of the roots has been given by
Mr. M. J, M. Hill. Proc. Lond. Math. Soc., vol. X1V,
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To this we should be led by the theory of two quintics, which
cannot be more simply expressed than as each the sum of four
fifth powers. For the form just given, the invariant 4 is, by
proceeding as in Art. 223, found to be Zad (12)°, or, in full,
ab (12)° + ac (13)* + ad (14)° + bc (23)° + bd (24)° + cd (34)%.
The Hessian of the sextic, 12°, is of the eighth degree, the
general coefficients being ac-— ?°, 4 (ad - bc), 6ae+ 4bd — 10c°,
4af +16be — 20cd, ag+ 145+ 5ce —20d",* &c.; and for my
canonical form is Sabu’y* (12)°. The sextic has another covariant
of the second order in the coefficients, with the variables in
the fourth degree, viz. the S of the emanant quartic, which is
for the canonical form Sabu’v® (12)%, the general coefficients being
ae— 4bd + 3¢", 2af— 6be + 4cd, ag —9ce + 8d*, &e.
To these we add, the covariant sextic, of the third order,
the 7' of the quartic emanant, which for the canonical form
is Zabc (12)° (23)" (31)* u"'w’, and whose general coefficients are
ace + 2bcd — ad* — eb® — ¢y 2acf — 2ade — 20°f + 2bce + 2bd” — 2¢'d,
acg + 2adf — 3ae’ — b'qg — 2bcf + 4bde + 2ce — 3cd”,
2ady — 2aef — 2bog + 4bdf — 2be’ — 2% + 6cde — AD*, &e.
Also, the simplest quadricovariant I, of the third order, 12* of
8 and u, or 12° of u and H, which for the canonical form is
Sabe (23)* (31)? (12)* »*, and whose general coefficients are

acg — b'g — 3adf + 3bcf + 2ae’ — bde — 3c’e + 2cd” =1,
adg — beg — aef — 8bdf + 9¢'f + 9be’ — 1Tcde + 8d° =21,
aeg — 3bdg + 2¢°g — af* + 3bef — cdf — 3ce’ + 2d'e =1,

253. We take for the invariant B that which has been
called by Sylvester the catalecticant, which expresses the condition
that the sextic should be reducible to the sum of three sixth
powers, and is (Art. 171) the determinant

a, b, ¢, d
b ¢ d, e
) d)_ & S
dye, Sy 9

* ]t seems unnecessary to write the terms which follow from symmetry.
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This expanded is :
aceg — acf* — ad’q + 2adef — ad® — beg + b + 2bedg — 2bee f

— 2bd’f + bde® — g + 2¢°df + c'¢* — Bed e + d.
If now we form the quadrinvariant of the Hessian, we find it
proportional to A4+ 300B; if that of the covariant &, we find
A*—36B; and if we operate on the sextic with the covariant 7,
we get B. Applying this last process then to the canonical
form, we get the value of B,

abed (12)° (23)* (34)" (41)* (13)" (24)",

which vanishes, as it ought, if any of the quantities a, b, ¢, d
vanishes, or if any two of the four functions u, v, w, 2 become
identical.

254. We take for the form of the fundamental sextinvariant

C, that which involves no power higher than the second of the
leading coefficient a, and which for the general form is C=
a’'d’g" — 6a’defg + 4a’df” + 4a’¢’g — 3a’elf " — 6abedg” + 18abeefy

— 12abef* + 12add’fg — 18abde’y + 6abe’f + 4ac’y" — 24ac’e’q

— 18ac’dfg + 30ac’ef™ + 54acd’eq — 12acd’f* — 42acde’f

+ 12ace* —20ad‘g+24ad’qf 8ad'e’ + 4b°dg" — 12b%/g

+ 88— 3b'C'g* + 30b%ce’g — 24b'cef* — 126°deg — 245’

+ 605de’ f 27b%" + 6bc’fg — 42bc'deg + 60bc’df* — 30bc’ef

+ 24bed’g — 84bed’ef + 66bede’ + 24bd'f — 24bd°¢* + 12¢eg

= 27’80’ d’g+66cdef —8c°"—24c'd>f—39c’d'¢*+ 36cd*e—8d’.

In terms of these we can express the other invariants of

the sixth order. Thus, the cubinvariant of the covariant
quartic is 4°~1084B-54C; the cubinvariant of the Hessian,
p- 141, is 34°~1004 B+27 500 the discriminant of the quadratic
is 4 (17, l 1’)=44B+30; and the quadrinvariant of the sextic
covariant is 248 - C. The last-named invariant can be easily
calculated in the case of the canonical form. We have to
operate with Zabc (12)* (23)’ (31)”uvw on itself. Now if we
operate with u''' on w'v'w' the result is proportional to
(12)’MN, where M and N have the same meaning as in Art.
223; and if with w™"»’ on itself the result is — (12)(23) (31)%

Hence we get for the invariant in question
Sa'e* (12)° (23)° (31)° — 2abedZab (12)°M’N'
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255. If a, b, c all vanish, the invariants 4, B, C become
respectively — 104", d, —8d". Hence, when the sextic has as
factor a perfect cube, the conditions must be fulfilled 4*=100B, -
44B=5C, AC=80B". If we make a, b, f, g all =0, the
invariants become .

15ce - 104", c'¢'—3cd'e+d', —8c%" —39c’d’e’ + 36¢d'e — 84°;

consequently when the sextic has two square factors, in addition
to the discriminant vanishing, the condition must be satisfied,

(4° - 3004 B+ 250C)* =5 (4* — 100B)".

DISCRIMINANT OF A SEXTIC.

256. If we make &, d, f=0 in the equation, the discriminant
will be ag multiplied by the square of the discriminant of
(a, 5¢, 5¢, Y, y)°; and if all the terms vanish but a, d, g, the
discriminant will be a’¢* multiplied by the cube of the discrimi-~
nant of (a, 10d, g¥#, y)>. Knowing these terms in the
discriminant, the rest can be calculated by means of the differential
equation. © The resulting value of A is

s + 43500 a'bdef”g" | + 380000 a’d'g’
- 30 a‘bfg* — 7500 a'bdf'y |—330000 o’d’efq’
—300  a‘ceg 457000 a%6'fg* | +50000 o'd’f%g
+ 375 a‘cf*g® |- 97500 a%ef’y |+ 250000 o'd’e’gt
- 300 a‘d’g* + 87500 a®bef® + 675000 a’d'e'f g
+3000 a'defy? |+1000 o’gt |- 375000 a’def*
=2500 a'df’g" | —27000 a’c'dfg® |- 900000 a’de'fy
+1000  a'¢’g’ + 18750 a’c’e’g® |+ 500000 a’de’f®
~7500 a'ef’g" |+16875 a’cef’g" |+250000 a’c’g
$9375  a'ef'g | —9315  a%f'g | —150000 oSt
- 38125 alf* —17500 a%dley” |-—2500 a'Pdg
+315 oyt | +121500 Sedf'F [+750 o'y
—-15 a'blf’g" | +30000 a’cdelfy' |—-410  a'Bf%g*
+3000 a’bedgt | —412500 a’cdef’y |—17500  a'biclgt
— 5550  a’beefg” |+ 187500 acdf® |+ 43500 a'b'edfy®
+ 750 a’bef°g" | — 150000 a’ce'y’ + 16875  a'blce’y’
— 4800 a'bdfg’ | + 412500 d’cé’f’g |— 54675  a*bicef’g?
— 27000 a°bde’y® | — 187500 a’ce’f* + 25500 a®b'cfg
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WiGULE BISAZY LTAFTCS,

+ 1599 VPl Vk2IN £PPF -5 oy
~ 1119 LPLSf 2521875 872779 -+ 3D ob'dlq
-34S CVVSF ~ 125k L2y 511500 oBdSfy
+ 61690 SPASfYg - — 1359960 £2AF  — 2000 abdef*
=24prdy ZVdf* 33625 o’ APy - — 202500 ab'efy
+5% ALy 1+ AT PP g | + 121500 ab'Ef?

- 2524 dVEf7g - 2062500 B’ |+ 412500 ab’ceg’
+ 11250 &VEf |+ 4575000 o’Pdéfy | - 23250 ab'df g
+ 51000 ChPfy | — 2625000 a’Fdef* |+ 675000 ab'Sd'g
430000 Zbldef | - 1515000 dPdg | — 3172500 ab'cdefy”
= 346500 WP g + 1125000 P |+ 511500 ab’ddf’g
= 596250 LUSEfy | + 3150000 a’edeg® | — 2821875 ab’ce’qt
+ 1222500 a’b’ef%g | — 300000 d’cd’fg |+ 7633125 ab’c’e’f g
= 506250 a’bPf* | — 9750000 a’cd’efg | — 3442500 ab’cCef*
= 330000 ahed’y” | + 5250000 a’ed’of* | — 2190000 ab*cd’fy*
+ 1590000 a’bed’efy’ | + 3150000 a’ed’e'g | + 4725000 ab’cd’e’g*
- 830000 a*bed’f*y | - 2250000 a’ed’f* |+ 6030000 ab’cd'ef’g
+ 750000 a*bede’y® | — 1000000 a’d’g* — 3360000 ab'ed’f*
= 8172500 a*bede’fg | + 3000000 a’d’efg | — 15337500ad*cde’fq
+ 1687500 a’bedef* | — 1600000 a*d’f* |+ 8392500 ab'ede'f*®
+ 875000 a'beslfy |~ 1250000 a’de’y | + 5062500 ab'ce’g

= 226000 a’bedlf* |+ 750000 d'd'e’f* | — 3037500 abce!f*
+ 780000 a'bdlfy* |+ 9375  ab'eg — 300000 ab’d'eg”
= 1350000 a'bd’e’y* | - 7500  ab'dfg® |+ 900000 ab'de'fy
= 2190000 a*bd’ef"g | — 9315  ab'e'y® | — 480000 ab’d’ef*
+ 1200000 a"bdlf* | + 25500 ab'ef’g" |- 375000 ab'd'c'g
+ 46560000 a'bd'elfy | — 11520 ab'f'g |+ 225000 ab'd’df*
= 25650000 a'bd'elf® | - 97500 ab’cfy® |- 900000 - abc'dg®

= 1500000 a*bde’y | — 412500 ab’edeg® |+ 375000 abc'efg*
-+ 900000 a'bdelf" |+ 616500 ablcdf’g* | — 202500 abclf’g

= 130000 a'c'eg® | + 1222500 ab’ce’fg* | + 4650000 abc’dfg*
+7000  a'fg" | — 2197800 abcef’g |+ 4875000 abc’de’g*
00000 a'Cdg" | + 864000 adlef® | - 15337500abc’def g
+ 70000 a'c'dosy | + 50000 ab’d’¢® | + 7087500 abc’df*
3000 @'y | - 330000 ab’dlefgt |+ 843750 abe’elfg
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- 506250 abc’e'f*
— 9750000 abc'd’eq*
+900000 abc'd’f’y
+ 24750000abc a6y
- 13350000abc’d’ef®
— 9375000 abc'de'q
“+ 5625000 abc’de’f*
+ 3000000 abed®*
— 9000000 abed'efy
+ 4800000 abed'f®
+ 3750000 abcd’e’g
— 2250000 abed’ef*
+ 250000 ac%’

— 1500000 ac’dfy"
— 1875000 ac’e'y’

+ 5062500 ac’ef’g
~ 2278125 ac’f*

+ 3750000 ac'd’eg*
— 3875000 ac'd'f’yg
— 9375000 ac*de’fy
+ 5062500 ac'def®
+ 3515625 ac'e'y

— 2109375 ac'e'f*

— 1250000 ac’d‘g®

+ 3750000 ac’d’efy
— 2000000 ac'd’f*

— 1562500 ac’de’g
+ 937500 ac’de’f*
-3125 gt

1—331776

Vefy®
bdeg®
bb df’ y*
vefy
bb e 3 g
B

b. c’ e gﬂ

+ 37500

+ 187500
— 240000
— 506250
+ 864000

— 187500
+ 11250  ¥'cf¢*
— 375000 b'ed'g®
+ 1537500 b'cdefy”
— 288000 b'edf’y
+ 1265625 b'ce’g*
— 3442500 b'celfy
+ 1555200 b*cef*
+ 1200000 »*a’fy*
— 2062500 d'd’e’g"
— 3360000 b'd'ef’g
+ 1843200 b'dYf*
+ 7087500 b'de’fy
~ 3888000 b'de’f®
— 2278125 b'e’g

+ 1366875 b'e'f*
+ 500000 3°c’dg®
—225000 b’Cefy’
+ 121500 ¥c’fg
— 2550000 b°c’dfg"
— 2625000 d°c*de’q®
+ 8392500 b°c'def"yg
— 3888000 ¥°c*df*

TENTH ORDER.

265

— 506250 By
+303750 B
+ 5250000 B'cd’eq®
— 480000 Bed'fq
— 133500008’y
+ 7200000 Bedef*
+ 5062500 b’cde’y
— 3037500 Hedef*
— 1600000 b°d°g*

+ 4800000 5°d*fy
— 2560000 5'd'f*

— 2000000 3’y
+ 1200000 5°df*
- 150000 b'c’g®
+900000 Bc'dfy’
+ 1125000 d'c'e’g*
- 3037500 b'c'er’g
+ 1366875 b'c'f*

— 2250000 b°c*d’eg*
4225000 b*PdY'g
+ 5625000 b'c’de'fy
— 3037500 b*c*def’®
— 2109375 b'c’e'g
+ 1265625 b*c’ef™
+ 1750000 b'c'd'q"
— 2250000 B'c'defy
+ 1200000 B
+ 937500 b'c’d'e’g
— 562500 b'c'def*

257. If it be réquired to determine a cubic whose covariant
12° with a sextic vanishes identically, it will be found that the
problem- furnishes linear equations enough to eliminate all
coefficients of the cubic, and the condition to be satisfied is,
that the determinant B of the sextic vanish. But if the problem

were to determine a quartic whose 12° with the sextic should

MM
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vanish identically; though there are enough linear equations
to give a determinant eondition among the coefficients of the
sextic, this will be found skew symmetrical of the fifth order,
and therefore the condition i3 identically satisfied. Hence,
this problem admits of solution generally. In fact, it is easy
to verify that if we write the quartic S, which we shall now call
t={ae— 4bd+ 3", z* +2 [af — 3be + 2cd) 2’y + (ag—9ce+8d")z"y" + &e.
=2+ 4.2y + 602y + 47y + 0y,

then as, — 3be, + 3cs, —di, =0, &c.,
thas it satisfies the conditions of the question.®

This quartic covariant furnishes to the system of the sextic
besides its invariants its Hessian and its sextic covariant.

The determinant value of B, treated by the rule of Art. 2195,
at once gives the invariant

A'—36B=12 (e, — 448, +3)) =121,
as we shall write for brevity. If the coefficients of the Hessian
of 7 be written out, we find that its source satisfies the relation
12 (06, — o,") + Ao, =3 (al, — 20, + cl).

Writing out the corresponding equations for the other coeffi-
cients, multiplying the first by ¢, the second by — 44, and so
on, and adding, also calling the invariant

3 1 s
bybaby T 200, — Lty — 4l — by = Ia’

* It should have been noticed that if in a skew symmetrical determinant of odd
order the constituents in any row or column be replaced by arbitrary quantities, the
determinant formed is a linear function of the binary determinants formed from
the constituents of the replaced and its conjugate column or row. And again, if in
a skew symmetrical determinant of even order all the constituents in any row or
column be replaced by arbitrary quantities, the value of the determinant formed
is the product of two linear functions of the constituents of the replaced and its
conjugate column or row. Thus the value of the determinant

0, a,-3, 8,-d, by | =62 (aot, —4ay¢5 + 6ay, — dage, +aye,) .
-a, 0, 6c,—82, 3e —4b (Boty — 4byt5 + 6by15 — 4bye, + byey),
85, —6e, 0, 6e,—3f, 6b,
—8¢, 8d, —6e, 0, g,—4b
d, —8, 8, —g, 0, b
a, —4a), Gay —day @, 0
onables us to write down in a determinant of the fifth order the product of the
covariant 1 by any one of its cocfficients.
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we get 361, +241 =12(l1,—-1")=3(44B+3C), Art. 253,
whence 1084B+54C - A*=2161,.

The relations just employed show that the Hessian of ¢ may
be replaced in the system of the sextic by the result of operating
with [ on the sextic, and the sextic covariant of ¢ by the result
of operating with [ on the Jacobian of the sextic and <.

The same relations being employed to determine the quadrin-
variant of the function (al,—2bl + cl)z'+ &ec., lead to the
equation .

(ei—200 4+ 0) -2 (e, — 200 + ¢ 1) L+ (e 0, — 261, + 1) L,
=4§(21,+341)=}(24'B+34C+125°).

-258. It should have been mentioned in dealing with the
system of a quartic and a quadric that if we call the quadric
covariants at the end of p. 203 respectively

; aa’ + 28y +v9,9", oo’ +28xy+q9y",
and operate with the former on the quartic a new quadric
covariant a2’ + 28,2y +v,y" is found, if we operate with this
on the quartic we get another a*+ 28,2y + v,y", and so on.

From the system of equations thus derived

a, =ay- 208 + ca, a, =ay,—2bB, + ca,, a, =ay,—2bB,+ ca,
B,=by—2cB +da, B,=by,—2cB,+da, B,=>by,—2cB,+ da,
Nh=0Y— 2dB + €xy Yy =00~ 2dﬁl+ €xyy Yy =CY, —2d71+ €%y
it can easily be seen that each covariant admits of linear ex-
pression by two preceding it in the series, the values being
a,= Sa,+27Ta, a,= Sa,+2Ta, &c. Moreover, these equations
show that ay, - 288, + ya, =2 (a7, — B,%), and when we write
Sz, +2Ta = ay, — 258, + ca,, &e.,
we see that '
&Y, — 21318: + %% = S(a'yl - 2'8/31 + 'Yax) + 4T(a7 - B’)’
%47, 'Bn' =8 (al'yl - Blu) + T(wyl - 2:331 + 'Yax)'

In the notation of Art. 212, 4 (ay — 8) = &', ay,— 288+ va,= ¢,
a9, —B'==+ S(ay—#"), thus the successive invariants of
the quadrics are expressed in terms of these five invariants, and as

the skew invariant differs only by a factor from |a, B, v |,
its square can be similarly expressed. a, By v,
an) B ) 'Ya
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It may also be noticed as regards the covariant o’ that we
find 3a,=28xz+a’; and likewise for the series of derivatives
according to the law corresponding to & from the quartic,

a”=38%"+2 (541" - 8%) a, &c.
Also o« + 8’ =28 + 18 Ta,.

259. Now when we take as quartic the covariant ¢ of a sextic
and take its covariant / as quadric, we derive a new quadric m
by operating with 7 on 7, another n by operating with m on f,
and by what we have just seen, the further quadric covariants
thus derived are reducible. These three thus give rise to a
complete quadric system of which we proceed to consider the
invariants. )

The relations between the coefficients of ¢ and of its Hessian
used in Art. 257 give
12{a (e, — ¢,") — 2B (¢,8, — t58,) + ¢ (08, +20,8, — 34,") — 2d (e,8,— ¢,8,)
+ e (e, — y) =

6 (¢l,— 2¢0, + 1) =m,*
6 (e,f,— 240, + 40 ) =m,,
6 (60, = 2,0, + ¢ L) = m,
m,, m, having similar expressions to that for m,

By the same relations, determining the result of operating
with the square of / on the Hessian of ¢, we find this invariant
linearly related to the result of operating on the sextic with
the cube of I, al’— 64l + &c. = D,, and to the last invariant
written in Art. 257; but it is also obviously so related to the
discriminants of ! and of m. We find as the result of the
comparison what we shall call

D' =mm,— m'=9 (D, - 24BL).}

* In full, the value of my =
a%g? — 6a%dfy + 8a%e’g — 3a%ef? — ablg? + 6abefg + 2Tac%eg — Bdabdeg
— dacd?g + 48abdf® — 45ac’f? — 18abe’f + TSacdef — 48ad’f — B6ace’
+ 28ad?? — 9b%ceg + T26%d%g — 96bc?dy + 36ty — 144b2def + 1085c%f
+ 96bed?f — 7‘20'@‘ + 8152 — 126bcde? — 27c3d? + 16bd3e + 96c?d%e — 32¢d*.

t It was mentioned in the second edition that instead of the discriminant A we
may use another invariant of the tenth order D, in which no higher power than
the fourth of the extreme coefficients a, g appears, and which does not contain

‘ the product a'y’. The quantity multiplying a* in D is (eg —f*)3, and the relation
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We can now, writing 6 (,m, — 2um, + ;m ) =n,, &c., express
‘the remaining invariants of the quadratics by means of the
invariants 4, I, I, I’. In fact, using last article, we have

ln,—2ln, +1n =2 (mm, —m?*) =2D, »
mpn, —2mmn, +mn, =36 {I(I.m, — 2lm, + l’m.) +241, (11, -1},
nn, —n* =36 {1, (mm,—m?) + 61 (L m,~2lm, + Im,)},
and we have already at the end of Article 257,
Im,—2lm +1m =4 (2L + 34I).

We have, of course, also the skew invariant of the system of
quadrics which must be to a numerical factor the E of the sextic,
and its square will be expressed by the other invariants in
the usual manner by putting in their values in the expanded
formula for

I” lh l: It' - 21!- lo
Mgy My, My my, — 2my, m,
fiyy ™y Ny ny — 20y, n,
3 (41, + 181}), 4 (21,2 + 8AL), 174
=| 4 (21,2 + 8AL), 2D, 288 (I8 + 24L1L + 947 5
20, 288 (I} + 2ALI; + 91,2), 72 (LD’ + 481,%I; + 72457

moreover, the identical relation between the quadrics may be
written down by equating this determinant bordered with them
to zero. '

260. By means of the differential -equation I calculated
the invariant E. Its value was given at length in the second
edition, where it occupied thirteen pages, but I have not
thought it worth while to reprint so long a formula. The
terms containing the highest power of a are

a’(eg —/7) (9'"d— 3¢fe + 2/*) 5
whence making all coefficients vanish but a and f the deter~
minant at end of last article is found =2 (27E)",

connecting A and D is A = A5 — 375438 — 625.4%C + 3125D. The value of D was
there given at length, but I have not thought necessary to reprint it. Taking either
of its special values in the cases mentioned at the beginning of Art. 256, D, is found -
oonnected with it by the equation D, = D 4 6B~(3C + 2.4 B) : whence we find
94 — 3126.D' = 3844 — 1200042 (AT + 51;) + 750001, (AL, + GI,).
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The expression for E in terms of the other invariants msy be
otberwise found from the following considerations: If in the sextic
b, d, f vanish, E necessarily vanishes. For, since the weight of £
is forty-five ‘Art 143 ; the weight of some one of the constituent
coeficients in each term must be expressed by an odd number;
and when in the sextic we make all the terms vanish whose
weight is odd, E vanishes. E=0 is therefore the condition
that the routs of the sextic should form a system in involution.
If then we make 3, d, f=0 in 4, B, C, A and eliminate a, ¢, ¢, g
from the results, the relation thus obtained between A4, B, C, A
maust be satisfied when E vanishes, and must therefore contain
it as a factor.

From what bas been just remarked it follows that the
expression for E in terms of the roots is the product of the
fifteen determinants of the form

‘1, a+B, a8
1y, 948, 8|,
b1, e+¢, ep
or of the fifteen factors (Ex. 7, p. 25)
(a=8)(y—¢)(e—-B)+(B-17)(8-¢) ($—a)

If we write ag=2\, ce=p, ae®+gc*=v, the values of the
invariants got by making 3, d, /=0, may be written

A=N+15u, B=Ap+u’-v»,

C=—24ap"- 8’ +4 (N +3u) v,

A =X {N'—150Ap — 18754" + 5000}".
Eliminating v in the first place, the last two equations become
C=4u(A—p)'—4(M+3p)B, A=A(N+350Mu—1375u"'—500B)".
Then eliminating s by the help of the first equation, we get
10247\"—1152\" 4+ (132.4"-10800B)A+3375 C+27004 B — 44°=0,

A (25607 — 3204\ + 5547 + 4500B)' — A =0, ‘

The resultant of these two equations is of the thirtieth degree
in the coefficients; and therefore, from what we have seen, can
only differ by a constant multiplier from E*.
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261. By Art. 234, when the discriminant is negative the
sextic has either six or two real roots; and when it is positive,
has either four or none. We can readily anticipate that the
discussion of this expression for £ is likely to lead to the same
results in affording criteria for further distinguishing these cases,
a8 the corresponding discussion of the expression G in the ‘case
of the quintic. - Analogy also leads us to expect that what will
be important to examine will be the result of making A=0
in the expression for E. Now, although the calculation of this
general expression for £ may be a little laborious, that part
of it which is independent of A is easily obtained. It will
evidently be the product of 3375C+27004B—44" by the
square of the resultant of the cubic and of the quadratic

256\ — 3204\ + 554° + 45008.
And again, analogy leads us to believe that the first of these
factors is not important in the question of the criteria for real
roots, and that it is the square factor alone which needs to be
attended to.

The result I find is that, writing for convenience B’ for 1005,
C' for 125C, the quantity squared differs only by a constant
multiplier from

44°—194'B'- 494’B" - 44°C' - 80B™ + 524B'C' - 4C".
Analogy then leads me to suppose that the criteria for the
number of real roots of a sextic depend on the signs of this
quantity, and of 4’ —100B, 4° - 125C,
(4°—3004B+250C)"— 5 (A'—100B)",
which, as we saw, vanish when three roots are all equal.

262. If we now resume, from Art. 223, the consideration of
the system of two quartics
u=ax' + 4ba’y + 6cx’y* + 4dxy’ + eyt
v=a'z'+ 40’2’y + 62y’ + Ad'zy’ + €'y
and, as in Art. 216, write their Jacobian or functional deter-
minant, which is in full,
(ab’) 2° + 8 (ac’) 2°y + 3 {(ad) + 2 (b¢")} x'y® + {(a€’) + 8 (bd')} &®y®
3{(b0) +2 (cd)} 'y +3 (o) 2y’ + (de) 5"
=aa’+ 6a,2’y + 15a,2’y’ + 20a.2’y’ + 15a,2°y* + 6a,2y° + a ",
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and their quadric combinant of the same order in the coefficients
{(od) -3 (bc")} 2" + {(ae') — 2 (o)} 2y + {(5€') — 3 ()} &
=p&" +2p,2Y + Py

we express as follows all the determinants of the second order
employed in Arts. 220~1 in calculating the combinant invariants,

(ab)= a,
o (ac') = 2“1' (ad,) = _3a’ + ipﬂ (bc’) = a,- *Po?
(ce’) = 2“5) (ae’) = 4as + %p 1 (bd’) = 2(1’ - '&p 1
(‘k,) = aq (be’ = 3(1‘ + 'Epﬂ (cd') = a,— *p 2°
Between these determinants we have five identical relations
of the form (ad’) (c&) + (ac’) (db’) + (ad’) (b’) =0, but of which
any two result from the other three, and these introduce the

simplest quartic covariant of our sextic Jacobian. In fact,
writing as in Art. 257,

aa,—4aa +3a' =, aa —3aa+2aa =2, &e.,
the identities are
@,p,—2a,p, +a,p, =54, — §p;,
a,p,—2a,p, +a,p, =5 —Ep, P,
8,P, = 20,p, % a,p, = 5, — 75 (P, p, + 2p,),
8, Py — 28,y + @, py =50, — §p, Py
a,p,—2a,p, +a,p,=5¢,— %p,";
Now if, in order to combine these, we write, as in Art. 252, ",
ag = 4a e, +6ay, —4au +ap, =20,
a,— 4dap, +6au, —4ae +ayu, =21,
- ap,—4day +6aye, — dae +ap =20
also calling - T Co !
a@a,—6aa, +15a,a,~10a' =4,  p p,—p'=P,
a,p," - 4a,p, p,+ 2¢,(p,p, +2p,") — 4a, p, p, + a, p,' = [a, p,]],
we find 2 {4, p,— 20, p, + 1,p,+34,p,} =5.2.1 - 3 [a,p,7],
(2,21 = 5t,p, =~ 26,7, + 4,2.) — F5Ppe
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from ‘which eliminating [a,p,'], also writing down similar
relations for the following coefficients and putting for brevity’
K=}4,— /P, we get
WPy —24up, +4p,+ KP. = glo?
» wp—24p, +4,p,+ Kp, = §l,
4Py =200, + 4, + Kpa = !l"

It will be observed that the « and [ coefficients depend solely
on the coefficients a, hence these equations enable us to determine
the p coefficients by means of those of the sextic Jacobian.
In fact, they "enable us to solve linearly for the p coefficients in
terms of these quantities and P, and when this is done to form
from them the value of P. v

~ Thus the notation of Arts. 256, 258 gives us the determinant

th 5 24 ,4+K
4y 1 24-K, b
L+ K, 2, , ¢
we find incidentally 507, +4KP=15(l,p,—-2l p, +1,p,), and
finally to determine P=%§ (4, — 6K) arrive at the quintic®
6K*-A4AK*'~10I,K*+2(4,1,+151) K*-84 LK
-2611-AI'+3}D =0.
Hence we see that as the Jacobian is a sextic of full generality,
it is possible to express any given sextic as the functional deter-
minant of two quartics in five ways; when any root of this
quintic is employed, a quadric p is linearly found by means of
the given sextic by the above equations, or we have definitely
in terms of the covariants [, m, n of the sextic:

1@2L-LE+ K )p=(K'-1)1< } Em+ fgn,

and hence the values of the determinants (ad’), &c., are found.

=2I‘—I,K+K',

* In preparing the following sketch of Dr. Brill’s paper, Math., Annalen xX.,
p. 830, I had printed thus far without seeing the “Mémoire sur les faisceanx
de formes hinaires ayant une méme Jacobienne,” by M. Cyparissos Stephanos, in
Tome XxVIL. of the Savants Etrangers of the Académie des Sciences, 1883,
M. Stephanos obtains this quintic, but with a slightly different notation, p. 78. In
the preliminary notice in the Comptes Rendus, 12 Dec., 1881, it is given incorrectly.

NN
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263. From the system of three quartics -
U=az'+4Bz"y +6y2'y"+ 43z +-ey', V=aga'+..., W=a'z"+..
we can obtain a similar theory. In fact, they afford the
sextic covariant

az® + 2Pzy + yy' B2® + 2ymy + O, y2' + 20zy + * |,

a2+ 28zy + 9y B+ 2yaxy+dyY yAt+ 2xy+sy
a'z? + 207y + 'y, B2+ 27y + &P, ¥'T+ Wy + ey

which, using («By) to denote the determinant («8y’), &c., we
may write
= (aBy)z*+ 2(aB8)x’y+[(aBe)+ 3(ayd)]x"y*+2[(aye)+ 2(Byd) ]y
+ [(ade) + 3 (Bye) ] 2"y +2 (Bde) zy® + (y8¢) ¥
=)’ + 6ba’y + 15b,2%y" + 20b,2"" + 15b,2"y* + 6b,2y° + b,y".
Introducing the present notation, we find the expansion
(p- 31) of the determinant
a b ¢ d e
ay &, ¢, d, ¢
o B 7 & g
@y ﬁn Yo 6,, &,
o B, 7 ¥ ¢ '
=apb, - 6ab,+ 15a.b, — 20a,b, + 15ab, — 6ab, + ab,
—$2,1(ade) ~2(Boe)} + §p, {(ave) - 8(Byd)} - $p, {(aBe) - 2 (avd)}.
This introduces a new combinant of the three quartics,
which we shall write g«'+ 29,2y +¢,5"=

({aBe) —2 (ayd)] " + [(aye) — 8 (By8)] =y + [(ade) — 2 (Be)] 4"

by whose coefficients along with those of b we can express all
the determinants®
:z‘ :((0;/’33'2))-—; ?:I’; a, = (ayd) =85, ~ g,y B,=(aBe)=6b,+ 3¢,
a" _ (Bss) - 1 a, =(19'78) = b. - %ql’ Ba= (afye) = 8b. + 'qu,
1 = Y = — _ _ _ :
a,= (785) =b°’ o, (B’YS) = 3b‘ 144 B’ »(aas) Gb.+§g,

* Tt is useful to have both notations: the identities following may be written by
Jetting 2 and y go through all pairs of values of a, B, 7, ¢, & in the matrix

a, a, a, (zya) and are B,a, — By, + Biay = 0,

pr. ﬁn ﬁl! (ﬂ’yﬁ) aa, — @ty — ﬁ,l!. = 0,
v Yo v (@yy) a,a, — ayag — fya; = 0,
8 ¢, & (xyd) aya; — a,aq — fa; =0,

gy g, ¢ (xye) Beag — fya; + Bya, = 0.
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Among these there are five identities, as in Art. 28, three
of which only are independent, and which lead to the system
of equations of the type

bo% - 261% + bﬂo = %Qo' -10 (b b - 4b b + 35 "))

whence the determination of the covariant ¢ from 3, by aid
of which any given sextic may be identified with the functional
determinant of three quartics, follows immediately as in last
article. It is to be observed that the duality, of which these
two articles furnish an example, is general; that if we have
a system of p independent quantics of the n'® degree, » not less
than p, they have a functional determinant of the degree
(n—p+1)p, which is a quantic of full generality of that
degree, and that any quantic of the degree (n— p+1)p may
be identified, by adjoining to it a suitable irrationality, either
with the functional determinant of p quantics of the n degree
or with the functional determinant of n— p+ 1 quantics of the
n® degree. The irrationality in the present case for either form
is the root of a quintic, by means of which the quadratic
covariant i8 linearly determined. Moreover, the system of
combinants of the p quantics of the n® order, for n not less
than p, is in number and form identical with that of n—p+1
quantics of the same order.

264. If the quartic AU+ uV+vW break up into the quad-
ratic factors
(ra®+2rzy +ry") (r)a" + 21 a:y+r.y’),
on comparing coefficients, we can find easily that the second
factor may be determined, in general, by the first, as ‘
A o a, o, 1, 0 0],

48, 4B, 46, 2ry, 1y O

67, 6y, 6y, ry 2y 1,

43, 43, 48, 0, r, o

4 ¢ & 0 . 0 r

0 O 0, 2% =y, ¢
whence this particular value of AU+ uV+vW is found by.
replacing the bottom row by U, ¥, W, 0, 0, 0, and accordingly
A : w: v are determined by 7, : 7 : 7,
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The second quadratic factor becomes indeterminate if the
former make all determinants vanish in the matrix
a a, a, r, 0 0]
48, 48, 46, 2, 1 O
6y, 6y, 6y, ry 2, 1,
4 43, ¥, O, #, o2n
s, 5 ¢ 0 0,
the former factor accordingly fails to determnine the ratios Az p : v.
The equations which make this matrix vanish may be written
Byrg =01y + 25y (rors +21y7) — 4Byriro + b= (o2 — 1) Qo — T (Fots—2riGrr+Ta20) T
by 4bryry + 2B, (rory + 21\ 7) = 8,y + B i? =3 (rers — 11T = 1o (re— 2t rado) o
b2 tbyryry + 25 (rors + 2my?) —4byriro + 8er e = 4 (rors— 1) G — ¥ (et~ 2101+ 7220) '
or in the form ‘ _ '
6r'a,— 8y, + vy, (6a,—B,)+4r'8,— 3rrB, +r'8,=0,
2rra;—~ry, (6a,+B,) +12r a4+ 378, —rr,(6a,+ B)+ 27,2, =0,
ro’B ' 3’0’18 ‘+1'°7', (6a4 = '84) + 47|'B4 - 8r1rnas + Gr,’a-‘ =0;
and from these either of the ratios r : 7, : r,, may be eliminated
dialytically and the other will be found by a cubic. A root
of this cubic being employed, the former ratio will be found
linearly. Thus three quadratics w,, u,, », can be found, and we
may assume, as the basis* of the system of quartics in all
mattars relating to combinants, the products wu,, uu,, wu. If,
further, we suppose a linear transformation effected, making
the independent variables the factors of u, so that w,=zy
and r,=0, r,=0, we must have in the equations determining
these coefficients 8,=0, 8,=0, B,=0, whence follow, by the
a

identities of Art. 263 (note) that %‘: =%, Thus, if we

4 aB

make by suitable determination unity the common value of these
quotients, we have by a linear transformation, depending on the
solution of the quintic and on that of the cubic, arrived at

the reduction of the general sextic to Dr. Brill’s canonical form

a® + 2pa’ + 8¢x* + drz® + 32" + 2px+q=0.

* Compare the Notice of Dr. Brill's paper in the Fortschritte der Mathematik,
1882, by Dr, W. F. Meyer; also his Apolaritdt und rationale Curven, p. 805, &c,
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- 265. When the quartic AU+ uV+vW is the square of

82" + 23,2y + 8,y", we must have the matrix
a, a, &t =0,

ﬁ, By B st

8y, By, By, 8 +25

8 O, & &y

g ¢ & &
But this is equivalent, by the identities of note Art. 263, to oply
two equa.tlons for example, we may write the two

@8, —a3,8, + 3, (3,8, + 28,") — 8,8, =0,
as,8, — $a, (ss +2a’)+a,sls, a8’ =0,

Eliminating s, : s, between these, we get a blquadratlc m
8,:5,, and the second equation connects a single value of s,
thh each of its roots. Thus four quadratics are found to solve
the question: calling them ¢,, ¢,, ¢,, ¢, we may take-the
squares of three of them as basis of the system as regards
combinant properties. It is obvious that, besides the linear
relation which holds between any four quadratxc functnons,
there must exist also a linear relation between the squares’
of ¢,y by Py Foe “

- If ¢, ==y, so that s,=0, s,= 0; the vanishing of the above
matrix independently of 8, requires that
- ay=0, =0, B,=0, B,=0.

- In this way we are led, by employing a root of the qumtlc .
and a Toot of the blquadratlc, to reduce by linear transformation
the .general sextic to the following canonical form, given both
by M. Stephanos and Dr. Brill,

2° + ax' + bx’ + ¢’ +1=0.

266. When, by the methods just explained, the sextic is
identified with the Jacobian of a system of quartics, its dis-
criminant breaks up into factors. For the case of two quartics
these are (Art. 180) their resultant R and the invariant called D
(Art. 221), which vanishes if »+Av admit of a cubic factor.
The resultant was already given (p. 220), but we may write
it in the notation of Art. 261 as

R=12| a, ay, as+ v Pe G+ 3P
G G~ Py G~ TPy G+ TP
G+ 5Py G — Py G —dkPy G
%G +3Py G+ 5Py Oy 0 .
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Tiw wrwrame 7 w1 bn fund B tie same zomacm by
cxpamivg ot we have ssiiasesmdy
s s b ly s G,y £y~ 8, —tp oy + '3, —p, ¥ =0,
wfd $ W4 Ap, 2y + tn,+ ip, 20+ Sa,+ i p oy +ay' =0,
(u,~ bpy# + Y, tp, 2y + %a,— tpy ¥y + tazy + a5 =0,
sl wt inws this is written down as a determinant of the sixth
ey, $. Brill shurws that the discriminant breaks uwp into
twy wmrompimding fatirs for the fanctional determinant of
p yumtiun, and in particular determines their values for three
uunrtion,  Vor his canonical form (Art. 264) it breaks up into
s fuctir of the sixth degree,

P 1ol e 1= (V) + oy P~ 0) P~ Po(-1) P+ - 1) =15 G,
snd it uther factor is the product of four linear factors
Dy=(p~r)+(y=~1)y Dymp+r+qg+1, Dy=—p—r+q+1.

I'rom thews, taking p, g, 7 as rectangular coordinates, after
the manner of Nylvestor (p. 242), and considering how space is
partad by the surfacos (=0, D, =0, D,=0, he investigates
the numbor of real and imaginary roots for real values of p, ¢, r.

Wa omit the discussion, however, as well as the geometrical
davalopmonts given in the Mémoire of M. Stephanos, and
oonolude with a fow miscellancous examples on the subjects
of this Liowson,
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Ex, 2. If we take as the three quartics in Art. 263, the simplest quartic covariants
of the quartics in Art. 262, viz.
H=azt+..=(ac — b3) 2* +..., H,=azt+..= (a¢’ + ca’— 2b0") 24 +...,
H' =d'zb +...= (a'd — b'?) 24 +...,
‘we can write the invariant C of p. 220 in the form (a, &, ¢, d, e
a, ¥ ¢ d, ¢
a B v 8 ¢
a, ﬂl’ Yo 611 e,
d, g, v, & ¢
In fact, when a member of the system A\u + uv admits of being a perfect square, we
can identify Au + uv (Art. 207) with A2H + Aull, + u?H’, and when we do o and
eliminate dialyticaily, we get this determinant.
Ex. 8. In the case of Ex. 2, if Au + uv admit of a cube factor, A\2H + A\uH, + u2H'
is the fourth power of that factor, whence by the matrix

! -
a, a, o, ¥ 1=0,

B, Bo By —zyp
N Ve Vs T
8 ¢, & -—avy
s ¢, ¢ b

we can both determine the factor and the condition D = 0.

Ex. 4, The quadric covariant ! comes naturally in relation with the sextic
covariant 7, which may be written 1n any of the following forms, and which we
shall now call j =jz* +.6),2% + &c.
az? + 2bay + cy?, ba® + 2exy + dyt, czt + 2dzy + e
bz? + 2cxy + dyf, cx? + 2zy + ey, da? + 2exy + fi?
oo + 2oy + eyf, At ooy + i, e+ Uy + gyt

=)ax+by, bz+cy cx+dy, -y
bz+cy, cx+dy, de+ey,

. cz+dy, dr+tey, ex+fy, —z%y
dx + ey, ex +fy, Sfr+gy, z*

= e b Cy 4 —~9 |=%1)a, b ¢ -4, 0

b o 4 ¢ ay b ¢ d 38y’ -y

6 4 6 f, —3% 6 d e —22% 2%

d, & S E d ¢ f £ — Bya?
-9 ay, —a%, o Y 6 fy 9 0, 4z

= (abe) 2% + 2 (abd) 2y + [(abe) + B (acd)] 2*y? + 2 {(ace) + 2 (bed)} 2%y
+ (cde) 3 + 2 (bde) zy® + [(ade) + 8 (bee)] 2%y,

denoting by (abe) &c. the determinants | a, b, ¢ | &c.of thematrix| a, 3, ¢, d, e

as above. b ¢, d b ¢ d e f
¢, d, e ¢, d, e

In this notation we find ’ » b4t g

1= {(abe) — 2 (acd)} z* + {(ace) — 8 (d¢d)} xy + {(ade) — 2 (bee)} 4.

But again, let the reciprocal constituents to
B=ja, b ¢, d|bewrtten|a, b, ¢, d,

b ¢ d e b, ¢, d/, e,

01 d) € .f Cp dl', el" f;

d e f, g d, e fo 9.
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and we bave
(abe) = jo =g - —e’— =3, -3, =
(abd) =8, =— 1, (‘u)—%"'i" e, —¢é, (acd) =8j,— Iy =,

(bde) =%, =~ 5, (ace) = &5 + I =— (d/ - d), (503)=i3—i¢|=—dn
(cde)= j, = a,, (ade) =6, + $5 =¢, —¢, (Bee) =Y, —th=c¢,;
=Y+l —d/ =Y+ ¢/ =Y +ik
NowﬁumtheidentmesbetwemthewmmumtuafBandtharmpmuhwe

can derive relations among the coefficients of covariants, for instance,
(4)s = ajs — 8, +- Bjy — djy =} (aly — bly) = 4 (aD)y,
(@) = 0, — 453 + 6¢j, — 4dj, + Go = v (25— ”ll""’l-):l’x(“o:
(87)s = &y — 8bj, + 107, — 10dj, + Bejy — o =
(aj)o—".h"shl"'lbq.““’%l"’“’fz‘@fl+Q.o'—"w-
The identities got by writing the above matrix with two additional rows of its
own lead to (7lf) — f5 (if)s — & (i + A4l =0.
The _identities of note Art. 268 applied wthemacrixinthisEnmplem
d e/ —c)_d,@ —d)_d, e —G,)
elbl -flal B €c,— 94, fc
and lead to the set of relations of the type
Jods = YrJs + 815* = gk — 15 (Lo — 21 + Lj)-

Ex. 5. The definition of I, as, — 4bi; + 6¢ci, — 44, + ety = 2], &o., combined with
the relations ai, — 8bi, + 8¢i, — di, = 0 &c. (Art. 253), give the following identities :
aiy — Bbi; + 8ci, — diy = 0, aiy — 8biy + Bci; — diy = #,
biy — 8ciy + 3ddiy — eig =— Yoy iy — Beiy + Bdig— ei = i,
cig — 8di, + Beiy — fi,=—3ly,  ciy — 8diy + Bei, — f4, = by
diy — Beiy + Bfsy — gip=— 4, di,— Beiy + 8fi; — g0y = 0,
which, being solved for the coefficients of %, lead to the relations

Biy= *(1&72—2’1-“"’12]0) ol &e.
whence, by the last formnla-of Ex. 4,
76 (ujs — H1Js + 8i%) + BBiy = I &e.

Ex. 6. If we compare the valuesof |) a, b, ¢, 4, ¢ e, —4d, 6c, —4b, a
) b 0 d ¢ f Jy —4e, 6d, —4¢, b
6 d 6 f g 9, =4, 6, —4d,' c
we find 6 (jujs — &y + 18754, — 1077 + & (bl — 4,7) = I; — 341, + g 4° (Art. 257),
whenoe 80 (juja — 81y + 1855, — 105,7) = 24B — C.

Ex. 7. If the three quartics in Art. 268 be the second derived fuhctions of the
sextic in Art. 262, the sextic covariant is the j of the sextic a¢2® +..., and the quadric
oovariant ¢ is its . Using the letters 5 and ! in this sense, we have

[3ajs] = oja — Bayjs + 1857, — 20837 + 16aj; — 66,7, + Gejoe
=41ay ay ay 6 |,
@ Gy Gy a4
Gy Gy Gy a4
Gy Gy Gy G
and o b ¢ d e |=[ay]+1(ph—2ph+psh)
a, ¥ ¢, d ¢ .
Gy @)y Gy Gy G
Gy) Gy Gy @y Gy
Gyy Gy Gy Gy g
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Ex. 8. It 4, v be any two binary cubics az? +..., a'’z? +..., and if operating with
[id . .
a - 35 dt;‘;y' +... on the product uv, we determine the result to be proportional
t0 u; we find that v must be the evectant of the discriminant of w. This fact has
already been employed to establish a canonical form for the sextic (Art. 174).

The determinant of that article may be found, as in Ex. 1, Art. 212, by identifying
the cubicovariant 12° of the sextic and an arbitrary oubic az?+ 8fa%y +... with this
cubic and eliminating its coefficients, Thus

a8 — 8bvy + 3¢ — da = 3pa,
58 — 8¢y + 8df — ea = 3o,
¢é — 8dy + 8ef — fa = 3py,
) dd — Bey + 8fB —~ ga = 8pé.
Now the determinant which results,
a, 5, e, d+38 |,
b, e, d—p, e
() d+p, L] S
d-3p, ¢ 5 g
is unaltered by changing the sign of p, whence it is a function of p? only, and its
value is easily found = B + 4p? + 9p*.

The canonical form thius arrived at may be written, with the relation 4 +v+w=0, as

. ’ au® + bt + cwt + Bduvw (v — w) (w —u)(u —v)=0.

By converting this into a binary system, we find

A=bc+ca+ab—9d%, B=-—(bc+ca+ad)d?
whence the determinant just written breaks up into the facters
' (902 + bc + ca + ab) (p*— d¥).
From the value of the covariant
1= [be + (b — c)d + 8d?] v*u? + [ca + (¢ — &) d + 8d?%] w?u? + [ab + (a —b) d + 8d?] u’v’
it can easily be found that
‘2= [abe + 2da (b — ¢) + d* (Ba — b — ¢)] u* + [abe + 2db (c — a) + d? (60 — ¢ — a)] ©?
+ [abe + 2de (a — b) + d? (bc — a — B)] w?%
whence by 8C+4A4B=4(ll,—}?) =8a%%?+ 2d* {Sabe (a + b +0) — 2 (% + oa? + a%?) }
+ 1243 (b —¢) (¢ — a) (a —b) — 9d4 {a® + b2 + c* — 2 (bc + ca + ad)}, .
we get C = a%?? + 6abc (a +b+c)dt+4(b—c) (c—a) (a—b) d*—8 (a+d+c)ar.
The binary sextic has just been expressed by the intersections of a line with a
ternary sextic. The change to expressing it by the intersections of a ternary quadric
‘and cubic may-be made thus. Letu*==z, v>2=y, w?=z; then, if 2vw =z —-y- 2,
2wt =y —2 —x, 2uv =z — z — y, the relation u + v 4 w=0 becomes the single relation
Jz + Jy + J2 = 0, and the sextic becomes
aBP +bp+ct—8d(y—2)(z—2) (x—gy)=0.

Comparing with Curves, Arts. 220—1, we have the values for this of the ternary

invariants, S=—B and T'= C, whence the discriminant of the ternary cubic is C?%—64.5°.

Ex.9. The invarinnts of the system of quadrics p, /, m (Art. 262) have all been
given in terms of A, I, I, K with the exception of pym;—2p,m, +p,m, and the skew
invariant (pim).

It is easy te show that

Poiy — 2p,m, + pamg = 0L, + 54,1, — 20I,K — 54,K? + 30K?,
00
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whenoe we can express the square of (plm) by the others. This invariant (plm) is
of the ninth degree in the coefficients of each of the quartics as in Art. 222, and the
invariant E of the sextic contains it as a factor, for, by the linear relation among
P, § m, n, we have b (Ims) = 72 (2, — L,K + K?3) (plm).

Ex. 10, If the second quartic v of Art. 262 be the Hessian of the first w, the
comhinant p vanishes identically, and the functional determinant becomes the sextio
covariant of the hiquadratic w. The identities of that article show that the
covariant ¢ of this sextic vanishes identically (Clebsch, p. 447).

Ex.11. If the two quartics u and v of Art. 262 be the derived functions of a quintic,
the Jacobian is its Hessian, and their invariant B (Art. 220) vanishes identically., Now
in the present notation we have from that article 4 +48B = —404,, 4 —12B=—4P;
thus for B =0, P = 104,: whence this invariant relation among the quartica is the
same a8 that X = — }§4, shall satisfy the quintic of Art. 262. (Stephanos, Lc. p. 81;
F. Lindemann, Math. Ann, XXL., p. 81.)

Ex, 12. If a quintic and a sextic admit of reduction to the forms

A'sS + B'vS + C'wb + D'2%, Au + Bv® + Cus + Dgb,
they satisfy the invariant relation | o', ¥, @, &5, ¢ =0,
o, ¢, b e d
¢, d&, ¢ d e
d, €, d ¢ f
e, f, 6 fi g
Ex. 18. In order to reduce two quintics to the forms
. Av® + Bv® + Cw + Dzb, A'wd + B'v® + C'w® + D'z5,
their canonizant upwz is | az +by, dz+cy, a'z+by, bz+cy|=0.
bz+ey, cx+dy, Vz+cy, cdz+dy|-
cx+dy, det+ey, cz+dy, d'z+ey R
dotey, ex+fy, d'z+ey, ez+fly .
Ex. 14. Bimilarly if a oubic and quintic admit of reduction to the sum of threp
eubes and three fifth powers of the game quantities, wehave | o, @, 5, ¢ |=0.
b, b ¢ .d
dy o d e
4, d ¢ f
Ex, 15. In Hermite's invariant, p. 234, the leading terms in a and f are v
I=a'f (@f — & — af " (e — 3P + &e.

Ex. 16. Determine a quintic » such that the resnlt of operating with 12' on uv,

where u is a given quintic, may vanish identically. We find

o, batly, 10z%?% 102%% bey', 3|,

d, -8, 8b —a, 0 0

e, =24, 0 2, —a O

S & -8, 8, -b -—a

0) .fr - 2‘; o’ 25) -b -

0, 0, f —8¢ 84, -c :
which is the product of by its quartinvariant = — uJ of p. 228.
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LESSON XIX.

ON THE ORDER OF RESTRICTED SYSTEMS OF EQUATIONS.

267. THE problems discussed in this lesson are purely alge-
braical, and in the investigation of them I do not make use
of any geometrical principles. But I find it convenient to
borrow one or two terms from geometry, because we can thus
avoid circumlocution, and also can more readily see how to
extend to quantics in general theorems already known for
ternary and quaternary quantics. -

We saw (Art. 78)* that if we are given k equations in %
independent variables, the number of systems of common values
of the variables which can be found to satisfy all the equations,
will be equal to the product of the orders of the equations. Now,
in the geometry of two and three dimensions respectively, the
system of values 2 =a, y=0; or 2=a, y=>, 3=c denotes a
point. I find it convenient therefore to use the word * point™
in general instead of ‘‘system of values of the variables,” so that
the theorem already stated may be enunciated: ¢ A system of
k equations in % variables of degrees [, m, n, p, ¢, &c. respec-
tively, represents lmnpg &e. points,” by which we mean that
8o many *systems of values of the variables” can be found
to satisfy all the equations. This number lmnpg &ec. will be
called the order of the system of equations.

'268. If we have a system of k—1 equations in k indepen-
dent variables, we have not data enough to determine any system
of common values of the variables, and the system of equations
denotes a singly infinite series of “points.” Such a system of
equations we shall speak of as denoting a curve. If with the
.given system of k—1 equations we combine any arbitrary

* If as is usual we employ homogeneous équntions, the number of variables will
of course be & + 1.
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equation of the first degree, we have then data enough to
determine points which will be equal in number to the product
of the degrees of the equations. We shall define the order
of a curve as the number of points which are obtained when,
with the equations which denote the curve, we combine an
arbitrary equation of the first degree.

When we are given a system of k—2 equations, these
denote a doubly infinite series of points, since we cannot de-
termine any points unless we are given two other equations.
Such a system we shall speak of as denoting a surface. If
with the system of k-2 equations we combine an arbitrary
equation of the first degree, we shall have a “curve” whose
order is the product of the degrees of the 4 — 2 equations. In
general, by the order of a surface, we mean either the order
of the curve obtained by combining with the given equations an
equation of the. first degree, or, what comes to the same thing,
the number of points obtained by combining with the given
equations two equations of the first degree.

And so, more generally, if we have any system of fewer than
% equations, by the order of the system we mean the number of
points that are obtained, when with the given equations we
combine as many equations of the first degree as are wanting to
make the entire number of equations up to %, thus affording
data enough to determine systems of values of the variables.
It is evident that in the case under consideration, the order
of the system is the product of the degrees of the equations
which compose it.

269. If we have k + 1 equations in & independent variables
whose degrees are [, m, n, &c., we can eliminate the variables;
and we have seen (Arts. 76, 78) that the order in which the
coefficients of each equation enter into the resultant, will be
equal to the product of the degrees of the remaining equations
Taking then, to fix the ideas, the case of four equations: let
their orders be I, m, n,r, and let any quantity enter into the
coefficients of the equations in the degrees A, u, v, p respec-
tively, this quantity will enter into the resultant in the degree

.

Amar + pnrl + vrlm + plmn.
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‘We shall use the word order to denote the degrees I, m, n, »,
in which the equations contain the variables which are to be
eliminated, and weight to denote the degrees A, u, v, p in which
.they contain the quantity not eliminated; and the result just
written may be stated, that the weight of the resultant, or the
weight of the system, is equal to the sum of the weights of each
equation multiplied by the order of the system formed by the
remaining equations,

And this is still true, if we break the given system up into
partial systems. Thus, the first two equations form a system
whose order is /m and weight Am + ul, and the second two
equations a system whose order is nr and weight vr+ pn; and
the value just given for the weight of the entire system is

nr (Am + ul) + lm (vr + pn),
that'is, it is the sum of the weights of each component system
multiplied. by the order of the other. The advantage of so
- stating the matter will appear presently. ' SR

270. What has been hitherto said in this lesson is but a
re-statement in other words of principles already laid down in
the lesson on -Elimination; but my purpose has been to make
more intelligible the object of investigations, on which we shall
now enter, as to the order and weight of systems of a somewhat
different kind. We have seen that & equations in % variables
represent lmnp &c. points. But now we. may combine with
these k¥ equations an additional equation, which is satisfied for
some of the points but not for others of them. We have then a
system of 4+ 1 equations representing points, that is to say, all
satisfied by a number of systems of common values of the
variables, that number being now, however, generally smaller
than the product of the degrees of any % of the equations.
Cases are of constant occurrence where a number of points can
be expressed in no other way than that here described. A simple
geometrical example will suffice. Consider p points in a plane
-where p is a prime number, and where the points do not lie in a
right line, then these points cannot be represented asthe com-
plete intersection: of any two curves, and if we have any two
curves going through the - points, their intersection includes
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pot only these points but others besides To define the
points completely, we must add a third curve going through
the p given points, but not through the remaining points of
intersection of the first two curves. The points are thus
completely defined as the only points common to all three
curves. Qur object then is, in some important cases where
s system of points is defined by more than % equations,
to lay down rules for ascertaining the arder of the system;
that is to say, how many systems of common values satisfy
sll the equations.

In like manner a system of k£ — 1 equations is satisfied by an
infinity of common values. But it may happen that we can
write down an additional equation satisfied by part of this series
of common values, but not by the remaining part. In such
a case, the system of % —1 equations denotes a complex curve,
and it requires the system of % equations to define that part of
it for which all the equations are satisfied. It will be the
object of this lesson to ascertain the order and weight of what
wo may call restricted systems; that is to say, where to a
number of equations sufficient to define points, curves, &ec., is
added one or more others which exclude from consideration
those values of the variables which satisfy the first set of
equations, but do not satisfy the additional equations.

271. The simplest example of such a system is the set of
determinants

vo'—wv'=0, wu' - uw' =0, uw' —vu'=0.

u, v, v ||=0,
’ U U
W, v, w

or, at full length,

By writing these equations in the form

it is evident that, in general, values of the variables which satisfy
two of the equations must satisfy the third. But there is an
exception for the case of values which make either » and «/,
l ‘wand v',or wand w'=0. In any of these cases it is easy to see



SYSTEM OF A VANISHING MATRIX. 287

that two of the equations will be satisfied, but not the third. And
now it is easy to see how to calculate the order of the system
common to all three. Let the orders of » and «', of v and v/,
of w and ', be I, m, n respectively; then the orders of the first
two equations are m+mn, n+1/, and of the system formed by
them is (m+n)(n+10). But in this system will be included
values which satisfy both w'and w’, these values not satisfying
the third equation. Excluding then this system, the order of
which is #%, the order of the system common to the three
determinants is mn + nl + lm.

In like manner, suppose we have a system with three rows
and four columns, -
i =0.
Let us write at full length the determinants formed by the’
omission of the third and fourth columns

u' ul’ ull’ ul/l
’ 4 7’

v, v, v, v

w’ w/, wl” w’/’

u” (v’ — wv') + " (wu' — uw’) + v’ (uv’ —vu’)=0,

u” (vw) — wv') + v (wu’ — uw’) + w” (wv’ —vu’) =0,
then these two equations are obviously satisfied for all values
which satisfy the three vw'=wv, wu' =uw', w'=vu'. But
these values will not satisfy the other determinants of the
given system. From (l+m+ n)’, then, which is the order of
the system formed by the two equations written at length, we
must subtract mn + nl+ Im, which has just been found to be
the order of the system special to these two equations, and the
‘remainder I’ + m’+ 2’ +mn + nl+ Im is the order of the system
common to all the determinants. Having thus determined the
order of a system with three rows and four columns, wé can,
in like manner, thence derive the order of a system with four
rows and five columns. Proceeding thus step by step we arrive
by induction at a general formula, for the order of a system
with % rows and (% + 1) columns.

\

272. We may consider in succession the cases: 1°, k& rows
and- % columns ; 2°, & rows and (£ + 1) eolumns; 8°, % rows and
k 4+ 2 columns, and 80 on. Writing down in each case only the
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orders of the several functions, so that a+a, 5+ 8, &c., stand
for functions of the orders a+a, b+ 8, &c. respectively; the
case 1° includes the systems
a+a, b+a
a+B, b+8
the case 2° includes the systems
| ata, b+a, ct+a ’
a+pB b+8,c+B !
the case 3° includes the systems -
ia+a, b+a, cta, dta
ra+B,b+B, c+B, d+8

|]a+a]=0, | =0, &ec.,

Il a+a, b+a || =0, =0, &e.,

|| a+a, b>+a, ctal||=0, =0, &c.,

and so on.

Write in each case

C,=2a, C,=23ab, C,=Zabe, ...,

so that C, C,, C, ... denote the sums of the products without
repetitions of the letters a, b, ... (as many of them as belong to
the system in question) taken one together, two together, three
together, &c., and

H =3a, H,=3¢'+3aB, H,=3o+3Zd'B+ ZaBy, ...,
or let H, Ir,, H,... denote the sums of the homogeneous products,
with repetitions of the letters a, 8, ... (as many of them as
belong to the system in question) taken onme together, two
together, three together, &ec.

Then in the case

1°, the order of the system is = C, + H,,

2°, ”» ” = 0, + O:H; + Hs'
3°, ” ” =C + OsHl + C‘,H,+ Ha’
and so on.

Thus in the case 1°, there is only a single equation; and for
the several systems written down above, the orders are ata;
a+b+a+ B, &e., thus for each system the order is C, +H,.

In the case 2°, for the first of the systems written down
above, there are two equations of the orders a+a, b+a re-
spectively, and the order of the system is = (a +a) (5 + a), and
this is=ab + (a +b)a + «', which is=C, + C H, + H,,
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For the second system, viz. the system

a+a, b+a, c+a
a+B; b+B1 c+B

‘which includes the first of those considered in last article, applying
to it the reasoning of that article, we have two equations of the
orders a+b+a+ B, a+c+ a+ B respectively; the product of
these numbers is

=0’

=a'+a(b+c)+be+(2a+5 +¢) (a+B)+ (a*+2a8 + £%);
but we have to subtract from this the product (a + a) (a + 8),
which is =4’ + a (2 + 8) + a8 ; and the order of the system is thus
found to be =ab+ac+bc+ (a+b+c¢) (a+B) +a’+ B +aB;
which is=C,+ C H,+ H,.

The next system is
at+a, b+a, ct+a, d+a
a+B,b+8,c+B,d+8
a+q, b+y, ct+y, d+vy
the order of this is equal to the order of the system

=O’

=0,

ata, b+a, ct+a =0,

a+B,b+8, c+pB

aty, bty ety

dess the order of the system

“ a+ta, B+a, y+a I
a+b, B+b, y+b

ata, bt+a, d+a
a+B, b+B, d+8
a+y, b+, d+y

=0,.

and this is

= (a+b+cta+B+9y)(a+b+d+a+B+9)

—{a"+b" +ab+ (a+b)(a+B+9)+ (a8 + ay+ By)}

= (a+b+c)(a+d+d)+(2a+2b+c+d)(a+B+y)+(a+B+y)

—a’—b’—ab—(a+b)(a+/3+'y)—aﬁ—wy—ﬁ~y

= ab+tactad+bc+bd+ced+(a+b+c+d)(a+B+7)
+a'+ 8+ 9"+ aB+ay+ By, '

which is =C,+ CH +H,

and similarly for the other systems of the case 2°.
PP
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In the case 3°, for the first system we have three equations of
the orders a + a, b + a, ¢+ a respectively; and the order of the
system is
(@+a)(b+a)(c+a),=abc+ (ab+ac+bc)a+ (a+b+c)ad’+a

=C,+ CH + CH,+ H,;
and the result may be verified for the other systems.

273. We may proceed in like manner to calculate the
weight of the system of determinants considered in the last
article. Beginning again with the simplest case, let us suppose
that the system !| 4, v, w ;| is to be combined with one or
u’, v’, w’ .
more other equations and the variables eliminated. Now the
result of elimination between uv” — vu’, uw’ — wu’, and any other
equations will contain as a factor the resultant of u, v, and
the other equations. If we reject this factor we get the same
result as if we had eliminated between uv’ — vu’, vw’ ~wv’ and
the other equations, and then rejected the factor got by elimi-
nating between v, v’, and the other equations. To illustrate
the method employed, let us suppose that u, u’; v, v'; w, ®’
respectively contain any quantity not eliminated in the degrees
My v; and that we are to combine with the determinants of
the given system another equation B =0, whose order is r, and
containing the uneliminated quantity in the degree p. This
quantity then will enter into the resultant of R, uv'— vu/, uw'— ww’
in the degree

p+m) (l+n)+r{l+m) A+v)+ (I+n) (A+p)).

But the resultant of R, u, «/, will contain the same quantity in
the degree

pl* +2riN. A
When, then, this factor is rejected from the former result, the
remainder is
p(mn+nl+lm) +r{Am+n)+pu(n+l)+v(+m)
The order then of the system of three determinants is the
quantity multiplying p, and the weight is the quantity multi-
plying r.
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- 274. Finding in this-way the weight of any system of those
considered in Art. 272, the result is that if the orders of the
several functions be as written in Art. 272, and if their weights
(that is to say, the degrees in which they contain the vari-
able not eliminated) be o’ +¢, ¥ +&, &ec., a’+ 8, &c., then
the formula for the weight is derived from that for the order,
by performing on it the operation

Id ,d ,d d
a t_i_a+b¢_[b+&c'+a2-a+3’173

275. If we form the condition that the two equations
at + b6 + ot + &e. =0, a't" + 1" + 7 + &e. =0,

+ &e.

should bave a common root, we obtain a single equation, namely
the resultant of the equations. But if we form the conditions
that they should bhave two common roots, we obtain (Art. 82)
not two equations, but a whole system, no doubt equivalent to
two conditions, -yet such that two equations of the system
would not precisely define the conditions in question. Now we
may suppose that ¢ is a parameter eliminated, and that @, b, &ec.
contain variables, and we may propose to investigate the order
of the system of conditions in question. Now, Art. 82, these
conditions are the determinants of the system

a b ¢ d, ..

sseqeccsssene ®ccscccsene [}

where the first line is repeated m — 1 times and the second I -1
times; there are [+ m —2 rows and /+m—1 columns. The
problem is then a particular case of that of Art. 272. We
suppose the degrees of the functions introduced to be equi-
-different ; that is to say, if the degrees of a, a' be A, u, we
suppose those of &, to be A+ a, u+aj of ¢, ¢’ to be A +2a,
#+ 2a, &c.  The formula of Art. 272 is, order= C,+ C H, + H,,
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To apply it to the present case we may take for the quantities
a, b, ¢, &e. of Art. 272, 0, a, 2a, &c.; and for the quantities
@, B, v, &, A, A—a, A—2a, &c. * C, is then the sum of
l+m~2 terms of the series a, 2a, 3a, &c., and is therefore
if we write I+m=k, §(k—1)(k—2)a. In the same case
C, is the sum of products in pairs of these quantities, and is
therefore
. (k—38)(k—2) (k1) (38k—4) o
- 1.2.3.4. )
Again H is the sum of m — 1 terms of the series A, A —a, A - 2,
&c., and of I—1 terms of the series u, p— a, p—2a, &
We have then
H=(m- 1A+ (1=1) p—Ja {(m—1) (m—2) + (1= 1) (0=}
-Moreover H,=1} (H,'+ 8,), where S,, the sum of the squares of
the same m — 1 and - 1 terms is
=m-1)X'+ (-1 p'=ra(m—1)(m—-2)—pa(}-1)(1-2)
+ a,{(m— 1) (m —2) (2m— 3) + (-1 (2-2) (2I—3s)}’

1.2.3 1.2.3
Collecting all the terms, the order of the required systemis

found to be
tmm—-1)N+HI-D)p'+((-1)(m—1)Ap

+3dm(m—1) (21 —1) Aa+ 31 (I —1) (2m — 1) pa

+ 3lm (I—1) (m — 1) "
If the two equations considered are of the same'degree, that
is to say, if [=m, we may write A+ p=p, Au=g, and the
order becomes

im(m—1)(p+ma){p+(@m—1)a} - (m-1)g.

If all the functions a, b, &c. are of the first degree, writing
A = =1,2and ¢ =0 in the preceding formula, the order is found
tobe 4 (I+m—1)(§+m—2).

276. If the degrees ini which the uneliminated variables occur
in any terms be denoted by the accented letters corresponding
to those which express their degrees in the variables to be
eliminated, then the formula for the weight of the system is
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obtained from that for the order by performing on it the opera-
,d

tion 7\.’% +u da + a d . In other words the weight is

m(m—1) M.’+l(l—l)/m +(1-1) (m = 1) (A" + p)')
+3m (m -1) 21— 1) A + o)) + 3 (I —1) (2m — 1) (pd + ap’)
+lm(l—1)(m-1)ac.

277. The next system we discuss is that formed by the
system of conditions that the three equations
at + b6 + &e.=0, a't" + 6" + &e. =0, a"* + """ + &e. =0,
may have a common factor. The system may be expressed by
the three equations obtained by eliminating ¢ in turn between
every pair of these equations, a system equivalent to two con-
ditions. The order of the system may be found by eliminating
from the equations the variables which enter implicitly into
a, b, ¢, &c., when the order of the resulting equation in ¢ deter-
mines the order of the system

Let us suppose that a, a’y a” are homogeneous fnnctlons in
@, y, z of the degrees A, u, v respectively ; that b, &, &” are of
the degrees A — 1, ' — 1, v — 1, &c., and if we take th'e reciprocal
of ¢ as a fourth variable, the equations are of the orders
respectively A, u, v, forming a system of the order Auv. But
the system of values © =0, y =0, z =0 is a multiple point in the
three equations of the orders A — I, u —m, v —n respectively.
The order then is to be reduced by (A —0) (u —m) (v-n). It
is therefore

luv + mvA + oA — Amn — pnl— vim + Imn.

This then is the order of the system we are investigating. If
the orders of b, ¥, ¢, ¢, &c. had been M +a, u +a, A+ 2a,
# + 2a, &c., then the order of the system would have been

luv + my\ + nAp + a (mad + nl,u. + lmv) + a’lmn.
The weight is found by operating on ﬂns with )L’ 4 5+ &ec.,and is

LV + ) +m (N + M) 47 (A’ + p)) +mn (a7\.’+M)
+ nl (ap’ + pd) + I (av' + va') + 2lmnad’.
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278. It is a particular case of the preceding to find the
order and weight of the system of conditions that an equation
at"+bt" "+ &c.=0 may have three equal roots; because these
conditions are found by expressing that the three second differen-
tials may have a common factor. Writing in the preceding
for I, m; for nyn—2; for u,\ + a; and for v, A + 2a; we find,
for the order of the system, .

3(n—2)A(A+na)+n(n—1)(n-2)a’;
and in like manner for its weight

6(n—2)A\"+3n(n—2) (Aa’ + a\') +2n(n —1) (n — 2) aa’.

Again, to find the order and weight of the system of condi-
tions that the same equation may have two distinct pairs of
equal roots, we form first, by Art. 272, the order and weight

. of the system of conditions that the two first differentials
at™ + &c., bt"" + &c. may have two common factors. We
subtract then the order and weight of the system found in the
first part of this article. The result is that the order is

2(n-2)(n—3)A(A+na)+4n(n—1)(n=2)(n-3)a,
and the weight is '
4 (n—2) (n—38)A\ +2n(n—2) (n - 3) (N +al’) A

, +n(n—1)(n—2) (n—3)aa’.
Before proceeding further in investigating the order of other

systems, it is necessary to discuss a different problem, and I com-

mence by explaining the use of one or two other terms which
I borrow from geometry.

279. Intersection of quantics having common curves. Two
systems of quantics are said to ¢ntersect if they have one or
more ‘“ points”’ common, that is to say, if they are both capable
of being satisfied by the same system of values of the variables.
A “sgurface” is said to contain a “curve” if every system of
values which satisfies the £ — 1 equations constituting the curve,
satisfies also the £ — 2 equations constituting the surface. Thus,
in the case of four variables, three equations U=0, V=0, W=0
constitute a curve, and the two equations U=0 V=0 con-
stitute a surface which evidently contains that curve.
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Now a system of % quantics in % variables, in general, as we
have seen, intersect in a definite number of points, that number
being the product of the orders of the quantics. But it may
happen that they may have an infinity of points common,
these points forming a “curve” in the sense in which we have
already defined that word. Besides that curve they will have
ordinarily a finite number of points common, which it is our
object now to determine. Let us take, for example, to fix the
ideas, the case of four independent variables; and suppose that
we have four equations of the form

U=Au +Bv +Cw =0,

V=A4Au +Bv +Cw =0,

W=A4"u + B"v + C"w =0,

Z =A"u+B"v+ C"w=0.
‘We suppose the degrees of U, V, W, Z to be l, m, n, p; of u,v, w
to be A, u, v; and 4, B; A’, B, &c. are therefore functions of
the degrees [ —A,l—pu; m =\, m —p, &c. Now, evidently,
these equations will be all satisfied by every system of values
which make v =0, v=0, w=0; and these equations not being
sufficient to determine * points,” will be satisfied by an infinity
of values of variables, In other words, the four quantics U, ¥,
W, Z bave a common curve uvw. And yet U, V, W, Z may
be satisfied by a number of values which do not make v, v, w
all=0. It is our object to determine this latter number; and
our problem is, When a system of quantics has a common curve,
to find hew many of their lmnp, &c. points of intersection are

absorbed by that curve, and in how many points they intersect
not on that curve.

280. Let us first consider the curve formed by % — 1 of the
quantics; for instance, in the example we have chosen for
illustration, the curve UVW. Now evidently a portion of this
curve is the curve uww, but there are besides an infinity of
points satisfying UV W which do not satisfy », v, w. We speak
then of the curve UVW, as a complex curve consisting of the
curve uvw and a complementary curve. Now the order of a
complex curve is always equal to the sum of the orders of its
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components. For, by definition, the order of the complex curve
UV W is the number of points obtained by combining with the
equations of the system an additional one of the first degree:
that order being in the present case Imn. And evidently, since.
of those /mn points Auv lie on the curve uvw, there must be
lmn — Auv on the complementary curve. -

The two curves intersect in points whose number ¢ is easily
obtained. For evidently all points which satisfy the three:
equations
Au+ By+Cw=0, Au+Bv+C'w=0, A"u+B"v+C"w=0,
and which do not satisfy », v, w; must satisfy the determinant

4, B, C

A’, Bl, C’

Al’, B’/’ 0/’ —_ 0’
the degree of which is /+m +n— A — p—v. The intersection
of this new quantic with wvw gives all the points in which
uyw meets the complementary curve. We have therefore

=My (l+m+n—N—p—v)

281. To find now the number of points common to UVWZ,
we have to consider the points in which the curve UVW
meets Z; and it is required to find how many of these are not
on the curve wvw. But since uvw is itself a part of the carve
UVW, it is evident that the points required are contained
~ among the p(lmn —Auv) points in which the complementary
curve meets Z. And from these points must be excluded the
¢ points in which the complementary curve meets uvw. Using
then the value given in the last article for ¢, we find, for the
number which we seek to determine,

Imnp —Apy (I+ m+n+p)+Apv (M4 p+v).
We shall state this result thus, that if £ quantics of orders
l, m, n, p, &c. have common a curve of order a; then the
number of points which they will have common in addition to
this curve is less than the product of the orders of the quantics
by a(l+m+ n+ &c.) - B, where B8 is a constant depending
oaly on the nature of the curve and not involving the orders
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of the quantics. We shall call this constant the rank of the
curve. We have seen that when the curve-is given as the -
intersection of quantics w, v, w, the order is Auv and the rank
Av (M4 p+ v)

We saw, in the last article, that if the intersection UVW
consists of two complementary curves whose orders are a, o',
and whose ranks are 8, 8, the number of points in which the
two curves intersectis a (I+m +n)—8; and by parity -of
reasoning it is a' ({ + m + n)— 8"; Hence the orders and ranks
of the two complementary curves are connected by the equa-
tionsa + o' =lmn, B - B =(a—a)(l+m+n).

282. Next, let us consider the case where the quantics have
common two or more distinct curves wvw, w'v'w’, &c. Let the
intersection for instance of UVW consist of the two curves
uvw, w'v'w’, and of a complementary curve a”; then, in the first
place, the order of a” is evidently Imn — Auv — N'p’v.  Secondly,’
we have seen that uwvw meets the remaining intersection of
UVW in points whose number is '

Av(l+m+n—A—p—v).
If then ¢ of these lie on u'v'w/ (that is to say, if wvw, u’v’w’
intersect in ¢ points) there must be on the complementary curve a”
X;Lv(l+m+n—7\. B—v)—t
Aud in like manner «” meets u'v'w” in
‘wV (l+m+n—N—p —v) =1 points.
As before, then, the number of points on nelther curve in

which «” meets any other quantic Z is

[

(Imn—=Apy = Np'V)p—Apv (l+m+n—N—p—v)
NV (l+m+n—-N-p —v)+ 24

r 17

or lmnp — My + MpV) (l+m+n+p)+Auv (A +p+v)
+ApV (N + '+ V) + 26
Thus, then, the diminution from the number lmnp effected
by a complex curve is equal to the sum of the diminutions
effected by the simple curves less double the number of their
points of intersection. The same holds no matter how many
QQ
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be the curves common to the quantics; and we may say that
when a complex curve consists of several simple curves the
order of the complex is equal to the sum of the orders of its
components ; and the rank of the complex is equal to the sum
of their ranks increased by double the number of points common
to every pair of curves.

283. We give, as an illustration of the application of these
principles, the problem to determine how many surfaces of the
second degree can be described through five points to touch
four planes. Let 8, T, U, V, W be five surfaces passing
through the five points, then any other will be of the form
a8+ BT+ yU+ 8V +eW; and the condition that this should
touch a plane will be a cubic function of -the five quantities
a, B, v, 8, e. We are given four such equations, and it is
required to find how many systems of values can be got to
satisfy them all. If the four equations had no common “ curves”
the number of their common ¢ points ”” would be 3* or 81. Baut
the existence of common curves may be seen in'this way: The
condition that a surface of the second order should touch a
plane vanishes identically when the surface consists of two planes.
Let us take then for S and 7 two pairs of planes passing
through the five given points, 8= (123) (145), T = (123) (245);
then evidently, the condition that aS+ 8T+ U+ 8V +eW
should touch any plane whatever, must be satisfied by the sup-
position 4y =0, § =0, e=0. This “curve,” then, which is of
the first degree, will be common to all four quantics. And, if
we call this the line (123) (45), it is evident, by parity of
reasoning, that the quantics have common ten such lines
(124) (35), &c. Now if, as before, we take S as the system of
two planes (123) (145), T'=(123) (245), and take U= (145) (234) ;
then, while the line (123) (45) is denoted by y=0,8=10,e=0,
the line (145) (23) is denoted by 8=0,8=0,e=0; and these
two lines intersect, being both satisfied by the common values
B=0,y=0,8=0,e=0. And,in like manner, (123) (45) is
intersected by (245) (13), (345) (12). Thus, then, the ten lines
have fifteen points of mutual intersection. The rank of a single
curve of the first degree being got by making A=u=v=11in
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the formula Auv (A + p +v) is three. Hence the rank of the
entire system is ten times three increased by twice fifteen or
is 60. And the number of points which satisfy the four
quantics is 81 — 10 (3 + 3 + 3 + 3) + 60 or is 21.

284. We have shown, Art. 272, how to determine the order
of a system of determinants, the number of rows and columns
in whose matrix differ by one. We shall now show how, in the
last mentioned case, to determine the rank of the curve. Com-
mence, as before, with the simple case

u, v, W
’

’ 7
Uy, Uy, W ||,

and we see that the intersection of uv’ —vw', uw’— wu’ is a
complex curve, consisting of the curve uu’ and of the curve
with which we are concerned, and knowing the order and rank
of uu’, we find the order and rank of the other curve. Repre-
senting as before the orders of the several terms by

ata, bt+a, c+a

a+B8,b+8,¢c+8 |,
we thus obtain

Rank = rank of (uv’ — vu’, uw’ — wi) — rank of (u, v)
—twice number of intersections of the two curves,
and this is
=@+b+a+B) (a+tcta+B) Ratbtc+2a+2B)
—(a+a)(a+8) (2a+a+8)
~2(@+a)(@a+B)(b+c+a+p)
or, introducing the former notation (see Art. 272),
C,=a+b+c¢ &, H=a+8, &ec.,
thisis = (a+b+H)(a+c+H)(@+C +2H)
—(@'+aH + H}- H) (2C,+ 3H);
or, what is the same thing,
= {@+C+(a+C)H+H (@a+C +2H)
(@ +aH, + A - H) (20,+3H),
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which is easily found to be
= C,+ CI C,

+H,C’'+2C)

+C,'H’+2H)

- Hn' + 3H“Hn
or attending to the relation H, —2H H,+ H®=0 which exists
in the case of two equations (z, S), this is

= G+CG,

+H,(C’+2C)

+C,(H'+2H)

+H,+HH;
or, finally, the rank is

=(C,+ CH,+ CH +H,)+(C,+ CH + H) (C,+ H),

and passing successively to the cases of four columns and three
rows, five colamns and four rows, &c., it may be shown that
C, C,, C, referring to the series of numbers, a, b, ¢, &c., and
H, H, H, to the series of numbers, a, 8, &c., the foregoing
expression for the rank holds good for the system in which the
number of the rows and columns differ by one.

285. The formula of the last article may be applied to
" calculate the order of the system of conditions, that the equa-
tions af™ + &c., a't" + &c. may have three common roots. The
conditions are formed by a system of determinants, the matrix
for which is formed as in Art. 275; save that the line a, b, ¢
is repeated n—2 times, and the line a', &', ¢, m —2 times.
The matrix consists of m +n~ 2 columns and m +n— 4 rows.
The order of the system then calculated by the last article is
found to be

n(n 1'1,)('; =2) oy m(m ;12)(;" =2 4+ 3 (n—1)(n—2)(m —2) N

+3m=1)(m—-2)(n-2)Au*+}(m-1)n(n—1)(n—2)N'a

+ §n=1)m(m=1)(m—2)u'oct §(m—2)(n-2) {m (- 1)4n (m—1)} \pa
+{n(n=1)(n—2)m(m—2)+3n(n—1)(n—2)}a’>
+{dm(m—1)(m=2)n(n—2)+3}n(m—1) (m -2)} '
+imm=-1)(m—=2)n(n—-1)(n—2)d"
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In the case where we have a=0, A = 4 =1, this reduces to
d(m4+n—2)(m+n—3)(m+n—4).

The weight of the system, found by the same process as
before is

n(n—1)(n=2) NN+ im(m—1) (m - 2) u'u’
-+ (1) (1-2) (1 2) N+ AW (1) m—2) (n-2) g+ ™)
+(m—-1)n(n-1)(n-2) ANa+ \'a)

+ (n—1)m (m—1) (m - 2) (uu'a + ')

+ § (m—2) (n—2) {2mn —m — n} (Ap'a + N pa + Apa’)

+ {§n(n—1) (n - 2) m (m — 2) + §n (n - 1) (n — 2)} («*N + 2ac'A)
+ {4 (m — 1) (m—2) n (n = 2) + §m (m — 1) (m —2)} (4’+ 2ae’p)
+im(m—1)(m—2)n(n—1)(n—2)a'a.

286. The next problem we investigate is when a system
-of quantics have a “surface” common, to find how many of
their points of intersection are absorbed by the common surface.
‘We mean§by the order and rank of a surface, the order and
- rank of the curve which is the section of the surface by any
quantic of the first degree. Thus, consider the case of five
independent variables, then a system of three equations con~
-stitutes a surface, and if their orders be A, u, v, the order of the
surface will be Auv, and its rank Auv(A+u+v); these being
the order and rank of the curve got by uniting with the given
equations an additional one of the first degree.

Now, first let £ — 1 quantics have a surface in common,
whose order and rank are a, 8; they will also in general
bhave common besides a complementary curve whose order is
readily found. Thus if k=5, joining with the given quantics
another of the first degree, we then have a system of 5 quantics,
having a curve common, and therefore by Art. 281 intersecting
in Imnr - a (l+m + n+7)+ B points besides. But these are the
points in which the quantic of the first degree meets the
complementary curve, and therefore this is the order of that

curve.
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- 287. Next let us investigate the number of points in which
the surface and complementary curve intersect each other.
Let U, V, W, Y (being as above of the orders I, m, n, r re-
spectively) be respectively of the forms

Au +Bv +Cw =0,
Au +Bv-+ Cw =0,
A"u +B"v + C”
A”u+ B"v+ C"w=0,
where u, v, w are of the orders A, u, v respectively.
Then the points common to U, ¥, W, Y which do not make
u, v, w =0, will satisfy the system of determmants

‘ A , AI, All’ AIII
' =0,

B, B, B”, B”
¢ C, ¢, 0"l
But since A4 is of the order !— A, B of the order { —p, A’ of the
order m — \, &c., it follows (Art. 272) that the order of the set
of determinants is
(im + n + lr + mn + mr + nr)

—(l+mtnt+r)A+p+v)

+ AT+ u" VA A+ ).
If now we combine this system of determinants (equivalent
to two conditions), with the 4 —3 conditions which constitute
the surface, we determine the points common to the surface.
and complementary curve. And their number is the order of
the system of determinants, multiplied by Auv. Writing then «
and 8 for the order and rank of the surface Auv, Auv (A + p + ),
and denoting by ¢ the new characteristic

Apv (N + 7+ V' A+ py + ),
which we may call the class of the surface, we find

t=a(lm+ ln+lr + mn + mr + nr)

-B(l+m+n+r)
4.

288. If then we have an additional quantic Z also con-
taining the given surface, and if it be required to find how
mgny points not on the surface are common to all 5 quantics,”
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these will be evidently the points of intersection of- the com-
plementary curve with Z, less the number of points of intersec-
tion of the complementary curve with the surface. If then
l, m, n, r, s be the orders of the quantics, the number sought
will be got by subtracting from

s{lmnr—a(l+m+n+r)+ 8},
the number
a(lm+n+mn+lr+mr+nr)-B(l+m+n+r)+ny.
And the difference is
Imnrs

— a(lm+...4rs)

+B(l+m+n+r+s)—y,
which is the formula required.

-

289. Next let us consider the case (k=5) where a system of
quantics have common not only a surface, whose characteristics
are a, B, 9, but also a curve, whose characteristics are o/, &,
intersecting the surface in ¢ points. As before, consider first
4 of the quantics. Their intersection we have seen consists
of the surface and of a complementary curve, whose order is

mnr—a(l+m+n+r)+B.
And if the complementary curve be itself complex, consisting

in part of the curve o, and also of another curve, whose order
is a”, we have evidently
o’ =lmnr—a(l+m+n+r)+B-d.

The points therefore which we desire to determine are got by
subtracting from the sa” points of intersection of the curve a”
with the remaining one of the given system of 5 quantics,
8+ & where 8 is the number of points in which the curve a”
meets the surface (a, 8, ), and &’ is the number of points where
it meets the curve. But we know 3, since we know, by
Art. 287, the number of points where the surface is met by
the entire curve complementary to it; and therefore have

S+i=a(lm+ln+&ec)—-B(l+m+n+r)+y;
and we know &, knowing, by Art. 280, the number of .points
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in which the curve &’ is met by the entire curve complementary
to it, and therefore have
¥+2=a (l+m+n+r)-pg.
Substituting the values thence derived for 8 and &’ in sa” — 8 — &',
we get
Imnrs

- a(lm+...+ rs)

+B(l+m4+n+r+s)

-9

—d(l+m+n+r+s)

+8

+ 8i
In other words, the diminution from the number lmnrs pro-
duced by curve and surface together is equal to the sum of
their separate diminutions lessened by three times the number
of their common points.

290. This result may be confirmed by supposing one of the
quantics to be a complex one Z’Z”, where Z’ contains the
common surface, and Z” the common curve; and the degrees
of Z'y Z” are &, s”. Then the quantics U, V, W, Y, Z’, by
Art. 288, have common points not on the common surface
lmnrs' - a{s' (I+m+ &c.) + Im+mn+&e.}+ B (¢ +1+m+ &e.) —¢.

But among these will be reckoned the a's’ points in which
the common curve meets Z’, deducting however the ¢ points
common to the curve and surface. To find then the number
of points UVWYZ’ which lie on neither curve nor surface,
we must deduct from the number last written o's” — 7.

Consider now the intersections of U, V, W, Y, Z”; these
are a system of quantics having common two curves inter-
secting in ¢ points; viz. the given curve o', and the curve of
intersection of the common surface by Z”, whose order will be
as”, and whose rank will be as” A+ p+v+35”). The number
of points UVWYZ” which lie on neither curve nor surface
will be '

lmnrs"— (' + as”)(l+m+n+r+ &)+ B+ as”’ (N p+v+5") + 2¢.
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Adding, and writing s for s’ + ¢, we get
lmnrs — a (Im +...4 rs) + &e.,
as in the last article.

291. We next suppose the quantics to have common two
surfaces having ¢ points of intersection. The method would
-be the same if there were several surfaces. Let the last
quantic be a complex one, consisting of Z’ which passes
_through the first surface and Z” which passes through the
‘second. Then the system U, V, W, Y, Z’, have the common
surface Auv and the curve A'u'v's’, which have ¢ points common,
and the namber of points of intersection, not lying on either
surface, is thus

mnrs’ = Apy {(l+m+n+7)d +lm+ &} +B(l+m+n+r+)

—y=NpVs (l+mtntr+8)+NpVs (N +p'+V + )+ 384
In like manner for the system U, V, W, Y, Z”, the number of
points of intersection not lying on either surface, is

Imnrs” —auvs” (l+m+n+7r+8")+Auvs” A+ p+v+38")
=NV {(l+m+n+r)s’+im+&e}+8 ({+m+n+r+s”)+34

Adding these, we have for the whole number of points of
intersection

lmnr (8 + &)= (Apv + Np'V) {({+m+n+7) (5" + ")+ Im+ &e.}

+(B+B)l+m+n+r+8+8")—gy—o +6i
In other words, the combined effeet of the two surfaces is
equal to the sum of the effects of the surfaces separately con-
‘sidered, diminished by six times the number of their common

‘points. When there are only four variables, twe surfaces
always must have common points of intersection. '

292. Lastly, let the two surfaces have a common curve
whose order and rank are a”, 8”. Proceeding, as in-the
last article, we find that the system UVWYZ’ have common
"indeed the surface Auv, and the curve AMu'»s. But since
this curve is 'a complex one, consisting in part of the curve
-a”y B” which lies on Auv, we are only to take into account
-the complementary curve which, by -Art. 282, has for its order

RR
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A u'vs— o', while its rank is
B"+(X'p’/s’—2a”) (X’-} F’+"+ 8’);
and the complementary cuarve intersects «’8” in
o« (W +pu' +v +5)— B points.
The number of intersections is therefore
lmnrs’ —Apy (I +m +n+7) 8 + I+ &c.} + B(l+mintrts)—q
~(AVpvVs-a)(l+m+n+r+5)
+ B+ (N vVe—2d" )N+ w+V+5)+ 3 (Wt p'+V+5)—38".
Similarly the intersections for UVWYZ" are
tmnrs’— N p'vV{(l4+m+n+r)s"+Im+ &) + B (I4+m+nwtris”)—of
—(Mpurs”’ =a”) (l+m+n+r+s”)
+87+ Aprs'—2a") A+ p+v+8)+ 3" (At p+rv+s”)-38".
. Adding, we have
Imnr (8 4+ 8”)— Apr + Np'V) {({+m+n+7) (8 +87) + lm + &e.}
+(B+B+2)(I+m+n+r+d+4”)
-'y—'y'+a”(h+p+v+l'+p'+v')—48".

In other words, the diminution is obtained by regarding
the two surfaces as making up a complex surface, whose
order is the sum of their orders, whose rank is the sum of
their ranks increased by twice the order of the common
curve, and whose class is the sum of their classes increased by
four times the rank of the common curve and diminished by

(Nt ptv+ N+ V).
‘We must leave untouched some other cases which ought to

be discussed in order to complete the subject; in particular
the case where the surfaces touch in points or along a curve.

293. We come now to the problem of finding the order of
the system of conditions that three ternary quantics should
have two common points. The method followed is the same
as that given by Prof. Cayley for eliminating between three
homogeneous equations in three variables, and which we have

- explained (Art. 94), Let the three equations be of the degrees
i, my n. Multiply the first by all the terms &™"7, o™, &e.
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of an equation of the degree m+s—3, the .second in like
manner by all the terms of an equation of the degree n+1-3,
and the third by all the terms of an equatlon of the degree
{+m—3. We have thus in all

3 (m+n—1) (m4+n-2) + § (n+I-1) (n+1-2) + 3 (H+m-1) (14+ m - 2)
equations of the degree I+m+n—3, from which we are to
eliminate the § (I4+m+2—1) 4+ m+n—2) terms 2" &e.
But, as it has been shewn in the place referred to, the equations
we use are not independent, but are connected by

10-1)(-2)+i(m—-1)(m—-2)+§(n~1)(n-2).
relations. Subtracting then the number of relations, the number
of independent equations is found to be one less than the number
of quantities to be eliminated ; and we have a matrix in which
the number of columns is one more than the number of rows,
the case considered in Art. 272. But, as was shewn, Art. 93,
when we are given a number of equations connected by rela-
tions, the determinants formed by taking a sufficient number of
the equations, require to be reduced by dividing out extraneous
factors, these factors being determinants formed with the co-
efficients of the equations of relation. If then, in the present
case, we took a sufficient number of the equations and deter-
mined the order by the rule of Art. 272, our result would require
to be reduced by a number which we proceed to determine.

294, Let us commence with the simplest case where we have
& equations in % variables, the equations being connected. by a
. single relation. To fix the ideas we write down the system
with three rows

a b o [N
al, bl, cl x’
b” 7\

where we mean to 1mply tha.t the quantmes involved are con-
nected by the relations

M+xla’+hllall_0, M+xlbl+xl/b’,_0, M+xlcl+xllcll_0.
We also suppose that Aa, A'a’, A”a” are of the same order, so
~that the' orders A+ a ="+ a’=A"+a"”. Now let us, in the firat



308 - ORDER OF RESTRICTED SYSTEMS OF EQUATIONS.

place, suppose that the two first equations are in the simplest
form, and that A” =—1. The true order then is that determined
from the first two equations; that is to say, if we indicate the
orders, as in Art. 272, C,+C, (a+8)+a'+8'+a8. Now suppose
that we had omitted the first row, the order deduced from the
second and third would be C,+C, (8 + )+ 8"+ " + By; which
we see, in order to give the true order, requires to be rednced
by (y—a)(C,+a+8+¢9); in other words, by the order of A
multiplied by the order of the determinant obtained from the
three equations. And the general rule to which we are thus
led is; Leave out one of the rows and determine the order of
the remaining system by the rule of Art. 272; from the number
8o found, subtract the order of the determinant formed from all
the equations, multiplied by the order of the term in the relation
column belonging to the omitted row. It is easy to verify, that
we are thus led to the same result whatever be the omitted
row. Thus
C,+0C,(a+8)+a + 8 +aB-N"(C +a+B+9)
=C+C(B+7)+B+9' +By—r(C,+a+B+7)
since the orders A=-AN'=y—a. ‘
And our result may be written in a symmetrical form if we
‘write 4 for the common value of A+a, A"+ 8, A + v, when
‘it becomes

C+C, (a+B+y)+a+8+9+By+ ya+aB— A(C +a+B+v),
or A C,+ CH +H,—A(C+H).

295. And, generally, if there be any number of relation
columns, I have been led by a similar process to the following
result: Let the terms in the relation columns be A, 2/, A", &ec.,
By iy w7y &e.y v, v, v, &c.; then we must have

Ata=N+8, &, pta=p'+8,&c v+a=vV+8, &e.
Let 4, B, C denote the common values of these sums, and let
H/, H/ denote the sum and sum of products as in Art. 272
of the quantities 4, B, C; then the order of the system is

Cs+01H1+‘H;—‘H1,(CI+HI)+H:"

This result may be stated as follows, in a way which leads

us at once to foresee the answer to some other questions that
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may be proposed as to the order of systems of these equations.
In the case we are considering, the entire number of columns,
counting the relation columns, is one more than the number
of rows; and the order of the system ts that given by the rule
of Art. 272, if we give a negative sign to the orders in the re-
lation columns. In like manner, when the number of columns,
counting the relation columns, is equal to the number of rows,
the system, by Prof. Cayley’s theorem, represents a determinant
whose order is that which we should obtain by calculating
the order of the entire system considered as a determinant,
the orders in the relation columns being taken negatively. And
so no doubt if the entire number of columns exceeded the
number of rows by two, the order of the system would be found
by the same modification from the rule of Art. 285.

296. Let us now apply the rule just arrived at to the
problem proposed in Art. 293. We consider the three ternary
quantics of the order [, m, n respectively; and we regard these
as depending upon two arbitrary parameters, the orders in
these parameters being as follows; the coefficients of 2, 2™, 2",
the highest powers of z, are of the orders A, u, v; those of
'™y, 'z are of the orders A +a, A+, and so on, the orders of
the coefficients increasing by a for every power of y, and by o
for every power of z. Then the terms in the first column
consist first of % (m + n—1) (m +n—2) terms whose orders are
A; A—o, A—d'; A=2a, A—a—d, A=2d, &e.; secondly, of
$(n+1—1)(n+1—2) terms whose orders are u; p—a, u—a’;
&ec., and thirdly of 4 (!+m—1)(l+m—2) similar terms in .
These may be taken for the numbers a, 8, v, &c. of Art. 272.
“The numbers a, b, c, &c. of that article are 0, a, a’ : 2a, a + o,
2a’, &c., there being in all § ({+m+n—1)(l+ m+n —2) such
terms. Lastly, the numbers 4, B, C, &c. of the last article are
found to consist of 4 {I—1) (I—2) terms, p+v, p+v—a, p+v-a';
together with  (m—1) (m —2) and 4 (n—1)(n—2) correspond-
ing terms in ¥+ A\ and A+ . In calculating I have found it
. convenient to throw the formula of the last article into the shape

31{(C,+ H - H) - (5,4 5/ ~3)},
where s, denotes the sum of the squares of the terms a, b, ¢, &e.
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Also if ¢ (l)=A4l'+ BP'+CP + DI+ E, it is convenient to'ta‘k'e

notice that

¢ (L+m+mn)+ ¢(0)+p(m)+¢(n)—¢(I+m)— ¢ (m+n)— ¢(n+l)

=124Imn (I+m + n) + 6 Blmn + E.

I have thus arrived at the result, that the order of the system

or number of the sets of values of the parameters is

fmn (mn — 1) N+ nl (rl — 1) 4* + §im (Im — 1) ¥*

+H{(al-1) (Im— 1)~ § (1—1) (1 - 2)} wv

+ {(Im = 1) (mn - 1) = §(m - 1) (m— 2)} A

+{(l = 1) (nm — 1) = § (n — 1) (n — 2)}

+mn\{lmn —~ 1+ 1~} (m+n)} (a+)

+alp{lmn—m+1-4§(n+l)} (x+a)

+lmy{lmn—n+1-%(l+m)}(a+a) .

+ §lmn (lmn-1—m —n+2) (a'+ a”) + 3lmn (2lmn - l-m—n + 1) aa’.

If the order of all the terms in the first equation be A, in

the second g, in the third v, we have only to make a and a’ =0

in the preceding formula. In this case, supposing A=p=v=1,

the order becomes

§ (mn + nl + Im) (mn + nl + Im - 5)
-3(0-1)(-2)-f(m-1)(m-2)-}(r-1)(n-2),
and in particular if /=m = n, the order is
n(n—1)(n"+n—-1).
This last result shows that if U, U’, U”, V, V', V", W, W', W”

be given homogeneous functions of (z, y, z) each of the order =,
then the number of curve-triplets

U+ 0U+¢U”"=0, V+60V'+¢V"=0, W+ O0W'+ ¢ W"=0,
having 2 common points, is
—%n (n—1) (0" +n-1).

297. ‘Mr. S. Roberts applies to the problems of this Leason
a method directly applicable to binary quantics, since they
can always be resolved into factors, and which extends to
the case of ternary and higher quantics, for the "question
‘whether or not they can be so resolved does not affect the
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problems here discussed, and the orders determined in the
case of quantics which are the products of factors must be
generally true. Thus, to determine the order of the resultant
of two binary quantics of the degrees m, n; if the order of
the terms in the first be A, A+a, A +2a, &c, it may be
"resolved into the product of m factors ax -+ by, the orders of

a and b being 1% ) % + a respectively ; similarly, for the second

quantic; and the resultant is the product of mn factors, the

’

. AN .
order of each being o e A H and, therefore, mn times

this number will be the order of the resultant. Now
Mr. Roberts argues that we may deal in the same manner
with the problem in Art. 277; that knowing, by Art 272,
the order of the matrix a, b || to be

a, v
a”, bl’ I

d+M+p¥Fv)atAp+tpur+vA,

the orders of the rows being supposed to be N, N +a; u, p+ad;
¥, v+ a; then we may conclude that the order of the system
of conditions for the simultaneous existence of three equations
of orders I/, m, n is

R A opv Ap py vl.
lmn{a+a(l+7n+ )+Im+ }

mn + al
And in like manner, that the order of conditions for the co-
existence of a system of %+ 1 binary equatlons is. the product
of their degrees multiplied by ~

a*+ Po*™" + Pa*? +...F,
where P, P, &c are the sum, sum of products in pairs, &e.

of the numbers -l , ﬁ , &c. And so more generally, the order
of the conditions for the co-existence of any number of equations
in any number of variables is derived from the order deter-
mined by Art.. 272 for the co-existence of a system of linear
equations. It is thus found that the order of conditions for the
co-existence of %+ s— 1 homogeneous equatlons in s variables,

in which the order of the coefficients of o', ™y, a''z, &ec..is
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A, A+ a, A+ B, &c. is the product of their degrees multiplied by
H,+H; P+ H, Q+&ec.,
where H, has the same meaning as in Art. 272, and P, Q, &c.
are the sum, sum of products in pairs, &c. of the numbers
Ao
'm
case of ternary quantics gives the order of the conditions that
a curve should have a cusp. We determine by the formula
. the order for the co-existence of U, U,, U,, U, U, - U,}, which
system belongs either to cusps or double points on the line 2,
and we subtract the order for the co-existence of U, U,, U, z,
which belongs to the latter. The result is

12(n—1) (n—2)\"+8n (n—1) (n — 2) (@ + B) ©
+2n(n—1)(n—2)(n+1)aB+2n(n—1)"(n—-2) (@ + B°).
The problem of finding the order of conditions that two
binary equations shounld have two common roots is discussed

as follows: Consider first the simpler system, formed by taking

- two factors from each equation,
(az + by) (a'z + by) (a"z +b"y) (a2 + b"y),
and we have the pair of conditions
(abll) (a,bll) - 0, (ablll) (a’bll’) = 0’

whose order combined is 4 (A + s +@)’; but from this we must

subtract the irrelevant systems (ab”)(ad™), (2’0”) (a’6”’), which
"reduces the order to 2 (A +u+a)’. Bat if we take two factors

from the first equation and one from the second, the system

(ad”)=0, (a’6”) =0 is satistied by a” =0, 3" =0, whose order

is u (w+a). Now since the number of ways in which two

factors of the first equation may be combined with two of

the second is 4/(!—1) x 4m (m—1), and the number of ways

in which one of the second may be combined with two of the

first is 4/ (!— 1) m; the resulting order in general is

Ym(l-1) (m-1) (% +£+a),+§lm(m—l)§l'(}l-'+¢)

+;ml(l—1)£(£+a),
a8 in Art. 275. -

, &c. Thus, for instance, this formula applied to the
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By the same process of reasoning Mr. Roberts arrives at the
order of the conditions (Art. 296) that three ternary quantics
should have two points common, in the form

{4lmn(l-1) (m—1)(r—1)+ =}imn(m—-1)(r—-1)} {7-; + £ + % +a+a'}’

R . S W7 e ) .

+ 33lmn (1-1) {F +”? + l—y;+(a+a')(-l-+;2) +aa}.

In this way the order of conditions that a curve should have
two double points is found to be

Fu=1) (=2 (14 1) (A +n @+ )~ § (=1 (n=9)
X {15M"+ 108 (@ + &') A+ (r + 6) aa’ + 27 (20 — 3) (" + «”)}.

Mr. Roberts investigates other problems by the same method ;
a8, for instance, the order of conditions that four curves may
have two points common, or that a surface may have a biplanar
double point. For these I must refer to his paper.* I only
give the following result: The order of conditions that three
binary quantics should have two roots common is

2
Flmn (1-1) (m-l)(n-l){%:—:- +2 4 ;—7;+a(7—; + ;’: + 5) +a'}

+ Zh¥mn (m — 1) (n —1) {71—‘(%‘+a) (£+£-+a).}

+ Z}lmn (n - I)M (%-l-a) (ﬁ+a).

Im

* Prof, Cayley, in the Cambridge and Dublin Mathematical Journal, vol. Iv., p. 184,
determined the order of a matrix with ¥ rows and £ + 1 columns, in the particular
case where each constituent is of the first degree. My own investigations were pub-
lished, Quarterly Journal, vol. 1., p. 246, and in the Appendix to my Geometry of
Three Dimensions, second edition. After this Lesson was printed in the second edition
Mr. Samuel Roberts communicated to me some extensions of the theory there
developed, and his results have since been published, Proceedings of the London
Matkematical Society, March, 1875,

88
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LESSON XX.

APPLICATIONS OF EYMBOLICAL METHODS.

298. Iw this Lesson, which is supplementary to Lesson XIV.,
we wish to show how the symbolical notation there explained
affords a calculus by means of which invariants and covariants
can be transformed, and the identity of different expressions
ascertained. In order to facilitate the reader’s study of recent
memoirs, we employ the notation explained, Art. 162, which
is now almost exclusively used; to save the necessity of
" reference, we repeat what bas been already said, and, in order
to fix the ideas, we suppose the variables to be three, though
the method is perfectly general. The variables then are
w, x, x,; if there are different sets of cogredient variables,
such as the coordinates of different points, they are written
Yy Yp» Ys3 % %y 2, &c. We use the abbreviation a, for
az +az, +ax, a for ay +ay,+ay,; if we are only
dealing with one set of variables so that mo confusion is likely
to arise, we sometimes suppress the suffix, and write a instead
of a,, The quantic of the n** degree is symbolically written
a', or (ax +ax,+az,)"; that is to say, a, d,, ¢, are umbral
symbols not regarded as having any meaning separately;* but
a” denotes the coefficient of z” in the quantic, a,""a, that of
ne""x,, and so on. And so generally any homogeneous function,
of the nt® degree in the letters a, a,, a, may be replaced by
a multiple sum of the cocfficients of the quantic; any other
function of these letters is not regarded as having a separate
meaning, Other quantics may be denoted by #, ¢, &c., the
symbols b, ,, b, &c. being used in the same way. In the cases
with which we principally deal the quantics are supposed to.

* It has, however, been stated, Art. 168, that we can at any moment interpret a
furmula by substituting for a,, a,, a, differential symbols with regard to x,, ;, 2,.
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be identical; and a®, %, ¢", &c. are only different expressions
for the same quantic.

We use (abe), (abd), &c., to denote determinants formed with
the constituents a,, a,, a,; b, b, 5,) &c. In order to express
invariants or covariants of the quantic we take any number of
such determinants and multiply them together; then evidently
the product can be translated as a function of the coefficients
of the given quantic, provided that the a symbols, 5 symbols, &e.
respectively each occur » times. If not, we join in the product
such powers of a,, b,, &c.—that is to say, of (a,z, + a2z, +az,),
&c.—as will make up the total number of a’s, b’s, &ec. to n.
We are then able to replace the symbolical letters by coefficients
of the quantic, and the resulting product is a function of the
coefficients and the variables, the latter entering in a degree equal
to the sum of the orders of a_, b, &ec. in the symbolical product.
It is easy to show that we obtain an invariant in the ene
case and a covariant in the other; and we refer to Clebsch’s
Theorie der bindren algebraischen Formen for a formal proof
that all invariants and covariants can be so expressed.* All
this has been stated already (Art. 162). When a covariant
18 expressed in the manner explained, it is evident that its
order in the coefficients is equal to the number of symbols
a,, b, &c., which enter into the determinant factors, and that its
order in the variables is equal to the number of non-determinant
factors a,, b,, &c.

Since the differential coefficients of »=a," are respectively
na‘a, na''a, ma''a, the equation of the polar, which is
1/ du du du
” (.’/. dz, +3/,35’ +.%d5’
the second polar is a,*’a’, and so on.

)=0, becomes a,""a =0. Similarly,

* The principle of the proof is briefly this: we have seen, Art. 218, that from any
invariant or covariant P of a single quantic, we can, By the operation a’d—a + &c.,
obtain a corresponding form II for a system of two quantics, and that we can fall
back from II on P by making @’ = a, &c. By repeated application of this principle,
if the form P be of the r* order in the coefficients, it may be considered as derived
from a form II belonging to = different functions, each of whieh may be symbolically
written (a,2, + a,z,)% (b,z, + byx,)", &c. Every form therefore of the r®# order for
the single quantic has a corresponding form for = linear fastors, and it is proved

" without difficulty that for the latter case the only invariant or covariant forms are
those expressed as in the text.
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299. Confining ourselves now to the case of two varidbles,
a, or a here stands for az, +az,, (ab) stands for ab, —a,b,;
and any covariant is expressed symbolically by a product
(ad)" (ac)?(bd)” &c. multiplied by a"b'c” &c., the number of a's
b’s, &ec., in the entire product being each n or a multiple of n.
If p, g, r, &c. all vanish, the symbol denotes an invariant. Any
symbol which simply changes sign by an interchange of a
and b (as, for example, (ab)*a™*5"", where a is odd) denotes an
expression which vanishes |dentlcally (see Art. 153).

If we eliminate z,, z, from the equations

a= alxl + aszﬂ b = blzn + b.z,; c= cl.zl + cdxﬂ
we have
(4 a (be) +5 (ca) +c(ad) =0,

an identity of the greatest use in transforming these expressions.
Thus, for example, transposing a(dc) to the other mde and
squaring, we have

(B) 2be (ab) (ac) = * (ac)' + & (ab)” — o’ (Be)'.

To illustrate the use of this, multiply by a"*5"7¢™?, in order
that each term may denote a covariant of an n-ic, and we have

24" 756" (ab) (ac) = 80" (ac)+ o™ (ab)’ - a6 (Be)'.

Now, since a®, 5%, " all equally denote the quantic, the three
terms on the right-hand side of the equation are only different
expressions for the same covariant; and we learn that the
covariant a” 5" "c*"(abd) (ac) is half the product of a* (which is
the quantic itself) by 5" 7c** (b¢)’, which denotes the Hessian.

We can always (as has been stated Art. 163) interpret these
symbolical expressions by supposing a,, a, &c., to demote
d d
dz,’ dz,’
of several distinct quantics uvw, and by making the variables

identical after differentiation. In this way a or Z, d‘i + ’d‘: R

&c., by supposing that we operate on the product

applied to any homogenéous function, only affeets it with a
numerical factor. If we thus interpret equation (B), (ad) (uc)
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is Q; where @ is

dw (du\' _ d'w (du\ (du d' (du
= (@) 2z (@) (@) + &5 (@)
and  (ab)* is 2, where H is %ﬁ, %", - (d:’,Tx,)'
On the right-hand side of equation B, a", 8’, c* respectively
operate on functions which have not been before differentiated,
and therefore affect them with the numerical factor n(n—1);
on the left-hand side &, ¢ operate on a function which has been
once differentiated, and each affects it with the numerical factor
(n—1). Equation B therefore gives us (n—1) Q=nUH.

300. From equation B other useful formul® may be derived.
Squaring it, we have
(C) a*(be)* + " (ca)* +c' (ad)*

- =2{b% (ab)* (ac)* + C’a’ (be)" (ba)’ + a'b* (ca)’ (cb)).

If this be applied to a quartic form, the three terms on the left-
hand side are all different expressions for the same thing. So
are also the three terms on the right; and we learn that the
covariant b'c’ (ab)’ (ac)’ differs only by a numerical factor from
the product of the quantic itself by the-invariant (bc)*.

Considering the four expressions

a-= az, +az, b= blz,l + b:‘”n c=cx, + 6, d= dxzx + d,a:.,

--we at once verify the identity
(D) (ad) (be) + () (ca) + (cd) (ab) =0,
which is also of very great use in the theory. We deduce
~ from it
- (E) 2 (bd) (cd) (ab) (ac) = (bd)" (ac)' + (cd)* (ab)’ - (ad)* (2e)".
(F} (ad)'(be)'+ (bd)‘ (ca)*+ (cd)" (ab)*
. =2{(bd)"(cd)*(ab)"(ac)"+(cd)*(ad )*(be)*(ba)*+(ad)? (bd)'(ca)'(cb)'}
. To these may be added an identity which is really a different
form of (D): this is
(G) . K nb’ - bca' = (ab) (W)’
. where (zy) denofes (2,y,— «,y,); and from it we deduce
(H). aapb, =40 +a'’% —(ab) (zy)].
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301. A symbolical expression may be always so transformed
that the highest power of any factor (ab) shall be even. For
the signification of the symbol is not altered if we interchange
the letters a and b; therefore

(ab)™ ¢, = (ab)" "¢, =1} (a)™" (6, — &,
and by the help of equation 4, ¢, — ¢, can always be se trans-
formed as to be divisible by (ab). Thus b¢™ (ad)™™ (ac) is at
once reduced to ¢™ (ad)™. For

Be™ (aB)™* (ac) = o™ (ab)™" {b (ac) — @ (be)} = o™ (ab)™

302. If we arrange symbolical products according to the
number of determinant factors which they contain, we can,
by these formulé of reduction, reduce them to certain standard
forms. If there is but a single factor (ad), the covariant
vanishes identically (Art. 299), smee it changes sign by an
interchange of a and . The possible forms with two faetors
are (ab)’, (abd) (ac), (ab)(cd), of which the last vanishes identi-
cally, and, in Art. 299, we have expressed (ab)(ac) in terms of
(ab)’. There is therefore only a single distinct covariant
symbolically expressed with two determinant factors, viz. the
Hessian H=a""0"" (ab)’. Any such form must denote either
the Hessian or the product of the Hessian by a power of
the quantic. So again, for three factors, the possible forms are
. (ab)', (ab)*(ac), (ab) (ac) (ad), (ab) (ac) (Be), (ab)(ac) (bd); of
these the first, fourth, and fifth vanish identically, and the
second and third are found to be related as follows: Multiply
equation B by a"6"¥¢"*d"'(ad) ; two of the terms on the right-
hand side become identical, the third vanishes, and we have

2a""0""¢"'d"" (ad) (ac) (ad) =2a""b"*c"d" " (ab)* (ad),
showing that the covariant expressed by the left-band side is
the product of the quantic itself by the covariant whose value
is given (Art. 156). Generally every symbol having a pair of
factors with a common letter (ad) (ac) may be reduced to a
more compact form by substituting for this pair their value
from equation B, and so expressing the symbol by others in
which this pair of factors is replaced by a single square factor,
Symbols with four factors can be reduced to either of the forms
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(ab)* or (ab)*(cd)?, which is H*, For five factors the fundamental
forms are (ab)*(ac) and (abd)*(ac)(de)”, the latter being the pro-
duct of two distinct covariants. For six factors the forms are
(ad)® (Art. 153), (ad)* (bc)*(ca)* (Art. 155), and (ab)* (cd)" (¢f ',
the last being the cube of the Hessian. We give a few
examples of the reduction of these forms.
Ex. 1. To reduce a*4j"-1cn-1dn-1en-1 (abd) (ac) (ad) (ae). Multiply together
2bc (ab) (ac) = b2 (ac)? + ¢* (ab)? — a2 (bc)?,
2de (ad) (ac) = &* (ae)? + ¢ (ad)? — a (de)?;
multiply the product by an-45n-2c-2d»%en-2, and assemble the identical terms, then
we have
4a oIt (ab) (ac) (ad) (ae)
= 4enena*4bn-3dn2 (ab)? (ad)? — Bavbn2cn2d2en2 (be)? (de)?
The last term is — 8UH?2. The other term on the right-hand side is rednced by
equation C. Multiply by a*45#-4d -4 the equation
at (bd)* + b (ad)t + d* (ad)* = 2 {5?d2 (ad)? (ad)? + d%a? (bd)? (ba)? + a%b? (ad)? (bd)?},
then we have 2a%4j"2d"-2 (ab)2 (ad)? = d*a~44»4 (ab)’. The right-hand side there-
fore of the preceding equation reduces to 28U3 — 8UH?, where S is the covariant
a-lbll-i (ab)i.
Ex. 2. To reduce (ab)*(ac)>. Multiply equation C by a*-$h*c 4(ab)?, then we
have, assembling identical terms, ,
cran-8hn8 (gb)8 = 2an6bn-4cn-2 (ab)* (ac)? + 2an-4bncn-4 (ad)? (be)? (ca)t.
Thus, if we call the standard forms an6"8(ad)® and a*4b*-4¢»4 (abd)?(bc)? (ac)?, M
and T, we have 2a%%4¢n2 (ab) (ac)? = UM — 2T.
Ex. 8. To reduce (ab)?(ac)?(ad)?.. Multiply together the three equations
2bc (abd) (ac) = ¢? (ad)? + b2 (ac)? — a2 (be)?,
2cd (ac) (ad) = d2 (ac)? + c* (ad)?— a? (cd)?,
2bd (ab) (ad) = b* (ad)? + d? (ab)? — a* (bd)?,
and multiply by an-®n-4cn4dn4, then we have
6anbn2ev2d 2 (ab)? (ac)? (ad)?
= — 4dnan-*hn-4cv4(ab)2(be)2(ca)? + 6an-sbn-ten-2d »(ab)4(ac)?— Bar4bn e 2d 2 (ab)* (cd)®
=—~4UT +8U (UM —2T)—-38SH =38U0%M - 10UT - 88H.
Ex. 4. To reduce (ab)? (0c)? (c4)?. Multiply equation (C) by (ed)? and by
an4pm4cn8dn-2) then we have
4an4hn-2cn4gdn-2 (ab)z (‘w)z (cd )2 .
= 2anbn-4cn-0dn-2 (be)t (cd )2+ an~4bn-ten-2d 2 (ab)s (ed )2 — 2an2b2c*8d ™2 (ac)?(be)*(dc)®
Multiply by three, and observe that in Ex. 3 we find that
6anpricn-sdn2 (be)t (cd)? — 6an~2hm=-2en-8d 2 (ac)? (be)? (de)? = 4UT + 8SH.
and we have 6an-4bm+2on-4dn~2 (ab)? (ac)? (cd)? = 2UT + 38H.
Ex. 5. To reduce (ab)?(cd)? (ac) (bd). Multiply the equations
2ad (cd) (ca) = a? (cd)? + d? (ac)? — c? (ad)?,
2b¢ (cd) (bd) = 6% (ed)? + ¢* (bd)® — d2 (be)?,
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In the notation used Lesson XIV, 12°¢y denotes a covariant
differing only by a numerical factor from the transvectant;
that is to say, if we denote differentiation with regard to z,, =,
by subindices, the series is

$V— ¥y DV — 28,V + bV &e.

Thus the first in the series is the Jacobian, and if n be the
lower of the orders of ¢ and v, the last in the series 12"},
is the result obtained by introducing differential symbols into
the one quantic and operating on the other (Art.139). We
obtain transvectants of a single quantic by supposing ¢ and »
to denote the same quantic. The transvectants then of odd
order vanish, and those of even order form the series of co-
variants considered (Art. 141). The method of formation of
covariants explained in this article has a prominent place in
the proof given by Gordan and Clebsch, that the number of
covariants of any form is always finite. Thus the first step in
the proof is to show, as we shall presently do, that any
covariant symbol formed with % letters a, b, ¢, &c. may be
reduced to a transvectant of the original form combined with
a covariant whose symbol contains only % — 1 letters.
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304. There is  in’ forming the transvectant, or
any other ° ve a form ¢ -symbolically expressed.
The of we have seen, are given by the
formula (¢py)* = (flv), , Where £, €, denote differentiation
of ¢, and 7, 9, ion of ¥ Now let the symbolic
expression of ¢ = , &c., where M denotes the
aggregate of the - Then, since z,, z, only
enter in a, b, &c., we "

£E= j+b E= b’db+&c'
Similarly if ¥ = Ne'd’
< va, o2y &
=gt h g Gt @
If we put these into n,—§, ) we that the symbohc
expression for ~ con of group of terms,
each of which - all the M, N of the
two given forms, together with a of k"’ order in
the determinants (ac), (ad), (bec), ( &e. particular the
transvectants of ¢ combined with original form w (or g%,
whers g is a symbol not occumng m ¢ are by operating

on ¢ with {(ag) ot (b9) :iqb + (cg) Zt &c.} .

+ &c.

Ex. To form the symbol for the Hessian of the 1 Here we have
¢ = a~-2(ab)?, = c>2d*(cd)?, and we are to operate on i with (Eyn; — Emn)? 5
or with
{(“)da dc+(ad)da dd+(”’) & chM):b dfi}
or, collecting retms, with
4(M)2da2 ;:.+8(ac)(ad)£ 2%,-71{ 4(ac)( % ;b;c'd%'
Xt would be therefore .
4 (n — 2)? (n — 8)? (ab)? (cd)? (ac)? antb™-2c*4dn?
+ 8 (n — 2)3 (n — 3) (ab)? (cd)® (ac) (ad) av b 2cn 3dn-¥
+ 4 (n — 2)* (ab)? (cd)? (ac) (bd) an-3b™-3cm-3dn-3,

It was shown, Art. 302, Ex. 4 and Ex. 5, that the first and third of these terms were
expressible in the form «SH + BTU, and the same thing is easily seen to be true
of the second, if we substitute for 2¢d (ac) (ad) its value c¢? (ad)? + d? (ac)? — a2 (cd)?
from equation B. Thus we prove that the Hessian of the Hessian is expressible
in the form aSH + BTV, as was otherwise.proved (Axt. 281), ... -

TT
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where it will be observed that the operator a;;.—ll-i-’l%-i- &c.

lenves the subjoct unchanged except by a pumerical factor.
Chow then if @ o= Ml &, where p+ g +r + &e. =1

(udp)ws LM 'uy) o " ...g™" = g" M '{ab d 4-&c.}b &e.

T'hus we have the expression divided into two parts, one in
which we have the old determinant factors M together with
the new factor (ag); the other in which the letter g does not
onter into the determinant factors. Conversely, if we have a
symbol in k41 letters, one of which g only occurs once, this
in immeodiately resolved into the transvectant of ¢, u, together
with a form whose symbol only contains % letters.

No, in like manner, the second transvectant with any form ¢ is

(u) = {(an) g, + G9) g+ &}

and thorefore consists of a group of terms, each having all the
dotorminant fuctors of ¢, together with two new factors, each
containing g, But, as before, this might be written

1 d d :
- [(U){ +bdb+&c} ((ab)d—b+&c.}] b,
and thorefore if ¢ = Ma®d! &c., we have
(wgp)' m (! =1) M(ag)'a™"...g"" + ¥,

where ¥ consists of & group of terms into the determinant
favtors of which g enters only once; and therefore by the former
part of this axticle, y can bo reduced to a function whose
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symbol does not contain g, together with the transvectant of such
a function. Thus then any symbol of the form ¢ (ag)’ can be
reduced to a function whose symbol does not contain g, together
with the first or second transvectants of such functions. The
same thing would be true of a function of the form ¢ (ag) (bg),
as appears by writing the second transvectant in the form

Lo} -ofon So &+ ]

x [(bg) {a % +b;§’-b + ...}—g {(ba) dii+(bc) % + }] :
And so we see generally, that any symbol ¢ (ag)* (¢b)%, where g
occurs in all o times, can be reduced to the 4" transvectant of
¢, together with terms in which g occurs only % —1 times,
which again may be reduced in like manner. If, then, we
arrange forms according to their order in the coefficients, it
bas been proved that the forms of any order consist either of
forms of lower order multiplied by u or by powers of u,
. orelse of transvectants obtained by combining » with forms

of lower order. :

306. We have just shewed that taking any one lgtter g
in the symbol for a form, that form may be regarded as a
transvectant of » combined with other covariants, and that the
symbol for each of these other covariants will contain all the
determinant factors of the original form, striking out those
which contain g. So again taking any letter f in the symbol
for any of these other covariants, we express that covariant
as a transvectant of » combined with covariants whose symbol
coutains all the determinant factors of the original, striking
out those which include the letters f and g. Proceeding thus
we see that taking any of the letters, say, a, b, ¢, and considering
the factors of the given form which contain these letters only,
say (ab)*(bc)? (ca)’, then the given form may be obtained by
transvection from a form in these three letters having as a factor
(ab)* (be)? (ca)”.

All that has been said in the last article applies equally if
the original form, instead of being a covariant of a single
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function, were a simultaneous covariant of several; that is to
say, if instead of a", 0", ¢" all representing the same function U,
‘they represent different functions U, V, W, &ec. It remains
true that if V be the function to which g refers, the form
represents a transvectant of ¥ and of other functions, whose
symbols could be separated in like manner. It may be seen thus
that if we had all possible covariants of two forms U, V separately
considered, including in the series the powers and products of the
simple covariants, the system of the simultaneous covariants
“of U, V is obtained by adding to these all possible transvectants
‘of a form of one set with a form of the other. If the forms so
obtained be combined by transvection with the covariants
of a third fundamental form W, we obtain all possible forms
of the system U, V, W, and so on. We refer to Clebsch, p. 186,
or to Gordan, Programm, p. 18, for a proof that if the system
of covariants of the separate forms U, ¥V, W be finite, the
number of distinct forms obtained by transvection in the manner
described, and therefore the npmber of covariants of the system,
is also finite.

307. We proceed now to give an outline of the method
by which Gordan bas shewed that the number of distinct forms
for a quantic of the n'® degree is finite, and we shall shew that
if this be true for a quantic of the degree n—1, it will be as
true for one of the degree n. The symbol for a form belonging
to a quantic of the (n— 1)t degree being Mafb’c” &c., where
the a symbols,  symbols, &c. each occur n— 1 times, it follows
that if we multiply the symbol by abc &c. we shall have a
form for a quantic of the n'® degree, since the a symbols, &c.
will thep each occur n times. We shall speak then of forms
belonging to quantics of different degrees, as being the same,
when the determinant factors in their symbols are the same,
and when these symbols only differ by a power of abe &c.
‘We propose to establish the following theorem, viz. that the
forms for a quantic of the n'* degree consist either of the forms
which had occurred already for a quantic of the degree n— 1, or
else of the mutual transvectants between such forms and the
series of two-lettered forms (ad)’, (ab)', &c. And in order
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to establish this, we shall shew in the first place that .every
form for a quantic of the n'™ degree either has in its symbol

- @ factor (ab)’ where p is not less than 4n, or else is a form
belonging also to a quantic of the (n— 1)t degree; and with
regard to the latter, we add the further restriction,® that if
its symbol be Ma®’c” &e., p the greatest of these indices shall
not be less than 3n. We shall prove this latter theorem
by shewing that if it is true for forms of the m™ order in
the coefficients, it is true for forms of the order m +1; and
it evidently is true for forms of the first order, that is the
quantic itself. Now it was shewn (Art. 305) that all forms
of the order m+ 1 can be obtained from forms of the order m
by transvection of such forms with ». Since this transvection
only adds new determinant factors to the symbol without
removing any of the old, it follows that every form. of the order
m having (ab)’ in its symbol, will give rise by transvection
to forms of the order m + 1 having the same property. We
need only consider therefore forms Ma®b%c" &e. Now. we saw
(Art. 304) that the % transvectant of such a form. is got by
operating % times with

1 d d g d

that is to say, it will be of the form M (ag)*a”*b'c"...g"™%,
together with transvectants of the order % — 1. The term
which we have written will, in case % is. as large as 4n,
contain the factor (ag)7; and if & be less than }n, then since
by hypothesis p is at least 4n, p— £ the index of a, will
be positive, and therefore the term will still be divisible by
abc &c., and will therefore denote a form belonging to a
. quantic of lower order, while n—% the index of g, will
- exceed n. We see then, that if forms of the order m in the
coefficients consist only of the two classes we have named,
the %' transvectant of such form will consist only of the same
two classes, provided this be true for the (£— 1)* transvectant.

~ * This limitation is only necessary for the proof of the theorem, and is not used in
" any of its subsequent applications.
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And s0 down step by step till we come to the 0 transvectant o=
that is to say, the product of the given form by a, for—
which it is obviously true. The theorem we have enunciatedll
is therefore proved.

It follows from what has been just proved, that every
invariant symbol must contain as a factor (ab;®, where p is at
least half n; for the other class of symbols, viz. those occurring
in quantics of lower order, of necessity represent covariants,
since they have the factors a, b, &c., each of which contains the
variables.

Forms having (ab)f for a factor are (Art. 306) transvectants
of forms having this as a factor, and it can be seen without
difficulty that, except when n =4, such forms will when p
exceeds 4n be of lower order in the variables than the quantic
itself. With this exception, then, it appears that forms for the
nt? degree are simultaneous covariants of certain forms all of
lower order than n; and therefore if the number be proved
finite for numbers less than n, it is also finite’ for n (Art. 306).
The case n = 4 requires a little speciality of treatment, for which
we refer to Clebsch, p. 267.

308. It would evidently be convenient if a general symbolical
expression could be given for the result of elimination between
two equations. When one equation is simple it is easily seen
that the eliminant between it and an equation of the n*® degree
is (aa) (ab) (ac), &c., where the symbol « relates to the equation
of the n'® degree, and the remaining symbols to the simple
equation. I gave in 1853 a general formula for the resultant
of a quadratic and an equation of the n' degree (Cambridge
and Dublin Math. Jour.* 1X., 32). The theorem was re-
discovered by Clebsch in 1860, and extended by him to the

* In the same paper I investigated a formula for the discriminant of a binary
quantic, and in this way obtained that for a quartic. Clebsch subsequently gave in
his paper (Crelle, LiX.), “ Ueber symbolische Darstellung algebraischer Formen,” a
rule for obtaining a general symbolic formula for the resultant of two binary quantics
or for the discriminant of a binary quantic. The method of proceeding is to apply
Cayley's form of Bezout’s method of elimination, Art. 87, to two quantics written
symbolically, but the resulting rule is, as might be expected, very complicated.
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case of a system of any number of equations, one of the second,
one of the =, and the "rest of the first degree (Crelle,
vol. Lviir). We give here Clebsch’s investigation of the
general theorem. To fix the ideas, I write only a system
of four homogeneous equations in four variables, but it will
be understood that the method is equally applicable to any
number of variables. Let the equations then be

a=ar +az, +ax,+0x,=0, B= wal + /3:2'2 + /331'3 + B‘-T‘ =0,
U=u,z’+ 2u,xa,+ &c. =0,

1271 2

and ¢ =0 an equation of the =' order in x, x,, x, z, which
may be written symbolically (a, +a,2,+ a2, +az,) =0.
The method of elimination employed is to solve between the
linear equations and the quadric, and substituting in ¢ the-
two systems of values found, to multiply the results together.
Now we may in an infinity of ways combine the quadric with
the linear equations multiplied by arbitrary factors, so as to
obtain a result resolvable into factors: that is to say, so that

U+ (A, + Mz, + &e.) (a2, + &e.) + (p,2, + &e.) (B, + &e.)
=(pz,+ &e.) (g2, + &c')'

We shall imagine this transformation effected, but_jt will
not be necessary to determiue the actual values of A\, u,, &e.
for it will be found that these quantities disappear from the result.
Taking, then, the coefficient of any term .z, in the quadric,
the equation written implies that we always have

.2“-} + (@A + a) + (Bigy + Buw,) = p.gi + p.g;--+(4).

Instead then of solving between the quadric and the linear
equations, we get the two systems of values by combining with
the linear equations successively px, + &c.=0, ¢z, + &c.=0.
And by the theory of linear equations the resulting values of
z,, x,, &c. are the determinants of the systems

Pn Pn ps) p4 911 Qn ga’ Q4
@, Gy % &, Gy &y Ay a,

ﬁu. '3:7 Bs) BA ) /311 ﬁ:’ Ba) ﬁd *
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If thom we ovaritats e St 3t of valmes 3 ax &K=, we
EA 1o dotaraiiant

a, a, a, a,
P> Pr Pr P
2. 1y 2 2,

2580 e B,

which we may write ‘o,p2,2,. Tbe result of elimination may
thus be written symbolically B="a,pa,3," 5 928,;". We use
in the second factor the symbol b instead of a, for the reason
explained /Art. 162, in order to obtain powers of the coefficients
o ¢; but it is understood that the b symbols bave exactly the
same mesning as the a, since after expansion we equally replace
the products od’a’a”, YV*Yb", by the corresponding coefficient
of ¢, a,,. We may then write the result of elimination in
the more symmetrical form

2l =la,p,B)" (bg,28,)" + (a,9,2,8) (b, p28)",

for this after expansion will be only double the former ex-
premsion,
Jxt us now write

(alpsalso) (aH:a 4) = A?
(blplaﬁO) (bﬂQa:Bc) =B,
(ax pIaIBJ) (blq:aﬂo) + (a,q,a,B‘) (b|P:a:B¢) =20,

then /2 may be casily expressed in terms of 4, B, C. For we
have '

2R = {0+ (C'~AB)}"+{C—-¥(0"- AB)}",
or Rm 0"+’-1~(;1.—21‘) C™*(0'-4B)

n(n—1)(n—-2)(n
B 1.2.3.4

+ =3) 0™ (0*= 4By + &e.

809. We proceed now to examine more closely the expressions
for A, B, C, and to get rid of the quantities p and ¢ which we
have introduced, so that the result may be expressed in terms
of the couflicients of the given quadric.
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Now A, which is the product of two deterﬁrinants, may be
“Swritten as a single determinant,

24 > ¥(2gtpg) Hegtng) 3 (Pgtrg) @ By o
i(? 19)"?:91)7 p:fa ) %(pIQ£+p8QQ ) i(.plqd-'.PIQQ), Gy Bﬂ a,
%(P lql-'TIQI)’ ‘1‘(1’ :q:"'ptqr)7 P aQa ? % (P:Qﬂ'l’ AQ8)’ al’ B 8 al

Hpadra) Hpatra) dpatra),  pa 1% Baa

al ’ a’ 7 a. b ] a‘ g veere T
B‘ ? B’ ) B: 1} ﬁ‘ g ssracssesee
al ’ a’ ] a. [} . a‘ g evescovocae

multiplied however by (-1)™", where m is the number of
variables, that is to say, in the present case, 4.

For, every element of this determinant’ must contain a
constituent from each of the last three rows and columns; it is
therefore of the first degree in the terms p ¢,, % (p,9,+2,9,), &¢.;
and if the coefficient of any of these terms be examined, it will
be found, according to the number of variables, to be either the
same, or the same with sign changed, as in the product of the
two determinants. Now in this determinant we are to substitute
from equation (4), ‘

Pigy =t + o+ By,

10, +02) =+ 3 (52 + &N) +§ (B, + By &
But when this change has been made, if we subtract from each of
the first of the four rows and columns the & row and column each
multiplied by 4, and the 8 row and column each multiplied
by §4,, &c., the additional terms disappear, and the determinant
reduces to

U,y U

1) 718 um an 19 al
v,

1 Uy Opy By
339 u’u" aa? Bl’ s
o Y %o By @,

Uy

uin u”,

Y,

437
al ? a: )

By Bys Byy By weverenns .

By Ay By B, euee cereuse

Clebsch denotes the above determinant, in which the matrix
of the discriminant of a quadric is bordered by rows and
- Uy
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columns, a, 8, &c., by the abbreviation (see p. 18)

(523

a B
the upper line denotmg the columns, and the lower the rows
by which the matrix is bordered. Thus, then, we find for
any number of variables

(1)

y oee@

In like manner B=(-1)"* (a, B, b) .

a, B ...b
And in the same way

C=(-1)™ (“’ B, “)

a, By ...b
. a\(d\ _ (a\ _ (a b
Now it was proved, Ex. 2, p. 32, that (a)( b) (b) =A a: b) ’
where A is the discriminant of the quadric. And it is proved
in the same way, in general, that

(a, B, ...a) (a, B, b) _ (a, B, ...a) (a, B, ..a, b) .
a, B, ...a/ \a, B, ...b a B, .0 a,By...a, b
If, then, we call the last written function D, we have

C'- AB=-AD,
and the formula of last Article becomes

. n(n- 1) - n(n l) n—2)(" 3) "4 2
R=C"- 7 Cc*'DAa + R e Da- &c.

310. As an example of the application of this formula we
give Clebsch’s investigation of the equation of the system of
inflexional tangents to a cubic (Crelle, 59), remarking in the
first place that formule of reduction corresponding to those
given (Arts. 299, 300), exist for quantics in any number of
variables. Thus for ternary quantics the most useful are

a (bed) — b (acd) + ¢ (abd) - d (abc) =0,
(abc) (ade) + (abd) (aec) + (abe) (acd) =0}
to which may be added the corresponding equations for con-
travariant symbols (Art. 160)
P (abc) = a (abc) + b (aca) + ¢ (aabd),
(aabd) (acd) + (abe) (aad) + (aca) (abd) =0,
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where P is az, +a2,+ax,. To come now to the problem
proposed, the equation of ‘the system of inflexional tangents
to a cubic is got (Higher Plane Curves, Art. 74) by eliminating
between the equation of the curve and those of its first and
second polars, and one of these equations being linear and
another quadratic, the formula of the last article is applicable.
By Art. 308 the eliminant is 4C*—384BC, where 4, B, C

are respectively (Z: Z), (Z; 2), (Z: (z) . But we have proved,
p- 18, that

(8 == () ~t0m, (25)=-14u (5) - abEE

The result therefore is when cleared of fractions

4 {abH+6u(Z)}’—3 {abH+ 6u (Z)} {a’H+6u (Z)} {b’H+6u(2)} .

But remembering that a® and 5* are each u, this may be
divided by %, and thus gives

uH*+18PH’ + 108 QHu + 216 R,

whero  P=3a' () ~ua (3) - (;),
Q=15 (§) - (3) (5) - (5) () -+ ¢) (2):
e (-2 6)

In the above formula, as at p. 17, H denotes the determinant
formed with the unreduced second differential coefficients ; but if
we suppose that, as in the Higher Plane Curves, each coefficient
has been cleared of the numerical factor six, we must write in
the above for H, 216H; also, since P, Q, R involve the second
differential coefficients in the 2nd, 4th, 6th degrees respectively,
these will be 6° 6% 6° times the corresponding P, @, R.
Making these substitutions, the eliminant becomes

uwH*+ 3PH* + 3QHu + Ru’.
To reduce this further observe that a (Z) =-3H; for (Z)
expanded is — (v, —u",) a’ + &c., but a’a (Art. 298) is u,, &c.,
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on making which substitutions, the truth of what has been
stated appears. In a similar manner it is easily seen that

d (g) =— Hb, from which at once follows that ’5’ (:) =— Hu.

‘We have then P=3Hu.
In order to calculate @, it appears from what we have just
stated that

() Qg 3ot ) () (()
Again we can show that ab (Z)'=3H’ for (Art. 33, Ex. 2)
(g)'= (a) (2) -H (a’ 2), and by actual expansion it is @sily

a a,
. a,b . :
seen that ab (a, b) =6H". Collecting the terms we have

=-—3H". Thus as the two terms 3PH", 3QHu cancel each
other, the eliminant is seen to be divisible by » and reduces
to H® + Ru.

311. Tt remains to calculate B. Now let us in the first
place observe, that if it be required to differentiate H,

%, Y, %, | with regard to ,, it follows from what

un’ Ussy un

“m “u) Usg
was said st the end of Art. 34, that the resnlt is

(u'nuu - “'u)am + &c'7
that is to say, the resnlt is —a, (Z) . Taking then the determinant

Uy Uy %, @ |, and multiplying the fourth column by
Uy Yy Y,

a1 Yoy Yom G (Z) and the fonrth row by(g) y we have

() (@) ¢) = (2)s

s1) “s3) T's¢) 3
b[ ) b_s ) bl )
’ H . .
that is to say, we mean by ( H) the result of substituting the

differential coefficients of H for a,, a,, a, and for b, b, b, in
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the determinant just written. We have also (Art. 33, Ex. 2)

6) - (@) 6)--206) (2)-

But if we take a, (a

a) and differentiate it by the 'same process

as that already employed, we find that the second differential
of H with regard to z, x,, is a, ( « g) and so on. Thus it

will be seen that (Z) (a b) isk (k) by which we mean the

result of substituting in ( a) for a,, a,, a, symbols of differentia-
tion applicable only to H. We may get another expression for
(‘Z) (:: Ib)) . It is the coefficient of A in the expansion of the

Hessian of u+AH. For, that Hessian is found by.substituting
in the determinant which expresses the Hessian, for each

second differential coefficient u,, %, +M\a,b, ( a b) and it is easily

seen that the coefficient of A in this expansion is as stated.
But if we remember (Higher Plane Curves, Art. 225) that that

coefficient is —2Su, and that (g) is what is called © (Higher

Plane Curves, Art. 231), we identify the result now obtained
with that there given (Art. 232, Ex. 1), viz.

H? - 58u*H+ u®.

312. In the theory of double tangents to plane curves.
explained (Higher Plane Curves, Art. 384), it is necessary to
calculate the result of substituting in the successive emanants
U, — Ok, o, —au, o —ou for z, , , and to show
that each result is of the form P, + @, (a,x, + a2, + az,)’. We
give as a further illustration of the use of symbolical methods
the application of them to the calculation of @,, &c. These
results of substitution may be symbolically expressed a** (aau)*,
a**(aau)®, &ec., where a only is a symbol. These expressions
may be reduced by the help of a general formula for (aau)’,
which is found as follows, as in Higher Plane Curves, Art. 390:
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This square differs only in sign from the determinant
uu’ uu’ uls’ a, au ul
Ugpy Uggy Uy Ty Gy Uy
Ugyy Uggy Upyy Byy gy Uy
al ? az ? aa

a,,a,,a,

ul’ u’:’ u:

But this determinant is reduced as at p. 18, so that the outside
row and column become 0, 0, 0, — a, —a, — %; and we have

= (3 ¢ (3 - (2) -0 (3

In the calculations we have to make, we suppose that the
values of z,, z,, z, make u vanish. To calculate then @,, multiply
this equation by @™ the first term on the right-hand side

has u for a factor and vanishes, o™ (Z) is — 34, and o™ (Z)
is —aH. Thus we have Q,=- o’H.
Again Q=a"" (Z) (aau) +a’a™™ (Z) (eau) — 2a""a (Z) (aau),

but the first and last terms vanish'identically; and the middle
term reduces to — a' (aHu), for we have seen that the differentials

of the Hessian are —a™a, (Z) , &e.

Again, for @, we have to calculate

= o (0] o (0) - (Qf = &) -4 3) 2
+4a™a" (Z)’+ 2% (5) (§) - 4o’ (:) (a) + ot (‘;)’ .

The first term vanishes, the second is 4a’ (3) H, the third is

—4a* (:) H, as may be seen from la:st Article, and since

a"? (Z) i%; —3H, the fourth is - 6a’ (z) H. Thus we see that
the result is divisible by &', giving

Q=-6 (:) H- 4a_(€) +a™ (Z)’
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313. As final illustration of the use of symbolic methods we
give typical expositions of binary quantics, in the first place, of
even degree by means of three independent quadratic covariants
(Clebsch, p. 414). Let the three independent quadratics be

k=k'=k'z’+2%kox, + k), I=1% m
and their J acobums k=(lm)lm, \=(mk) m,k,, p= (kl) k1,
and denote by accented letters symbols for the same form.

Then for p=p,” any fourth quadric (compare p. 181) we -have
(px)’= (lm)(mp)(lp), and writing D = — (Im)(mk)(kl), the identity

k kl" klk!1 :’ =0

ll’ 0,

12 s

m, m11 mlmn m

p, pl v P\Ps Pi
becomes p "D =k ( pr)* + I (p\)' + m (pu)'.

Thus, if the required even quantic / be symbolically
expressed by ", we find f expressed by means of %, [, m by
replacing p by a in this symbol and raising it to the power n:

JD" ={(ax')’k + (a\')’l + (ap’)'m}
 {(an”)'E + (@0 1-+ (ap”m}
x {(a&™)'k + (@A)l + (ap™)*m}.

When this product is expanded the coefficients of its terms
k*lPm” are evidently invariants, thus the expression is typical
{(p. 249). The quadric relation which subsists between %, , m
enables us to go back from this ternary to a binary form:
introducing in so doing only the invariants of the three quadratics.

If we retain %, [, m as three variables the symbol a " defined
by a, = (ax)'y, + (a\)'y, + (am)’y, is evidently that of a unique
curve of the n™ order, which is determined by the 2» points
of f, which are now given on a conic. The additional relations
of this curve to the conic by which its uniqueness is secured
arise from the fact that if the conic be written symbolically
,8”’= ", then their covariant (a88’)’ @, vanishes identically® ;

* F, Lindemann, Bulletin de la Soc. Math. de France, t. v.1877. For n> 3 this
specializes the curve, thus he notices that the conditions for n =4 limit the ternary
quartic to admit of being the sum of five fourth powers, cf. Note, p, 151,



o~

BNE ,srxnou%f/mnons.

or ngun, that infinity of triangles conjugate to this
conic which are umd in the polar conic of y relative to the
carve a,’=0; e pds; that/all the conical polars of this

A '// -

314. The expositiony - hgfegvef, can be made to involve

invariants of lower degrdsé byl ubing s its basissipstead of the

quadratics their Jacobishs. Hp/fact, as in “Art. 193, we can

123 u+DaJJ D-Jn_“le ‘:Rul"'ua @139
or, in the present & atnon,mz :

k (ax)’ + L (AN)' + m (ap)]= (ak)’ £ + (al)’A 4 (am)’

+ (am’)’ p}

x {(ak")'e+(al'Yh+ (am" Y}

................. ®ecccscecccsccccces

x (k™)' + (al*)h+ (am™Y'u

D upon f. Thus the coefficients are the n** transv.
k*Pm”, whefe a+B+y=4r, and .are accordingly\ of much
lower order [than the others, which were its transv
the same ordbr on £*AP4” where a4 8+ ¢ =}n. _

‘It is in this manner that Clebsch developes the e_Lpression
for the sextic by its quadric covariants when £ does not vanish.
Each covariant\symbolically contained in : .
E'f=a {(aly\+ (amY's-+ (dn)'v} (@I + (am'Y' s (an')'v}
is found as a lineyr function of [, m, n by means of the \nvariants
4, I, 1, IV, anjl, on expanding, the products of tha second
order of A, p, v gre replaced by quadric functions of § m, n
without denomma.tpr

315. In a sm\llar manner Dr. ¥. Lindemann (Math,
Ann. XXIIL, p. 133) has given the typical exposition of fm'ms
of the order 3p by means of four independent cubic covariants
in connection with the formule of Art. 2195, and the consequént
geometrical reference td a twisted cubic without the canonic
reduction employed in Arts. 219c, d. Qﬁ :

(

i
N

N\
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In fact, now denoting the cubics by &*, %, m* n? and the
forms —Jm, Jots Jm, I Y £, A0, .0, v}, it is easily seen that '
for any other cubic a,* we have (ax)’=(mn)(nl)(im)(al)(am)(an),
and writing (k«)* = (l)..)' &e. = A, that
Aal = (ak)’k} + (a)\.)'l *+ (ap)‘m '+ (av)’n}
- =(ak)’k} + (al)’N)} + (am)’p,.’ + (an)’v".
Whence we find the 3p/° f by raising thls to the degree p
Na¥= {(@K)k+ (@) + (auYm +(@)n)
X {(ak”)k + (aX”) L+ (ap”Y’'m + (av”)’n}
X {(alc"”)'k + (ak‘”)'l + (a “IP))'m + (ay(")’n},-
or = {(@ak)k+ (@l)P\+ (am’)’p + (an')’v}
(@ + @)+ (oo + @'Y
{(ak“”)‘ &+ (@l?)N + (am®Yn + (an"’)' J.

Either form expanded is a funetion of degree p in fou¥
variables with invariant coefficients. Taking the point z,=%/,
5,=107 &c. as variable with « its locus is a twisted enbic,
and the coordinates of the osculating planes determined by a are
u;=«, u,=2° &c.. The equations of three quadrics through
this curve or of three quadrics touched by all its osculating
planes can be easily found from the obvious relation

Ay =k'k,+ 1N +m’p,’ -f-nz 5
and the others which follow from it as successive polars. When
found these equations enable us to return to a binary system
mtroducmg only invariants of the cubics.

Thus the .equation of the surface, whose mtersectlons with
the twisted eubic are the 3p points of the binary quantic, is
either a? =0 where a,= (ar)’z,+ (aL)%z, + (ap)’2;+ (av)’z, or
BI=0 where B,=/(ak)u,+ (al)'u,+ (am)’u,+ (an)’u, this
tangential form 1nvolvmg invariants of lower order.

This surface a”=0 is unique, and if we denote by =0,
u’ =0, u, =0 the three quadrics touched by all osculating
pla.nes of the twisted cubic, it is shown by Dr. Lindemann that
this is because the three equations a,’'a’"=0, a'a’"=0,
a.%a"" =0 are identically true, and therefore o= 0'is con;ugate,
or a.polar, to all the quadrics which can be inscribed in the

developable surface of the twisted cubic. -
XX
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C NOTES.

HISTORY OF DETERMINANTS. (Page 1).

THE following historical notices are taken from Baltzer's Theory of® Determinants ;
and from the sketch prefixed to Spottiswoode’s Elementary Theorems relating to Deter-
minants. The first idea of determinants is due to Leibnitz, as Dirichlet has pointed
out. In Leibnitz's letter to L'Hapital, 28 April, 1693 (Leibnitz's Matkematical Works,
published by Gerhardt, vol. II. p. 239), is to be found the first example of the
formation of these functions, and of their application to the solution of linear equa-
tions; the double suffix notation (p. 7) is employed, and he expresses his conviction
of the fertility of his idea. But nowhere else in his writings is there to be found
any proof that he sought to draw any new fruits from his discovery; and the method
was lost until re-discovered by Cramer in 1750. Cramer, in his Introduction & T Analyse
des lignes Courbes (Appendix), has exhibited the-determinants arising from linear
equations in the case of two and three variables, and has indicated the law according
to which they would be formed in the case of a greater pumber. The rule of signs
by the method of displacements (p. 6) is given by Cramer. The equivalence
of the other method by permutations of suffixes was afterwards proved by Bezout
and Laplace. In' the Histoire de I'Académie Royale des Sciences, Année 1764 (pub-
lished in 1767), Bezout has investigated the degree of the equation resulting from the
elimination of unknown quantities from a given system of equations, and has at the
same time noticed several cases of determinants, without howevey entering upon the
general law of formation, or the properties of these functions. The Histoire de
U Académie, An. 1772, part 11. (published in 1776), contains papers by Laplace and
Vandermonde relating to determinants of the second, third, fourth, &c. orders. The
former, in discussing a system of simultaneous differential equations, has given the
law of formation, and shown that when two rows or columns are interchanged, the
sign of the determinant is changed, and that when two are identical, the determinant
vanishes. The latter employs a notation in substance identical with that which, after
Mr. Sylvester, we have called the umbral notation, and explained p.8. In his Memoir
on Pyramids (Mémoires de P Académie de Berlin, 1773), Lagrange made an extensive
use of determinants of the third order, and demonstrated that the square of such
& determinant can itself be expressed as a determinant. The next impulse to the
study was given by Gauss, Disquisitiones Arithmetice, 1801, who showed, in the case
of the second and third orders. that the product of two determinants is a determinant,
and very completely discussed the case of determinants of the second order arising
from quadratic functions, i.e. of the form 2—ac. In 1812 Binet published a memoir
on this subject (Journal de TEcole Polytechnigue, tome IX., cahier 16), in which he
establishes the principal theorems for determinants of the second, third and fourth
orders, and applies them to geometrical problems. The next volume of the same
series contains a paper, written at the same time, by Cauchy, on functions which only
change sign when the variables which they contain are transposed. The second part
of this paper refers immediately to determinants, and contains a large number of very
general theorems. Cauchy introduced the name ¢ determinants,” already applied by

1
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Gavss to the functions considered by him, and called by him “determinants of
quadratic forms.” In 1826 Jacobi took possession of the new calculus, and the
volumes of Crelle’s Journal contain brilliant proofs of the power of the instrument
in the hand of such a master. By his memoirs in 1841, De formatione et proprietatibus
determinantium and De determinantibus functionalibus (Crelle, vol. XX11.), determinants
first became easily accessible to all mathematicians. Of later papers on this subject,
perhaps the most important are Cayley’s papers on Skew Determinants (Crelle,
vol. XXXII. and XXXxVIIL.). Of elementary treatises on this subject, I have to
mention Spottiswoode’s Elemeniary Theorems relating to Determinants, London (1851) ;
Brioschi, La teorica dei determinanti, Pavia, 1804 ; and Baltzer, Theorie und Anwen-
dung der Determinantem, Leipzig, 1857; fifth edition, 1881. French translations
both of Brioschi’s and Baltzer’s works have been published.

COMMUTANTS. (Page 8).
In connection with the umbral notation may be explained what is meant by
commutants, which are but an extension of the same idea. It is easy to see what,
according to the rule of the umbral notation, is meant by &, n, & &n, %,

i 4 E; L) ? y E"’ "’!
o’ d—y . We compound the partial constituents in

each column in order to find the factors in the product we want to form, and take the
sum with proper signs of all possible products obtained by permuting the terms in the
lower row. Thus the first example denotes £2.n%— En. £y, which is the Hessian : the
second denotes . E%%n*— E4 End. En? &c., which is the ordinary cubinvariant of a
quartic.

Again, since multiplication is performed by addition of indices, it will‘be readily
understood that we can equally form commutants where the partial constituents are
combined by addition instead of by multiplication. Thus, considering the quantics

(az ay, aoI"") )% (ay a5 ag ay, “oI-"’; 4
the invariants in the last two examples may be written 1, 0, 21,
1, 0, 21

if we write for brevity 'E, 1, for

K=

which

(=}

Lt Bt |

'expanded'are a0y — a8, ; 0,a,0,—a,a,a, +&c.
All these commutants with only two rows may be written. as determinants, but
it is a natural extension of the above notation to form commutants with more than

two rows, such as §, n, 1, 0, £, En, n%. These all denote the sum of
& 1,0, . &, &, n2.
E; L) 1, 0: ?’ E’b n%
& 1,0, &, En, n

a number of products, each product consisting of as many factors as there are columns
in the commutant and each factor being formed by compounding the constituents of
the same column; and where we permute in every possible way the constituents in
each row after the first. Thus the first and second examples denote the same thing,
namely, the quadrinvariant of a quartic expressed in either of the forms
ELan'—4E%. En®+3E%.E™? or a,a,—4a,4a, + 8a,a,, While the third example £8.E44.n8— &c.
denotes the cubinvariant of an octavic given at length, Art. 155.

We have seen that the two invariants of a binary quartic can be expressed as
commutants, but it will be found impossible to express in the same way the dis-
criminant of a cubic. Thus the leading term in it being as?a,? or E;E;n;n; we are
naturally led to expect that it might be the commutant &, #, &, n, but this commu-

En ko
En &
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tant, instead of giving the discriminant, will be found to vanish identécally. : It may,
however, be made to yield the discriminant by placing certain restrictions on the
permutations which are allowable, For further details I refer to the papers of
Messrs, Cayley and Sylvester-in the Cambridge and Dublin Mathematical Journal, 1852,

ON RATJONAL FUNCTIONAL DETERMINANTS.* (Page 14).
The determinants considered Ex. 5, 6, are particular casgs of the important form

¢ @) ¥ @ ...
LX) P )

where ¢ (z), W (z) denote rational integral functions of z, and ¢ (y), ¢ (z), &c., the

same functions of y, 2, &c. respectively. Such a determinant may be briefly denoted
by its top line | ¢ (z), ¥ () ... | . Thuys the determinant Ex. 5 may be written
| 1, z, z%..a*" | . This last determinant we have seen has for its value

i@, g, 2...)5
by which notation Prof. Sylyester denates the continued product of the differences
(F=y)(z—2)(x~v)...%x (y—2) (y—w) .., X (2~w) &c.

This alfernate product is of the nature of a square root: ifs square we know is a
symmetrical funcfion of z, ¥, z, &c., and is unaltered by any permutation of these
vyariables; but itself has two values corresponding to the different arrangement
of the variables, its sign being altered if we permute any two of the variables.
The function | 1, ,...2*? | was suggested by Cauchy as a symbolic representation
of a determinant, viz. expanding it as the sum of a series of terms +y'2%w?..., and
changing the exponents into suffixes, or the term into z.y,z,w; ..., we haye the
development of the determinant | o, ;...2py o

Yo Y1oe:Yn

ST
It may be forther remarked in passing, that any rational funotion of the variables
&, y, &c., which, however the variables are permuted, has only two values, must
be of the form P+ QYd, where P, Q are symmetric functions of the variables.

Returning now to the general determinapt | ¢ (), Y (2)... | , it obvious]y con=
tains g as & factor, for on the supposition z=y, it vanishes as having two rows the
same, and is therefore diyisible by z—y; and similarly with regard to every other
difference. Let us thep in particular examine | 2%, 6, 27... | , which we may call

| @ B, 9, ... | in order to find the value of the remaining factor. If a be the least
of these exponents, we may divide each row by z*, 34, ... respectively, so that we can
at once redpce the ipveetigation to that of the case where @=0.

In the following we employ a method given by Jacobi, De Functionibus Alter-
pantibug, Crelle 22, (1841); depending on the consideration of the determinant
1 1 1 For convenience we work with the case of three
z—a’g—5'z—¢"" |* variables, but it will be seen that the process is perfectly
ganeral. Cousider thep the equation which is obyiously true

1 1 1
z—a' z-b'z—¢
JE S U N By o)ti@s 0
a;-’be'y—t T (@-a)z-0) -0 (y-a) (y-b)(y—c) (z—a)z—0)(3—¢)’
1

¥ This note is, ip substance, Professor Cayley’s.
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and expand eech side by descending powers of z, y,.7. We have
1 1l a a
e ztatntees
whence, on the left-hand side, the term multiplying the reciprocal of z*y%s is
: a® 1, pr1, cal
’ ’
af1, 4B, oF
a'l-l, » -I’ cr! .
In order to expand the right-hand side, observe first that if H,, H, &o. have the
same meaning as at Art. 272, then
.—1__ = l + i + 5
(@—a) (@—0b) (x=c) a* at  at

.

+ &c.,

" as is easy to see by multiplying together the expansions for ;,Tla &c. We have also

z‘(’;.’h’)=" 1, z, 2% (.
Ly ¢
1, 2, 22
Hence, the right-hand side is ! (g, 8, ¢) multiplied by
1, H, 1, H, 1. H,
l z—‘+? + &e., §+-z—,+&c., ;+ §+&c. N

and the term multiplying the reciprocal of z*yfz? is {¥ (g, 5, ¢) multiplied by
Hagy Hagy Hyu

Eﬁ-l’ Hﬁ—m -gﬂ-l

H, y-3 H, b 'y—l

‘We have thus

&, b, oA Ha gy Hap Ha,
af1, 881, B~ =Z‘(a, b,c) | Hp-o» Hp HB, |
a?1, p11, 1! Hy o Hypoy Hyy

which we may write (a—1, 8—1, y—1)={ (a, 5, ¢) H (a—3, B~3, y-3).

We may verify this equation by writing e=1, 8=2, y=3, observing that
Q(a, b, ¢)=—(0, 1, 2), that H_,, H_, vanish and that H, is 1.
If we write a=1, and for 8, y write 8+1, v+ 1, we have

; H, H., H,

0,8, V)=CH(-28-2, 7—2)=§i’ HB_, HB.y, Hﬁ

, E.y_,, H,y_l, H,y

BntainosH_,,H_,Mmdﬂ.:l,the]astdeteminantreduoeswl gp_,h Hp—n I

r® ¢

H,,
Thus we have finally (0, 8, v) = (! (Hg_,H,y,— Hg,H,-). As an example, taking
B=1, we get (0, 1, y)=—H,,,T’, a formula which includes that of Ex. 6, p. 15,

‘We may also consider determinantsinvolving the square roots of rational functions
de @ =y @) - |»
e @h v @ -

but these, although presenting themselves in the theories of Elliptic dnd Abelian
functions, have been but little studied.

HESSIAN, (Page 17).
The name was given by Sylvester after Professor Otto Hesse, who made much
use of the functions in question, which he called functional determinants. They
are a particular case of those studied under the same name by Jacobi (Crelle
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vol. xx11.), the constituents of which are the differentials of a series of # homo-
geneous functions in n variables. It is so convenient to have short distinctive
names for the functions of which we have repeatedly occasion to speak, that I have
followed Sylvester in calling the former Hessians, the latter Jacobians, see Art. 88.

SYMMETRIC FUNCTIONS. (Page 56).

The rules for the weight and order of symmetric functions are Prof. Cayley’s.
The formula, Art. 59, I have taken from ,Serret's Lessons on Higher Algebra.
The differential equation, Art. 60, is an anticipation of the differential equation for
invariants, of which I speak, Art. 143. Brioschi (see M. Roberts, Quarterly Journal,
vol. 1v. p. 168), remarked that the operation {yd:} (Art. 65), expressed in terms of the

. d  d
mu,md—a"'d'ia‘f'&c-

ELIMINATION. (Page 66).

The name ‘eliminant’ was introduced I think by Professor De Morgan; I believe
I have done wrong in using a second appellation when a name to which there was
1o objection was already in use. The older name ‘resultant’ was employed by Bezout,
Histoire de T Académie de Paris, 1764. The method of elimination by symmetric
functions is due to Euler (Berlin Memoirs, 1748). The reduction of the resultant to that
of a linear system was made simultaneously by Euler (Berlin Memoirs, 1764) and Bezout
(Paris Memoirs, 1764). The theorem as to the degree of the resultant is Bezout’s.
The method used in Art. 74 of forming symmetric functions of the common values
of a system of two or more equations is Poisson’s (see Journal de I Ecole Polytechnigue,
- Cahier X1.). Sylvester gave his mode of elimination in the Philosophical Magazine
for 1840, and called it ‘dialytical,’ because the process as it were dissolves the relations
which connect the different combinations of powers of the variables and treats them
as simple independent quantities. Cayley’s statement of Bezout’s method is to be found,
Crelle, vol. L111., p.866. Bylvester’s results in Art. 91 are to be found in the Cambridge
and Dublin Mathematical Journal for 1852, vol. v11., p. 68 ;" and Cayley’s general theory
(Art. 92, &c.) in the same Journal, vol. 111., p. 116. It was noticed by Lagrange, that
when two equations have two sets of common roots, the differential of the resultant
with respect to the last term vanishes (see Berlin Memoirs, 1770). Bylvester showed,
in January, 1853, that the same was true of all the differentials, Caméridge and
Dublin Mathematical Journal, vol. ViIL, p. 64. He showed at the same time, that the
common roots were given by the ratios of the differentials, The proof in Art. 99 is, I
believe, my own. The theorem, Art. 99, is Jacobi's Crelle, vol. xv., p. 105. In this
part I have made some use of the Treatise on Elimination by Fa4 de Bruno. The
theorem of Art. 102 is Prof. Cayley’s.

DISCRIMINANTS, (Page 98).

The word ‘discriminant’ was introduced by Sylvester in 1852, Cambridge ond
Dublin Mathematical Journal, vol. vi., p. 62. The word ‘determinant’ had been
previously used, and had come to have a perplexing variety of significations. The
theorem referred to, Note, Art. 111, was the basis of my investigations (Cambridge and
Dublin Mathematical Journal, 1847 and 1849) on the nature of cones circumscribing
surfaces baving multiple lines. If the equation of a surface be &, + &,z + b,2? + &c.,
and if zy be a double line, y must be contained by &, in the second and &,.in the first

. The discriminant with respect to z is a tangent cone which has y? for a factor.
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BEZOUTIANTS. (Page 107).

It has heen shown (Art. 85) that the resultant of two equations of the n* degree is
expressed by Bezout’s method as a symmetrical determinant. This may be considered
(Art. 118) as the discriminant of a quadratic function which Sylvester has called
the Bezoutiant of the system. When the quantics are the two differentials of the
same quantic, then if we resolve the Bezoutiant into a sum of squares (Art. 165), the
number of negative squares in this sum will indicate the number of pairs of imaginary
roots in the quantic. The number of negative squares is found by adding (as in
Art. 46) A to each of the terms in the leading diagonal of the matrix of the Bezoutiant,
and then determining by Des Cartes’ rule the number of negative roots in the equation
for A. The result of this method is to substitute for the leading terms in Sturm’s
functions, terms which are symmetrical with respect to both ends of the quantic;
that is to say, which do not alter when for = we substitute its reciprocal (see Sylvester’s
Memoir, Philosophical Ty ctions, 1853, p. 513).

LINEAR TRANSFORMATIONS. (Page 108).

The germ of the principle of invariance may be traced to Lagrange, who, in the
Berlin Memoirs, 1773, p. 265, established the invariance of the discriminant of the
quadratic form ax?+ 2bxy+ cy?, when for z is substituted =+ Ay. Gauss, in his
Disquisitiones Arithmetice (1801), investigated very completely the theory of the general
linear transformation as applied to binary and ternary quadratic forms, and, in par-
ticular, established the invariance of their discriminants. This propérty of invariance
was shown to belong to discriminants generally by the late Professor Boole, who, in a
remarkable paper, Cambridge Mathematical Journal, 1841, vol. 111., pp. 1, 106, applied
it to the theory of orthogonal substitutions. He there showed how to form simultaneous
invariants of a system of two functions of the same degree by performing on the

discriminant of one of them the operation a’ g—l +¥ (—;—15 + &c. Boole’s paper led to

Cayley's proposing to himself the problem to determine & priori what functions
of the coefficients of an equation possess this property of invariance. He found that
it was not peculiar to discriminants, and he discovered other functions of the co-
efficients of an equation at first called by him ‘hyper-determinants,’ possessing the
same property. Cayley’s first results were published in 1845 (Cambridge Mathe-
matical Journal, vol. 1v., p 193). From this discovery of Cayley’s, the modern algebra
which forms the subject of the bulk of this volume may be said to take its rise.
Among the first invariants distinct from discriminants, which were thus brought to
light, were the quadrinvariants of binary quantics, and in particular the invariant 8
of a quartic. Mr. Boole next discovered the other invariant T"of a quartic, and the
expression of the discriminant in terms of S and T' (Cambridges Mathematical Journal,
vol. 1v., p. 208). It is worthy of notice that both the functions S and 7"had been
used by Eisenstein (Crelle, 1844, XXVI1I, p. 81) in his expression for the general solution
of a quartic, but their property of invariance was unknown to him, as well as the
expression for the discriminant in terms of them. Cayley next (1846) published
the symbolical method of finding invariants, explained in Lesson X1V, (Cambridge and
Dublin Mathematical Journal, vol. 1., p. 104, Crelle, vol. xxX.). The next important
paper was by Aronhold, 1849 (Crelle, vol. XXXIX , p. 140), in which the existence of
the invariants 8 and 7T of a ternary cubic was demonstrated.. Early in 1851 Mr. Boole
reproduced, with additions, his paper on Linear Transformations (Cambridge and
Dublin Mathematical Journal, vol. vi., p. 87), and Sylvester began his series of
papers in the same Journal on the Calculus of Forms, after which discoveries followed
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in rapid succession. I'can scarcely pretend to be able to assign to their propey
suthors the merits of the several steps; and, as between Messrs. Cayley and
Sylvester, perhaps these gentlemen themselves, who were in constant communication
with each other at the time, would now find it hard to say how much properly
belongs to each. To Mr. Boole (Cambridge and Dublin Mathematical Journal,
vol. V1., p. 95, January, 1851) is, I believe, due the principle that in a binary quantic the
operative symbols-d—, - 7, may be subetituted for z and y. The principle was
extended to quantics in general by Sylvester, to whom is to be ascribed the general
statement of the theory of contravariants, Cambridge and Dublin Mathematical Journal,
(1857), vol. v1.,, p. 291; although particular applications of contravariants had pre-
viously been made in Geometry in the theory of Polar Reciprocals, and in the theory
of ternary quadratic forms by Gauss (Disquisitiones Arithmetice, Ait. 267), who
gives the reciprocal under the name of the adjunctive form, and establishes its
invariance under what he calls the “ transformed substitution.” Sylvester also re-
marked thet we might not only xe‘})hoe contravariant by operative symbols, but also
by the actual differentials Z—:, -;;:, &c. To Boole I would ascribe the principle
(Art. 126) that invariants of emanants are covariants of the quantic (1842), Cambridge
Mathematical Journal, vol. 111, p. 110, though Boole’s methods were generalized by
Sylvester, Cambridge and Dublin Mathematical Journal, vol. v1,, p. 190. Some
of the first steps in the general theory of covariants may thus be ascribed to Boole,
though a remarkable use of such a function had been made by Hesse in determining
the points of inflexion of plane curves. I had mywself been led to stidy the same
functions both for curves and surfaces, in ignorance of what Hesse had done
(Cambridge and Dublin Mathematical Journal, vol. 11, p. 74). The discovery of
evectants (Art. 134) is Hermite's, Cambridge and Dublin Mathematical Journal, vol. v1.,
p. 292. In Cayley’s first paper he gave a system of partial differential equations
satisfied by invariants of functions linear in any number of sets of veriables. The
partial differential equations (Art. 149) satisfied by the invariants and covariants of
binary quantics were, as far as I know, first given in print by Sylvester (Cambridge
and Dublin Mathematical Journal, vol. ViI., p. 211). Sylvester there acknowledges
himself to have been indebted to an idea communicated to him in eonversation by
Cayley; snd he also speaks of having heard it said that AronhoM also was im pos-
session of a system of differential equations. These are not made use of in Aronhold’s
paper (Crelle, vol. XXX1X.) already referred to, but he refers, Crelle, vol. LxII,
t0 & communication made by him in 1851 to the Philosophical Faculty at Konigsberg,
which, if it ever appeared in print, I have not seen. Very probably there may be other
parts of the theory to which Aronhold may justly lay claim. After the publication in
Crelle, vol. xXX., of Cayley’s paper, in which the symbolical method of forming in-
variants was fully explained, Aronhold worked at the theory in Germany simultaneously
with the labours of Cayley and Sylvester in England ; and the mastery of the subject
exhibited by his papers leads me to suppose that of some of the principles he must
be able to claim independent if not prior discovery. The method in which the subject
is introduoced (Art. 121) is taken from his paper (Crelle, vol. Lx1I). I refer in a note
on next page to the valuable paper by Hermite (Cambridge and Dublin Mathematical
Journal, vol. 1X., p. 172), in which the theorem of reciprocity was established, which
had at first suggested itself to Sylvester, but was hastily rejected by him, and in
which the whole theory of quintics received important additions. Mixed con-
comitants are Bylvester's (Cambridge and Dublin Mathematical Journal, vol. viI
p-80). The theorem, Art. 135, is Cayley’s and Sylvester's. The application of sym-

etric functions to the invariants of binary quantics was, I believe, first made in the

ppendix to my Higher Plane Curves (1852). The method (Art. 188) of thence finding:
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conditions for. eystems of equalities between the roots is Cayley's (Philosophical
Transqctions, 1857, p. 708). With regard to the subject generally, reference must
be made to the important series of papers by Sylvester, beginning in the sixth
volume of the Cambridge and Dublin Mathematical Journal; to a series of papers
on Quantics published by Cayley in the Philosophical Transactions ; and to Aronhold’s
Memoir on Invariants (Crelle, vol. Lx11.). The name ‘invariant, as well as much
of the rest of the nomenclature, is Sylvester’s.

~

CANONICAL FORMS. (Page 150).
The name is Hermite's ; the theory explained in this Lesson is Sylvester's, see
a paper (Philosophical Magazine, November, 1851) published separately, with a sup-
plement, in the same year, with the title 4n Essay on Canonical Forms.

COMBINANTS. (Page. 161).

The theory of combinants is Sylvester’s, Cambridge and Dublin Mathematical
Journal (1853), vol. VIiL., p. 63. In the case of the resultant of two equations it had,
I think, been previously shown by Jacobi, that the resultant of Au+uv, N'u+ u'v
was the resultant of 4, v multiplied by a power of (Au'—A’u). Sylvester's results
Arts, 185, 188, 189, are given in the Comptes rendus, vol. LVIIL, p. 10749,

APPLICATIONS TO BINARY QUANTICS. (Page 175).

In Lesson xviI the discussion of the quadratic, cubic, and quartic, is mainly
Prof. Cayley’s. .See his Memoirs on Quantics in the Philosophical Tr ctions, 1854
The second form of the resultant of two quadratics, p. 180, is, as elsewhere stated,
Dr. Boole’s. Sylvester proved (Philosophical Magazine, April, 1853) that every
invariant of a quartic is a rational function of § xmd T. The theorem, Art. 206, that
the quartic may be reduced to its canonical form by real substitutions, is Legendre’s
(Traité des Fonctions Elliptiques, chap. 11). The discussion of the systems of
quadratic and cubic, two cubics, and two quartics, was, I believe, for the most part new,
when it appeared in the second edition in 1866. The form for the resultant of two cubics,
obtained by him by a different ‘method, was published by Clebsch (Crelle, vol. LX1v.),
but had been previously in my possession by the method given in Art. 218. On
the connection p. 174 between concomitants of binary systems and those of a larger
number of variables, R, Sturm’s paper (Borchardt, LXXXVI. pp. 116—46) should be
referred to. Also for the reduction of the system of two quartics, p. 224, announced
by Sylvester, see Stroh, Math. Ann. xX11, 293, who cites d’Ovidio as having alsd
effected it.

In Lesson XVIiI the canonical form of the quintic.az® + bys +c25, which so much
facilitates its discussion, was given by Sylvester in his Essay on Canonical Forms,
1851, The invariants J and K were calculated by Prof. Cayley. The value of the
discriminant and its resolution into the sum of products (p. 230) was given by me in
1850 (Cambridge and Dublin Mathematical Journal, vol. V. p. 164). Some most
important steps in the theory of the quintic were made in Hermite's paper in the
Cambridge and Dublin Mathematical Journal, 1854, vol. 1X., p. 172, where the nunmiber
of independent invariants was established ; the invariant I was disoovered ; attention
was called to the linear covariants ; and the pessibility demonstrated of expressing by
invariants the conditions of the reality of the roots of all équations of ‘odd degrees.
The theory of the quintic was further advanced by Sylvester'’s “Trilogy” (Philoe
sophical Transactions, 1864, p. 579); and in Hermite's series of papers in the first
volume of the Comptes rendus for 1866 already referred to. The values of the
invariants 4, B, C of the sextic weye given by Prof, Cayley in his papers on Quantics,

YY
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and the existence of the invariant E pointed out. The rest of what is stated in the
text about the sextic in Arts 252—8, 260—1 is nearly as it appeared for the first time in
the second edition. Arts. 257—9 are from Clebach “ Theorie, &c.,” p. 297, and Arts. 262
to the end of the Lesson are from the sources indicated in the foot-notes.

The term “apolar” is due to Th. Reye, whose investigations on “ Moments of
Inertia, &c.,” Borchardt, Jowrnal LXXI1, led to his “ Erweiterang der Polarentheorie
algebraischer Flichen,” vol. LxXvIIJ, p. 97, which he opens by remarking, that the
polar theory of surfaces of the 2 order has hitherto dealt only with polars of points
taken singly or in groups. Bat in regard to any such sarface F, there also corresponds
to any surface of class X, for k£ <, a definite surface of order s — & which becomes
-identical with the polar of a group of & points in case the sarface of class k reduces
to such a group. He claims a special interest for such surfaces of class k for which
every arbitrary surface of order s — ¢ may be regarded as polar in regard to the
surface F,, and calls them “apolar to the surface F.," because to them no definite
polar belongs. Roeanes had previously (Borchardt, LXXV1, p. 313) termed two
binary forms of the same degree whoee quadrinvariant vanishes “conjugate to each
other.” To explain the relation between the terms and connect them with the
P of transvection, let z,, z, ... be any variables, and ,, w,, ... contragredient
to them, o that when both are linearly transformed, the former by a direct and the
latter by its reciprocal substitution the value of w,z, + wz; + %z, + is unchanged,
then any relation among the former may be expressed symbolically by the vanishing
of an expression (a,3, + a,2, + a,z; +)* = a,% and any relation among the latter
by that of (a8 + sty + ayu; +)? = au?. We may refer to these as the locus a.*
and the envelope @,#. Substituting for «;, w, .. R_f:;’ é, «. i0 a?, SUppoOSing
P <n, and operating with the result on a.* a new locus is found, a,Pa,*? = a fa."?,
which is called a polar of a.” in respect of a.%, it being obvious that polars of higher
degrees may be formed bympenﬁngﬂleopenthn,ifneedbe,onaddiﬁon:ilfnc&om
of the symbol a,®. Again, snpposingp>a,andsubsﬁtnﬁngf0tzu’v...d—;‘,a‘—’,
in a,*, and operating on q.?, we find a new envelope Gaa,*® = a,"as"™, Which
should be similarly considered a pole of a.® in respect of a.”.

When % = p, the derived function is an invariant whose vanishing Ga®= a*=0
is the condition for a,* = 0, and a,* = 0 to be “conjugate.” )

If the form a,a,?™ Or a,*a,’™ vanish for all values of the variables , a.*
is “apolar” to a.?, and if c,» be any other function such that a."b.#* = c.P, then
a? = 0, or a,P is conjugate to any form which coptains a,* as a factor.

TABLE OF A FEW TRANSVECTANTS OF A QUANTIC OF ANY DEGREE,
Let the quantic of degree » be written with binomial coefficients »,, »,, &c.,
a =0 +5,0,2" Yy + vazr Y 4,

and let a covariant b whose source b, is 4 function of a,, a,, ... supposed cleared of any
common numerical factor, so that it is in ita lowest terms, be of the degree p, then
with binomial coefficients & = 8,z + p\b,2P 1y +.
The source may be named without suffix, thus, for the Hessian & =a,a,— a2,
9 =0 —8a,00,+20%  i=a,0,—40,0,+305%, J=ao,0,+20)0,0,—ag8s*—a,a,2— ar?,
k = as%ay — baga,a, + 2a40,0; — 6aya,* + 8ay%a;,  f = ayag — 63,05 + 16a,a, — 10a,7,
1 = @400, — Bayyay + 2000, — aga,® + 30,00, — 6,050, — 80,057 + 2aya,?,
0 = ag’a; — Tasa,a4 + 9a,0,0; — basa,a, + 20a,a,® — 30a,a,a, + 12a,%a;,
P = asy — 8a,a, + 28a,a, — 56a,a, + 35a?,
q = 2841, (242, — 40,0, + 8a,?) — 8a’a,? + 18a,aya,05 — 12a0,0,0, — 27a)%a2

— 18242, + 108205050, — bdaja, + 16aga;%a, — 64a,a;® + 86a,%a, = 12(i4i, — §,7),
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€ = (ar’ay — 3aym,a, + 2,%) a5 — ay%a? + Baya,a50, + 4a00,%, - ba,%a,a, — 484a,0,
) - 20)%a;* + 8a,ay%a; — 8a,* ;
also let a b, — a,b, = (ad),, ab, — 2a,b, + ab, = (ab),, &c., then the transvectant
2(@h)y=g; 2@-5)(ak);=@—-8)ia; 4(Ww—5)(ah)s=(v~4)k;
42 -5)(v-T)(ak)=(v -4 (-8 fa+12 (v -1) (2w -T)7;
8 (2v — b) (2v — 7) (ak)s = (v — 5) (v — 6) 0;

8 (2v—5)(2v —T7)(2v—9) (ah)e=(v—56) (v —6)(v —7) pa+ 10 (v — 1) (2v —9) (v — 22) ; &e.
2@ =k 2(W-9)(od)=w—5)/a—6@—9)j; 4(@—9)(a)=0-6)o;
4 (20~ 9) (2v ~ 11) (ai), = (v — 6) (v — 7) pa — 4 (v — 12) (2w — 11) I; &c. 5
2 (Bi)1=a,0,0,040,1 a5 — 05230, — 20,2,0,0, +30, 0, + 430,057 — 24,70, —60,%a,0,+ Baya;
=8(g)h; 2@v—b)(2w—-9)(hi);=(v—-6) (v —5)la— (2 —7) ¥+ (2w —5)(v—-6) ¢;
8 (3v — 18) (af); =.(v— b) la + (3v — 13) ¢; &c.

The additional function of a,, a, &c. appears on p. 237 as (9), where also e is (8)
with altered sign, or — M of Art.2385. The other sources %, g, ¢, k,./; 0, p are the seriea
given in the end of Art,192; j is equally well known, and / and ¢ begin with the
sextic, Arts, 262, 257,

The 23 forms of the COMPLETE SYSTEM OF THE QUINTIC & may now be described
as follows:

From a determine its covariants &, 7, 7, ¢, form also the linear covariant a =(j),
by operating with i on ; the quadricovariant = of the cubic; and the Jacobian.¥
of the quadrics i, 7. We have then
' Asinvariants: the invariant of i, of ¢ and T, of =, and the eliminant of 3, a.

As linear covariants: a, and its Jaeobians with 4, 7, and 9,

The guadric covariants: 4, 7, 3. The cubics: j and its Jacobians with ¢ and .

The guartics: e and its Jacobian with 4. The guintics: a and its Jacobians
with 4, (k) and with +. The sextics: & and its Jacobian with ¢. The septic: the
Jacobian of % with j; and the nonic: the Jacobian of a with %, (g).

The 26 forms of the COMPLETE SYSTEM OF THE SEXTIC ¢ may almo be thus
described :

From a determine its covariants %, i,, I, ¢; form also the quadric covariants m, n
(Art. 269), which are (X),, (m$),. We have then

The invariants : f, (& )g, the invariant of /, that of m, and (lmn).

The guadrics: I, m, n and their Jacobians A, u, ».

The quartics: i, g, and the Jacobians of ¢ with [, and of ¢ with ! and with m.

The sextics: a,j, and the Jacobians of a with ! and with m, and of j with .

The octavics: h, k, and the Jacobian of & with I. The decimic: the Jacobian of
& with 4 ; and the duodecimic: the Jacobian of & with &, (g).

In this notation we have the following 8UMS OF POWERS OF DIFFERENCES
OF THE ROOTS by help of which the first few terms in the equation for the
squares of the differences can be calculated. They were given by M. Roberts
(Quarterly Journal, vol. 1v, p. 178), in whose papers will be found several interesting
relations among the covariants of binary quantics. )
@ (a—pP==(v-1)h aZ(@-pFr=12@E-1){h*-} @ -2) (v-38) a2},
@' (a — B =12 (—1) [~ k3 + 3? (v — 2) (v — ) a%hs — 4v (v — 2) (Tv — 1B) a¥
o (v-2)(v—8) (v—4) (v-5) a*f},
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o ) (a—ﬂﬁ' = (v-1) {'?‘"‘—w (,_25(,_7)a:;.=;-w (GRICELEL
+g? (v —2) (v—8) (3 +8v —21) &' + gop?® (v — 2) (v = 3) (v— 4) (v — 21) ohf

— D=3 -4 -5y —6) v —=T) 4
+ 3= —B)v— 4@ -7 sl 2 )(;.—33)26.7 ) )" )a‘p}-

TABLE OF EXPANDED RESULTANTS, CHIEFLY OF EQUATIONS
WRITTEN WITHOUT BINOMIAL COEFFICIENTS.
1. The resultant of the two quadratics (4, B, 01::, )% (a5, ch, )
is (4c — Ca)?— (Ab— Ba) (Be— CB),
or a2(C?— abBC +ac (B*—2A4C) +82AC—bcAB +c* 4%,

2. The resultant of the quadratic (4, B, C'Iz, y)t and the cubic (a, b, ¢, dI’; u)%is
@C? — abBC* + acC (Bt — 2AC) — ad (Bt — 84BC)
+524C? — bcABC + bd A (B2 — 24C) + *A*C — cdBA* + & 4%,
8. The resultant of quadratic and quartic is
a*Ct — abBC + acC? (B — 2.4C) — adC (B* — 3ABC)
+ ae (B* — 4B AC + 24°C?) + B2AC? — beABC? + bdAC (B* — 24C)
— bed (B —38A4BC) + 2A?C? — cd A*BC + ceA® (B? —240) + &*A3C— de A*B + 6*4*.
4. The resultant of quadratic and quintic is
a*C’ — abBC* + acC? (Bt — 24C) — adC? (B* — 84BC)
+ aeC (B — 44 B2C + 242C%) — af (B> — 6B'AC + 54*BC?) + B ACS — be ABC*
+5dAC? (B? — 2.4C) — be AC (B* — 8ABC) + bf A (B* — 44 B*C + 247C%)
+ 243C° — cd A*BC? + ce42C (B* — 24C) — ¢fA? (B* —3A4BC)
+ @2 43C* — ded3BC + df- 43 (B? — 24C) + . 4'C — ¢fBA* + f245.
5. Discriminant of cubic is
20427 + 4A4C* + 4DB® — B*C* — 184 BCD.
6. Resultant of two cubics (4, B, C. D=, ), (, b, ¢, %z 9)*

The value expressed in terms of the determinants of the form 45 — Ba is given
in p. 77 (and for forms with binomial coefficients, p. 207). Expanded it is

@3 — a¥CD? + a*cD (C — 2BD) — a*d (C* — 8BCD + 3417) + ab*BD?
— abeD (BC —84D) + abd (BC? — 2B*D — ACD) + ac*D (B* — 24C)
+ aed (24C?* + ABD — B*C) + ad® (B® — 3.4BC + 3.A2D) — $AD* + b%cACD
=844 ((® — 2BD) — b*ABD + bedA (BC — 3.4D) — bd?A (B — 24C) -
+ D — A + o A2B — B A% ’

7. The discriminant of a quartic written with binomial coefficients, expanded is
a’e — 120%det — 18a%%? + Sda%cd®e — 27a%d + Sabce® — 6abide — 190abc’de

+ 108abod® + Blacte — Slacid® — 2ibie® + 1085%de — 633 — 54B%cYe + 3653%°dr,
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8. The discriminant of a quartic written without binomial coefficients is
4 (12ae — 85d + c?)3 — (72ace + 9bcd — 27ad? — 27eb? — 24%)?,
or expanding and dividing by 27,
256a%? — 192a%bde? — 128a%c%® + 144a%cd? — 27a%d* + 144abice? — 6ab’d%e
— 80abotde + 18abed® + 16acte — 4acdd? — 27be? + 185%cde — 4b3® — 45%% + B'c*d2.

9. The resultant of cubic (4, B, C, D'z, 5)* and quartic (a, 3, ¢, d, €} z, 3)* is
a*D* — a%CD® + a%eD? (C? — 2BD) — a?dD (C* — 8BCD + 34D7)
+ a% (C — 4BC?D + 2BIP + 4 ACD?) + a?BD? — abeD* (BC — 34D)
+abdD (BC? — 28D — ACD) — abe (BC*® — 8B:CD — AC*D + 5ABD?
+ aetD? (B — 24C) + acdD (24C* + ABD — B'C)
+ ace (B*C? — 24C% — 2DB* + 4ABCD — 34217
+ad?D (B* — 3ABC + 8.4D) — ade (BC — 3ABC?— AB*D + 54*CD)
+ ag* (B — 44 BC + 242C? + 44?BD) — BAD* + b ACD?
— 8%dAD (C? — 2BD) + b%ed (C* — 3BCD + 8AD?) —bABD?
+ 8cdAD (BC — 3AD) + boed (2B*D + ACD — BC?) — bPAD (B2 — 24C)
+ bded (B*C — 240 — ABD) — be*A (B® — 8ABC + 342D)
+ GA2D? — 2dACD 4 c%eA? (C? — 2BD) + cd?A*BD — cdeA? (BC = 34D)
+ce24? (B2 — 24C) — PAD + d%ASC = de?A'B + 344,
10. The resultant of two quartics (4, B, C, D, E{z )% (@ b,¢,d, 6}z, g)* is
(ct. pp. 220, 277),
GAE* — 0% DE? + a%cE? (IR — 2CE) — %K (D* — 3CDE + 3BE?)
+ ate (DA — 4CDPE + 202E* + 4BDE? — 44F?) + a?2CE?*
— a%cE? (CD — 8BE) + dtbdE (CD? — 2C*E — BDE + 44EY)
— a?be (CD* — 8C*DE — BI*E + 5BCE? + ADE?) + a*c?E* (C* — 2BD)
— a%dE (C*D — 2BI? — BCE + 5ADE)
+ a%ee (C*D* — 2BD® — 2C3E + ABCDE + 2AD°E — 3B?F* + 24CEY)
+ @*dE (C*— 3BCD + 8AI? + 8BE — 8ACE)
~ a*de (C*D ~ 8BCD? + 3AD% — BCE + 5B*DE —~ 2ACDE — 5ABE?)
+a% (C4 — 4BC?D + 28217 + 4ACD? + 4B:CE — 24CE — 9ABDE + 44*E")
— aB*BE® + abcE* (BD — 4AE) — ab*dE (BD? - 2BCE — ADE)
+ ab%e (BD* —~ 8BCDE — AD®E + 8B*E? + 2ACE?) — abE? (BC — 3,41))
+ abedE (BCD — BAD? — 3BE + 4ACE)
— abos (BCD* — 8AD® — 2BC*E — B:DE + 8ACDE — 24BE?)
. — abdE (BC* — 2B*D — ACD + BABE)
+ abde (BC?D — 2B1? — ACD? — B*CE + 10ABDE — 84*E?)
— abe? (BC®— 3B°CD — AC*D + 5ABD* + 8B°E — 2ABCE - 54°DE)
+ ac'E? (B? — 24C) — ac*dE (B*D — 24CD — ABE)
+ ac%e (B2D? — 2ACD? — 2B2CE + 4AC?E — 44°E?)
+ acd®E (B'C — 24C? — ABD + 44E)
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— aede (B*CD - 24C*D — ABI® - 3B’E + 8ABCE — 24*DE)

+ ace® (B*(C* —2AC% — 2B*D + 4ABCD — 342" + 2ABE + 24*CE)

— aBE (B* — 3ABC + 34D) + ad% (B'D — 34BCD + 34*D* — AB'E + 24°CE)

— ade* (B3C — 3ABC* — AB2D + 54*CD + A*BE)

+ ae® (B — 44BC + 242C* + 442BD — 4 E) + B AE* — b5cADE? i

+ YPdAE (D? — 2CE) — b%eA (1P — 3CDE + 3BE") + b** ACE* — b*%dAE (CD - 8BE)
+ Yeed (CD? — 2C*E — BDE + 4AE™) + B'd*AE (C* — 2BD + 24E)

—b%ded (C*D—2BD* — BCE+5ADE)+ b*%*A (C*—~3BCD+34D*+3B*E —3ACE)
— bc*ABE? + bc*dAE (BD — 4AE) — bc*ed (BD* — 2BCE — ADE)

— bed? AE (BC — 3AD) + beded (BCD — 3AD? — 3B*E + 4ACE)

— bee?A (BC* — 2B*D — ACD + 5A4BE) + b*AE (B? — 2AC)

— bd%A (B*D — 24CD — ABE) + bde*d (B*C - 2AC* — ABD + 44*E)

— be3A (B* — 3ABC +3A2D) + SAE? — SdADE + c%ed? (IP — 2CE)

+ AP ACE — &deA? (CD — 8BE) + c*¢*A* (C* — 2BD)

= cd3A?BE 4 cd%A* (BD — 4AE) — cde*A* (BC — 3AD) + ce*A* (B? — 24C)

+ QASE — @ A3D + P A3C — dA3B + 44,

TABLES OF SYMMETRIC FUNCTIONS
as calculated by Meyer Hirsch and verified by Prof. Cayley. They have been since
extended to the eleventh degree by M. Faid de Bruno (see his Théorie des Formes
Binaires), and in the American Journal of Mathematics to the twelfth degree by
Mr, W. P. Durfee, vol. v. p. 46 and p. 348, and to the thirteenth hy Capt. P. A.
MacMahen, vol. v1. p. 289. The equation is supposed to be z%+ bw*-1+cx*2+ &c.=0.

I. Za ==,

IL Za* = 8 -2;Zaf=c
L Za* =-+48bc—3d; Ta’B=—be+3d; TaBy=—~d.
IV, Za* = & —4bc+ 2 + 4bd — de; Zaf = ble — 2% — bd + de.

o' = o —2bd+2; Za'By = bd — 4e; SaPyd=6,

V. Za* =-— 54 bb% — bbe® — 55*d + bed + bbe — §f.
Salf = - b+ 8be 4 4°d — bcd — be + Bf.
Za¥t = — bc? + 2% + cd — bbe + bf.

ZaBy =— b2d + 2cd + be'— bf. X
Za?fy = — cd + 8be — Bf; Ta?Byd = — be + bf ; ZaPyds =—~f.
VI. Za* = b — 6840 + 90202 — 2¢* + 6b6%d — 12bcd + 3d* — 65% + 6ce + 6bf — 6g,
ZasB = be — 4022 + 2% — b¥d + Tbed — B + b%e — 6oe — bf + 6g.
Sal? = b%?— 2% — 2834 + 4bed — Bd® + 2B% + 208 — 64 + 6g.
Za3ft = c® — 8bed + Bd? 4 Bb% — Sce — 8bf + 8§. ’
Za'fy = b*d — Bbed + Bd? — b% + 2¢ce + bf — 6g.
Sa’f?y = bed — 8d? — Bb% + 4ce + Tbf — 12g.
Za*fy? =d?— 2e + 2bf — 29; La¥Pyd = b%e — 2ce — bf + 69.
Za’ftyd =ce— 44/ + 9g; Za®Pyds = if — b6g; Tafydsl=g.
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VIL Ea7 == + 78% — 145%2 + Tbe® — Tb%d + 218%0d — Tc%d — Thd?

VIIL

+ T8 — 14bce + Tde — T + T¢f + Tbg — Th,
Za%8 = 85 + bb%2 — bbct + bid — Ob%d + Tcd + 4bd* — ble + Shee
— 7de + B3f — T¢f — bg + Th,

Za%f? = — b + 8bc? + 2b4d — 6b%d — 3c%d + Thd® — 2b% + 4bce
— 7de + 25%f + 8¢f — T8g + Th.
TatBt = bcd + 8b%d + 2d — 5bd? — Bble + 2bce + bde + 102 — T¢f
. ~ Tbg +Th.
Satfy == bt + 4btcd — 230 — 4bd? + B — Bbee + Tde — Bf
+ 2¢f + bg — Th.
Ealfty = bled + 2c%d + bd? + Bb% — 8bce + 2de — 8b%f + dof + 8bg — 14k,
Zadfty =— c%d+ 2bd? + bee — bde — 4b*f + Tef + 4bg — Th.
Za¥fty? = — bd? + 2bce + de — 262 — Bef + Thg — Th.
Za'fyd =~ b% + 3bee — Bde + bf — 2f — bg + Th.
Za’ftyd = — bee + 3de + 4b%f — 6¢f — 9bg + 214,

Za?f?y?8 = —de + 8¢f— bbg +Th; La®Byde = — b*f + 2¢f + bg — Th.
Za?Blyde = —cf + bbg — 14k ; Za’Pydel =—bg + Th; ZaPydeln = —h.

Zat =58 — 8b% + 20b%c? — 16b%¢® + 2¢* + 8b°d — 32%%cd + 24bc?d °
’ + 125902 —8cd? — 86 + 2Ab%ce — Be% — 16bde + det + 8B

~ 16bef + 8df — 882 + 8eg + 8bh — 8i.

Za'B = B¢ — 6b4c? + 9b%c® — 2¢4 — b5d + 116%d — 17bc’d —~ bb*d2
+ 8ed? + Ble — 105%e + 8c%e + 9bde — 4e? — B3 + bef — 8df
+ b%g — 8cg — bk + 84, v

Zatp? = §4c? — 45%* + 2c* — 2b°d + 8bed — 96’¢F+2cd"+2b‘e 6d%ce
—4c’e+166de 4e? — 203+ 4bcf — 8df + 24%g + 4cg — 8bh + 84,

Zatp? = 8% — 2¢* — 8b%d + 6bc?d + 3b%d? — Tcd? + 8bte — b%ce + Bc%e
+ bde — 46t — BBSf + bgf + Tdf + 88% — 8cg — 8bh + 8i.

Eargt = ct— 4bcd +2b%d + dod? + 4b%e — dc%e — 8bds + Ge? — b3S
+ 8bcf — 4df + 4b%g — deg — 4bh + 44,

Zatfy = b5d — bb*cd + bbc?d + 5b?d? — Sed® — ble 4 4b%ce — 2% — 9bde
+ 4e? + Bf — Bbef + 8df — blg + 2eg + bh — 8.

Zasfly = bcd — Bbe?d — b*d? + bed? — Bbte + 115%ce — 4c%e — 10bde + 8¢?
+ 883 — 8bof + df — 88%g + dog + 90h — 16,

Sat@y, = betd — 2% — cd? — bce + 10bde — 8e? + 453 — 10bef + agf-wg
+ 16¢g + 95k — 164,

Tat3ty? = b2d% — 2cd® — 2b%e + 4c% — 4e? + 283 — 4bof + 8df — 2b%
~ 4ecg + 8bh — 8i,

Tadfhy? = cd? — 2% — bde + de® + 5bef - Tdf - 56’g+2cg+8bh 8.
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Ya'Byd = e — 4btcs + % + 4bde — det — B 4 Bbef — Bdf + by
— 2g — bk + 8i.

Salftyd = o6 — 2% — bde + 4¢% — 433 f + 11bef — 9df + 4529 — 6cg
=105k + 24,

La¥flyd = o ~ 2bde + 2 — bof + 3df + Bbtg — g — 5bA + 12i.

Ea¥fty®s = bde — 4¢* — Bbef + 6df + Bbtg — 170k + 24i.

Sa?@iy?0 = et — 2df + 2g — 25k + 2.

ZatByds = Bf — 8bef + 3df — big + 2¢g + bh — 8i.

" ZatByds = bof — Bdf ~ bb%g + 8ag + 115k — 8%,

Ba¥By28e = df — 4cg + 95k — 16i; Ta*Bydel =b%g — 2cg — bk + 8i.
Za’rydel = og — 65k + 308 ; TaBydeln = bh — 8i; Tafydelnd=1.

Za? = — 9+ 9b% ~ 278%2 + 30033 — 9Bct — OBd + dbbied — bab2c?d
+ 9¢3d ~ 1889 + 2Tbod® — 3P + Wbse — 365%e + 27bc%e
+ 275%de — 18cde — 9be® — OBAf + 27b%cf — 9c3f — 185df
+ 9¢f + 9b%g — 1838g + 9dg — BB%h + Och + 9bi — Y.
Za*p = — 8% + Tb%?® — 145%® + Tbot* + btd — 13bted + 8088c>d
~ 9c%d + 683 — 19bcd? + 8 — Boe +12b%e — 195c%
— 118%de + 18cde + 5bet + Bf — 115%f + 963f + 10bdf
— 9¢f — b% + 10bcg — 9dg + b%h — 9ch — i + Y.
Za’@ = —b%? + 5bc — bbet + 2b%d — 10bcd + 5b%*d + beid
+ 1153d? — 18bcd® + 3d® — 2b%e + 85%e + bee — 2053de
+ dede + 98é? + 2B — 6b%f — Belf + 18bdf — ef
— 2B% + 4bcg ~ 9dg + 2b%h + bck — 95 + Y.
Za%3 = — P + 8bot + 8bed — 90°c*d — 3c*d — 3B3d® + 18bed® — 643
~— 8b% + 12b%e — 9bc%e — 9b%de + Ybet + B4 — 9b%cf
+ 9¢%f— 9¢f — 3b% + 9dg + 9%k — 9ch — 95i + 9.
Eatpt = bet + 4b%*d + 0%d — 2b3d? — Thbod? + B3d® — 4b3oe + 8bc?e
+ 185%de — 20de — 11de? + 40Af — T83%f — o2f — 2bdf
'+ 1l¢f— 98%g + 18Bcg — 9dg + 95% — 9ck — 9bi + 9.
Ea'By = — 5% + 6bted — 95%c%d + 263 — 653d* + 12bcd? — B + bhe — bbice
+ Bbo% + 1153de — 11cde — 5be? — WAf + 48%f — 2c2f — 10bdf
+ 9¢f + b%g — 3bog + 9dg — b%h + 2ch + bi — 9,
Za'Bry = blod + 48%%d — 20%d + B¥d* — Thod? + Bd® + 3b% — 14b%ce
+ 1250% + 185%de — dede — 14be* — BBAF + 118%f — 4c?f
— 105df + 18¢f + 8b3%g — 8bag — 3b%h + 4ch + 10bi — 1.
Taifly = - b%%d + Utd + 20%d? — 4bcd? + AP + bPce — 2bo%e — 5b%de
+ 2¢de + 6be® — 455 + 16b%f — 8c2f — bbdf — 2ef
"+ 4b% — 10bcg — 106%h + 18¢ch + 1043 — 18,
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ZiAfby. “ = — ¢4 4 8bcd? — 8 + bee — 583de + 2ede + bbe? — Bif'+ cif
+ 6bdf — 11ef + bb%g — 14bcg + 9dg — bb%h + 9ch + bbi — 9.
Tabfty? = - b3d? 4 Bbod? — 3d® + 2b3¢ce — 6bc% + 6cde + be? — 2BAf + 6b%ef
~ 8bdf ~ ef + 2bg — 4beg + 9dg — 2b%h — beh + 9bi — Y.
Zatfy® =— bed? + 3d* + 2bc% + b%de — 8cde + 2bet — 5b%f + 6cf
+ 2bdf — 2¢f + bb%g — 4bcg — 115%h + 4ch + 18bi — 18j.
Za’fty? =— & + 3cde — Bbe? — 8c2f + Bbdf + Bef + Bbeg — 6dg
— 852h + 8ch + 8bi — 8.
SaByd = — b + bbice — bhe?e — bbde + bede + 5be? + Bif — 4b%cf + 2¢%f
+ 4bdf — 9¢f — b3g + 8beg — 3dg + b%h — 2ch — i + 9.
Zab@yd = — bce + Bbe%e + b2de — Bede — bet + 454 — 168%f + 6¢%f + 16bdf
— Tef — 4b%g + 11bcg — 9dg + 4b*h — 6¢h — 11bi + 275,
Tatfdyd = — bo% + 2b%de + ode — bbe* + bicf — bbdf + 13ef — bbg
+ 18d¢g — 8dg + 115%h — 20ch — 115 + 27j. .
Za'fry?d = — bde + 2cde + be? + 8b%f — 6c2f — 2bdf + Bef — bbPg
+ 1280g — 9dg + Bb% + ch — 195s + 27j.
Za’fly®d = — ode + 8be? + 3ef — 4bdf — Tef — Tbeg + 18dg + 12b%
— 13ch — 195¢ + 27j.
Zad?y?02=— bet + 2bdf + ¢f — 2bcg — 8dg + 2% + bech — 9bi + Y.
Zabfyds =— Wf + 4b%f — 2cf — 45df + def + bdg — Bbeg + Bdg ~ b*h
+2ch + 88— 9.
Za'fBlyde = — b%f + 26%f + bdf — 4ef + bb%g — 14beg + 12dg — 66%A
+ 8¢k + 1264 — 8¢,
Za¥Bdyde = — c*f + 2bdf — 2¢f + beg — 8dg — 65%h + 11ch + 658 — 18).
Za’3y?de = — bdf + 4¢f + 4bcg — 9dg — 962k + bch + 80bi — 54j.
Za?By?&% = — ¢f + 3dg — bech + Thi — .
Za'fydel =— b%g + 8bcg — 8dg + b*h — 2ch — bi + Y.
ZatBrydel = — beg + 8dg + 6b%h — 10ch — 135i + 46j.
2¢’ﬁ'7'6;{(=—dg+5ch—l4bi+30j; Za'Bydein=—0R +2h +6i - 9.
Da?Brydeln=— ch + Tbi — 27 ; Za?Bydelnd =—bi + .
P = 510 — 105% + 35500 — 50b4c® + 268%¢ — 2¢5 + 10b7d — 608%cd
+ 1005%*d ~ 40bc*d + 25b4d? — 60b%cd® + 16¢3d® + 10ba*
~ 108% + 50btce — 60b%c%e + 10c% — 40b3de + 60bcde — 10d%e
+ 1552 ~ 100e® + 1055/ — 40b%¢f + 80bc3f + 3053df — 20cdf
~ 200¢f + 61 — 10b%g + 80b%g — 10c%g — 20bdg + 10eg +105%
— 20bck + 10dh — 105% + 10¢i + 108 — 10k.
b ] = b8 — 8582 + 20443 — 164%c4 + 20* — b7d + 16b%cd — 46b%¢c*d
+ 81bcd — ThAd? + 33b%cd® — 16¢2d® — Tbad + Ve
— 14¥4ce + 8882c% — 10c%e + 18b%de — 42bede + 10d%e
Z2z
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~ W+ Llpef — Lihf — Girdf + Fodf — Al —
& Wy - tog — 2Py ~ shdg + 140g — 1055 ~ 2ich
- Mudk & 30685 ~ 19ci ~ 19U + 10K.
= ¢ ~ Utd 4 el + SO — b + Slide — Sete — Disic
~ Glude + bd2¢ + biBS 4 bc# — Bbef + 10bSf + 108PdY
~ 1cdf - 15kef 4 14f + BPg — L5lcg + Scg + 1Dbsly
~ bag ~ 6Pk 4 10bck —~ bdh + 68 — Sei — Sby + bk
< Wg — Tihed + UWisdd ~ Thtd + TP — 21l + T
+ 7b8% ~ e + 8bcs ~ VP Pe + 2Pe — 1357de + 26bods
— 10d5a + 6088 ~ Badt + YAf ~ bbAcf + bbcf + 1204df
= 1204f — 11b¢f + bf3 ~ Vg + 4¥Pcg — 2%g — 118dg + 10eg
4 AR — Bbok + 10dh — 5 4 2¢i + & — 10k.
< Mod —~ biesd + Bbod ~ bidd + 9bAod® — TAd — 4baP — 8bre
& 17008 ~ 28iAchs + dote ~ 160ds + 21bcde + dPe + 17521
- 18008 4 BY/ — 1458/ + 12508/ + 1883df — Bedf — Blbef
& 1Q/% = Bbig + 11800g — dokg — 10bdg + 20eg + 8%
~ Bhoh ~ dh = BIM + 4ol + 11 — 20k,
a: Mot —~ Bhodd ~— Qbid + Bl8ad? + Boddd — Tbd® — bice + Bbicle
+ Ble = 1 Bheds + 18d%s ~ 81362 4 doet & 4D~ 19%¢f + 18be?f
+ 100/~ 100qf ~ T8¢/ + 1Q/? — 4dg + 188%yg — 8c%g — 4bdy
- dog + ¢IA ~ 1080A < dA — 1139 + 20ci + 114 — 20%.
= boMd - BMled® — oMY + B — Bt + Bdtde — 8d%e — 8i%e?
+ 4o + W/ — MY — 1308 + 10cdf + 28def — 1313
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— B89 + 183%g — 8cig ~ Tbdg — deg + 118%h — Blbck
+ 20dh — 113% + 20ci + 114 — 20%.
TaiPry® = A — 4B 4 260D 4 4D — 2Wioe + 8b%%e — Acte — Bbode
) — dd%e — 16b + 1000% + 2B8F — 8BS + 4Be3f + 100%df
~ dcdf — 8bef + bf® — g + Bb%g — 8bdg — 2y + 2b%h
— 4boh + 104k — 25% — 601 + 10 —~ 10k,
Tatty? = Bedt — 2°d? — b — 2b%c% + 4c% — bide + bbede + d% + Be*
— 12¢¢? + B¥%f — 18bcf — 48%df + ITedf + 10bef — 162
~ b¥g + 168%g — 4c%g — 19bdg + 206g + BB — 85ch
— dh — 125% + 4ci + 2047 ~ 20K.
Tty = Od — 2B — 2% + dbede + 2d%e — Bb%? + 206 + 2bctf
+ 28%df '~ 12¢df + 4bef + Bf* — 6b%cg + 10c%g + 4bdg
— deg + 6% — 3Zbelt + 10dh — 6% + 2¢i + 108 — 10%.
Ta\ty® = b — Bbode — &% + Bb%? + 2ce® + Bbctf — 35%df + cdf — 8bef
+ 5% — 88%g — 0% + 18bdg — 2eg + 38% + bok — 11dh
—105% + 1003 + 105 — 10k,
Ta"Byd = bt — Gbice + b — 20% + Ghde — 12bode + 8d%e — 6B%e?
+ 6ce? — 351 + BBSf — Bbetf — b5 + bedf + 11bef — bf?
+ big — 4b%g + 26°g + 4bdg — 10eg — 8%k + 8bch — 8dh
‘ + b% — 208 — & + 10%.
ZPyd = boe — 4bc% + 2% ~ B3de + Thede ~ Bd%e +3%* — 6oe® — 4BSS
’ + 198%f — 17863 — 198%f + 16cdf + 18bef — 16/ +-4blg
— 158%g + 6c% + 163dg — Gag'—~ 45% + 1180k — 9dh
+ 45% — 60i — 128 + 80%.
Za¥yd = b%% — 20% — 2bde + dbede — BdPe + 257" + 2e® — B + 2o}
' + 852df — dodf — 128¢f + 10/ + bbtg — 198%g + 10%g + 15bdg
— Beg ~ 583h + 185ch — 9dh + 125% ~ 220i — 12} + 80K,
Be\'yd = % — 8bode + 8d%e + 8b%? — Boe? — be3f + 2B3f + odf — 8bef
+ 52 + $%g — c%g — 8bdg + eg — 6b% + TTbeh — 1548~
. + 6% ~ 11¢i — 6% + 15k,
 ZaM?y?8 = b%de — bede + 3d% — b2e? + 20e* — Blvef + 9Be’f + 2b%if
— 18¢df — bef + 101 + bbtg — 17b%y + 4¢% + 18bdy
~ 18¢g — 683k + 12bch — 9dh + 66% + 2i — 214 + 80%.
"Ta\ty?3 = bode — 3d% — 3% + 4oe* — Bbof + 4b%df + bedf — bf?
+ Tb%g — 8c?g — 16bdg + 12¢g — 1383 + 21bek + 3B
+ 265% — 28ci — 42 + 60k,
Te¥33y’8 = d% — 2ce? — cdf + Bbef — bf* + 4ctg — Thdg + 2eg — 4bch
: + 113k + 78% — 10¢i — b + 10X,
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Saifytd = b2t — e — S + dedf — Bf? + ey — 4e%g + 10eg — 2k
+ 4bch — 10dh + 2% + 6¢i — 105] + 10k.
ZalPry® = e6® — 2df — bef + 5f + 2% + 8bdg — 9eg — Tbch + 6dh
+ T8% + ci — 168/ + 15E.
Zasfyde = B8f — B¥%f + bbetf + bb%df — bedf — bbef + 5/ — Mg + 4%y
— 26%g — 4bdg + 4eg + b%h — Bbch + Bdh — b%i + 2ei + iy — 10k,
Za'Byds = b¥f — Bbe2f — b%df + bedf + bef — 5f* — blig + 19b%g — 8c%g
~ 19bdg + 16eg + 5b% — 14bch + 12dh — 5b% + 8ci + 184y — 40k.
Za'Bryde = be’f — 282df — cdf + bbef — bf2 — bcg + bbdg — 8eg + 6%h
— 1650k + 12dh — 13b% + 24¢i + 134 — 40%.
Ea'fiy28s = B2df — 2edf — bef + b — 4b%cg + 8c%g + 3bdg — 12e9 + SR
— 28bch + 18dh — 9% + 4ci + 33b) — 60,
a3y = cdf — Bbef + 5/ — 463y + 6bdg + Sbch — 24dh — 214%
+ 28¢i + 83bj — 60k,
a1yt = bef — bf? — 8bdg + 8eg + bbch — 2dh — 7b% — 8¢i + 81k — 40k,
ZaBry0%2 = f? — 2¢g + 2dA — 2¢i + 28] — 2k.
TatBydil = by — 4b%g + 2% + Abdg — deg — b%h + Bbch — 3k + B%
: — 2¢i — & + 10k.
Za'Blydsl = blg — %% — bdg + 4eg — 65%h + 17bch — 15dh + 65%
— 10ci — 147 + 50F.
Ead@iydsl = o'g — 2bdg + 2eg — beh + 3dh + Tb% — 13¢i — Thy + 25k.
Zad3y?36] = bdg — deg — bbch + 12dh + 145% — 12¢i — 4657 + 100k.
. ~Za?2y?3% = g — 4dh + 9ci — 168 + 26k
Za'fydeln = b%h — Bbch + 8dh — b% + 2¢i + & — 10k.
Eaiftydeln = beh — 8dh — 7b% + 1203 + 155 — 60%.
Za?Brydeln = dh — 6ci + 204 — 50k ; Ta®Bydelnb = b% — 2¢i — & 4 10k.
Zafy3 &c. = oi — 8% + 85k; Sa’By &e. = bj — 10%.

g b

Prof. Cayley noticed a certain symmetry in the coefficients of the preceding formu]s,- .

which may be more easily exhibited by using Hirsch’s notation. If such a sum as
Za'fry23el be denoted [8221%] and the coefficients be a), a,, &c., so that (82%13) will
denote a,a,%a?, then the formuls for the sums of the fourth order may be written
< &€ £ 8 ¢
[4l=—4|+4|+2| -4 +1
By=+4|-1|-2]+1
[]=+2|-2]|+1
[212)=—-4 | +1
[14]=+1
The first line is to be read Zat = — 4a, + 4a,a, + 20,2 — 4a,0,2 + a,*, and so on for the
rest. Now what Prof. Cayley has proved is, that when the formule already given are
thus written, the figures are the same whether we read according to the rows or

columns. The same thing holds for Prof. Cayley’s (Phil. Trans., 1857, p. 489) .

formulee expressing the coefficients (4), (31), &c. in terms of the sums [4], [31], &c.
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INDEX.

Absolute invariants, 111, 175,
Apolarity, 224, 336, 337, 346.

Aronhold, on symbolical methods, 147,

On invariants of ternary cubic, 343.
On the differential equations of in-
variants, 344,

Baltxer, on determinants, 838.

Besout, on elimination, 81, 105, 338, 842,
Besoutiants, 343.

Binet, on determinants, 338.

Bon% on linear transformations, 109, 343,
’ orm for the resultant of two quad-
ratics, 24, 165, 180,

Borchardt, proof that the equation of the

secular inequalities has all its roots
real, 54.

Bordered Hessians reduced, 17.

Boudaz;i sg'énmetnca.l determinants, value
el

Skew sy;nmetrical determinants, 266.

Brill, on sextic, 273.
Briosehi expresses differential equation of

invariants in terms of roots, 342,

On solution of the quintic, 257.

On determinants, 339.

Barnside, investigation of radius of sphere
circumscribing tetrahedron, 26.

Transformation of binary to ternary
forms, 172.

Applications of this method, 181, 189,
200, 202, 214, 222, 281.

On solution of biquadratic, 196.

Canonical forms, 150, 194,228, 277, 281,345.
Cauonizants, 154, 226, 232,
Catalecticants. 156, 190, 261.

Cauchy, on determinants, 33, 338, 840.
Cayley (see also p. 343).

expression for relation connecting
mutual distances of five points on
a sghere, 26.
of five points in space, 27.
Al:.glication of skew determinants to
e theory of orthogonal substitu-
tions, 41, 339.
Calculation of number of terms in a
symmetrical determinant, 45.
On symmetric functions of roots of
equation, 58, 342.
Statement of Bezout’s method of
elimination, 83.
General expression for resultants as
quotients of determinants, 87, 306.
Notation for quantics, 99.

Cayley, discovery of invariants, 109, 843,

On the number of invariants of a
binary quantic, 182, 176.

Definition of covariants, 136.

Symbolical method of expressing in-
variants and covariants, 137,

Identifies two forms of canonizant of
equations of odd degree, 155.

On discriminant of discriminant, 166,

On tact-invariants, 169.

Method of forming a complete system
of covariants, 176, 186, 199.

Relation connecting covariants of
cubic, 186.

Solution of a cubic, 186.

Solution of a quartic, 195.

On criteria of reality of roots, 197.

On covariants of system formed by
quartic and its Hessian, 201,

On covariants of quintic, 237.

Canonical form for '}uintic, 238,

Tables of Sturmian functions, 240.

On Tschirnhausen transformation,251.

0n34r:tional functional determinants,

On invariants of sextic}n?ﬁ.
Tables of symmetric functions, 350,
356.
Clebsch, on symbolical methods, 147.
Special form of ternary quartics, 151,
335

Conditions a sextic may be sexti-
covariant of quartic, 282,

Proves that every invariant may be
symbolically expressed, 315.

Proves number of forms is finite, 320.

Investigates resultant of quadraticand
general equation, 826.

General expression for discriminant,
326.

Investigates equation of system of
inflexional tangents to a cubic, 830.

On type form of even binary, 835,

Form of resultant of two cubics, 343.
Cockle, on the solution of the quintic, 257.
Combinants, 161, 845.

Invariant of invariant of 4+ Av is a

combinant, 211.

Of a system of two quartics, 219.
Common roots determined, 91.
Commutants, 839.

Complete systems,177,185,199,237, 260,847,

Concomitants, 121.

Conditions that equations should have two
common factors, 78, 97, 291, 312,
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Conditions for syntems of equalities be-
tween roots,
That quantic should be reducible to
sum of powers, 156.
That u+ Av should have a cubic
factor, 166, 205, 221, 279.
That u + Av have two double factors,
166, 220, 279.
That four points should form a har-
monic system, 179.
That three pairs of points shonld form
system in involution, 180.
For three quadrics to be differentials
of a quartic, 224.
to be quadric covariants- of two
cubics, 225.
That quartic should have two square
factors, 220.
That two quartics should be differen-
tials of same quintic, 220, 228.
That quintic should admit of being
brought by linear transformation
to Jerrard's form, 282.
That quintic should have two square
or a cubic factor,
That sextic should have two square
or a cubic factor, 263.
" That roots of sextic should be in in-
volution, 270.
For sextic to be Hessian of a qaintic,

282,
For sextic to be sexticovariant of
quartic, 282.
That quantic lmve two square or one
cubic factor, 204
Conjugate formn, 220 337 846,
Contragredience, 118, 846.
Conmvmnts, 117 120.
Of binary quantws not essentially dis-
tinot from covariants, 127,
. Continnants, 18.
Covariants, 114 ; distinct, 175.
How defined b Cayley, 136.
Number of, for binary quantw,132 176.
Cramer, on determmants,
Critical functions, 60.
Cubicovariant of cubic, 130, 183.
Cubic discussed, 183.
System of two2 204 ; of four, 215,337.
Cubic, quaternary, its canonical form, 160.
Cubinvariants, only type of, 141.

Derivatives of derivatives expressed sym-
boli y 321.
Dialytic method of elimination, 79, 842.
Differential coefficients of det;ermmants, 35.
Of resultants with respect to quantities
entering into all the quantics, 96.
Differential equation bf functions of differ-
ences of roots, 61, 342,
Of invariants, 131.
Differentiation mutual, of covariants and
contravariants, 126.
Discriminant defined, 99.
Of binary quantic expressed as deter-
minant,

INDEX.

Dmcnmmo :mlt:3 ;)f product of two qn*,
101
Of dlscnmma.nts, 166.
Bign of distinguishes whether eq
has even or odd numbers of
of imaginary roots, 239. H
Generalsymbolical expression
Distinct invariants and covariants, E '
Double points of involution, 162.
Double tangents of plane curves, 888,

D’Ovidio, on two cubics, 213 ; quartion, Bl
Darfee, on symmetric functions, 360

Eisenstein, expression for general M
of quartic, 343.
Eliminants defined, 66, :
Elimination, 67. ‘ '
Emanants, 115, 338.
Equa.htles between roots of an eq“
conditions for, 125.
Equianharmonic, 184. '
Invariant, 190, 259. :
Euler, a theorem of 25,
On the t.heory of orthogonal “l
tutions, 44.
On elimination, 77, 842. X
Evectants, 122, N
Of discriminant which vamshes, - \
Symbolical expression for, 146 0
Of discriminant of cubic, 130, 1‘ !
Of cubinvariant of quartlc, 192.
Of quartinvariant of quintic, 23%

Of sextic, 279. ot -
Fad de Bruno, calculates invariaw ‘
quintic, 230.

On elimination, 342.

On symmetric functions, 350.
Forme-type of quintic, 249.

Of even quantic, 335.

Of quantic of onder 3p, 387,

Gauss, on linear transformations, 83‘~'
Gerbaldi, on two cubics, 213.
Gordan, on number of covariants, n
213 224, 260, 320, 324,
Gnndelﬁnger, on system of cubb
quartic, 218.

Harley, on solution of a qumtlc, 250,
Harmonic invariant, 190, 260. .
Hermite, law of reciprocity, 142 1 o
On transformation of a qu y
function, 42. . fo
On concomitants of system {‘
quartic and its Hessian, 20 ‘
ganomcal ﬁﬂ?{ for quintic, 23& , -
iscovery of skew mvmantof#
233, 345 !
Expressmn by invariants of co:
of reality of roots, 242, 250.
Forme-type of qmntxc, 249, . |
On Tschirnhausen transformati o
Solution of quintics by elliptis .
tions, 257. &

Expression of invariants of qm
terms of roots, 258.

~



Hessiane, 17, N7, 144, 188, 192,227, 261,841,

- ctors of origin:
Of He

. B, gaquintio,

Wimoh’s tables ric functions, 350,

Jomographio 83,

Hyper-dete:

Inflexional tangen! cubic, calculation

of their equati 30.

Invariants, ; irredugible, 176.

Abeolute, 111, 190. N

Skew, 131.
How many independenY, 1N
Relation connecting weiXhtand order
of, 180.

Involution, 162.
Condition roots of sextic be
Determinant, 25, 33, 180, 27
Foci of, 179, 198, 259.

270.

Jacobi, on determinants and linear
formations, 339, 340, 341,

Jacobian, of systems of equations, 8
842.

Properties of, 84.
Geometrically interpreted, 162,
Its discriminant discussed, 164.
Of two quadratics, 179.
Of quartic and its Hessian, 201,
Of systems of quartics, 271, 274,
Jerrard, transformation of a quintic, 232,
250, 269.
Joachimsthal, expression for area of a
triangle inscribed in an ellipse, 26.
Theorem on form of discriminant, 102,

Kronecker, solution of quintic by elliptic
fanctions, 257.

Kummer’s resolution into sum of squares
of discriminant of cubic which de-
termines axes of a quadric, 56.

Lagrange, on solution of quintic, 267.
On determinants, 338.
On conditions that- equation should
have two pairs of equal roots, 842.
On linear transformations, 343,
Laplace, on determinants, 338.
. Equation of secular inequalities, 48.
Leibnitz, his claim to invention of deter-
minants, 338.
Xindemann, on geometric exposition, 174,
. 216, 218, 836.
Condition for sextic to be Hessian of
a quintic, 2832.
Linear covariants of cubic and quadratic,
187

Of two cubics, 209, 215.
Of cubic and quartic, 219,
Of quintic, 235, 249.

MacMahon, on symmetric functions, 350.
Meyer, on apolarity, 224, 276.
Minor determinants, 10, 28.

359

Minor detétwinants, of reciprocal system
how related to those of original, 31.

Muir, on continuants, 18.

Multiplication of determinants, 20,

Newton, on sums of powers“v‘.f roots of

equation, 56.
Number of terms in a symmetxical de-
terminant, 45. N

Of quadrics which can be decribed

through five points to touch four
Ofpln.nee, 298. : b '
invariants of a binary quanti
182, 176. o
Of distinct forms finite, 176, 825,

Order of determinants, 7.

Of symmetric functions, 58,

8; inv:lﬁa.nts,fl.’io.

resultant of any equations, 76.

Of discriminants, 99. e

Of systems of equations, 284,
Orthogonal substitutions, 42.
Osculants, 171,

Poisson’s method of forming symmetric
functions of common roots of sys-
tems of equations, 72, 342,

Quadratic forms, transformed, 42,
Reducible to sum of squares, 161,

Number of itive and negative
squares fixed, 151.
General expression for resultant with
equation of n* degree, 827,
Quadric systems, 179.
Quadrinvariants of binary quantics, 128.
Quartic, theox;y of, 189.
System of two, 219, 271.

Quartinvariant of odd quantic, 129.
Quintic, theory of, 227, 847,
Involved in theory of sextic, 273,

Reciprocal determinants, 80,
Reciprocity, Hermite’s law of, 142, 179.
B.educigsg7 sextic for quintic, forms of,
Resultant, order and weight of, 66, 75,
Of two quadratics, 68, 77, 83, 85, 180.
Of two cubics, 77, 85, 205, 345.
Of two quartics, 81, 86, 220, 277, ¢
Of quadratic and any equation, 827.
Tables of, 348,
larity, 846.

s

ichael, on sources of covariants,
134, 238,
On application of Sturm’s theorem to
quintics, 240
Onueguaﬁon of squares of differences,

Roberts, b'mpuel, on orders of systems of

equations, 310,
Roberts, W. R. W., on twisted cubic, 174,
219¢, d.

Rodrigues, orthogonal transformations, 44,
Rosanes, on conjugate forms, 846,
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Schlesinger, on conjugate forms, 225,
Seminvariants, 176,
Serret’s notation for differential equation
of covariants, 65.
Sextic, theory of, 260, 347.
Skew :lymmetrio d:fl;erminants, gf even
egree are perfect squ. 8.
Bordered, 266. SIS
Skew invariants defined, 131.
Of all quantics vanish when quantic
wants alternate terms, 23
Skew invariant of quintic, 233, 282.
Vanishes if quintic can be linearl
transformed to recurring form, 242.
Expression in terms of roots, 258,
Skew invariant of sextic, 260, 269, 282.
Bource of covariants, 134, 238.
Sphere circumscribing tetrahedron, 26.
Relations connecting mutual distances
of points on, 26.
Spottiswoode, on determinants, 838,
Stephanos, on sextic, 278, 282.
Stroh, on two quartics, 345.
Sturm': fu.ngtions, Sylvester’s expressions
or, 49.
In case of quartic, 197.
of quintic, 240,
Extension of, 105.
Sturm,af., on geometrical representation,
5.
Superfluous variable, method of using, 207.
Sylvester (see also p. 343).
Umbral notation for determinants, 8.
Proof that equation of secular in-
equalities has all real roots, 28, 48.
Expression for Sturm’s functions in
terms of roots, 49.
Dialytic method of elimination, 79, 342,
Expression of resultant as determi-
nant, 86,

INDEX,

Sylvester,extensionefS$wrm’s theorem, 1056+

On nomenciature, 181, 122, 196, 81,
342, 345, .

Canonical forms of odi_sad even
degrees, 153, 156, 237, 848, ~

Of quaternary cubie, 100.

Expressions for di with ve-
gard to variables which do not emter
explicitly, 163.

On osculants, 171. R

On number of distinct forma, % ,

Reduces system of two N

Be2dll§ca system of cubic quartia,

Re:‘glgces system of two qumrtics, 224,

Investigation of invariant conditions
for reality of roots of quintic, 242.
On Bezoutiants, 343.
On combinants, 345.
Symbolical expression for invariants, &c.,
187, 314.
Symmetric functions, 56.
Their use in finding invariants, 124,
Tables of, 350.

Tact-invariants, 169.
Of complex curves, 170.
Tetrahedron, radius of circumscribing
sphere, 26.
Transvection and transvectants, 320, 346,
Tschirnhausen, transformation of equa-
tions, 250.
Type, or typical forms, 249, 335.

Umbral notation, 8, 314, 338.

~

‘Vandermonde, on def.ermina.ntl, 338.

‘Warren, on system of two quartics, 221,

THE END.

W. METCALFR AND 80N, PRINTERS, CAMBRIDGE.
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